xref: /openbmc/qemu/hw/ppc/pnv.c (revision 82f51817)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/numa.h"
25 #include "sysemu/cpus.h"
26 #include "hw/hw.h"
27 #include "target/ppc/cpu.h"
28 #include "qemu/log.h"
29 #include "hw/ppc/fdt.h"
30 #include "hw/ppc/ppc.h"
31 #include "hw/ppc/pnv.h"
32 #include "hw/ppc/pnv_core.h"
33 #include "hw/loader.h"
34 #include "exec/address-spaces.h"
35 #include "qapi/visitor.h"
36 #include "monitor/monitor.h"
37 #include "hw/intc/intc.h"
38 #include "hw/ipmi/ipmi.h"
39 #include "target/ppc/mmu-hash64.h"
40 
41 #include "hw/ppc/xics.h"
42 #include "hw/ppc/pnv_xscom.h"
43 
44 #include "hw/isa/isa.h"
45 #include "hw/char/serial.h"
46 #include "hw/timer/mc146818rtc.h"
47 
48 #include <libfdt.h>
49 
50 #define FDT_MAX_SIZE            (1 * MiB)
51 
52 #define FW_FILE_NAME            "skiboot.lid"
53 #define FW_LOAD_ADDR            0x0
54 #define FW_MAX_SIZE             (4 * MiB)
55 
56 #define KERNEL_LOAD_ADDR        0x20000000
57 #define KERNEL_MAX_SIZE         (256 * MiB)
58 #define INITRD_LOAD_ADDR        0x60000000
59 #define INITRD_MAX_SIZE         (256 * MiB)
60 
61 static const char *pnv_chip_core_typename(const PnvChip *o)
62 {
63     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
64     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
65     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
66     const char *core_type = object_class_get_name(object_class_by_name(s));
67     g_free(s);
68     return core_type;
69 }
70 
71 /*
72  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
73  *     4 * 4 sockets * 12 cores * 8 threads = 1536
74  * Let's make it 2^11
75  */
76 #define MAX_CPUS                2048
77 
78 /*
79  * Memory nodes are created by hostboot, one for each range of memory
80  * that has a different "affinity". In practice, it means one range
81  * per chip.
82  */
83 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
84 {
85     char *mem_name;
86     uint64_t mem_reg_property[2];
87     int off;
88 
89     mem_reg_property[0] = cpu_to_be64(start);
90     mem_reg_property[1] = cpu_to_be64(size);
91 
92     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
93     off = fdt_add_subnode(fdt, 0, mem_name);
94     g_free(mem_name);
95 
96     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
97     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
98                        sizeof(mem_reg_property))));
99     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
100 }
101 
102 static int get_cpus_node(void *fdt)
103 {
104     int cpus_offset = fdt_path_offset(fdt, "/cpus");
105 
106     if (cpus_offset < 0) {
107         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
108         if (cpus_offset) {
109             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
110             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
111         }
112     }
113     _FDT(cpus_offset);
114     return cpus_offset;
115 }
116 
117 /*
118  * The PowerNV cores (and threads) need to use real HW ids and not an
119  * incremental index like it has been done on other platforms. This HW
120  * id is stored in the CPU PIR, it is used to create cpu nodes in the
121  * device tree, used in XSCOM to address cores and in interrupt
122  * servers.
123  */
124 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
125 {
126     PowerPCCPU *cpu = pc->threads[0];
127     CPUState *cs = CPU(cpu);
128     DeviceClass *dc = DEVICE_GET_CLASS(cs);
129     int smt_threads = CPU_CORE(pc)->nr_threads;
130     CPUPPCState *env = &cpu->env;
131     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
132     uint32_t servers_prop[smt_threads];
133     int i;
134     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
135                        0xffffffff, 0xffffffff};
136     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
137     uint32_t cpufreq = 1000000000;
138     uint32_t page_sizes_prop[64];
139     size_t page_sizes_prop_size;
140     const uint8_t pa_features[] = { 24, 0,
141                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
142                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
143                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
144                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
145     int offset;
146     char *nodename;
147     int cpus_offset = get_cpus_node(fdt);
148 
149     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
150     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
151     _FDT(offset);
152     g_free(nodename);
153 
154     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
155 
156     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
157     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
158     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
161     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
162                             env->dcache_line_size)));
163     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
164                             env->dcache_line_size)));
165     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
166                             env->icache_line_size)));
167     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
168                             env->icache_line_size)));
169 
170     if (pcc->l1_dcache_size) {
171         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
172                                pcc->l1_dcache_size)));
173     } else {
174         warn_report("Unknown L1 dcache size for cpu");
175     }
176     if (pcc->l1_icache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
178                                pcc->l1_icache_size)));
179     } else {
180         warn_report("Unknown L1 icache size for cpu");
181     }
182 
183     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
184     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
185     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
186     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
187     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
188 
189     if (env->spr_cb[SPR_PURR].oea_read) {
190         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
191     }
192 
193     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
194         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
195                            segs, sizeof(segs))));
196     }
197 
198     /* Advertise VMX/VSX (vector extensions) if available
199      *   0 / no property == no vector extensions
200      *   1               == VMX / Altivec available
201      *   2               == VSX available */
202     if (env->insns_flags & PPC_ALTIVEC) {
203         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
204 
205         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
206     }
207 
208     /* Advertise DFP (Decimal Floating Point) if available
209      *   0 / no property == no DFP
210      *   1               == DFP available */
211     if (env->insns_flags2 & PPC2_DFP) {
212         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
213     }
214 
215     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
216                                                       sizeof(page_sizes_prop));
217     if (page_sizes_prop_size) {
218         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
219                            page_sizes_prop, page_sizes_prop_size)));
220     }
221 
222     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
223                        pa_features, sizeof(pa_features))));
224 
225     /* Build interrupt servers properties */
226     for (i = 0; i < smt_threads; i++) {
227         servers_prop[i] = cpu_to_be32(pc->pir + i);
228     }
229     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230                        servers_prop, sizeof(servers_prop))));
231 }
232 
233 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
234                        uint32_t nr_threads)
235 {
236     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
237     char *name;
238     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
239     uint32_t irange[2], i, rsize;
240     uint64_t *reg;
241     int offset;
242 
243     irange[0] = cpu_to_be32(pir);
244     irange[1] = cpu_to_be32(nr_threads);
245 
246     rsize = sizeof(uint64_t) * 2 * nr_threads;
247     reg = g_malloc(rsize);
248     for (i = 0; i < nr_threads; i++) {
249         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
250         reg[i * 2 + 1] = cpu_to_be64(0x1000);
251     }
252 
253     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
254     offset = fdt_add_subnode(fdt, 0, name);
255     _FDT(offset);
256     g_free(name);
257 
258     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
259     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
260     _FDT((fdt_setprop_string(fdt, offset, "device_type",
261                               "PowerPC-External-Interrupt-Presentation")));
262     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
263     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
264                        irange, sizeof(irange))));
265     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
266     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
267     g_free(reg);
268 }
269 
270 static void pnv_dt_chip(PnvChip *chip, void *fdt)
271 {
272     const char *typename = pnv_chip_core_typename(chip);
273     size_t typesize = object_type_get_instance_size(typename);
274     int i;
275 
276     pnv_dt_xscom(chip, fdt, 0);
277 
278     for (i = 0; i < chip->nr_cores; i++) {
279         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
280 
281         pnv_dt_core(chip, pnv_core, fdt);
282 
283         /* Interrupt Control Presenters (ICP). One per core. */
284         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
285     }
286 
287     if (chip->ram_size) {
288         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
289     }
290 }
291 
292 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
293 {
294     uint32_t io_base = d->ioport_id;
295     uint32_t io_regs[] = {
296         cpu_to_be32(1),
297         cpu_to_be32(io_base),
298         cpu_to_be32(2)
299     };
300     char *name;
301     int node;
302 
303     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
304     node = fdt_add_subnode(fdt, lpc_off, name);
305     _FDT(node);
306     g_free(name);
307 
308     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
309     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
310 }
311 
312 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
313 {
314     const char compatible[] = "ns16550\0pnpPNP,501";
315     uint32_t io_base = d->ioport_id;
316     uint32_t io_regs[] = {
317         cpu_to_be32(1),
318         cpu_to_be32(io_base),
319         cpu_to_be32(8)
320     };
321     char *name;
322     int node;
323 
324     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
325     node = fdt_add_subnode(fdt, lpc_off, name);
326     _FDT(node);
327     g_free(name);
328 
329     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
330     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
331                       sizeof(compatible))));
332 
333     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
334     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
335     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
336     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
337                            fdt_get_phandle(fdt, lpc_off))));
338 
339     /* This is needed by Linux */
340     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
341 }
342 
343 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
344 {
345     const char compatible[] = "bt\0ipmi-bt";
346     uint32_t io_base;
347     uint32_t io_regs[] = {
348         cpu_to_be32(1),
349         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
350         cpu_to_be32(3)
351     };
352     uint32_t irq;
353     char *name;
354     int node;
355 
356     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
357     io_regs[1] = cpu_to_be32(io_base);
358 
359     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
360 
361     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
362     node = fdt_add_subnode(fdt, lpc_off, name);
363     _FDT(node);
364     g_free(name);
365 
366     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
367     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
368                       sizeof(compatible))));
369 
370     /* Mark it as reserved to avoid Linux trying to claim it */
371     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
372     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
373     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
374                            fdt_get_phandle(fdt, lpc_off))));
375 }
376 
377 typedef struct ForeachPopulateArgs {
378     void *fdt;
379     int offset;
380 } ForeachPopulateArgs;
381 
382 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
383 {
384     ForeachPopulateArgs *args = opaque;
385     ISADevice *d = ISA_DEVICE(dev);
386 
387     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
388         pnv_dt_rtc(d, args->fdt, args->offset);
389     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
390         pnv_dt_serial(d, args->fdt, args->offset);
391     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
392         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
393     } else {
394         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
395                      d->ioport_id);
396     }
397 
398     return 0;
399 }
400 
401 static int pnv_chip_isa_offset(PnvChip *chip, void *fdt)
402 {
403     char *name;
404     int offset;
405 
406     name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
407                            (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE);
408     offset = fdt_path_offset(fdt, name);
409     g_free(name);
410     return offset;
411 }
412 
413 /* The default LPC bus of a multichip system is on chip 0. It's
414  * recognized by the firmware (skiboot) using a "primary" property.
415  */
416 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
417 {
418     int isa_offset = pnv_chip_isa_offset(pnv->chips[0], fdt);
419     ForeachPopulateArgs args = {
420         .fdt = fdt,
421         .offset = isa_offset,
422     };
423 
424     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
425 
426     /* ISA devices are not necessarily parented to the ISA bus so we
427      * can not use object_child_foreach() */
428     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
429                        &args);
430 }
431 
432 static void *pnv_dt_create(MachineState *machine)
433 {
434     const char plat_compat[] = "qemu,powernv\0ibm,powernv";
435     PnvMachineState *pnv = PNV_MACHINE(machine);
436     void *fdt;
437     char *buf;
438     int off;
439     int i;
440 
441     fdt = g_malloc0(FDT_MAX_SIZE);
442     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
443 
444     /* Root node */
445     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
446     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
447     _FDT((fdt_setprop_string(fdt, 0, "model",
448                              "IBM PowerNV (emulated by qemu)")));
449     _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
450                       sizeof(plat_compat))));
451 
452     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
453     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
454     if (qemu_uuid_set) {
455         _FDT((fdt_property_string(fdt, "system-id", buf)));
456     }
457     g_free(buf);
458 
459     off = fdt_add_subnode(fdt, 0, "chosen");
460     if (machine->kernel_cmdline) {
461         _FDT((fdt_setprop_string(fdt, off, "bootargs",
462                                  machine->kernel_cmdline)));
463     }
464 
465     if (pnv->initrd_size) {
466         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
467         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
468 
469         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
470                                &start_prop, sizeof(start_prop))));
471         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
472                                &end_prop, sizeof(end_prop))));
473     }
474 
475     /* Populate device tree for each chip */
476     for (i = 0; i < pnv->num_chips; i++) {
477         pnv_dt_chip(pnv->chips[i], fdt);
478     }
479 
480     /* Populate ISA devices on chip 0 */
481     pnv_dt_isa(pnv, fdt);
482 
483     if (pnv->bmc) {
484         pnv_dt_bmc_sensors(pnv->bmc, fdt);
485     }
486 
487     return fdt;
488 }
489 
490 static void pnv_powerdown_notify(Notifier *n, void *opaque)
491 {
492     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
493 
494     if (pnv->bmc) {
495         pnv_bmc_powerdown(pnv->bmc);
496     }
497 }
498 
499 static void pnv_reset(void)
500 {
501     MachineState *machine = MACHINE(qdev_get_machine());
502     PnvMachineState *pnv = PNV_MACHINE(machine);
503     void *fdt;
504     Object *obj;
505 
506     qemu_devices_reset();
507 
508     /* OpenPOWER systems have a BMC, which can be defined on the
509      * command line with:
510      *
511      *   -device ipmi-bmc-sim,id=bmc0
512      *
513      * This is the internal simulator but it could also be an external
514      * BMC.
515      */
516     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
517     if (obj) {
518         pnv->bmc = IPMI_BMC(obj);
519     }
520 
521     fdt = pnv_dt_create(machine);
522 
523     /* Pack resulting tree */
524     _FDT((fdt_pack(fdt)));
525 
526     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
527 }
528 
529 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
530 {
531     Pnv8Chip *chip8 = PNV8_CHIP(chip);
532     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
533 }
534 
535 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
536 {
537     Pnv8Chip *chip8 = PNV8_CHIP(chip);
538     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
539 }
540 
541 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
542 {
543     return NULL;
544 }
545 
546 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
547 {
548     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
549 }
550 
551 static void pnv_init(MachineState *machine)
552 {
553     PnvMachineState *pnv = PNV_MACHINE(machine);
554     MemoryRegion *ram;
555     char *fw_filename;
556     long fw_size;
557     int i;
558     char *chip_typename;
559 
560     /* allocate RAM */
561     if (machine->ram_size < (1 * GiB)) {
562         warn_report("skiboot may not work with < 1GB of RAM");
563     }
564 
565     ram = g_new(MemoryRegion, 1);
566     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
567                                          machine->ram_size);
568     memory_region_add_subregion(get_system_memory(), 0, ram);
569 
570     /* load skiboot firmware  */
571     if (bios_name == NULL) {
572         bios_name = FW_FILE_NAME;
573     }
574 
575     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
576     if (!fw_filename) {
577         error_report("Could not find OPAL firmware '%s'", bios_name);
578         exit(1);
579     }
580 
581     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
582     if (fw_size < 0) {
583         error_report("Could not load OPAL firmware '%s'", fw_filename);
584         exit(1);
585     }
586     g_free(fw_filename);
587 
588     /* load kernel */
589     if (machine->kernel_filename) {
590         long kernel_size;
591 
592         kernel_size = load_image_targphys(machine->kernel_filename,
593                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
594         if (kernel_size < 0) {
595             error_report("Could not load kernel '%s'",
596                          machine->kernel_filename);
597             exit(1);
598         }
599     }
600 
601     /* load initrd */
602     if (machine->initrd_filename) {
603         pnv->initrd_base = INITRD_LOAD_ADDR;
604         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
605                                   pnv->initrd_base, INITRD_MAX_SIZE);
606         if (pnv->initrd_size < 0) {
607             error_report("Could not load initial ram disk '%s'",
608                          machine->initrd_filename);
609             exit(1);
610         }
611     }
612 
613     /* Create the processor chips */
614     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
615     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
616                                     i, machine->cpu_type);
617     if (!object_class_by_name(chip_typename)) {
618         error_report("invalid CPU model '%.*s' for %s machine",
619                      i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
620         exit(1);
621     }
622 
623     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
624     for (i = 0; i < pnv->num_chips; i++) {
625         char chip_name[32];
626         Object *chip = object_new(chip_typename);
627 
628         pnv->chips[i] = PNV_CHIP(chip);
629 
630         /* TODO: put all the memory in one node on chip 0 until we find a
631          * way to specify different ranges for each chip
632          */
633         if (i == 0) {
634             object_property_set_int(chip, machine->ram_size, "ram-size",
635                                     &error_fatal);
636         }
637 
638         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
639         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
640         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
641                                 &error_fatal);
642         object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
643         object_property_set_bool(chip, true, "realized", &error_fatal);
644     }
645     g_free(chip_typename);
646 
647     /* Instantiate ISA bus on chip 0 */
648     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
649 
650     /* Create serial port */
651     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
652 
653     /* Create an RTC ISA device too */
654     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
655 
656     /* OpenPOWER systems use a IPMI SEL Event message to notify the
657      * host to powerdown */
658     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
659     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
660 }
661 
662 /*
663  *    0:21  Reserved - Read as zeros
664  *   22:24  Chip ID
665  *   25:28  Core number
666  *   29:31  Thread ID
667  */
668 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
669 {
670     return (chip->chip_id << 7) | (core_id << 3);
671 }
672 
673 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
674                                         Error **errp)
675 {
676     Error *local_err = NULL;
677     Object *obj;
678     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
679 
680     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
681                      &local_err);
682     if (local_err) {
683         error_propagate(errp, local_err);
684         return;
685     }
686 
687     pnv_cpu->icp = ICP(obj);
688 }
689 
690 /*
691  *    0:48  Reserved - Read as zeroes
692  *   49:52  Node ID
693  *   53:55  Chip ID
694  *   56     Reserved - Read as zero
695  *   57:61  Core number
696  *   62:63  Thread ID
697  *
698  * We only care about the lower bits. uint32_t is fine for the moment.
699  */
700 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
701 {
702     return (chip->chip_id << 8) | (core_id << 2);
703 }
704 
705 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
706                                         Error **errp)
707 {
708     return;
709 }
710 
711 /* Allowed core identifiers on a POWER8 Processor Chip :
712  *
713  * <EX0 reserved>
714  *  EX1  - Venice only
715  *  EX2  - Venice only
716  *  EX3  - Venice only
717  *  EX4
718  *  EX5
719  *  EX6
720  * <EX7,8 reserved> <reserved>
721  *  EX9  - Venice only
722  *  EX10 - Venice only
723  *  EX11 - Venice only
724  *  EX12
725  *  EX13
726  *  EX14
727  * <EX15 reserved>
728  */
729 #define POWER8E_CORE_MASK  (0x7070ull)
730 #define POWER8_CORE_MASK   (0x7e7eull)
731 
732 /*
733  * POWER9 has 24 cores, ids starting at 0x0
734  */
735 #define POWER9_CORE_MASK   (0xffffffffffffffull)
736 
737 static void pnv_chip_power8_instance_init(Object *obj)
738 {
739     Pnv8Chip *chip8 = PNV8_CHIP(obj);
740 
741     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
742                             TYPE_PNV_PSI, &error_abort, NULL);
743     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
744                                    OBJECT(qdev_get_machine()), &error_abort);
745 
746     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
747                             TYPE_PNV_LPC, &error_abort, NULL);
748     object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
749                                    OBJECT(&chip8->psi), &error_abort);
750 
751     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
752                             TYPE_PNV_OCC, &error_abort, NULL);
753     object_property_add_const_link(OBJECT(&chip8->occ), "psi",
754                                    OBJECT(&chip8->psi), &error_abort);
755 }
756 
757 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
758  {
759     PnvChip *chip = PNV_CHIP(chip8);
760     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
761     const char *typename = pnv_chip_core_typename(chip);
762     size_t typesize = object_type_get_instance_size(typename);
763     int i, j;
764     char *name;
765     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
766 
767     name = g_strdup_printf("icp-%x", chip->chip_id);
768     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
769     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
770     g_free(name);
771 
772     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
773 
774     /* Map the ICP registers for each thread */
775     for (i = 0; i < chip->nr_cores; i++) {
776         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
777         int core_hwid = CPU_CORE(pnv_core)->core_id;
778 
779         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
780             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
781             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
782 
783             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
784                                         &icp->mmio);
785         }
786     }
787 }
788 
789 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
790 {
791     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
792     PnvChip *chip = PNV_CHIP(dev);
793     Pnv8Chip *chip8 = PNV8_CHIP(dev);
794     Error *local_err = NULL;
795 
796     pcc->parent_realize(dev, &local_err);
797     if (local_err) {
798         error_propagate(errp, local_err);
799         return;
800     }
801 
802     /* Processor Service Interface (PSI) Host Bridge */
803     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
804                             "bar", &error_fatal);
805     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
806     if (local_err) {
807         error_propagate(errp, local_err);
808         return;
809     }
810     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip8->psi.xscom_regs);
811 
812     /* Create LPC controller */
813     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
814                              &error_fatal);
815     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
816 
817     /* Interrupt Management Area. This is the memory region holding
818      * all the Interrupt Control Presenter (ICP) registers */
819     pnv_chip_icp_realize(chip8, &local_err);
820     if (local_err) {
821         error_propagate(errp, local_err);
822         return;
823     }
824 
825     /* Create the simplified OCC model */
826     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
827     if (local_err) {
828         error_propagate(errp, local_err);
829         return;
830     }
831     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
832 }
833 
834 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
835 {
836     DeviceClass *dc = DEVICE_CLASS(klass);
837     PnvChipClass *k = PNV_CHIP_CLASS(klass);
838 
839     k->chip_type = PNV_CHIP_POWER8E;
840     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
841     k->cores_mask = POWER8E_CORE_MASK;
842     k->core_pir = pnv_chip_core_pir_p8;
843     k->intc_create = pnv_chip_power8_intc_create;
844     k->isa_create = pnv_chip_power8_isa_create;
845     k->xscom_base = 0x003fc0000000000ull;
846     dc->desc = "PowerNV Chip POWER8E";
847 
848     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
849                                     &k->parent_realize);
850 }
851 
852 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
853 {
854     DeviceClass *dc = DEVICE_CLASS(klass);
855     PnvChipClass *k = PNV_CHIP_CLASS(klass);
856 
857     k->chip_type = PNV_CHIP_POWER8;
858     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
859     k->cores_mask = POWER8_CORE_MASK;
860     k->core_pir = pnv_chip_core_pir_p8;
861     k->intc_create = pnv_chip_power8_intc_create;
862     k->isa_create = pnv_chip_power8_isa_create;
863     k->xscom_base = 0x003fc0000000000ull;
864     dc->desc = "PowerNV Chip POWER8";
865 
866     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
867                                     &k->parent_realize);
868 }
869 
870 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
871 {
872     DeviceClass *dc = DEVICE_CLASS(klass);
873     PnvChipClass *k = PNV_CHIP_CLASS(klass);
874 
875     k->chip_type = PNV_CHIP_POWER8NVL;
876     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
877     k->cores_mask = POWER8_CORE_MASK;
878     k->core_pir = pnv_chip_core_pir_p8;
879     k->intc_create = pnv_chip_power8_intc_create;
880     k->isa_create = pnv_chip_power8nvl_isa_create;
881     k->xscom_base = 0x003fc0000000000ull;
882     dc->desc = "PowerNV Chip POWER8NVL";
883 
884     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
885                                     &k->parent_realize);
886 }
887 
888 static void pnv_chip_power9_instance_init(Object *obj)
889 {
890 }
891 
892 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
893 {
894     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
895     Error *local_err = NULL;
896 
897     pcc->parent_realize(dev, &local_err);
898     if (local_err) {
899         error_propagate(errp, local_err);
900         return;
901     }
902 }
903 
904 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
905 {
906     DeviceClass *dc = DEVICE_CLASS(klass);
907     PnvChipClass *k = PNV_CHIP_CLASS(klass);
908 
909     k->chip_type = PNV_CHIP_POWER9;
910     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
911     k->cores_mask = POWER9_CORE_MASK;
912     k->core_pir = pnv_chip_core_pir_p9;
913     k->intc_create = pnv_chip_power9_intc_create;
914     k->isa_create = pnv_chip_power9_isa_create;
915     k->xscom_base = 0x00603fc00000000ull;
916     dc->desc = "PowerNV Chip POWER9";
917 
918     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
919                                     &k->parent_realize);
920 }
921 
922 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
923 {
924     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
925     int cores_max;
926 
927     /*
928      * No custom mask for this chip, let's use the default one from *
929      * the chip class
930      */
931     if (!chip->cores_mask) {
932         chip->cores_mask = pcc->cores_mask;
933     }
934 
935     /* filter alien core ids ! some are reserved */
936     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
937         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
938                    chip->cores_mask);
939         return;
940     }
941     chip->cores_mask &= pcc->cores_mask;
942 
943     /* now that we have a sane layout, let check the number of cores */
944     cores_max = ctpop64(chip->cores_mask);
945     if (chip->nr_cores > cores_max) {
946         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
947                    cores_max);
948         return;
949     }
950 }
951 
952 static void pnv_chip_instance_init(Object *obj)
953 {
954     PNV_CHIP(obj)->xscom_base = PNV_CHIP_GET_CLASS(obj)->xscom_base;
955 }
956 
957 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
958 {
959     Error *error = NULL;
960     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
961     const char *typename = pnv_chip_core_typename(chip);
962     size_t typesize = object_type_get_instance_size(typename);
963     int i, core_hwid;
964 
965     if (!object_class_by_name(typename)) {
966         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
967         return;
968     }
969 
970     /* Cores */
971     pnv_chip_core_sanitize(chip, &error);
972     if (error) {
973         error_propagate(errp, error);
974         return;
975     }
976 
977     chip->cores = g_malloc0(typesize * chip->nr_cores);
978 
979     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
980              && (i < chip->nr_cores); core_hwid++) {
981         char core_name[32];
982         void *pnv_core = chip->cores + i * typesize;
983         uint64_t xscom_core_base;
984 
985         if (!(chip->cores_mask & (1ull << core_hwid))) {
986             continue;
987         }
988 
989         object_initialize(pnv_core, typesize, typename);
990         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
991         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
992                                   &error_fatal);
993         object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
994                                 &error_fatal);
995         object_property_set_int(OBJECT(pnv_core), core_hwid,
996                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
997         object_property_set_int(OBJECT(pnv_core),
998                                 pcc->core_pir(chip, core_hwid),
999                                 "pir", &error_fatal);
1000         object_property_add_const_link(OBJECT(pnv_core), "chip",
1001                                        OBJECT(chip), &error_fatal);
1002         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1003                                  &error_fatal);
1004         object_unref(OBJECT(pnv_core));
1005 
1006         /* Each core has an XSCOM MMIO region */
1007         if (!pnv_chip_is_power9(chip)) {
1008             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1009         } else {
1010             xscom_core_base = PNV_XSCOM_P9_EC_BASE(core_hwid);
1011         }
1012 
1013         pnv_xscom_add_subregion(chip, xscom_core_base,
1014                                 &PNV_CORE(pnv_core)->xscom_regs);
1015         i++;
1016     }
1017 }
1018 
1019 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1020 {
1021     PnvChip *chip = PNV_CHIP(dev);
1022     Error *error = NULL;
1023 
1024     /* XSCOM bridge */
1025     pnv_xscom_realize(chip, &error);
1026     if (error) {
1027         error_propagate(errp, error);
1028         return;
1029     }
1030     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1031 
1032     /* Cores */
1033     pnv_chip_core_realize(chip, &error);
1034     if (error) {
1035         error_propagate(errp, error);
1036         return;
1037     }
1038 }
1039 
1040 static Property pnv_chip_properties[] = {
1041     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1042     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1043     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1044     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1045     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1046     DEFINE_PROP_END_OF_LIST(),
1047 };
1048 
1049 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1050 {
1051     DeviceClass *dc = DEVICE_CLASS(klass);
1052 
1053     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1054     dc->realize = pnv_chip_realize;
1055     dc->props = pnv_chip_properties;
1056     dc->desc = "PowerNV Chip";
1057 }
1058 
1059 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1060 {
1061     PnvMachineState *pnv = PNV_MACHINE(xi);
1062     int i;
1063 
1064     for (i = 0; i < pnv->num_chips; i++) {
1065         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1066 
1067         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1068             return &chip8->psi.ics;
1069         }
1070     }
1071     return NULL;
1072 }
1073 
1074 static void pnv_ics_resend(XICSFabric *xi)
1075 {
1076     PnvMachineState *pnv = PNV_MACHINE(xi);
1077     int i;
1078 
1079     for (i = 0; i < pnv->num_chips; i++) {
1080         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1081         ics_resend(&chip8->psi.ics);
1082     }
1083 }
1084 
1085 static PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1086 {
1087     CPUState *cs;
1088 
1089     CPU_FOREACH(cs) {
1090         PowerPCCPU *cpu = POWERPC_CPU(cs);
1091         CPUPPCState *env = &cpu->env;
1092 
1093         if (env->spr_cb[SPR_PIR].default_value == pir) {
1094             return cpu;
1095         }
1096     }
1097 
1098     return NULL;
1099 }
1100 
1101 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1102 {
1103     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1104 
1105     return cpu ? pnv_cpu_state(cpu)->icp : NULL;
1106 }
1107 
1108 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1109                                Monitor *mon)
1110 {
1111     PnvMachineState *pnv = PNV_MACHINE(obj);
1112     int i;
1113     CPUState *cs;
1114 
1115     CPU_FOREACH(cs) {
1116         PowerPCCPU *cpu = POWERPC_CPU(cs);
1117 
1118         icp_pic_print_info(pnv_cpu_state(cpu)->icp, mon);
1119     }
1120 
1121     for (i = 0; i < pnv->num_chips; i++) {
1122         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1123         ics_pic_print_info(&chip8->psi.ics, mon);
1124     }
1125 }
1126 
1127 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1128                               void *opaque, Error **errp)
1129 {
1130     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1131 }
1132 
1133 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1134                               void *opaque, Error **errp)
1135 {
1136     PnvMachineState *pnv = PNV_MACHINE(obj);
1137     uint32_t num_chips;
1138     Error *local_err = NULL;
1139 
1140     visit_type_uint32(v, name, &num_chips, &local_err);
1141     if (local_err) {
1142         error_propagate(errp, local_err);
1143         return;
1144     }
1145 
1146     /*
1147      * TODO: should we decide on how many chips we can create based
1148      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1149      */
1150     if (!is_power_of_2(num_chips) || num_chips > 4) {
1151         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1152         return;
1153     }
1154 
1155     pnv->num_chips = num_chips;
1156 }
1157 
1158 static void pnv_machine_instance_init(Object *obj)
1159 {
1160     PnvMachineState *pnv = PNV_MACHINE(obj);
1161     pnv->num_chips = 1;
1162 }
1163 
1164 static void pnv_machine_class_props_init(ObjectClass *oc)
1165 {
1166     object_class_property_add(oc, "num-chips", "uint32",
1167                               pnv_get_num_chips, pnv_set_num_chips,
1168                               NULL, NULL, NULL);
1169     object_class_property_set_description(oc, "num-chips",
1170                               "Specifies the number of processor chips",
1171                               NULL);
1172 }
1173 
1174 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1175 {
1176     MachineClass *mc = MACHINE_CLASS(oc);
1177     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1178     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1179 
1180     mc->desc = "IBM PowerNV (Non-Virtualized)";
1181     mc->init = pnv_init;
1182     mc->reset = pnv_reset;
1183     mc->max_cpus = MAX_CPUS;
1184     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1185     mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1186                                       * storage */
1187     mc->no_parallel = 1;
1188     mc->default_boot_order = NULL;
1189     mc->default_ram_size = 1 * GiB;
1190     xic->icp_get = pnv_icp_get;
1191     xic->ics_get = pnv_ics_get;
1192     xic->ics_resend = pnv_ics_resend;
1193     ispc->print_info = pnv_pic_print_info;
1194 
1195     pnv_machine_class_props_init(oc);
1196 }
1197 
1198 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1199     {                                             \
1200         .name          = type,                    \
1201         .class_init    = class_initfn,            \
1202         .parent        = TYPE_PNV8_CHIP,          \
1203     }
1204 
1205 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1206     {                                             \
1207         .name          = type,                    \
1208         .class_init    = class_initfn,            \
1209         .parent        = TYPE_PNV9_CHIP,          \
1210     }
1211 
1212 static const TypeInfo types[] = {
1213     {
1214         .name          = TYPE_PNV_MACHINE,
1215         .parent        = TYPE_MACHINE,
1216         .instance_size = sizeof(PnvMachineState),
1217         .instance_init = pnv_machine_instance_init,
1218         .class_init    = pnv_machine_class_init,
1219         .interfaces = (InterfaceInfo[]) {
1220             { TYPE_XICS_FABRIC },
1221             { TYPE_INTERRUPT_STATS_PROVIDER },
1222             { },
1223         },
1224     },
1225     {
1226         .name          = TYPE_PNV_CHIP,
1227         .parent        = TYPE_SYS_BUS_DEVICE,
1228         .class_init    = pnv_chip_class_init,
1229         .instance_init = pnv_chip_instance_init,
1230         .instance_size = sizeof(PnvChip),
1231         .class_size    = sizeof(PnvChipClass),
1232         .abstract      = true,
1233     },
1234 
1235     /*
1236      * P9 chip and variants
1237      */
1238     {
1239         .name          = TYPE_PNV9_CHIP,
1240         .parent        = TYPE_PNV_CHIP,
1241         .instance_init = pnv_chip_power9_instance_init,
1242         .instance_size = sizeof(Pnv9Chip),
1243     },
1244     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1245 
1246     /*
1247      * P8 chip and variants
1248      */
1249     {
1250         .name          = TYPE_PNV8_CHIP,
1251         .parent        = TYPE_PNV_CHIP,
1252         .instance_init = pnv_chip_power8_instance_init,
1253         .instance_size = sizeof(Pnv8Chip),
1254     },
1255     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1256     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1257     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1258                           pnv_chip_power8nvl_class_init),
1259 };
1260 
1261 DEFINE_TYPES(types)
1262