1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qapi/error.h" 22 #include "sysemu/sysemu.h" 23 #include "sysemu/numa.h" 24 #include "sysemu/cpus.h" 25 #include "hw/hw.h" 26 #include "target/ppc/cpu.h" 27 #include "qemu/log.h" 28 #include "hw/ppc/fdt.h" 29 #include "hw/ppc/ppc.h" 30 #include "hw/ppc/pnv.h" 31 #include "hw/ppc/pnv_core.h" 32 #include "hw/loader.h" 33 #include "exec/address-spaces.h" 34 #include "qemu/cutils.h" 35 #include "qapi/visitor.h" 36 #include "monitor/monitor.h" 37 #include "hw/intc/intc.h" 38 #include "hw/ipmi/ipmi.h" 39 #include "target/ppc/mmu-hash64.h" 40 41 #include "hw/ppc/xics.h" 42 #include "hw/ppc/pnv_xscom.h" 43 44 #include "hw/isa/isa.h" 45 #include "hw/char/serial.h" 46 #include "hw/timer/mc146818rtc.h" 47 48 #include <libfdt.h> 49 50 #define FDT_MAX_SIZE 0x00100000 51 52 #define FW_FILE_NAME "skiboot.lid" 53 #define FW_LOAD_ADDR 0x0 54 #define FW_MAX_SIZE 0x00400000 55 56 #define KERNEL_LOAD_ADDR 0x20000000 57 #define INITRD_LOAD_ADDR 0x60000000 58 59 static const char *pnv_chip_core_typename(const PnvChip *o) 60 { 61 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 62 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 63 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 64 const char *core_type = object_class_get_name(object_class_by_name(s)); 65 g_free(s); 66 return core_type; 67 } 68 69 /* 70 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 71 * 4 * 4 sockets * 12 cores * 8 threads = 1536 72 * Let's make it 2^11 73 */ 74 #define MAX_CPUS 2048 75 76 /* 77 * Memory nodes are created by hostboot, one for each range of memory 78 * that has a different "affinity". In practice, it means one range 79 * per chip. 80 */ 81 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 82 { 83 char *mem_name; 84 uint64_t mem_reg_property[2]; 85 int off; 86 87 mem_reg_property[0] = cpu_to_be64(start); 88 mem_reg_property[1] = cpu_to_be64(size); 89 90 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 91 off = fdt_add_subnode(fdt, 0, mem_name); 92 g_free(mem_name); 93 94 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 95 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 96 sizeof(mem_reg_property)))); 97 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 98 } 99 100 static int get_cpus_node(void *fdt) 101 { 102 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 103 104 if (cpus_offset < 0) { 105 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 106 if (cpus_offset) { 107 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 108 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 109 } 110 } 111 _FDT(cpus_offset); 112 return cpus_offset; 113 } 114 115 /* 116 * The PowerNV cores (and threads) need to use real HW ids and not an 117 * incremental index like it has been done on other platforms. This HW 118 * id is stored in the CPU PIR, it is used to create cpu nodes in the 119 * device tree, used in XSCOM to address cores and in interrupt 120 * servers. 121 */ 122 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 123 { 124 PowerPCCPU *cpu = pc->threads[0]; 125 CPUState *cs = CPU(cpu); 126 DeviceClass *dc = DEVICE_GET_CLASS(cs); 127 int smt_threads = CPU_CORE(pc)->nr_threads; 128 CPUPPCState *env = &cpu->env; 129 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 130 uint32_t servers_prop[smt_threads]; 131 int i; 132 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 133 0xffffffff, 0xffffffff}; 134 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 135 uint32_t cpufreq = 1000000000; 136 uint32_t page_sizes_prop[64]; 137 size_t page_sizes_prop_size; 138 const uint8_t pa_features[] = { 24, 0, 139 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 140 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 141 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 142 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 143 int offset; 144 char *nodename; 145 int cpus_offset = get_cpus_node(fdt); 146 147 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 148 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 149 _FDT(offset); 150 g_free(nodename); 151 152 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 153 154 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 155 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 156 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 157 158 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 159 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 160 env->dcache_line_size))); 161 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 162 env->dcache_line_size))); 163 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 164 env->icache_line_size))); 165 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 166 env->icache_line_size))); 167 168 if (pcc->l1_dcache_size) { 169 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 170 pcc->l1_dcache_size))); 171 } else { 172 warn_report("Unknown L1 dcache size for cpu"); 173 } 174 if (pcc->l1_icache_size) { 175 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 176 pcc->l1_icache_size))); 177 } else { 178 warn_report("Unknown L1 icache size for cpu"); 179 } 180 181 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 182 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 183 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 184 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 185 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 186 187 if (env->spr_cb[SPR_PURR].oea_read) { 188 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 189 } 190 191 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 192 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 193 segs, sizeof(segs)))); 194 } 195 196 /* Advertise VMX/VSX (vector extensions) if available 197 * 0 / no property == no vector extensions 198 * 1 == VMX / Altivec available 199 * 2 == VSX available */ 200 if (env->insns_flags & PPC_ALTIVEC) { 201 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 202 203 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 204 } 205 206 /* Advertise DFP (Decimal Floating Point) if available 207 * 0 / no property == no DFP 208 * 1 == DFP available */ 209 if (env->insns_flags2 & PPC2_DFP) { 210 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 211 } 212 213 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 214 sizeof(page_sizes_prop)); 215 if (page_sizes_prop_size) { 216 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 217 page_sizes_prop, page_sizes_prop_size))); 218 } 219 220 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 221 pa_features, sizeof(pa_features)))); 222 223 /* Build interrupt servers properties */ 224 for (i = 0; i < smt_threads; i++) { 225 servers_prop[i] = cpu_to_be32(pc->pir + i); 226 } 227 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 228 servers_prop, sizeof(servers_prop)))); 229 } 230 231 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 232 uint32_t nr_threads) 233 { 234 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 235 char *name; 236 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 237 uint32_t irange[2], i, rsize; 238 uint64_t *reg; 239 int offset; 240 241 irange[0] = cpu_to_be32(pir); 242 irange[1] = cpu_to_be32(nr_threads); 243 244 rsize = sizeof(uint64_t) * 2 * nr_threads; 245 reg = g_malloc(rsize); 246 for (i = 0; i < nr_threads; i++) { 247 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 248 reg[i * 2 + 1] = cpu_to_be64(0x1000); 249 } 250 251 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 252 offset = fdt_add_subnode(fdt, 0, name); 253 _FDT(offset); 254 g_free(name); 255 256 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 257 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 258 _FDT((fdt_setprop_string(fdt, offset, "device_type", 259 "PowerPC-External-Interrupt-Presentation"))); 260 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 261 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 262 irange, sizeof(irange)))); 263 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 264 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 265 g_free(reg); 266 } 267 268 static int pnv_chip_lpc_offset(PnvChip *chip, void *fdt) 269 { 270 char *name; 271 int offset; 272 273 name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 274 (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE); 275 offset = fdt_path_offset(fdt, name); 276 g_free(name); 277 return offset; 278 } 279 280 static void pnv_dt_chip(PnvChip *chip, void *fdt) 281 { 282 const char *typename = pnv_chip_core_typename(chip); 283 size_t typesize = object_type_get_instance_size(typename); 284 int i; 285 286 pnv_dt_xscom(chip, fdt, 0); 287 288 /* The default LPC bus of a multichip system is on chip 0. It's 289 * recognized by the firmware (skiboot) using a "primary" 290 * property. 291 */ 292 if (chip->chip_id == 0x0) { 293 int lpc_offset = pnv_chip_lpc_offset(chip, fdt); 294 295 _FDT((fdt_setprop(fdt, lpc_offset, "primary", NULL, 0))); 296 } 297 298 for (i = 0; i < chip->nr_cores; i++) { 299 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 300 301 pnv_dt_core(chip, pnv_core, fdt); 302 303 /* Interrupt Control Presenters (ICP). One per core. */ 304 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 305 } 306 307 if (chip->ram_size) { 308 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 309 } 310 } 311 312 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 313 { 314 uint32_t io_base = d->ioport_id; 315 uint32_t io_regs[] = { 316 cpu_to_be32(1), 317 cpu_to_be32(io_base), 318 cpu_to_be32(2) 319 }; 320 char *name; 321 int node; 322 323 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 324 node = fdt_add_subnode(fdt, lpc_off, name); 325 _FDT(node); 326 g_free(name); 327 328 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 329 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 330 } 331 332 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 333 { 334 const char compatible[] = "ns16550\0pnpPNP,501"; 335 uint32_t io_base = d->ioport_id; 336 uint32_t io_regs[] = { 337 cpu_to_be32(1), 338 cpu_to_be32(io_base), 339 cpu_to_be32(8) 340 }; 341 char *name; 342 int node; 343 344 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 345 node = fdt_add_subnode(fdt, lpc_off, name); 346 _FDT(node); 347 g_free(name); 348 349 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 350 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 351 sizeof(compatible)))); 352 353 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 354 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 355 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); 356 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 357 fdt_get_phandle(fdt, lpc_off)))); 358 359 /* This is needed by Linux */ 360 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 361 } 362 363 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 364 { 365 const char compatible[] = "bt\0ipmi-bt"; 366 uint32_t io_base; 367 uint32_t io_regs[] = { 368 cpu_to_be32(1), 369 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 370 cpu_to_be32(3) 371 }; 372 uint32_t irq; 373 char *name; 374 int node; 375 376 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 377 io_regs[1] = cpu_to_be32(io_base); 378 379 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 380 381 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 382 node = fdt_add_subnode(fdt, lpc_off, name); 383 _FDT(node); 384 g_free(name); 385 386 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 387 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 388 sizeof(compatible)))); 389 390 /* Mark it as reserved to avoid Linux trying to claim it */ 391 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 392 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 393 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 394 fdt_get_phandle(fdt, lpc_off)))); 395 } 396 397 typedef struct ForeachPopulateArgs { 398 void *fdt; 399 int offset; 400 } ForeachPopulateArgs; 401 402 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 403 { 404 ForeachPopulateArgs *args = opaque; 405 ISADevice *d = ISA_DEVICE(dev); 406 407 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 408 pnv_dt_rtc(d, args->fdt, args->offset); 409 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 410 pnv_dt_serial(d, args->fdt, args->offset); 411 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 412 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 413 } else { 414 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 415 d->ioport_id); 416 } 417 418 return 0; 419 } 420 421 static void pnv_dt_isa(ISABus *bus, void *fdt, int lpc_offset) 422 { 423 ForeachPopulateArgs args = { 424 .fdt = fdt, 425 .offset = lpc_offset, 426 }; 427 428 /* ISA devices are not necessarily parented to the ISA bus so we 429 * can not use object_child_foreach() */ 430 qbus_walk_children(BUS(bus), pnv_dt_isa_device, NULL, NULL, NULL, &args); 431 } 432 433 static void *pnv_dt_create(MachineState *machine) 434 { 435 const char plat_compat[] = "qemu,powernv\0ibm,powernv"; 436 PnvMachineState *pnv = PNV_MACHINE(machine); 437 void *fdt; 438 char *buf; 439 int off; 440 int i; 441 int lpc_offset; 442 443 fdt = g_malloc0(FDT_MAX_SIZE); 444 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 445 446 /* Root node */ 447 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 448 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 449 _FDT((fdt_setprop_string(fdt, 0, "model", 450 "IBM PowerNV (emulated by qemu)"))); 451 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat, 452 sizeof(plat_compat)))); 453 454 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 455 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 456 if (qemu_uuid_set) { 457 _FDT((fdt_property_string(fdt, "system-id", buf))); 458 } 459 g_free(buf); 460 461 off = fdt_add_subnode(fdt, 0, "chosen"); 462 if (machine->kernel_cmdline) { 463 _FDT((fdt_setprop_string(fdt, off, "bootargs", 464 machine->kernel_cmdline))); 465 } 466 467 if (pnv->initrd_size) { 468 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 469 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 470 471 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 472 &start_prop, sizeof(start_prop)))); 473 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 474 &end_prop, sizeof(end_prop)))); 475 } 476 477 /* Populate device tree for each chip */ 478 for (i = 0; i < pnv->num_chips; i++) { 479 pnv_dt_chip(pnv->chips[i], fdt); 480 } 481 482 /* Populate ISA devices on chip 0 */ 483 lpc_offset = pnv_chip_lpc_offset(pnv->chips[0], fdt); 484 pnv_dt_isa(pnv->isa_bus, fdt, lpc_offset); 485 486 if (pnv->bmc) { 487 pnv_dt_bmc_sensors(pnv->bmc, fdt); 488 } 489 490 return fdt; 491 } 492 493 static void pnv_powerdown_notify(Notifier *n, void *opaque) 494 { 495 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 496 497 if (pnv->bmc) { 498 pnv_bmc_powerdown(pnv->bmc); 499 } 500 } 501 502 static void pnv_reset(void) 503 { 504 MachineState *machine = MACHINE(qdev_get_machine()); 505 PnvMachineState *pnv = PNV_MACHINE(machine); 506 void *fdt; 507 Object *obj; 508 509 qemu_devices_reset(); 510 511 /* OpenPOWER systems have a BMC, which can be defined on the 512 * command line with: 513 * 514 * -device ipmi-bmc-sim,id=bmc0 515 * 516 * This is the internal simulator but it could also be an external 517 * BMC. 518 */ 519 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL); 520 if (obj) { 521 pnv->bmc = IPMI_BMC(obj); 522 } 523 524 fdt = pnv_dt_create(machine); 525 526 /* Pack resulting tree */ 527 _FDT((fdt_pack(fdt))); 528 529 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 530 } 531 532 static ISABus *pnv_isa_create(PnvChip *chip) 533 { 534 PnvLpcController *lpc = &chip->lpc; 535 ISABus *isa_bus; 536 qemu_irq *irqs; 537 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 538 539 /* let isa_bus_new() create its own bridge on SysBus otherwise 540 * devices speficied on the command line won't find the bus and 541 * will fail to create. 542 */ 543 isa_bus = isa_bus_new(NULL, &lpc->isa_mem, &lpc->isa_io, 544 &error_fatal); 545 546 irqs = pnv_lpc_isa_irq_create(lpc, pcc->chip_type, ISA_NUM_IRQS); 547 548 isa_bus_irqs(isa_bus, irqs); 549 return isa_bus; 550 } 551 552 static void pnv_init(MachineState *machine) 553 { 554 PnvMachineState *pnv = PNV_MACHINE(machine); 555 MemoryRegion *ram; 556 char *fw_filename; 557 long fw_size; 558 int i; 559 char *chip_typename; 560 561 /* allocate RAM */ 562 if (machine->ram_size < (1 * G_BYTE)) { 563 warn_report("skiboot may not work with < 1GB of RAM"); 564 } 565 566 ram = g_new(MemoryRegion, 1); 567 memory_region_allocate_system_memory(ram, NULL, "pnv.ram", 568 machine->ram_size); 569 memory_region_add_subregion(get_system_memory(), 0, ram); 570 571 /* load skiboot firmware */ 572 if (bios_name == NULL) { 573 bios_name = FW_FILE_NAME; 574 } 575 576 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 577 if (!fw_filename) { 578 error_report("Could not find OPAL firmware '%s'", bios_name); 579 exit(1); 580 } 581 582 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); 583 if (fw_size < 0) { 584 error_report("Could not load OPAL firmware '%s'", fw_filename); 585 exit(1); 586 } 587 g_free(fw_filename); 588 589 /* load kernel */ 590 if (machine->kernel_filename) { 591 long kernel_size; 592 593 kernel_size = load_image_targphys(machine->kernel_filename, 594 KERNEL_LOAD_ADDR, 0x2000000); 595 if (kernel_size < 0) { 596 error_report("Could not load kernel '%s'", 597 machine->kernel_filename); 598 exit(1); 599 } 600 } 601 602 /* load initrd */ 603 if (machine->initrd_filename) { 604 pnv->initrd_base = INITRD_LOAD_ADDR; 605 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 606 pnv->initrd_base, 0x10000000); /* 128MB max */ 607 if (pnv->initrd_size < 0) { 608 error_report("Could not load initial ram disk '%s'", 609 machine->initrd_filename); 610 exit(1); 611 } 612 } 613 614 /* Create the processor chips */ 615 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 616 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 617 i, machine->cpu_type); 618 if (!object_class_by_name(chip_typename)) { 619 error_report("invalid CPU model '%.*s' for %s machine", 620 i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name); 621 exit(1); 622 } 623 624 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 625 for (i = 0; i < pnv->num_chips; i++) { 626 char chip_name[32]; 627 Object *chip = object_new(chip_typename); 628 629 pnv->chips[i] = PNV_CHIP(chip); 630 631 /* TODO: put all the memory in one node on chip 0 until we find a 632 * way to specify different ranges for each chip 633 */ 634 if (i == 0) { 635 object_property_set_int(chip, machine->ram_size, "ram-size", 636 &error_fatal); 637 } 638 639 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); 640 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); 641 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", 642 &error_fatal); 643 object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal); 644 object_property_set_bool(chip, true, "realized", &error_fatal); 645 } 646 g_free(chip_typename); 647 648 /* Instantiate ISA bus on chip 0 */ 649 pnv->isa_bus = pnv_isa_create(pnv->chips[0]); 650 651 /* Create serial port */ 652 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 653 654 /* Create an RTC ISA device too */ 655 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 656 657 /* OpenPOWER systems use a IPMI SEL Event message to notify the 658 * host to powerdown */ 659 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 660 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 661 } 662 663 /* 664 * 0:21 Reserved - Read as zeros 665 * 22:24 Chip ID 666 * 25:28 Core number 667 * 29:31 Thread ID 668 */ 669 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 670 { 671 return (chip->chip_id << 7) | (core_id << 3); 672 } 673 674 /* 675 * 0:48 Reserved - Read as zeroes 676 * 49:52 Node ID 677 * 53:55 Chip ID 678 * 56 Reserved - Read as zero 679 * 57:61 Core number 680 * 62:63 Thread ID 681 * 682 * We only care about the lower bits. uint32_t is fine for the moment. 683 */ 684 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 685 { 686 return (chip->chip_id << 8) | (core_id << 2); 687 } 688 689 /* Allowed core identifiers on a POWER8 Processor Chip : 690 * 691 * <EX0 reserved> 692 * EX1 - Venice only 693 * EX2 - Venice only 694 * EX3 - Venice only 695 * EX4 696 * EX5 697 * EX6 698 * <EX7,8 reserved> <reserved> 699 * EX9 - Venice only 700 * EX10 - Venice only 701 * EX11 - Venice only 702 * EX12 703 * EX13 704 * EX14 705 * <EX15 reserved> 706 */ 707 #define POWER8E_CORE_MASK (0x7070ull) 708 #define POWER8_CORE_MASK (0x7e7eull) 709 710 /* 711 * POWER9 has 24 cores, ids starting at 0x0 712 */ 713 #define POWER9_CORE_MASK (0xffffffffffffffull) 714 715 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 716 { 717 DeviceClass *dc = DEVICE_CLASS(klass); 718 PnvChipClass *k = PNV_CHIP_CLASS(klass); 719 720 k->chip_type = PNV_CHIP_POWER8E; 721 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 722 k->cores_mask = POWER8E_CORE_MASK; 723 k->core_pir = pnv_chip_core_pir_p8; 724 k->xscom_base = 0x003fc0000000000ull; 725 dc->desc = "PowerNV Chip POWER8E"; 726 } 727 728 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 729 { 730 DeviceClass *dc = DEVICE_CLASS(klass); 731 PnvChipClass *k = PNV_CHIP_CLASS(klass); 732 733 k->chip_type = PNV_CHIP_POWER8; 734 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 735 k->cores_mask = POWER8_CORE_MASK; 736 k->core_pir = pnv_chip_core_pir_p8; 737 k->xscom_base = 0x003fc0000000000ull; 738 dc->desc = "PowerNV Chip POWER8"; 739 } 740 741 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 742 { 743 DeviceClass *dc = DEVICE_CLASS(klass); 744 PnvChipClass *k = PNV_CHIP_CLASS(klass); 745 746 k->chip_type = PNV_CHIP_POWER8NVL; 747 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 748 k->cores_mask = POWER8_CORE_MASK; 749 k->core_pir = pnv_chip_core_pir_p8; 750 k->xscom_base = 0x003fc0000000000ull; 751 dc->desc = "PowerNV Chip POWER8NVL"; 752 } 753 754 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 755 { 756 DeviceClass *dc = DEVICE_CLASS(klass); 757 PnvChipClass *k = PNV_CHIP_CLASS(klass); 758 759 k->chip_type = PNV_CHIP_POWER9; 760 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 761 k->cores_mask = POWER9_CORE_MASK; 762 k->core_pir = pnv_chip_core_pir_p9; 763 k->xscom_base = 0x00603fc00000000ull; 764 dc->desc = "PowerNV Chip POWER9"; 765 } 766 767 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 768 { 769 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 770 int cores_max; 771 772 /* 773 * No custom mask for this chip, let's use the default one from * 774 * the chip class 775 */ 776 if (!chip->cores_mask) { 777 chip->cores_mask = pcc->cores_mask; 778 } 779 780 /* filter alien core ids ! some are reserved */ 781 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 782 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 783 chip->cores_mask); 784 return; 785 } 786 chip->cores_mask &= pcc->cores_mask; 787 788 /* now that we have a sane layout, let check the number of cores */ 789 cores_max = ctpop64(chip->cores_mask); 790 if (chip->nr_cores > cores_max) { 791 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 792 cores_max); 793 return; 794 } 795 } 796 797 static void pnv_chip_init(Object *obj) 798 { 799 PnvChip *chip = PNV_CHIP(obj); 800 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 801 802 chip->xscom_base = pcc->xscom_base; 803 804 object_initialize(&chip->lpc, sizeof(chip->lpc), TYPE_PNV_LPC); 805 object_property_add_child(obj, "lpc", OBJECT(&chip->lpc), NULL); 806 807 object_initialize(&chip->psi, sizeof(chip->psi), TYPE_PNV_PSI); 808 object_property_add_child(obj, "psi", OBJECT(&chip->psi), NULL); 809 object_property_add_const_link(OBJECT(&chip->psi), "xics", 810 OBJECT(qdev_get_machine()), &error_abort); 811 812 object_initialize(&chip->occ, sizeof(chip->occ), TYPE_PNV_OCC); 813 object_property_add_child(obj, "occ", OBJECT(&chip->occ), NULL); 814 object_property_add_const_link(OBJECT(&chip->occ), "psi", 815 OBJECT(&chip->psi), &error_abort); 816 817 /* The LPC controller needs PSI to generate interrupts */ 818 object_property_add_const_link(OBJECT(&chip->lpc), "psi", 819 OBJECT(&chip->psi), &error_abort); 820 } 821 822 static void pnv_chip_icp_realize(PnvChip *chip, Error **errp) 823 { 824 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 825 const char *typename = pnv_chip_core_typename(chip); 826 size_t typesize = object_type_get_instance_size(typename); 827 int i, j; 828 char *name; 829 XICSFabric *xi = XICS_FABRIC(qdev_get_machine()); 830 831 name = g_strdup_printf("icp-%x", chip->chip_id); 832 memory_region_init(&chip->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 833 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip->icp_mmio); 834 g_free(name); 835 836 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 837 838 /* Map the ICP registers for each thread */ 839 for (i = 0; i < chip->nr_cores; i++) { 840 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 841 int core_hwid = CPU_CORE(pnv_core)->core_id; 842 843 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 844 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 845 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir)); 846 847 memory_region_add_subregion(&chip->icp_mmio, pir << 12, &icp->mmio); 848 } 849 } 850 } 851 852 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 853 { 854 Error *error = NULL; 855 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 856 const char *typename = pnv_chip_core_typename(chip); 857 size_t typesize = object_type_get_instance_size(typename); 858 int i, core_hwid; 859 860 if (!object_class_by_name(typename)) { 861 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 862 return; 863 } 864 865 /* Cores */ 866 pnv_chip_core_sanitize(chip, &error); 867 if (error) { 868 error_propagate(errp, error); 869 return; 870 } 871 872 chip->cores = g_malloc0(typesize * chip->nr_cores); 873 874 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 875 && (i < chip->nr_cores); core_hwid++) { 876 char core_name[32]; 877 void *pnv_core = chip->cores + i * typesize; 878 uint64_t xscom_core_base; 879 880 if (!(chip->cores_mask & (1ull << core_hwid))) { 881 continue; 882 } 883 884 object_initialize(pnv_core, typesize, typename); 885 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 886 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core), 887 &error_fatal); 888 object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads", 889 &error_fatal); 890 object_property_set_int(OBJECT(pnv_core), core_hwid, 891 CPU_CORE_PROP_CORE_ID, &error_fatal); 892 object_property_set_int(OBJECT(pnv_core), 893 pcc->core_pir(chip, core_hwid), 894 "pir", &error_fatal); 895 object_property_add_const_link(OBJECT(pnv_core), "xics", 896 qdev_get_machine(), &error_fatal); 897 object_property_set_bool(OBJECT(pnv_core), true, "realized", 898 &error_fatal); 899 object_unref(OBJECT(pnv_core)); 900 901 /* Each core has an XSCOM MMIO region */ 902 if (!pnv_chip_is_power9(chip)) { 903 xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid); 904 } else { 905 xscom_core_base = PNV_XSCOM_P9_EC_BASE(core_hwid); 906 } 907 908 pnv_xscom_add_subregion(chip, xscom_core_base, 909 &PNV_CORE(pnv_core)->xscom_regs); 910 i++; 911 } 912 } 913 914 static void pnv_chip_realize(DeviceState *dev, Error **errp) 915 { 916 PnvChip *chip = PNV_CHIP(dev); 917 Error *error = NULL; 918 919 /* XSCOM bridge */ 920 pnv_xscom_realize(chip, &error); 921 if (error) { 922 error_propagate(errp, error); 923 return; 924 } 925 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 926 927 /* Cores */ 928 pnv_chip_core_realize(chip, &error); 929 if (error) { 930 error_propagate(errp, error); 931 return; 932 } 933 934 /* Create LPC controller */ 935 object_property_set_bool(OBJECT(&chip->lpc), true, "realized", 936 &error_fatal); 937 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip->lpc.xscom_regs); 938 939 /* Interrupt Management Area. This is the memory region holding 940 * all the Interrupt Control Presenter (ICP) registers */ 941 pnv_chip_icp_realize(chip, &error); 942 if (error) { 943 error_propagate(errp, error); 944 return; 945 } 946 947 /* Processor Service Interface (PSI) Host Bridge */ 948 object_property_set_int(OBJECT(&chip->psi), PNV_PSIHB_BASE(chip), 949 "bar", &error_fatal); 950 object_property_set_bool(OBJECT(&chip->psi), true, "realized", &error); 951 if (error) { 952 error_propagate(errp, error); 953 return; 954 } 955 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip->psi.xscom_regs); 956 957 /* Create the simplified OCC model */ 958 object_property_set_bool(OBJECT(&chip->occ), true, "realized", &error); 959 if (error) { 960 error_propagate(errp, error); 961 return; 962 } 963 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip->occ.xscom_regs); 964 } 965 966 static Property pnv_chip_properties[] = { 967 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 968 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 969 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 970 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 971 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 972 DEFINE_PROP_END_OF_LIST(), 973 }; 974 975 static void pnv_chip_class_init(ObjectClass *klass, void *data) 976 { 977 DeviceClass *dc = DEVICE_CLASS(klass); 978 979 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 980 dc->realize = pnv_chip_realize; 981 dc->props = pnv_chip_properties; 982 dc->desc = "PowerNV Chip"; 983 } 984 985 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 986 { 987 PnvMachineState *pnv = PNV_MACHINE(xi); 988 int i; 989 990 for (i = 0; i < pnv->num_chips; i++) { 991 if (ics_valid_irq(&pnv->chips[i]->psi.ics, irq)) { 992 return &pnv->chips[i]->psi.ics; 993 } 994 } 995 return NULL; 996 } 997 998 static void pnv_ics_resend(XICSFabric *xi) 999 { 1000 PnvMachineState *pnv = PNV_MACHINE(xi); 1001 int i; 1002 1003 for (i = 0; i < pnv->num_chips; i++) { 1004 ics_resend(&pnv->chips[i]->psi.ics); 1005 } 1006 } 1007 1008 static PowerPCCPU *ppc_get_vcpu_by_pir(int pir) 1009 { 1010 CPUState *cs; 1011 1012 CPU_FOREACH(cs) { 1013 PowerPCCPU *cpu = POWERPC_CPU(cs); 1014 CPUPPCState *env = &cpu->env; 1015 1016 if (env->spr_cb[SPR_PIR].default_value == pir) { 1017 return cpu; 1018 } 1019 } 1020 1021 return NULL; 1022 } 1023 1024 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 1025 { 1026 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 1027 1028 return cpu ? ICP(cpu->intc) : NULL; 1029 } 1030 1031 static void pnv_pic_print_info(InterruptStatsProvider *obj, 1032 Monitor *mon) 1033 { 1034 PnvMachineState *pnv = PNV_MACHINE(obj); 1035 int i; 1036 CPUState *cs; 1037 1038 CPU_FOREACH(cs) { 1039 PowerPCCPU *cpu = POWERPC_CPU(cs); 1040 1041 icp_pic_print_info(ICP(cpu->intc), mon); 1042 } 1043 1044 for (i = 0; i < pnv->num_chips; i++) { 1045 ics_pic_print_info(&pnv->chips[i]->psi.ics, mon); 1046 } 1047 } 1048 1049 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name, 1050 void *opaque, Error **errp) 1051 { 1052 visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp); 1053 } 1054 1055 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name, 1056 void *opaque, Error **errp) 1057 { 1058 PnvMachineState *pnv = PNV_MACHINE(obj); 1059 uint32_t num_chips; 1060 Error *local_err = NULL; 1061 1062 visit_type_uint32(v, name, &num_chips, &local_err); 1063 if (local_err) { 1064 error_propagate(errp, local_err); 1065 return; 1066 } 1067 1068 /* 1069 * TODO: should we decide on how many chips we can create based 1070 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 1071 */ 1072 if (!is_power_of_2(num_chips) || num_chips > 4) { 1073 error_setg(errp, "invalid number of chips: '%d'", num_chips); 1074 return; 1075 } 1076 1077 pnv->num_chips = num_chips; 1078 } 1079 1080 static void pnv_machine_initfn(Object *obj) 1081 { 1082 PnvMachineState *pnv = PNV_MACHINE(obj); 1083 pnv->num_chips = 1; 1084 } 1085 1086 static void pnv_machine_class_props_init(ObjectClass *oc) 1087 { 1088 object_class_property_add(oc, "num-chips", "uint32", 1089 pnv_get_num_chips, pnv_set_num_chips, 1090 NULL, NULL, NULL); 1091 object_class_property_set_description(oc, "num-chips", 1092 "Specifies the number of processor chips", 1093 NULL); 1094 } 1095 1096 static void pnv_machine_class_init(ObjectClass *oc, void *data) 1097 { 1098 MachineClass *mc = MACHINE_CLASS(oc); 1099 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 1100 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 1101 1102 mc->desc = "IBM PowerNV (Non-Virtualized)"; 1103 mc->init = pnv_init; 1104 mc->reset = pnv_reset; 1105 mc->max_cpus = MAX_CPUS; 1106 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 1107 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for 1108 * storage */ 1109 mc->no_parallel = 1; 1110 mc->default_boot_order = NULL; 1111 mc->default_ram_size = 1 * G_BYTE; 1112 xic->icp_get = pnv_icp_get; 1113 xic->ics_get = pnv_ics_get; 1114 xic->ics_resend = pnv_ics_resend; 1115 ispc->print_info = pnv_pic_print_info; 1116 1117 pnv_machine_class_props_init(oc); 1118 } 1119 1120 #define DEFINE_PNV_CHIP_TYPE(type, class_initfn) \ 1121 { \ 1122 .name = type, \ 1123 .class_init = class_initfn, \ 1124 .parent = TYPE_PNV_CHIP, \ 1125 } 1126 1127 static const TypeInfo types[] = { 1128 { 1129 .name = TYPE_PNV_MACHINE, 1130 .parent = TYPE_MACHINE, 1131 .instance_size = sizeof(PnvMachineState), 1132 .instance_init = pnv_machine_initfn, 1133 .class_init = pnv_machine_class_init, 1134 .interfaces = (InterfaceInfo[]) { 1135 { TYPE_XICS_FABRIC }, 1136 { TYPE_INTERRUPT_STATS_PROVIDER }, 1137 { }, 1138 }, 1139 }, 1140 { 1141 .name = TYPE_PNV_CHIP, 1142 .parent = TYPE_SYS_BUS_DEVICE, 1143 .class_init = pnv_chip_class_init, 1144 .instance_init = pnv_chip_init, 1145 .instance_size = sizeof(PnvChip), 1146 .class_size = sizeof(PnvChipClass), 1147 .abstract = true, 1148 }, 1149 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 1150 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 1151 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 1152 DEFINE_PNV_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 1153 pnv_chip_power8nvl_class_init), 1154 }; 1155 1156 DEFINE_TYPES(types) 1157