1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/datadir.h" 22 #include "qemu/units.h" 23 #include "qemu/cutils.h" 24 #include "qapi/error.h" 25 #include "sysemu/qtest.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/numa.h" 28 #include "sysemu/reset.h" 29 #include "sysemu/runstate.h" 30 #include "sysemu/cpus.h" 31 #include "sysemu/device_tree.h" 32 #include "sysemu/hw_accel.h" 33 #include "target/ppc/cpu.h" 34 #include "hw/ppc/fdt.h" 35 #include "hw/ppc/ppc.h" 36 #include "hw/ppc/pnv.h" 37 #include "hw/ppc/pnv_core.h" 38 #include "hw/loader.h" 39 #include "hw/nmi.h" 40 #include "qapi/visitor.h" 41 #include "hw/intc/intc.h" 42 #include "hw/ipmi/ipmi.h" 43 #include "target/ppc/mmu-hash64.h" 44 #include "hw/pci/msi.h" 45 #include "hw/pci-host/pnv_phb.h" 46 #include "hw/pci-host/pnv_phb3.h" 47 #include "hw/pci-host/pnv_phb4.h" 48 49 #include "hw/ppc/xics.h" 50 #include "hw/qdev-properties.h" 51 #include "hw/ppc/pnv_chip.h" 52 #include "hw/ppc/pnv_xscom.h" 53 #include "hw/ppc/pnv_pnor.h" 54 55 #include "hw/isa/isa.h" 56 #include "hw/char/serial.h" 57 #include "hw/rtc/mc146818rtc.h" 58 59 #include <libfdt.h> 60 61 #define FDT_MAX_SIZE (1 * MiB) 62 63 #define FW_FILE_NAME "skiboot.lid" 64 #define FW_LOAD_ADDR 0x0 65 #define FW_MAX_SIZE (16 * MiB) 66 67 #define KERNEL_LOAD_ADDR 0x20000000 68 #define KERNEL_MAX_SIZE (128 * MiB) 69 #define INITRD_LOAD_ADDR 0x28000000 70 #define INITRD_MAX_SIZE (128 * MiB) 71 72 static const char *pnv_chip_core_typename(const PnvChip *o) 73 { 74 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 75 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 76 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 77 const char *core_type = object_class_get_name(object_class_by_name(s)); 78 g_free(s); 79 return core_type; 80 } 81 82 /* 83 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 84 * 4 * 4 sockets * 12 cores * 8 threads = 1536 85 * Let's make it 2^11 86 */ 87 #define MAX_CPUS 2048 88 89 /* 90 * Memory nodes are created by hostboot, one for each range of memory 91 * that has a different "affinity". In practice, it means one range 92 * per chip. 93 */ 94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 95 { 96 char *mem_name; 97 uint64_t mem_reg_property[2]; 98 int off; 99 100 mem_reg_property[0] = cpu_to_be64(start); 101 mem_reg_property[1] = cpu_to_be64(size); 102 103 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 104 off = fdt_add_subnode(fdt, 0, mem_name); 105 g_free(mem_name); 106 107 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 108 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 109 sizeof(mem_reg_property)))); 110 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 111 } 112 113 static int get_cpus_node(void *fdt) 114 { 115 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 116 117 if (cpus_offset < 0) { 118 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 119 if (cpus_offset) { 120 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 121 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 122 } 123 } 124 _FDT(cpus_offset); 125 return cpus_offset; 126 } 127 128 /* 129 * The PowerNV cores (and threads) need to use real HW ids and not an 130 * incremental index like it has been done on other platforms. This HW 131 * id is stored in the CPU PIR, it is used to create cpu nodes in the 132 * device tree, used in XSCOM to address cores and in interrupt 133 * servers. 134 */ 135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 136 { 137 PowerPCCPU *cpu = pc->threads[0]; 138 CPUState *cs = CPU(cpu); 139 DeviceClass *dc = DEVICE_GET_CLASS(cs); 140 int smt_threads = CPU_CORE(pc)->nr_threads; 141 CPUPPCState *env = &cpu->env; 142 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 143 PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip); 144 uint32_t *servers_prop; 145 int i; 146 uint32_t pir, tir; 147 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 148 0xffffffff, 0xffffffff}; 149 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 150 uint32_t cpufreq = 1000000000; 151 uint32_t page_sizes_prop[64]; 152 size_t page_sizes_prop_size; 153 int offset; 154 char *nodename; 155 int cpus_offset = get_cpus_node(fdt); 156 157 pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir); 158 159 /* Only one DT node per (big) core */ 160 g_assert(tir == 0); 161 162 nodename = g_strdup_printf("%s@%x", dc->fw_name, pir); 163 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 164 _FDT(offset); 165 g_free(nodename); 166 167 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 168 169 _FDT((fdt_setprop_cell(fdt, offset, "reg", pir))); 170 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir))); 171 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 172 173 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 174 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 175 env->dcache_line_size))); 176 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 177 env->dcache_line_size))); 178 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 179 env->icache_line_size))); 180 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 181 env->icache_line_size))); 182 183 if (pcc->l1_dcache_size) { 184 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 185 pcc->l1_dcache_size))); 186 } else { 187 warn_report("Unknown L1 dcache size for cpu"); 188 } 189 if (pcc->l1_icache_size) { 190 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 191 pcc->l1_icache_size))); 192 } else { 193 warn_report("Unknown L1 icache size for cpu"); 194 } 195 196 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 197 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 198 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", 199 cpu->hash64_opts->slb_size))); 200 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 201 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 202 203 if (ppc_has_spr(cpu, SPR_PURR)) { 204 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 205 } 206 207 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 208 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 209 segs, sizeof(segs)))); 210 } 211 212 /* 213 * Advertise VMX/VSX (vector extensions) if available 214 * 0 / no property == no vector extensions 215 * 1 == VMX / Altivec available 216 * 2 == VSX available 217 */ 218 if (env->insns_flags & PPC_ALTIVEC) { 219 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 220 221 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 222 } 223 224 /* 225 * Advertise DFP (Decimal Floating Point) if available 226 * 0 / no property == no DFP 227 * 1 == DFP available 228 */ 229 if (env->insns_flags2 & PPC2_DFP) { 230 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 231 } 232 233 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 234 sizeof(page_sizes_prop)); 235 if (page_sizes_prop_size) { 236 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 237 page_sizes_prop, page_sizes_prop_size))); 238 } 239 240 /* Build interrupt servers properties */ 241 if (pc->big_core) { 242 servers_prop = g_new(uint32_t, smt_threads * 2); 243 for (i = 0; i < smt_threads; i++) { 244 pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL); 245 servers_prop[i * 2] = cpu_to_be32(pir); 246 247 pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL); 248 servers_prop[i * 2 + 1] = cpu_to_be32(pir); 249 } 250 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 251 servers_prop, sizeof(*servers_prop) * smt_threads 252 * 2))); 253 } else { 254 servers_prop = g_new(uint32_t, smt_threads); 255 for (i = 0; i < smt_threads; i++) { 256 pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL); 257 servers_prop[i] = cpu_to_be32(pir); 258 } 259 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 260 servers_prop, sizeof(*servers_prop) * smt_threads))); 261 } 262 g_free(servers_prop); 263 264 return offset; 265 } 266 267 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid, 268 uint32_t nr_threads) 269 { 270 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 271 uint32_t pir; 272 uint64_t addr; 273 char *name; 274 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 275 uint32_t irange[2], i, rsize; 276 uint64_t *reg; 277 int offset; 278 279 pcc->get_pir_tir(chip, hwid, 0, &pir, NULL); 280 addr = PNV_ICP_BASE(chip) | (pir << 12); 281 282 irange[0] = cpu_to_be32(pir); 283 irange[1] = cpu_to_be32(nr_threads); 284 285 rsize = sizeof(uint64_t) * 2 * nr_threads; 286 reg = g_malloc(rsize); 287 for (i = 0; i < nr_threads; i++) { 288 /* We know P8 PIR is linear with thread id */ 289 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 290 reg[i * 2 + 1] = cpu_to_be64(0x1000); 291 } 292 293 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 294 offset = fdt_add_subnode(fdt, 0, name); 295 _FDT(offset); 296 g_free(name); 297 298 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 299 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 300 _FDT((fdt_setprop_string(fdt, offset, "device_type", 301 "PowerPC-External-Interrupt-Presentation"))); 302 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 303 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 304 irange, sizeof(irange)))); 305 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 306 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 307 g_free(reg); 308 } 309 310 /* 311 * Adds a PnvPHB to the chip on P8. 312 * Implemented here, like for defaults PHBs 313 */ 314 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb) 315 { 316 Pnv8Chip *chip8 = PNV8_CHIP(chip); 317 318 phb->chip = chip; 319 320 chip8->phbs[chip8->num_phbs] = phb; 321 chip8->num_phbs++; 322 return chip; 323 } 324 325 /* 326 * Same as spapr pa_features_207 except pnv always enables CI largepages bit. 327 * HTM is always enabled because TCG does implement HTM, it's just a 328 * degenerate implementation. 329 */ 330 static const uint8_t pa_features_207[] = { 24, 0, 331 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, 332 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 333 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 334 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 335 336 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 337 { 338 static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; 339 int i; 340 341 pnv_dt_xscom(chip, fdt, 0, 342 cpu_to_be64(PNV_XSCOM_BASE(chip)), 343 cpu_to_be64(PNV_XSCOM_SIZE), 344 compat, sizeof(compat)); 345 346 for (i = 0; i < chip->nr_cores; i++) { 347 PnvCore *pnv_core = chip->cores[i]; 348 int offset; 349 350 offset = pnv_dt_core(chip, pnv_core, fdt); 351 352 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 353 pa_features_207, sizeof(pa_features_207)))); 354 355 /* Interrupt Control Presenters (ICP). One per core. */ 356 pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads); 357 } 358 359 if (chip->ram_size) { 360 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 361 } 362 } 363 364 /* 365 * Same as spapr pa_features_300 except pnv always enables CI largepages bit. 366 */ 367 static const uint8_t pa_features_300[] = { 66, 0, 368 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 369 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 370 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 371 /* 6: DS207 */ 372 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 373 /* 16: Vector */ 374 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 375 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 376 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */ 377 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 378 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 379 /* 32: LE atomic, 34: EBB + ext EBB */ 380 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 381 /* 40: Radix MMU */ 382 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 383 /* 42: PM, 44: PC RA, 46: SC vec'd */ 384 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 385 /* 48: SIMD, 50: QP BFP, 52: String */ 386 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 387 /* 54: DecFP, 56: DecI, 58: SHA */ 388 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 389 /* 60: NM atomic, 62: RNG */ 390 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 391 }; 392 393 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 394 { 395 static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; 396 int i; 397 398 pnv_dt_xscom(chip, fdt, 0, 399 cpu_to_be64(PNV9_XSCOM_BASE(chip)), 400 cpu_to_be64(PNV9_XSCOM_SIZE), 401 compat, sizeof(compat)); 402 403 for (i = 0; i < chip->nr_cores; i++) { 404 PnvCore *pnv_core = chip->cores[i]; 405 int offset; 406 407 offset = pnv_dt_core(chip, pnv_core, fdt); 408 409 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 410 pa_features_300, sizeof(pa_features_300)))); 411 412 if (pnv_core->big_core) { 413 i++; /* Big-core groups two QEMU cores */ 414 } 415 } 416 417 if (chip->ram_size) { 418 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 419 } 420 421 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); 422 } 423 424 /* 425 * Same as spapr pa_features_31 except pnv always enables CI largepages bit, 426 * always disables copy/paste. 427 */ 428 static const uint8_t pa_features_31[] = { 74, 0, 429 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 430 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 431 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 432 /* 6: DS207 */ 433 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 434 /* 16: Vector */ 435 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 436 /* 18: Vec. Scalar, 20: Vec. XOR */ 437 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 438 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 439 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 440 /* 32: LE atomic, 34: EBB + ext EBB */ 441 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 442 /* 40: Radix MMU */ 443 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 444 /* 42: PM, 44: PC RA, 46: SC vec'd */ 445 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 446 /* 48: SIMD, 50: QP BFP, 52: String */ 447 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 448 /* 54: DecFP, 56: DecI, 58: SHA */ 449 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 450 /* 60: NM atomic, 62: RNG */ 451 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 452 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 453 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 454 /* 72: [P]HASHST/[P]HASHCHK */ 455 0x80, 0x00, /* 72 - 73 */ 456 }; 457 458 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) 459 { 460 static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; 461 int i; 462 463 pnv_dt_xscom(chip, fdt, 0, 464 cpu_to_be64(PNV10_XSCOM_BASE(chip)), 465 cpu_to_be64(PNV10_XSCOM_SIZE), 466 compat, sizeof(compat)); 467 468 for (i = 0; i < chip->nr_cores; i++) { 469 PnvCore *pnv_core = chip->cores[i]; 470 int offset; 471 472 offset = pnv_dt_core(chip, pnv_core, fdt); 473 474 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 475 pa_features_31, sizeof(pa_features_31)))); 476 477 if (pnv_core->big_core) { 478 i++; /* Big-core groups two QEMU cores */ 479 } 480 } 481 482 if (chip->ram_size) { 483 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 484 } 485 486 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); 487 } 488 489 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 490 { 491 uint32_t io_base = d->ioport_id; 492 uint32_t io_regs[] = { 493 cpu_to_be32(1), 494 cpu_to_be32(io_base), 495 cpu_to_be32(2) 496 }; 497 char *name; 498 int node; 499 500 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 501 node = fdt_add_subnode(fdt, lpc_off, name); 502 _FDT(node); 503 g_free(name); 504 505 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 506 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 507 } 508 509 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 510 { 511 const char compatible[] = "ns16550\0pnpPNP,501"; 512 uint32_t io_base = d->ioport_id; 513 uint32_t io_regs[] = { 514 cpu_to_be32(1), 515 cpu_to_be32(io_base), 516 cpu_to_be32(8) 517 }; 518 uint32_t irq; 519 char *name; 520 int node; 521 522 irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal); 523 524 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 525 node = fdt_add_subnode(fdt, lpc_off, name); 526 _FDT(node); 527 g_free(name); 528 529 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 530 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 531 sizeof(compatible)))); 532 533 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 534 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 535 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 536 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 537 fdt_get_phandle(fdt, lpc_off)))); 538 539 /* This is needed by Linux */ 540 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 541 } 542 543 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 544 { 545 const char compatible[] = "bt\0ipmi-bt"; 546 uint32_t io_base; 547 uint32_t io_regs[] = { 548 cpu_to_be32(1), 549 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 550 cpu_to_be32(3) 551 }; 552 uint32_t irq; 553 char *name; 554 int node; 555 556 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 557 io_regs[1] = cpu_to_be32(io_base); 558 559 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 560 561 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 562 node = fdt_add_subnode(fdt, lpc_off, name); 563 _FDT(node); 564 g_free(name); 565 566 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 567 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 568 sizeof(compatible)))); 569 570 /* Mark it as reserved to avoid Linux trying to claim it */ 571 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 572 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 573 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 574 fdt_get_phandle(fdt, lpc_off)))); 575 } 576 577 typedef struct ForeachPopulateArgs { 578 void *fdt; 579 int offset; 580 } ForeachPopulateArgs; 581 582 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 583 { 584 ForeachPopulateArgs *args = opaque; 585 ISADevice *d = ISA_DEVICE(dev); 586 587 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 588 pnv_dt_rtc(d, args->fdt, args->offset); 589 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 590 pnv_dt_serial(d, args->fdt, args->offset); 591 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 592 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 593 } else { 594 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 595 d->ioport_id); 596 } 597 598 return 0; 599 } 600 601 /* 602 * The default LPC bus of a multichip system is on chip 0. It's 603 * recognized by the firmware (skiboot) using a "primary" property. 604 */ 605 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 606 { 607 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 608 ForeachPopulateArgs args = { 609 .fdt = fdt, 610 .offset = isa_offset, 611 }; 612 uint32_t phandle; 613 614 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 615 616 phandle = qemu_fdt_alloc_phandle(fdt); 617 assert(phandle > 0); 618 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); 619 620 /* 621 * ISA devices are not necessarily parented to the ISA bus so we 622 * can not use object_child_foreach() 623 */ 624 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 625 &args); 626 } 627 628 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) 629 { 630 int off; 631 632 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 633 off = fdt_add_subnode(fdt, off, "power-mgt"); 634 635 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 636 } 637 638 static void *pnv_dt_create(MachineState *machine) 639 { 640 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 641 PnvMachineState *pnv = PNV_MACHINE(machine); 642 void *fdt; 643 char *buf; 644 int off; 645 int i; 646 647 fdt = g_malloc0(FDT_MAX_SIZE); 648 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 649 650 /* /qemu node */ 651 _FDT((fdt_add_subnode(fdt, 0, "qemu"))); 652 653 /* Root node */ 654 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 655 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 656 _FDT((fdt_setprop_string(fdt, 0, "model", 657 "IBM PowerNV (emulated by qemu)"))); 658 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); 659 660 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 661 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 662 if (qemu_uuid_set) { 663 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf))); 664 } 665 g_free(buf); 666 667 off = fdt_add_subnode(fdt, 0, "chosen"); 668 if (machine->kernel_cmdline) { 669 _FDT((fdt_setprop_string(fdt, off, "bootargs", 670 machine->kernel_cmdline))); 671 } 672 673 if (pnv->initrd_size) { 674 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 675 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 676 677 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 678 &start_prop, sizeof(start_prop)))); 679 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 680 &end_prop, sizeof(end_prop)))); 681 } 682 683 /* Populate device tree for each chip */ 684 for (i = 0; i < pnv->num_chips; i++) { 685 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 686 } 687 688 /* Populate ISA devices on chip 0 */ 689 pnv_dt_isa(pnv, fdt); 690 691 if (pnv->bmc) { 692 pnv_dt_bmc_sensors(pnv->bmc, fdt); 693 } 694 695 /* Create an extra node for power management on machines that support it */ 696 if (pmc->dt_power_mgt) { 697 pmc->dt_power_mgt(pnv, fdt); 698 } 699 700 return fdt; 701 } 702 703 static void pnv_powerdown_notify(Notifier *n, void *opaque) 704 { 705 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); 706 707 if (pnv->bmc) { 708 pnv_bmc_powerdown(pnv->bmc); 709 } 710 } 711 712 static void pnv_reset(MachineState *machine, ResetType type) 713 { 714 PnvMachineState *pnv = PNV_MACHINE(machine); 715 IPMIBmc *bmc; 716 void *fdt; 717 718 qemu_devices_reset(type); 719 720 /* 721 * The machine should provide by default an internal BMC simulator. 722 * If not, try to use the BMC device that was provided on the command 723 * line. 724 */ 725 bmc = pnv_bmc_find(&error_fatal); 726 if (!pnv->bmc) { 727 if (!bmc) { 728 if (!qtest_enabled()) { 729 warn_report("machine has no BMC device. Use '-device " 730 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' " 731 "to define one"); 732 } 733 } else { 734 pnv_bmc_set_pnor(bmc, pnv->pnor); 735 pnv->bmc = bmc; 736 } 737 } 738 739 fdt = pnv_dt_create(machine); 740 741 /* Pack resulting tree */ 742 _FDT((fdt_pack(fdt))); 743 744 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 745 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 746 747 /* 748 * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free 749 * the existing machine->fdt to avoid leaking it during 750 * a reset. 751 */ 752 g_free(machine->fdt); 753 machine->fdt = fdt; 754 } 755 756 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 757 { 758 Pnv8Chip *chip8 = PNV8_CHIP(chip); 759 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL); 760 761 qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq); 762 763 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 764 } 765 766 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 767 { 768 Pnv8Chip *chip8 = PNV8_CHIP(chip); 769 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C); 770 771 qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq); 772 773 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 774 } 775 776 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 777 { 778 Pnv9Chip *chip9 = PNV9_CHIP(chip); 779 qemu_irq irq; 780 781 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC); 782 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq); 783 784 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0); 785 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq); 786 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1); 787 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq); 788 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2); 789 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq); 790 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3); 791 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq); 792 793 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 794 } 795 796 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) 797 { 798 Pnv10Chip *chip10 = PNV10_CHIP(chip); 799 qemu_irq irq; 800 801 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC); 802 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq); 803 804 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0); 805 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq); 806 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1); 807 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq); 808 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2); 809 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq); 810 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3); 811 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq); 812 813 return pnv_lpc_isa_create(&chip10->lpc, false, errp); 814 } 815 816 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 817 { 818 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 819 } 820 821 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf) 822 { 823 Pnv8Chip *chip8 = PNV8_CHIP(chip); 824 int i; 825 826 ics_pic_print_info(&chip8->psi.ics, buf); 827 828 for (i = 0; i < chip8->num_phbs; i++) { 829 PnvPHB *phb = chip8->phbs[i]; 830 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 831 832 pnv_phb3_msi_pic_print_info(&phb3->msis, buf); 833 ics_pic_print_info(&phb3->lsis, buf); 834 } 835 } 836 837 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque) 838 { 839 GString *buf = opaque; 840 PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB); 841 842 if (!phb) { 843 return 0; 844 } 845 846 pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf); 847 848 return 0; 849 } 850 851 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf) 852 { 853 Pnv9Chip *chip9 = PNV9_CHIP(chip); 854 855 pnv_xive_pic_print_info(&chip9->xive, buf); 856 pnv_psi_pic_print_info(&chip9->psi, buf); 857 object_child_foreach_recursive(OBJECT(chip), 858 pnv_chip_power9_pic_print_info_child, buf); 859 } 860 861 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, 862 uint32_t core_id) 863 { 864 return PNV_XSCOM_EX_BASE(core_id); 865 } 866 867 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, 868 uint32_t core_id) 869 { 870 return PNV9_XSCOM_EC_BASE(core_id); 871 } 872 873 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, 874 uint32_t core_id) 875 { 876 return PNV10_XSCOM_EC_BASE(core_id); 877 } 878 879 static bool pnv_match_cpu(const char *default_type, const char *cpu_type) 880 { 881 PowerPCCPUClass *ppc_default = 882 POWERPC_CPU_CLASS(object_class_by_name(default_type)); 883 PowerPCCPUClass *ppc = 884 POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); 885 886 return ppc_default->pvr_match(ppc_default, ppc->pvr, false); 887 } 888 889 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) 890 { 891 ISADevice *dev = isa_new("isa-ipmi-bt"); 892 893 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal); 894 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal); 895 isa_realize_and_unref(dev, bus, &error_fatal); 896 } 897 898 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf) 899 { 900 Pnv10Chip *chip10 = PNV10_CHIP(chip); 901 902 pnv_xive2_pic_print_info(&chip10->xive, buf); 903 pnv_psi_pic_print_info(&chip10->psi, buf); 904 object_child_foreach_recursive(OBJECT(chip), 905 pnv_chip_power9_pic_print_info_child, buf); 906 } 907 908 /* Always give the first 1GB to chip 0 else we won't boot */ 909 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id) 910 { 911 MachineState *machine = MACHINE(pnv); 912 uint64_t ram_per_chip; 913 914 assert(machine->ram_size >= 1 * GiB); 915 916 ram_per_chip = machine->ram_size / pnv->num_chips; 917 if (ram_per_chip >= 1 * GiB) { 918 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 919 } 920 921 assert(pnv->num_chips > 1); 922 923 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1); 924 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 925 } 926 927 static void pnv_init(MachineState *machine) 928 { 929 const char *bios_name = machine->firmware ?: FW_FILE_NAME; 930 PnvMachineState *pnv = PNV_MACHINE(machine); 931 MachineClass *mc = MACHINE_GET_CLASS(machine); 932 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 933 int max_smt_threads = pmc->max_smt_threads; 934 char *fw_filename; 935 long fw_size; 936 uint64_t chip_ram_start = 0; 937 int i; 938 char *chip_typename; 939 DriveInfo *pnor = drive_get(IF_MTD, 0, 0); 940 DeviceState *dev; 941 942 if (kvm_enabled()) { 943 error_report("machine %s does not support the KVM accelerator", 944 mc->name); 945 exit(EXIT_FAILURE); 946 } 947 948 /* allocate RAM */ 949 if (machine->ram_size < mc->default_ram_size) { 950 char *sz = size_to_str(mc->default_ram_size); 951 error_report("Invalid RAM size, should be bigger than %s", sz); 952 g_free(sz); 953 exit(EXIT_FAILURE); 954 } 955 memory_region_add_subregion(get_system_memory(), 0, machine->ram); 956 957 /* 958 * Create our simple PNOR device 959 */ 960 dev = qdev_new(TYPE_PNV_PNOR); 961 if (pnor) { 962 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor)); 963 } 964 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 965 pnv->pnor = PNV_PNOR(dev); 966 967 /* load skiboot firmware */ 968 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 969 if (!fw_filename) { 970 error_report("Could not find OPAL firmware '%s'", bios_name); 971 exit(1); 972 } 973 974 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE); 975 if (fw_size < 0) { 976 error_report("Could not load OPAL firmware '%s'", fw_filename); 977 exit(1); 978 } 979 g_free(fw_filename); 980 981 /* load kernel */ 982 if (machine->kernel_filename) { 983 long kernel_size; 984 985 kernel_size = load_image_targphys(machine->kernel_filename, 986 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 987 if (kernel_size < 0) { 988 error_report("Could not load kernel '%s'", 989 machine->kernel_filename); 990 exit(1); 991 } 992 } 993 994 /* load initrd */ 995 if (machine->initrd_filename) { 996 pnv->initrd_base = INITRD_LOAD_ADDR; 997 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 998 pnv->initrd_base, INITRD_MAX_SIZE); 999 if (pnv->initrd_size < 0) { 1000 error_report("Could not load initial ram disk '%s'", 1001 machine->initrd_filename); 1002 exit(1); 1003 } 1004 } 1005 1006 /* MSIs are supported on this platform */ 1007 msi_nonbroken = true; 1008 1009 /* 1010 * Check compatibility of the specified CPU with the machine 1011 * default. 1012 */ 1013 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { 1014 error_report("invalid CPU model '%s' for %s machine", 1015 machine->cpu_type, mc->name); 1016 exit(1); 1017 } 1018 1019 /* Create the processor chips */ 1020 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 1021 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 1022 i, machine->cpu_type); 1023 if (!object_class_by_name(chip_typename)) { 1024 error_report("invalid chip model '%.*s' for %s machine", 1025 i, machine->cpu_type, mc->name); 1026 exit(1); 1027 } 1028 1029 /* Set lpar-per-core mode if lpar-per-thread is not supported */ 1030 if (!pmc->has_lpar_per_thread) { 1031 pnv->lpar_per_core = true; 1032 } 1033 1034 pnv->num_chips = 1035 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); 1036 1037 if (pnv->big_core) { 1038 if (machine->smp.threads % 2 == 1) { 1039 error_report("Cannot support %d threads with big-core option " 1040 "because it must be an even number", 1041 machine->smp.threads); 1042 exit(1); 1043 } 1044 max_smt_threads *= 2; 1045 } 1046 1047 if (machine->smp.threads > max_smt_threads) { 1048 error_report("Cannot support more than %d threads/core " 1049 "on %s machine", max_smt_threads, mc->desc); 1050 if (pmc->max_smt_threads == 4) { 1051 error_report("(use big-core=on for 8 threads per core)"); 1052 } 1053 exit(1); 1054 } 1055 1056 if (pnv->big_core) { 1057 /* 1058 * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore 1059 * per core, so adjust topology here. pnv_dt_core() processor 1060 * device-tree and TCG SMT code make the 2 cores appear as one big core 1061 * from software point of view. pnv pervasive models and xscoms tend to 1062 * see the big core as 2 small core halves. 1063 */ 1064 machine->smp.cores *= 2; 1065 machine->smp.threads /= 2; 1066 } 1067 1068 if (!is_power_of_2(machine->smp.threads)) { 1069 error_report("Cannot support %d threads/core on a powernv " 1070 "machine because it must be a power of 2", 1071 machine->smp.threads); 1072 exit(1); 1073 } 1074 1075 /* 1076 * TODO: should we decide on how many chips we can create based 1077 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 1078 */ 1079 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) { 1080 error_report("invalid number of chips: '%d'", pnv->num_chips); 1081 error_printf( 1082 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n"); 1083 exit(1); 1084 } 1085 1086 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 1087 for (i = 0; i < pnv->num_chips; i++) { 1088 char chip_name[32]; 1089 Object *chip = OBJECT(qdev_new(chip_typename)); 1090 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i); 1091 1092 pnv->chips[i] = PNV_CHIP(chip); 1093 1094 /* Distribute RAM among the chips */ 1095 object_property_set_int(chip, "ram-start", chip_ram_start, 1096 &error_fatal); 1097 object_property_set_int(chip, "ram-size", chip_ram_size, 1098 &error_fatal); 1099 chip_ram_start += chip_ram_size; 1100 1101 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i); 1102 object_property_add_child(OBJECT(pnv), chip_name, chip); 1103 object_property_set_int(chip, "chip-id", i, &error_fatal); 1104 object_property_set_int(chip, "nr-cores", machine->smp.cores, 1105 &error_fatal); 1106 object_property_set_int(chip, "nr-threads", machine->smp.threads, 1107 &error_fatal); 1108 object_property_set_bool(chip, "big-core", pnv->big_core, 1109 &error_fatal); 1110 object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core, 1111 &error_fatal); 1112 /* 1113 * The POWER8 machine use the XICS interrupt interface. 1114 * Propagate the XICS fabric to the chip and its controllers. 1115 */ 1116 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { 1117 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort); 1118 } 1119 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { 1120 object_property_set_link(chip, "xive-fabric", OBJECT(pnv), 1121 &error_abort); 1122 } 1123 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal); 1124 } 1125 g_free(chip_typename); 1126 1127 /* Instantiate ISA bus on chip 0 */ 1128 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 1129 1130 /* Create serial port */ 1131 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 1132 1133 /* Create an RTC ISA device too */ 1134 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 1135 1136 /* 1137 * Create the machine BMC simulator and the IPMI BT device for 1138 * communication with the BMC 1139 */ 1140 if (defaults_enabled()) { 1141 pnv->bmc = pnv_bmc_create(pnv->pnor); 1142 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); 1143 } 1144 1145 /* 1146 * The PNOR is mapped on the LPC FW address space by the BMC. 1147 * Since we can not reach the remote BMC machine with LPC memops, 1148 * map it always for now. 1149 */ 1150 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET, 1151 &pnv->pnor->mmio); 1152 1153 /* 1154 * OpenPOWER systems use a IPMI SEL Event message to notify the 1155 * host to powerdown 1156 */ 1157 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 1158 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 1159 1160 /* 1161 * Create/Connect any machine-specific I2C devices 1162 */ 1163 if (pmc->i2c_init) { 1164 pmc->i2c_init(pnv); 1165 } 1166 } 1167 1168 /* 1169 * 0:21 Reserved - Read as zeros 1170 * 22:24 Chip ID 1171 * 25:28 Core number 1172 * 29:31 Thread ID 1173 */ 1174 static void pnv_get_pir_tir_p8(PnvChip *chip, 1175 uint32_t core_id, uint32_t thread_id, 1176 uint32_t *pir, uint32_t *tir) 1177 { 1178 if (pir) { 1179 *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id; 1180 } 1181 if (tir) { 1182 *tir = thread_id; 1183 } 1184 } 1185 1186 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1187 Error **errp) 1188 { 1189 Pnv8Chip *chip8 = PNV8_CHIP(chip); 1190 Error *local_err = NULL; 1191 Object *obj; 1192 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1193 1194 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); 1195 if (local_err) { 1196 error_propagate(errp, local_err); 1197 return; 1198 } 1199 1200 pnv_cpu->intc = obj; 1201 } 1202 1203 1204 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1205 { 1206 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1207 1208 icp_reset(ICP(pnv_cpu->intc)); 1209 } 1210 1211 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1212 { 1213 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1214 1215 icp_destroy(ICP(pnv_cpu->intc)); 1216 pnv_cpu->intc = NULL; 1217 } 1218 1219 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1220 GString *buf) 1221 { 1222 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf); 1223 } 1224 1225 /* 1226 * 0:48 Reserved - Read as zeroes 1227 * 49:52 Node ID 1228 * 53:55 Chip ID 1229 * 56 Reserved - Read as zero 1230 * 57:61 Core number 1231 * 62:63 Thread ID 1232 * 1233 * We only care about the lower bits. uint32_t is fine for the moment. 1234 */ 1235 static void pnv_get_pir_tir_p9(PnvChip *chip, 1236 uint32_t core_id, uint32_t thread_id, 1237 uint32_t *pir, uint32_t *tir) 1238 { 1239 if (chip->big_core) { 1240 /* Big-core interleaves thread ID between small-cores */ 1241 thread_id <<= 1; 1242 thread_id |= core_id & 1; 1243 core_id >>= 1; 1244 1245 if (pir) { 1246 *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id; 1247 } 1248 } else { 1249 if (pir) { 1250 *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id; 1251 } 1252 } 1253 if (tir) { 1254 *tir = thread_id; 1255 } 1256 } 1257 1258 /* 1259 * 0:48 Reserved - Read as zeroes 1260 * 49:52 Node ID 1261 * 53:55 Chip ID 1262 * 56 Reserved - Read as zero 1263 * 57:59 Quad ID 1264 * 60 Core Chiplet Pair ID 1265 * 61:63 Thread/Core Chiplet ID t0-t2 1266 * 1267 * We only care about the lower bits. uint32_t is fine for the moment. 1268 */ 1269 static void pnv_get_pir_tir_p10(PnvChip *chip, 1270 uint32_t core_id, uint32_t thread_id, 1271 uint32_t *pir, uint32_t *tir) 1272 { 1273 if (chip->big_core) { 1274 /* Big-core interleaves thread ID between small-cores */ 1275 thread_id <<= 1; 1276 thread_id |= core_id & 1; 1277 core_id >>= 1; 1278 1279 if (pir) { 1280 *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id; 1281 } 1282 } else { 1283 if (pir) { 1284 *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id; 1285 } 1286 } 1287 if (tir) { 1288 *tir = thread_id; 1289 } 1290 } 1291 1292 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1293 Error **errp) 1294 { 1295 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1296 Error *local_err = NULL; 1297 Object *obj; 1298 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1299 1300 /* 1301 * The core creates its interrupt presenter but the XIVE interrupt 1302 * controller object is initialized afterwards. Hopefully, it's 1303 * only used at runtime. 1304 */ 1305 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive), 1306 &local_err); 1307 if (local_err) { 1308 error_propagate(errp, local_err); 1309 return; 1310 } 1311 1312 pnv_cpu->intc = obj; 1313 } 1314 1315 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1316 { 1317 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1318 1319 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1320 } 1321 1322 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1323 { 1324 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1325 1326 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1327 pnv_cpu->intc = NULL; 1328 } 1329 1330 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1331 GString *buf) 1332 { 1333 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf); 1334 } 1335 1336 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1337 Error **errp) 1338 { 1339 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1340 Error *local_err = NULL; 1341 Object *obj; 1342 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1343 1344 /* 1345 * The core creates its interrupt presenter but the XIVE2 interrupt 1346 * controller object is initialized afterwards. Hopefully, it's 1347 * only used at runtime. 1348 */ 1349 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive), 1350 &local_err); 1351 if (local_err) { 1352 error_propagate(errp, local_err); 1353 return; 1354 } 1355 1356 pnv_cpu->intc = obj; 1357 } 1358 1359 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1360 { 1361 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1362 1363 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1364 } 1365 1366 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1367 { 1368 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1369 1370 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1371 pnv_cpu->intc = NULL; 1372 } 1373 1374 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1375 GString *buf) 1376 { 1377 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf); 1378 } 1379 1380 /* 1381 * Allowed core identifiers on a POWER8 Processor Chip : 1382 * 1383 * <EX0 reserved> 1384 * EX1 - Venice only 1385 * EX2 - Venice only 1386 * EX3 - Venice only 1387 * EX4 1388 * EX5 1389 * EX6 1390 * <EX7,8 reserved> <reserved> 1391 * EX9 - Venice only 1392 * EX10 - Venice only 1393 * EX11 - Venice only 1394 * EX12 1395 * EX13 1396 * EX14 1397 * <EX15 reserved> 1398 */ 1399 #define POWER8E_CORE_MASK (0x7070ull) 1400 #define POWER8_CORE_MASK (0x7e7eull) 1401 1402 /* 1403 * POWER9 has 24 cores, ids starting at 0x0 1404 */ 1405 #define POWER9_CORE_MASK (0xffffffffffffffull) 1406 1407 1408 #define POWER10_CORE_MASK (0xffffffffffffffull) 1409 1410 static void pnv_chip_power8_instance_init(Object *obj) 1411 { 1412 Pnv8Chip *chip8 = PNV8_CHIP(obj); 1413 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1414 int i; 1415 1416 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, 1417 (Object **)&chip8->xics, 1418 object_property_allow_set_link, 1419 OBJ_PROP_LINK_STRONG); 1420 1421 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI); 1422 1423 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC); 1424 1425 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC); 1426 1427 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER); 1428 1429 if (defaults_enabled()) { 1430 chip8->num_phbs = pcc->num_phbs; 1431 1432 for (i = 0; i < chip8->num_phbs; i++) { 1433 Object *phb = object_new(TYPE_PNV_PHB); 1434 1435 /* 1436 * We need the chip to parent the PHB to allow the DT 1437 * to build correctly (via pnv_xscom_dt()). 1438 * 1439 * TODO: the PHB should be parented by a PEC device that, at 1440 * this moment, is not modelled powernv8/phb3. 1441 */ 1442 object_property_add_child(obj, "phb[*]", phb); 1443 chip8->phbs[i] = PNV_PHB(phb); 1444 } 1445 } 1446 1447 } 1448 1449 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 1450 { 1451 PnvChip *chip = PNV_CHIP(chip8); 1452 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1453 int i, j; 1454 char *name; 1455 1456 name = g_strdup_printf("icp-%x", chip->chip_id); 1457 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 1458 g_free(name); 1459 memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip), 1460 &chip8->icp_mmio); 1461 1462 /* Map the ICP registers for each thread */ 1463 for (i = 0; i < chip->nr_cores; i++) { 1464 PnvCore *pnv_core = chip->cores[i]; 1465 int core_hwid = CPU_CORE(pnv_core)->core_id; 1466 1467 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 1468 uint32_t pir; 1469 PnvICPState *icp; 1470 1471 pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL); 1472 icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); 1473 1474 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 1475 &icp->mmio); 1476 } 1477 } 1478 } 1479 1480 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 1481 { 1482 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1483 PnvChip *chip = PNV_CHIP(dev); 1484 Pnv8Chip *chip8 = PNV8_CHIP(dev); 1485 Pnv8Psi *psi8 = &chip8->psi; 1486 Error *local_err = NULL; 1487 int i; 1488 1489 assert(chip8->xics); 1490 1491 /* XSCOM bridge is first */ 1492 pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip)); 1493 1494 pcc->parent_realize(dev, &local_err); 1495 if (local_err) { 1496 error_propagate(errp, local_err); 1497 return; 1498 } 1499 1500 /* Processor Service Interface (PSI) Host Bridge */ 1501 object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip), 1502 &error_fatal); 1503 object_property_set_link(OBJECT(psi8), ICS_PROP_XICS, 1504 OBJECT(chip8->xics), &error_abort); 1505 if (!qdev_realize(DEVICE(psi8), NULL, errp)) { 1506 return; 1507 } 1508 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 1509 &PNV_PSI(psi8)->xscom_regs); 1510 1511 /* Create LPC controller */ 1512 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal); 1513 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 1514 1515 chip->fw_mr = &chip8->lpc.isa_fw; 1516 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 1517 (uint64_t) PNV_XSCOM_BASE(chip), 1518 PNV_XSCOM_LPC_BASE); 1519 1520 /* 1521 * Interrupt Management Area. This is the memory region holding 1522 * all the Interrupt Control Presenter (ICP) registers 1523 */ 1524 pnv_chip_icp_realize(chip8, &local_err); 1525 if (local_err) { 1526 error_propagate(errp, local_err); 1527 return; 1528 } 1529 1530 /* Create the simplified OCC model */ 1531 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) { 1532 return; 1533 } 1534 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 1535 qdev_connect_gpio_out(DEVICE(&chip8->occ), 0, 1536 qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC)); 1537 1538 /* OCC SRAM model */ 1539 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), 1540 &chip8->occ.sram_regs); 1541 1542 /* HOMER */ 1543 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip), 1544 &error_abort); 1545 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) { 1546 return; 1547 } 1548 /* Homer Xscom region */ 1549 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); 1550 1551 /* Homer mmio region */ 1552 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), 1553 &chip8->homer.regs); 1554 1555 /* PHB controllers */ 1556 for (i = 0; i < chip8->num_phbs; i++) { 1557 PnvPHB *phb = chip8->phbs[i]; 1558 1559 object_property_set_int(OBJECT(phb), "index", i, &error_fatal); 1560 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id, 1561 &error_fatal); 1562 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip), 1563 &error_fatal); 1564 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) { 1565 return; 1566 } 1567 } 1568 } 1569 1570 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) 1571 { 1572 addr &= (PNV_XSCOM_SIZE - 1); 1573 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); 1574 } 1575 1576 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 1577 { 1578 DeviceClass *dc = DEVICE_CLASS(klass); 1579 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1580 1581 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 1582 k->cores_mask = POWER8E_CORE_MASK; 1583 k->num_phbs = 3; 1584 k->get_pir_tir = pnv_get_pir_tir_p8; 1585 k->intc_create = pnv_chip_power8_intc_create; 1586 k->intc_reset = pnv_chip_power8_intc_reset; 1587 k->intc_destroy = pnv_chip_power8_intc_destroy; 1588 k->intc_print_info = pnv_chip_power8_intc_print_info; 1589 k->isa_create = pnv_chip_power8_isa_create; 1590 k->dt_populate = pnv_chip_power8_dt_populate; 1591 k->pic_print_info = pnv_chip_power8_pic_print_info; 1592 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1593 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1594 dc->desc = "PowerNV Chip POWER8E"; 1595 1596 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1597 &k->parent_realize); 1598 } 1599 1600 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 1601 { 1602 DeviceClass *dc = DEVICE_CLASS(klass); 1603 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1604 1605 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 1606 k->cores_mask = POWER8_CORE_MASK; 1607 k->num_phbs = 3; 1608 k->get_pir_tir = pnv_get_pir_tir_p8; 1609 k->intc_create = pnv_chip_power8_intc_create; 1610 k->intc_reset = pnv_chip_power8_intc_reset; 1611 k->intc_destroy = pnv_chip_power8_intc_destroy; 1612 k->intc_print_info = pnv_chip_power8_intc_print_info; 1613 k->isa_create = pnv_chip_power8_isa_create; 1614 k->dt_populate = pnv_chip_power8_dt_populate; 1615 k->pic_print_info = pnv_chip_power8_pic_print_info; 1616 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1617 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1618 dc->desc = "PowerNV Chip POWER8"; 1619 1620 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1621 &k->parent_realize); 1622 } 1623 1624 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 1625 { 1626 DeviceClass *dc = DEVICE_CLASS(klass); 1627 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1628 1629 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 1630 k->cores_mask = POWER8_CORE_MASK; 1631 k->num_phbs = 4; 1632 k->get_pir_tir = pnv_get_pir_tir_p8; 1633 k->intc_create = pnv_chip_power8_intc_create; 1634 k->intc_reset = pnv_chip_power8_intc_reset; 1635 k->intc_destroy = pnv_chip_power8_intc_destroy; 1636 k->intc_print_info = pnv_chip_power8_intc_print_info; 1637 k->isa_create = pnv_chip_power8nvl_isa_create; 1638 k->dt_populate = pnv_chip_power8_dt_populate; 1639 k->pic_print_info = pnv_chip_power8_pic_print_info; 1640 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1641 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1642 dc->desc = "PowerNV Chip POWER8NVL"; 1643 1644 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1645 &k->parent_realize); 1646 } 1647 1648 static void pnv_chip_power9_instance_init(Object *obj) 1649 { 1650 PnvChip *chip = PNV_CHIP(obj); 1651 Pnv9Chip *chip9 = PNV9_CHIP(obj); 1652 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1653 int i; 1654 1655 object_initialize_child(obj, "adu", &chip9->adu, TYPE_PNV_ADU); 1656 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE); 1657 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), 1658 "xive-fabric"); 1659 1660 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI); 1661 1662 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC); 1663 1664 object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD); 1665 1666 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC); 1667 1668 object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE); 1669 1670 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER); 1671 1672 /* Number of PECs is the chip default */ 1673 chip->num_pecs = pcc->num_pecs; 1674 1675 for (i = 0; i < chip->num_pecs; i++) { 1676 object_initialize_child(obj, "pec[*]", &chip9->pecs[i], 1677 TYPE_PNV_PHB4_PEC); 1678 } 1679 1680 for (i = 0; i < pcc->i2c_num_engines; i++) { 1681 object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C); 1682 } 1683 } 1684 1685 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq, 1686 PnvCore *pnv_core, 1687 const char *type) 1688 { 1689 char eq_name[32]; 1690 int core_id = CPU_CORE(pnv_core)->core_id; 1691 1692 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1693 object_initialize_child_with_props(OBJECT(chip), eq_name, eq, 1694 sizeof(*eq), type, 1695 &error_fatal, NULL); 1696 1697 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal); 1698 qdev_realize(DEVICE(eq), NULL, &error_fatal); 1699 } 1700 1701 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 1702 { 1703 PnvChip *chip = PNV_CHIP(chip9); 1704 int i; 1705 1706 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1707 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1708 1709 for (i = 0; i < chip9->nr_quads; i++) { 1710 PnvQuad *eq = &chip9->quads[i]; 1711 1712 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], 1713 PNV_QUAD_TYPE_NAME("power9")); 1714 1715 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id), 1716 &eq->xscom_regs); 1717 } 1718 } 1719 1720 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp) 1721 { 1722 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1723 int i; 1724 1725 for (i = 0; i < chip->num_pecs; i++) { 1726 PnvPhb4PecState *pec = &chip9->pecs[i]; 1727 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1728 uint32_t pec_nest_base; 1729 uint32_t pec_pci_base; 1730 1731 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1732 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1733 &error_fatal); 1734 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1735 &error_fatal); 1736 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1737 return; 1738 } 1739 1740 pec_nest_base = pecc->xscom_nest_base(pec); 1741 pec_pci_base = pecc->xscom_pci_base(pec); 1742 1743 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1744 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1745 } 1746 } 1747 1748 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1749 { 1750 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1751 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1752 PnvChip *chip = PNV_CHIP(dev); 1753 Pnv9Psi *psi9 = &chip9->psi; 1754 Error *local_err = NULL; 1755 int i; 1756 1757 /* XSCOM bridge is first */ 1758 pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip)); 1759 1760 pcc->parent_realize(dev, &local_err); 1761 if (local_err) { 1762 error_propagate(errp, local_err); 1763 return; 1764 } 1765 1766 /* ADU */ 1767 object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc), 1768 &error_abort); 1769 if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) { 1770 return; 1771 } 1772 pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE, 1773 &chip9->adu.xscom_regs); 1774 1775 pnv_chip_quad_realize(chip9, &local_err); 1776 if (local_err) { 1777 error_propagate(errp, local_err); 1778 return; 1779 } 1780 1781 /* XIVE interrupt controller (POWER9) */ 1782 object_property_set_int(OBJECT(&chip9->xive), "ic-bar", 1783 PNV9_XIVE_IC_BASE(chip), &error_fatal); 1784 object_property_set_int(OBJECT(&chip9->xive), "vc-bar", 1785 PNV9_XIVE_VC_BASE(chip), &error_fatal); 1786 object_property_set_int(OBJECT(&chip9->xive), "pc-bar", 1787 PNV9_XIVE_PC_BASE(chip), &error_fatal); 1788 object_property_set_int(OBJECT(&chip9->xive), "tm-bar", 1789 PNV9_XIVE_TM_BASE(chip), &error_fatal); 1790 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip), 1791 &error_abort); 1792 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) { 1793 return; 1794 } 1795 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1796 &chip9->xive.xscom_regs); 1797 1798 /* Processor Service Interface (PSI) Host Bridge */ 1799 object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip), 1800 &error_fatal); 1801 /* This is the only device with 4k ESB pages */ 1802 object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K, 1803 &error_fatal); 1804 if (!qdev_realize(DEVICE(psi9), NULL, errp)) { 1805 return; 1806 } 1807 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1808 &PNV_PSI(psi9)->xscom_regs); 1809 1810 /* LPC */ 1811 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) { 1812 return; 1813 } 1814 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1815 &chip9->lpc.xscom_regs); 1816 1817 chip->fw_mr = &chip9->lpc.isa_fw; 1818 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1819 (uint64_t) PNV9_LPCM_BASE(chip)); 1820 1821 /* ChipTOD */ 1822 object_property_set_bool(OBJECT(&chip9->chiptod), "primary", 1823 chip->chip_id == 0, &error_abort); 1824 object_property_set_bool(OBJECT(&chip9->chiptod), "secondary", 1825 chip->chip_id == 1, &error_abort); 1826 object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip), 1827 &error_abort); 1828 if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) { 1829 return; 1830 } 1831 pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE, 1832 &chip9->chiptod.xscom_regs); 1833 1834 /* Create the simplified OCC model */ 1835 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) { 1836 return; 1837 } 1838 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1839 qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in( 1840 DEVICE(psi9), PSIHB9_IRQ_OCC)); 1841 1842 /* OCC SRAM model */ 1843 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), 1844 &chip9->occ.sram_regs); 1845 1846 /* SBE */ 1847 if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) { 1848 return; 1849 } 1850 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE, 1851 &chip9->sbe.xscom_ctrl_regs); 1852 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE, 1853 &chip9->sbe.xscom_mbox_regs); 1854 qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in( 1855 DEVICE(psi9), PSIHB9_IRQ_PSU)); 1856 1857 /* HOMER */ 1858 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip), 1859 &error_abort); 1860 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) { 1861 return; 1862 } 1863 /* Homer Xscom region */ 1864 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); 1865 1866 /* Homer mmio region */ 1867 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), 1868 &chip9->homer.regs); 1869 1870 /* PEC PHBs */ 1871 pnv_chip_power9_pec_realize(chip, &local_err); 1872 if (local_err) { 1873 error_propagate(errp, local_err); 1874 return; 1875 } 1876 1877 /* 1878 * I2C 1879 */ 1880 for (i = 0; i < pcc->i2c_num_engines; i++) { 1881 Object *obj = OBJECT(&chip9->i2c[i]); 1882 1883 object_property_set_int(obj, "engine", i + 1, &error_fatal); 1884 object_property_set_int(obj, "num-busses", 1885 pcc->i2c_ports_per_engine[i], 1886 &error_fatal); 1887 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort); 1888 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 1889 return; 1890 } 1891 pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE + 1892 (chip9->i2c[i].engine - 1) * 1893 PNV9_XSCOM_I2CM_SIZE, 1894 &chip9->i2c[i].xscom_regs); 1895 qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0, 1896 qdev_get_gpio_in(DEVICE(psi9), 1897 PSIHB9_IRQ_SBE_I2C)); 1898 } 1899 } 1900 1901 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) 1902 { 1903 addr &= (PNV9_XSCOM_SIZE - 1); 1904 return addr >> 3; 1905 } 1906 1907 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1908 { 1909 DeviceClass *dc = DEVICE_CLASS(klass); 1910 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1911 static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2}; 1912 1913 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1914 k->cores_mask = POWER9_CORE_MASK; 1915 k->get_pir_tir = pnv_get_pir_tir_p9; 1916 k->intc_create = pnv_chip_power9_intc_create; 1917 k->intc_reset = pnv_chip_power9_intc_reset; 1918 k->intc_destroy = pnv_chip_power9_intc_destroy; 1919 k->intc_print_info = pnv_chip_power9_intc_print_info; 1920 k->isa_create = pnv_chip_power9_isa_create; 1921 k->dt_populate = pnv_chip_power9_dt_populate; 1922 k->pic_print_info = pnv_chip_power9_pic_print_info; 1923 k->xscom_core_base = pnv_chip_power9_xscom_core_base; 1924 k->xscom_pcba = pnv_chip_power9_xscom_pcba; 1925 dc->desc = "PowerNV Chip POWER9"; 1926 k->num_pecs = PNV9_CHIP_MAX_PEC; 1927 k->i2c_num_engines = PNV9_CHIP_MAX_I2C; 1928 k->i2c_ports_per_engine = i2c_ports_per_engine; 1929 1930 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1931 &k->parent_realize); 1932 } 1933 1934 static void pnv_chip_power10_instance_init(Object *obj) 1935 { 1936 PnvChip *chip = PNV_CHIP(obj); 1937 Pnv10Chip *chip10 = PNV10_CHIP(obj); 1938 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1939 int i; 1940 1941 object_initialize_child(obj, "adu", &chip10->adu, TYPE_PNV_ADU); 1942 object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2); 1943 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive), 1944 "xive-fabric"); 1945 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI); 1946 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC); 1947 object_initialize_child(obj, "chiptod", &chip10->chiptod, 1948 TYPE_PNV10_CHIPTOD); 1949 object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC); 1950 object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE); 1951 object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER); 1952 object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet, 1953 TYPE_PNV_N1_CHIPLET); 1954 1955 chip->num_pecs = pcc->num_pecs; 1956 1957 for (i = 0; i < chip->num_pecs; i++) { 1958 object_initialize_child(obj, "pec[*]", &chip10->pecs[i], 1959 TYPE_PNV_PHB5_PEC); 1960 } 1961 1962 for (i = 0; i < pcc->i2c_num_engines; i++) { 1963 object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C); 1964 } 1965 1966 for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) { 1967 object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i], 1968 TYPE_PNV_SPI); 1969 } 1970 } 1971 1972 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp) 1973 { 1974 PnvChip *chip = PNV_CHIP(chip10); 1975 int i; 1976 1977 chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1978 chip10->quads = g_new0(PnvQuad, chip10->nr_quads); 1979 1980 for (i = 0; i < chip10->nr_quads; i++) { 1981 PnvQuad *eq = &chip10->quads[i]; 1982 1983 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], 1984 PNV_QUAD_TYPE_NAME("power10")); 1985 1986 pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id), 1987 &eq->xscom_regs); 1988 1989 pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id), 1990 &eq->xscom_qme_regs); 1991 } 1992 } 1993 1994 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp) 1995 { 1996 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1997 int i; 1998 1999 for (i = 0; i < chip->num_pecs; i++) { 2000 PnvPhb4PecState *pec = &chip10->pecs[i]; 2001 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 2002 uint32_t pec_nest_base; 2003 uint32_t pec_pci_base; 2004 2005 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 2006 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 2007 &error_fatal); 2008 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 2009 &error_fatal); 2010 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 2011 return; 2012 } 2013 2014 pec_nest_base = pecc->xscom_nest_base(pec); 2015 pec_pci_base = pecc->xscom_pci_base(pec); 2016 2017 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 2018 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 2019 } 2020 } 2021 2022 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) 2023 { 2024 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 2025 PnvChip *chip = PNV_CHIP(dev); 2026 Pnv10Chip *chip10 = PNV10_CHIP(dev); 2027 Error *local_err = NULL; 2028 int i; 2029 2030 /* XSCOM bridge is first */ 2031 pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip)); 2032 2033 pcc->parent_realize(dev, &local_err); 2034 if (local_err) { 2035 error_propagate(errp, local_err); 2036 return; 2037 } 2038 2039 /* ADU */ 2040 object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc), 2041 &error_abort); 2042 if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) { 2043 return; 2044 } 2045 pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE, 2046 &chip10->adu.xscom_regs); 2047 2048 pnv_chip_power10_quad_realize(chip10, &local_err); 2049 if (local_err) { 2050 error_propagate(errp, local_err); 2051 return; 2052 } 2053 2054 /* XIVE2 interrupt controller (POWER10) */ 2055 object_property_set_int(OBJECT(&chip10->xive), "ic-bar", 2056 PNV10_XIVE2_IC_BASE(chip), &error_fatal); 2057 object_property_set_int(OBJECT(&chip10->xive), "esb-bar", 2058 PNV10_XIVE2_ESB_BASE(chip), &error_fatal); 2059 object_property_set_int(OBJECT(&chip10->xive), "end-bar", 2060 PNV10_XIVE2_END_BASE(chip), &error_fatal); 2061 object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar", 2062 PNV10_XIVE2_NVPG_BASE(chip), &error_fatal); 2063 object_property_set_int(OBJECT(&chip10->xive), "nvc-bar", 2064 PNV10_XIVE2_NVC_BASE(chip), &error_fatal); 2065 object_property_set_int(OBJECT(&chip10->xive), "tm-bar", 2066 PNV10_XIVE2_TM_BASE(chip), &error_fatal); 2067 object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip), 2068 &error_abort); 2069 if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) { 2070 return; 2071 } 2072 pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE, 2073 &chip10->xive.xscom_regs); 2074 2075 /* Processor Service Interface (PSI) Host Bridge */ 2076 object_property_set_int(OBJECT(&chip10->psi), "bar", 2077 PNV10_PSIHB_BASE(chip), &error_fatal); 2078 /* PSI can now be configured to use 64k ESB pages on POWER10 */ 2079 object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K, 2080 &error_fatal); 2081 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) { 2082 return; 2083 } 2084 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, 2085 &PNV_PSI(&chip10->psi)->xscom_regs); 2086 2087 /* LPC */ 2088 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) { 2089 return; 2090 } 2091 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), 2092 &chip10->lpc.xscom_regs); 2093 2094 chip->fw_mr = &chip10->lpc.isa_fw; 2095 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 2096 (uint64_t) PNV10_LPCM_BASE(chip)); 2097 2098 /* ChipTOD */ 2099 object_property_set_bool(OBJECT(&chip10->chiptod), "primary", 2100 chip->chip_id == 0, &error_abort); 2101 object_property_set_bool(OBJECT(&chip10->chiptod), "secondary", 2102 chip->chip_id == 1, &error_abort); 2103 object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip), 2104 &error_abort); 2105 if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) { 2106 return; 2107 } 2108 pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE, 2109 &chip10->chiptod.xscom_regs); 2110 2111 /* Create the simplified OCC model */ 2112 if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) { 2113 return; 2114 } 2115 pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE, 2116 &chip10->occ.xscom_regs); 2117 qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in( 2118 DEVICE(&chip10->psi), PSIHB9_IRQ_OCC)); 2119 2120 /* OCC SRAM model */ 2121 memory_region_add_subregion(get_system_memory(), 2122 PNV10_OCC_SENSOR_BASE(chip), 2123 &chip10->occ.sram_regs); 2124 2125 /* SBE */ 2126 if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) { 2127 return; 2128 } 2129 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE, 2130 &chip10->sbe.xscom_ctrl_regs); 2131 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE, 2132 &chip10->sbe.xscom_mbox_regs); 2133 qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in( 2134 DEVICE(&chip10->psi), PSIHB9_IRQ_PSU)); 2135 2136 /* HOMER */ 2137 object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip), 2138 &error_abort); 2139 if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) { 2140 return; 2141 } 2142 /* Homer Xscom region */ 2143 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE, 2144 &chip10->homer.pba_regs); 2145 2146 /* Homer mmio region */ 2147 memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip), 2148 &chip10->homer.regs); 2149 2150 /* N1 chiplet */ 2151 if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) { 2152 return; 2153 } 2154 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE, 2155 &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr); 2156 2157 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE, 2158 &chip10->n1_chiplet.xscom_pb_eq_mr); 2159 2160 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE, 2161 &chip10->n1_chiplet.xscom_pb_es_mr); 2162 2163 /* PHBs */ 2164 pnv_chip_power10_phb_realize(chip, &local_err); 2165 if (local_err) { 2166 error_propagate(errp, local_err); 2167 return; 2168 } 2169 2170 2171 /* 2172 * I2C 2173 */ 2174 for (i = 0; i < pcc->i2c_num_engines; i++) { 2175 Object *obj = OBJECT(&chip10->i2c[i]); 2176 2177 object_property_set_int(obj, "engine", i + 1, &error_fatal); 2178 object_property_set_int(obj, "num-busses", 2179 pcc->i2c_ports_per_engine[i], 2180 &error_fatal); 2181 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort); 2182 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 2183 return; 2184 } 2185 pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE + 2186 (chip10->i2c[i].engine - 1) * 2187 PNV10_XSCOM_I2CM_SIZE, 2188 &chip10->i2c[i].xscom_regs); 2189 qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0, 2190 qdev_get_gpio_in(DEVICE(&chip10->psi), 2191 PSIHB9_IRQ_SBE_I2C)); 2192 } 2193 /* PIB SPI Controller */ 2194 for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) { 2195 object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num", 2196 i, &error_fatal); 2197 /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */ 2198 object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len", 2199 (i == 2) ? 1 : 4, &error_fatal); 2200 if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT 2201 (&chip10->pib_spic[i])), errp)) { 2202 return; 2203 } 2204 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE + 2205 i * PNV10_XSCOM_PIB_SPIC_SIZE, 2206 &chip10->pib_spic[i].xscom_spic_regs); 2207 } 2208 } 2209 2210 static void pnv_rainier_i2c_init(PnvMachineState *pnv) 2211 { 2212 int i; 2213 for (i = 0; i < pnv->num_chips; i++) { 2214 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 2215 2216 /* 2217 * Add a PCA9552 I2C device for PCIe hotplug control 2218 * to engine 2, bus 1, address 0x63 2219 */ 2220 I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1], 2221 "pca9552", 0x63); 2222 2223 /* 2224 * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9 2225 * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots 2226 * after hypervisor code sets a SLOTx_EN pin high. 2227 */ 2228 qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5)); 2229 qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6)); 2230 qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7)); 2231 qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8)); 2232 qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9)); 2233 2234 /* 2235 * Add a PCA9554 I2C device for cable card presence detection 2236 * to engine 2, bus 1, address 0x25 2237 */ 2238 i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25); 2239 } 2240 } 2241 2242 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) 2243 { 2244 addr &= (PNV10_XSCOM_SIZE - 1); 2245 return addr >> 3; 2246 } 2247 2248 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) 2249 { 2250 DeviceClass *dc = DEVICE_CLASS(klass); 2251 PnvChipClass *k = PNV_CHIP_CLASS(klass); 2252 static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16}; 2253 2254 k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */ 2255 k->cores_mask = POWER10_CORE_MASK; 2256 k->get_pir_tir = pnv_get_pir_tir_p10; 2257 k->intc_create = pnv_chip_power10_intc_create; 2258 k->intc_reset = pnv_chip_power10_intc_reset; 2259 k->intc_destroy = pnv_chip_power10_intc_destroy; 2260 k->intc_print_info = pnv_chip_power10_intc_print_info; 2261 k->isa_create = pnv_chip_power10_isa_create; 2262 k->dt_populate = pnv_chip_power10_dt_populate; 2263 k->pic_print_info = pnv_chip_power10_pic_print_info; 2264 k->xscom_core_base = pnv_chip_power10_xscom_core_base; 2265 k->xscom_pcba = pnv_chip_power10_xscom_pcba; 2266 dc->desc = "PowerNV Chip POWER10"; 2267 k->num_pecs = PNV10_CHIP_MAX_PEC; 2268 k->i2c_num_engines = PNV10_CHIP_MAX_I2C; 2269 k->i2c_ports_per_engine = i2c_ports_per_engine; 2270 2271 device_class_set_parent_realize(dc, pnv_chip_power10_realize, 2272 &k->parent_realize); 2273 } 2274 2275 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip, 2276 Error **errp) 2277 { 2278 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 2279 int cores_max; 2280 2281 /* 2282 * No custom mask for this chip, let's use the default one from * 2283 * the chip class 2284 */ 2285 if (!chip->cores_mask) { 2286 chip->cores_mask = pcc->cores_mask; 2287 } 2288 2289 /* filter alien core ids ! some are reserved */ 2290 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 2291 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 2292 chip->cores_mask); 2293 return; 2294 } 2295 chip->cores_mask &= pcc->cores_mask; 2296 2297 /* Ensure small-cores a paired up in big-core mode */ 2298 if (pnv->big_core) { 2299 uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL; 2300 uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL; 2301 2302 if (even_cores ^ (odd_cores >> 1)) { 2303 error_setg(errp, "warning: unpaired cores in big-core mode !"); 2304 return; 2305 } 2306 } 2307 2308 /* now that we have a sane layout, let check the number of cores */ 2309 cores_max = ctpop64(chip->cores_mask); 2310 if (chip->nr_cores > cores_max) { 2311 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 2312 cores_max); 2313 return; 2314 } 2315 } 2316 2317 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 2318 { 2319 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 2320 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv); 2321 Error *error = NULL; 2322 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 2323 const char *typename = pnv_chip_core_typename(chip); 2324 int i, core_hwid; 2325 2326 if (!object_class_by_name(typename)) { 2327 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 2328 return; 2329 } 2330 2331 /* Cores */ 2332 pnv_chip_core_sanitize(pnv, chip, &error); 2333 if (error) { 2334 error_propagate(errp, error); 2335 return; 2336 } 2337 2338 chip->cores = g_new0(PnvCore *, chip->nr_cores); 2339 2340 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 2341 && (i < chip->nr_cores); core_hwid++) { 2342 char core_name[32]; 2343 PnvCore *pnv_core; 2344 uint64_t xscom_core_base; 2345 2346 if (!(chip->cores_mask & (1ull << core_hwid))) { 2347 continue; 2348 } 2349 2350 pnv_core = PNV_CORE(object_new(typename)); 2351 2352 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 2353 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core)); 2354 chip->cores[i] = pnv_core; 2355 object_property_set_int(OBJECT(pnv_core), "nr-threads", 2356 chip->nr_threads, &error_fatal); 2357 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID, 2358 core_hwid, &error_fatal); 2359 object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid, 2360 &error_fatal); 2361 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr, 2362 &error_fatal); 2363 object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core, 2364 &error_fatal); 2365 object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core", 2366 pmc->quirk_tb_big_core, &error_fatal); 2367 object_property_set_bool(OBJECT(pnv_core), "lpar-per-core", 2368 chip->lpar_per_core, &error_fatal); 2369 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip), 2370 &error_abort); 2371 2372 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal); 2373 2374 /* Each core has an XSCOM MMIO region */ 2375 xscom_core_base = pcc->xscom_core_base(chip, core_hwid); 2376 2377 pnv_xscom_add_subregion(chip, xscom_core_base, 2378 &pnv_core->xscom_regs); 2379 i++; 2380 } 2381 } 2382 2383 static void pnv_chip_realize(DeviceState *dev, Error **errp) 2384 { 2385 PnvChip *chip = PNV_CHIP(dev); 2386 Error *error = NULL; 2387 2388 /* Cores */ 2389 pnv_chip_core_realize(chip, &error); 2390 if (error) { 2391 error_propagate(errp, error); 2392 return; 2393 } 2394 } 2395 2396 static Property pnv_chip_properties[] = { 2397 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 2398 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 2399 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 2400 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 2401 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 2402 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), 2403 DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false), 2404 DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false), 2405 DEFINE_PROP_END_OF_LIST(), 2406 }; 2407 2408 static void pnv_chip_class_init(ObjectClass *klass, void *data) 2409 { 2410 DeviceClass *dc = DEVICE_CLASS(klass); 2411 2412 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 2413 dc->realize = pnv_chip_realize; 2414 device_class_set_props(dc, pnv_chip_properties); 2415 dc->desc = "PowerNV Chip"; 2416 } 2417 2418 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id) 2419 { 2420 int i; 2421 2422 for (i = 0; i < chip->nr_cores; i++) { 2423 PnvCore *pc = chip->cores[i]; 2424 CPUCore *cc = CPU_CORE(pc); 2425 2426 if (cc->core_id == core_id) { 2427 return pc; 2428 } 2429 } 2430 return NULL; 2431 } 2432 2433 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) 2434 { 2435 int i, j; 2436 2437 for (i = 0; i < chip->nr_cores; i++) { 2438 PnvCore *pc = chip->cores[i]; 2439 CPUCore *cc = CPU_CORE(pc); 2440 2441 for (j = 0; j < cc->nr_threads; j++) { 2442 if (ppc_cpu_pir(pc->threads[j]) == pir) { 2443 return pc->threads[j]; 2444 } 2445 } 2446 } 2447 return NULL; 2448 } 2449 2450 static void pnv_chip_foreach_cpu(PnvChip *chip, 2451 void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque), 2452 void *opaque) 2453 { 2454 int i, j; 2455 2456 for (i = 0; i < chip->nr_cores; i++) { 2457 PnvCore *pc = chip->cores[i]; 2458 2459 for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) { 2460 fn(chip, pc->threads[j], opaque); 2461 } 2462 } 2463 } 2464 2465 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 2466 { 2467 PnvMachineState *pnv = PNV_MACHINE(xi); 2468 int i, j; 2469 2470 for (i = 0; i < pnv->num_chips; i++) { 2471 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 2472 2473 if (ics_valid_irq(&chip8->psi.ics, irq)) { 2474 return &chip8->psi.ics; 2475 } 2476 2477 for (j = 0; j < chip8->num_phbs; j++) { 2478 PnvPHB *phb = chip8->phbs[j]; 2479 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2480 2481 if (ics_valid_irq(&phb3->lsis, irq)) { 2482 return &phb3->lsis; 2483 } 2484 2485 if (ics_valid_irq(ICS(&phb3->msis), irq)) { 2486 return ICS(&phb3->msis); 2487 } 2488 } 2489 } 2490 return NULL; 2491 } 2492 2493 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id) 2494 { 2495 int i; 2496 2497 for (i = 0; i < pnv->num_chips; i++) { 2498 PnvChip *chip = pnv->chips[i]; 2499 if (chip->chip_id == chip_id) { 2500 return chip; 2501 } 2502 } 2503 return NULL; 2504 } 2505 2506 static void pnv_ics_resend(XICSFabric *xi) 2507 { 2508 PnvMachineState *pnv = PNV_MACHINE(xi); 2509 int i, j; 2510 2511 for (i = 0; i < pnv->num_chips; i++) { 2512 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 2513 2514 ics_resend(&chip8->psi.ics); 2515 2516 for (j = 0; j < chip8->num_phbs; j++) { 2517 PnvPHB *phb = chip8->phbs[j]; 2518 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2519 2520 ics_resend(&phb3->lsis); 2521 ics_resend(ICS(&phb3->msis)); 2522 } 2523 } 2524 } 2525 2526 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 2527 { 2528 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 2529 2530 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 2531 } 2532 2533 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 2534 void *opaque) 2535 { 2536 PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque); 2537 } 2538 2539 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf) 2540 { 2541 PnvMachineState *pnv = PNV_MACHINE(obj); 2542 int i; 2543 2544 for (i = 0; i < pnv->num_chips; i++) { 2545 PnvChip *chip = pnv->chips[i]; 2546 2547 /* First CPU presenters */ 2548 pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf); 2549 2550 /* Then other devices, PHB, PSI, XIVE */ 2551 PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf); 2552 } 2553 } 2554 2555 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, 2556 uint8_t nvt_blk, uint32_t nvt_idx, 2557 bool cam_ignore, uint8_t priority, 2558 uint32_t logic_serv, 2559 XiveTCTXMatch *match) 2560 { 2561 PnvMachineState *pnv = PNV_MACHINE(xfb); 2562 int total_count = 0; 2563 int i; 2564 2565 for (i = 0; i < pnv->num_chips; i++) { 2566 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 2567 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); 2568 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2569 int count; 2570 2571 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2572 priority, logic_serv, match); 2573 2574 if (count < 0) { 2575 return count; 2576 } 2577 2578 total_count += count; 2579 } 2580 2581 return total_count; 2582 } 2583 2584 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format, 2585 uint8_t nvt_blk, uint32_t nvt_idx, 2586 bool cam_ignore, uint8_t priority, 2587 uint32_t logic_serv, 2588 XiveTCTXMatch *match) 2589 { 2590 PnvMachineState *pnv = PNV_MACHINE(xfb); 2591 int total_count = 0; 2592 int i; 2593 2594 for (i = 0; i < pnv->num_chips; i++) { 2595 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 2596 XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive); 2597 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2598 int count; 2599 2600 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2601 priority, logic_serv, match); 2602 2603 if (count < 0) { 2604 return count; 2605 } 2606 2607 total_count += count; 2608 } 2609 2610 return total_count; 2611 } 2612 2613 static bool pnv_machine_get_big_core(Object *obj, Error **errp) 2614 { 2615 PnvMachineState *pnv = PNV_MACHINE(obj); 2616 return pnv->big_core; 2617 } 2618 2619 static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp) 2620 { 2621 PnvMachineState *pnv = PNV_MACHINE(obj); 2622 pnv->big_core = value; 2623 } 2624 2625 static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp) 2626 { 2627 PnvMachineState *pnv = PNV_MACHINE(obj); 2628 return pnv->lpar_per_core; 2629 } 2630 2631 static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp) 2632 { 2633 PnvMachineState *pnv = PNV_MACHINE(obj); 2634 pnv->lpar_per_core = value; 2635 } 2636 2637 static bool pnv_machine_get_hb(Object *obj, Error **errp) 2638 { 2639 PnvMachineState *pnv = PNV_MACHINE(obj); 2640 2641 return !!pnv->fw_load_addr; 2642 } 2643 2644 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp) 2645 { 2646 PnvMachineState *pnv = PNV_MACHINE(obj); 2647 2648 if (value) { 2649 pnv->fw_load_addr = 0x8000000; 2650 } 2651 } 2652 2653 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) 2654 { 2655 MachineClass *mc = MACHINE_CLASS(oc); 2656 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 2657 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2658 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 2659 2660 static GlobalProperty phb_compat[] = { 2661 { TYPE_PNV_PHB, "version", "3" }, 2662 { TYPE_PNV_PHB_ROOT_PORT, "version", "3" }, 2663 }; 2664 2665 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; 2666 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 2667 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2668 2669 xic->icp_get = pnv_icp_get; 2670 xic->ics_get = pnv_ics_get; 2671 xic->ics_resend = pnv_ics_resend; 2672 2673 pmc->compat = compat; 2674 pmc->compat_size = sizeof(compat); 2675 pmc->max_smt_threads = 8; 2676 /* POWER8 is always lpar-per-core mode */ 2677 pmc->has_lpar_per_thread = false; 2678 2679 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2680 } 2681 2682 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) 2683 { 2684 MachineClass *mc = MACHINE_CLASS(oc); 2685 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2686 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2687 static const char compat[] = "qemu,powernv9\0ibm,powernv"; 2688 2689 static GlobalProperty phb_compat[] = { 2690 { TYPE_PNV_PHB, "version", "4" }, 2691 { TYPE_PNV_PHB_ROOT_PORT, "version", "4" }, 2692 }; 2693 2694 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; 2695 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 2696 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2697 2698 xfc->match_nvt = pnv_match_nvt; 2699 2700 pmc->compat = compat; 2701 pmc->compat_size = sizeof(compat); 2702 pmc->max_smt_threads = 4; 2703 pmc->has_lpar_per_thread = true; 2704 pmc->dt_power_mgt = pnv_dt_power_mgt; 2705 2706 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2707 2708 object_class_property_add_bool(oc, "big-core", 2709 pnv_machine_get_big_core, 2710 pnv_machine_set_big_core); 2711 object_class_property_set_description(oc, "big-core", 2712 "Use big-core (aka fused-core) mode"); 2713 2714 object_class_property_add_bool(oc, "lpar-per-core", 2715 pnv_machine_get_lpar_per_core, 2716 pnv_machine_set_lpar_per_core); 2717 object_class_property_set_description(oc, "lpar-per-core", 2718 "Use 1 LPAR per core mode"); 2719 } 2720 2721 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data) 2722 { 2723 MachineClass *mc = MACHINE_CLASS(oc); 2724 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2725 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2726 static const char compat[] = "qemu,powernv10\0ibm,powernv"; 2727 2728 static GlobalProperty phb_compat[] = { 2729 { TYPE_PNV_PHB, "version", "5" }, 2730 { TYPE_PNV_PHB_ROOT_PORT, "version", "5" }, 2731 }; 2732 2733 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 2734 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2735 2736 mc->alias = "powernv"; 2737 2738 pmc->compat = compat; 2739 pmc->compat_size = sizeof(compat); 2740 pmc->max_smt_threads = 4; 2741 pmc->has_lpar_per_thread = true; 2742 pmc->quirk_tb_big_core = true; 2743 pmc->dt_power_mgt = pnv_dt_power_mgt; 2744 2745 xfc->match_nvt = pnv10_xive_match_nvt; 2746 2747 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2748 } 2749 2750 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) 2751 { 2752 MachineClass *mc = MACHINE_CLASS(oc); 2753 2754 pnv_machine_p10_common_class_init(oc, data); 2755 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; 2756 2757 /* 2758 * This is the parent of POWER10 Rainier class, so properies go here 2759 * rather than common init (which would add them to both parent and 2760 * child which is invalid). 2761 */ 2762 object_class_property_add_bool(oc, "big-core", 2763 pnv_machine_get_big_core, 2764 pnv_machine_set_big_core); 2765 object_class_property_set_description(oc, "big-core", 2766 "Use big-core (aka fused-core) mode"); 2767 2768 object_class_property_add_bool(oc, "lpar-per-core", 2769 pnv_machine_get_lpar_per_core, 2770 pnv_machine_set_lpar_per_core); 2771 object_class_property_set_description(oc, "lpar-per-core", 2772 "Use 1 LPAR per core mode"); 2773 } 2774 2775 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data) 2776 { 2777 MachineClass *mc = MACHINE_CLASS(oc); 2778 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2779 2780 pnv_machine_p10_common_class_init(oc, data); 2781 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier"; 2782 pmc->i2c_init = pnv_rainier_i2c_init; 2783 } 2784 2785 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg) 2786 { 2787 CPUPPCState *env = cpu_env(cs); 2788 2789 cpu_synchronize_state(cs); 2790 ppc_cpu_do_system_reset(cs); 2791 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) { 2792 /* 2793 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the 2794 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100 2795 * (PPC_BIT(43)). 2796 */ 2797 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) { 2798 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason"); 2799 env->spr[SPR_SRR1] |= SRR1_WAKERESET; 2800 } 2801 } else { 2802 /* 2803 * For non-powersave system resets, SRR1[42:45] are defined to be 2804 * implementation-dependent. The POWER9 User Manual specifies that 2805 * an external (SCOM driven, which may come from a BMC nmi command or 2806 * another CPU requesting a NMI IPI) system reset exception should be 2807 * 0b0010 (PPC_BIT(44)). 2808 */ 2809 env->spr[SPR_SRR1] |= SRR1_WAKESCOM; 2810 } 2811 if (arg.host_int == 1) { 2812 cpu_resume(cs); 2813 } 2814 } 2815 2816 /* 2817 * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was 2818 * paused. 2819 */ 2820 void pnv_cpu_do_nmi_resume(CPUState *cs) 2821 { 2822 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1)); 2823 } 2824 2825 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque) 2826 { 2827 async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0)); 2828 } 2829 2830 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp) 2831 { 2832 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 2833 int i; 2834 2835 for (i = 0; i < pnv->num_chips; i++) { 2836 pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL); 2837 } 2838 } 2839 2840 static void pnv_machine_class_init(ObjectClass *oc, void *data) 2841 { 2842 MachineClass *mc = MACHINE_CLASS(oc); 2843 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 2844 NMIClass *nc = NMI_CLASS(oc); 2845 2846 mc->desc = "IBM PowerNV (Non-Virtualized)"; 2847 mc->init = pnv_init; 2848 mc->reset = pnv_reset; 2849 mc->max_cpus = MAX_CPUS; 2850 /* Pnv provides a AHCI device for storage */ 2851 mc->block_default_type = IF_IDE; 2852 mc->no_parallel = 1; 2853 mc->default_boot_order = NULL; 2854 /* 2855 * RAM defaults to less than 2048 for 32-bit hosts, and large 2856 * enough to fit the maximum initrd size at it's load address 2857 */ 2858 mc->default_ram_size = 1 * GiB; 2859 mc->default_ram_id = "pnv.ram"; 2860 ispc->print_info = pnv_pic_print_info; 2861 nc->nmi_monitor_handler = pnv_nmi; 2862 2863 object_class_property_add_bool(oc, "hb-mode", 2864 pnv_machine_get_hb, pnv_machine_set_hb); 2865 object_class_property_set_description(oc, "hb-mode", 2866 "Use a hostboot like boot loader"); 2867 } 2868 2869 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 2870 { \ 2871 .name = type, \ 2872 .class_init = class_initfn, \ 2873 .parent = TYPE_PNV8_CHIP, \ 2874 } 2875 2876 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 2877 { \ 2878 .name = type, \ 2879 .class_init = class_initfn, \ 2880 .parent = TYPE_PNV9_CHIP, \ 2881 } 2882 2883 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ 2884 { \ 2885 .name = type, \ 2886 .class_init = class_initfn, \ 2887 .parent = TYPE_PNV10_CHIP, \ 2888 } 2889 2890 static const TypeInfo types[] = { 2891 { 2892 .name = MACHINE_TYPE_NAME("powernv10-rainier"), 2893 .parent = MACHINE_TYPE_NAME("powernv10"), 2894 .class_init = pnv_machine_p10_rainier_class_init, 2895 }, 2896 { 2897 .name = MACHINE_TYPE_NAME("powernv10"), 2898 .parent = TYPE_PNV_MACHINE, 2899 .class_init = pnv_machine_power10_class_init, 2900 .interfaces = (InterfaceInfo[]) { 2901 { TYPE_XIVE_FABRIC }, 2902 { }, 2903 }, 2904 }, 2905 { 2906 .name = MACHINE_TYPE_NAME("powernv9"), 2907 .parent = TYPE_PNV_MACHINE, 2908 .class_init = pnv_machine_power9_class_init, 2909 .interfaces = (InterfaceInfo[]) { 2910 { TYPE_XIVE_FABRIC }, 2911 { }, 2912 }, 2913 }, 2914 { 2915 .name = MACHINE_TYPE_NAME("powernv8"), 2916 .parent = TYPE_PNV_MACHINE, 2917 .class_init = pnv_machine_power8_class_init, 2918 .interfaces = (InterfaceInfo[]) { 2919 { TYPE_XICS_FABRIC }, 2920 { }, 2921 }, 2922 }, 2923 { 2924 .name = TYPE_PNV_MACHINE, 2925 .parent = TYPE_MACHINE, 2926 .abstract = true, 2927 .instance_size = sizeof(PnvMachineState), 2928 .class_init = pnv_machine_class_init, 2929 .class_size = sizeof(PnvMachineClass), 2930 .interfaces = (InterfaceInfo[]) { 2931 { TYPE_INTERRUPT_STATS_PROVIDER }, 2932 { TYPE_NMI }, 2933 { }, 2934 }, 2935 }, 2936 { 2937 .name = TYPE_PNV_CHIP, 2938 .parent = TYPE_SYS_BUS_DEVICE, 2939 .class_init = pnv_chip_class_init, 2940 .instance_size = sizeof(PnvChip), 2941 .class_size = sizeof(PnvChipClass), 2942 .abstract = true, 2943 }, 2944 2945 /* 2946 * P10 chip and variants 2947 */ 2948 { 2949 .name = TYPE_PNV10_CHIP, 2950 .parent = TYPE_PNV_CHIP, 2951 .instance_init = pnv_chip_power10_instance_init, 2952 .instance_size = sizeof(Pnv10Chip), 2953 }, 2954 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), 2955 2956 /* 2957 * P9 chip and variants 2958 */ 2959 { 2960 .name = TYPE_PNV9_CHIP, 2961 .parent = TYPE_PNV_CHIP, 2962 .instance_init = pnv_chip_power9_instance_init, 2963 .instance_size = sizeof(Pnv9Chip), 2964 }, 2965 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 2966 2967 /* 2968 * P8 chip and variants 2969 */ 2970 { 2971 .name = TYPE_PNV8_CHIP, 2972 .parent = TYPE_PNV_CHIP, 2973 .instance_init = pnv_chip_power8_instance_init, 2974 .instance_size = sizeof(Pnv8Chip), 2975 }, 2976 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 2977 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 2978 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 2979 pnv_chip_power8nvl_class_init), 2980 }; 2981 2982 DEFINE_TYPES(types) 2983