xref: /openbmc/qemu/hw/ppc/pnv.c (revision 70bc5c2498f464b63515984f1996031010476c25)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "system/qtest.h"
26 #include "system/system.h"
27 #include "system/numa.h"
28 #include "system/reset.h"
29 #include "system/runstate.h"
30 #include "system/cpus.h"
31 #include "system/device_tree.h"
32 #include "system/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial-isa.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define KERNEL_LOAD_ADDR        0x20000000
68 #define KERNEL_MAX_SIZE         (128 * MiB)
69 #define INITRD_LOAD_ADDR        0x28000000
70 #define INITRD_MAX_SIZE         (128 * MiB)
71 
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77     const char *core_type = object_class_get_name(object_class_by_name(s));
78     g_free(s);
79     return core_type;
80 }
81 
82 /*
83  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84  *     4 * 4 sockets * 12 cores * 8 threads = 1536
85  * Let's make it 2^11
86  */
87 #define MAX_CPUS                2048
88 
89 /*
90  * Memory nodes are created by hostboot, one for each range of memory
91  * that has a different "affinity". In practice, it means one range
92  * per chip.
93  */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96     char *mem_name;
97     uint64_t mem_reg_property[2];
98     int off;
99 
100     mem_reg_property[0] = cpu_to_be64(start);
101     mem_reg_property[1] = cpu_to_be64(size);
102 
103     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104     off = fdt_add_subnode(fdt, 0, mem_name);
105     g_free(mem_name);
106 
107     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                        sizeof(mem_reg_property))));
110     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112 
113 static int get_cpus_node(void *fdt)
114 {
115     int cpus_offset = fdt_path_offset(fdt, "/cpus");
116 
117     if (cpus_offset < 0) {
118         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119         if (cpus_offset) {
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122         }
123     }
124     _FDT(cpus_offset);
125     return cpus_offset;
126 }
127 
128 /*
129  * The PowerNV cores (and threads) need to use real HW ids and not an
130  * incremental index like it has been done on other platforms. This HW
131  * id is stored in the CPU PIR, it is used to create cpu nodes in the
132  * device tree, used in XSCOM to address cores and in interrupt
133  * servers.
134  */
135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137     PowerPCCPU *cpu = pc->threads[0];
138     CPUState *cs = CPU(cpu);
139     DeviceClass *dc = DEVICE_GET_CLASS(cs);
140     int smt_threads = CPU_CORE(pc)->nr_threads;
141     CPUPPCState *env = &cpu->env;
142     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144     uint32_t *servers_prop;
145     int i;
146     uint32_t pir, tir;
147     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148                        0xffffffff, 0xffffffff};
149     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150     uint32_t cpufreq = 1000000000;
151     uint32_t page_sizes_prop[64];
152     size_t page_sizes_prop_size;
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
158 
159     /* Only one DT node per (big) core */
160     g_assert(tir == 0);
161 
162     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
163     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
164     _FDT(offset);
165     g_free(nodename);
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
170     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
171     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
172 
173     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
174     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
175                             env->dcache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
177                             env->dcache_line_size)));
178     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
179                             env->icache_line_size)));
180     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
181                             env->icache_line_size)));
182 
183     if (pcc->l1_dcache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
185                                pcc->l1_dcache_size)));
186     } else {
187         warn_report("Unknown L1 dcache size for cpu");
188     }
189     if (pcc->l1_icache_size) {
190         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
191                                pcc->l1_icache_size)));
192     } else {
193         warn_report("Unknown L1 icache size for cpu");
194     }
195 
196     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
198     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
199                            cpu->hash64_opts->slb_size)));
200     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
201     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
202 
203     if (ppc_has_spr(cpu, SPR_PURR)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
205     }
206 
207     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
208         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
209                            segs, sizeof(segs))));
210     }
211 
212     /*
213      * Advertise VMX/VSX (vector extensions) if available
214      *   0 / no property == no vector extensions
215      *   1               == VMX / Altivec available
216      *   2               == VSX available
217      */
218     if (env->insns_flags & PPC_ALTIVEC) {
219         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
220 
221         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
222     }
223 
224     /*
225      * Advertise DFP (Decimal Floating Point) if available
226      *   0 / no property == no DFP
227      *   1               == DFP available
228      */
229     if (env->insns_flags2 & PPC2_DFP) {
230         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
231     }
232 
233     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
234                                                       sizeof(page_sizes_prop));
235     if (page_sizes_prop_size) {
236         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
237                            page_sizes_prop, page_sizes_prop_size)));
238     }
239 
240     /* Build interrupt servers properties */
241     if (pc->big_core) {
242         servers_prop = g_new(uint32_t, smt_threads * 2);
243         for (i = 0; i < smt_threads; i++) {
244             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
245             servers_prop[i * 2] = cpu_to_be32(pir);
246 
247             pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
248             servers_prop[i * 2 + 1] = cpu_to_be32(pir);
249         }
250         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
251                           servers_prop, sizeof(*servers_prop) * smt_threads
252                                         * 2)));
253     } else {
254         servers_prop = g_new(uint32_t, smt_threads);
255         for (i = 0; i < smt_threads; i++) {
256             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
257             servers_prop[i] = cpu_to_be32(pir);
258         }
259         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
260                           servers_prop, sizeof(*servers_prop) * smt_threads)));
261     }
262     g_free(servers_prop);
263 
264     return offset;
265 }
266 
267 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
268                        uint32_t nr_threads)
269 {
270     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
271     uint32_t pir;
272     uint64_t addr;
273     char *name;
274     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
275     uint32_t irange[2], i, rsize;
276     uint64_t *reg;
277     int offset;
278 
279     pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
280     addr = PNV_ICP_BASE(chip) | (pir << 12);
281 
282     irange[0] = cpu_to_be32(pir);
283     irange[1] = cpu_to_be32(nr_threads);
284 
285     rsize = sizeof(uint64_t) * 2 * nr_threads;
286     reg = g_malloc(rsize);
287     for (i = 0; i < nr_threads; i++) {
288         /* We know P8 PIR is linear with thread id */
289         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
290         reg[i * 2 + 1] = cpu_to_be64(0x1000);
291     }
292 
293     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
294     offset = fdt_add_subnode(fdt, 0, name);
295     _FDT(offset);
296     g_free(name);
297 
298     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
299     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
300     _FDT((fdt_setprop_string(fdt, offset, "device_type",
301                               "PowerPC-External-Interrupt-Presentation")));
302     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
303     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
304                        irange, sizeof(irange))));
305     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
306     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
307     g_free(reg);
308 }
309 
310 /*
311  * Adds a PnvPHB to the chip on P8.
312  * Implemented here, like for defaults PHBs
313  */
314 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
315 {
316     Pnv8Chip *chip8 = PNV8_CHIP(chip);
317 
318     phb->chip = chip;
319 
320     chip8->phbs[chip8->num_phbs] = phb;
321     chip8->num_phbs++;
322     return chip;
323 }
324 
325 /*
326  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
327  * HTM is always enabled because TCG does implement HTM, it's just a
328  * degenerate implementation.
329  */
330 static const uint8_t pa_features_207[] = { 24, 0,
331                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
332                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
333                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
334                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
335 
336 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
337 {
338     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
339     int i;
340 
341     pnv_dt_xscom(chip, fdt, 0,
342                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
343                  cpu_to_be64(PNV_XSCOM_SIZE),
344                  compat, sizeof(compat));
345 
346     for (i = 0; i < chip->nr_cores; i++) {
347         PnvCore *pnv_core = chip->cores[i];
348         int offset;
349 
350         offset = pnv_dt_core(chip, pnv_core, fdt);
351 
352         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
353                            pa_features_207, sizeof(pa_features_207))));
354 
355         /* Interrupt Control Presenters (ICP). One per core. */
356         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
357     }
358 
359     if (chip->ram_size) {
360         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
361     }
362 }
363 
364 /*
365  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
366  */
367 static const uint8_t pa_features_300[] = { 66, 0,
368     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
369     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
370     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
371     /* 6: DS207 */
372     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
373     /* 16: Vector */
374     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
375     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
376     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
377     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
378     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
379     /* 32: LE atomic, 34: EBB + ext EBB */
380     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
381     /* 40: Radix MMU */
382     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
383     /* 42: PM, 44: PC RA, 46: SC vec'd */
384     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
385     /* 48: SIMD, 50: QP BFP, 52: String */
386     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
387     /* 54: DecFP, 56: DecI, 58: SHA */
388     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
389     /* 60: NM atomic, 62: RNG */
390     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
391 };
392 
393 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
394 {
395     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
396     int i;
397 
398     pnv_dt_xscom(chip, fdt, 0,
399                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
400                  cpu_to_be64(PNV9_XSCOM_SIZE),
401                  compat, sizeof(compat));
402 
403     for (i = 0; i < chip->nr_cores; i++) {
404         PnvCore *pnv_core = chip->cores[i];
405         int offset;
406 
407         offset = pnv_dt_core(chip, pnv_core, fdt);
408 
409         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
410                            pa_features_300, sizeof(pa_features_300))));
411 
412         if (pnv_core->big_core) {
413             i++; /* Big-core groups two QEMU cores */
414         }
415     }
416 
417     if (chip->ram_size) {
418         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
419     }
420 
421     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
422 }
423 
424 /*
425  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
426  * always disables copy/paste.
427  */
428 static const uint8_t pa_features_31[] = { 74, 0,
429     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
430     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
431     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
432     /* 6: DS207 */
433     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
434     /* 16: Vector */
435     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
436     /* 18: Vec. Scalar, 20: Vec. XOR */
437     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
438     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
439     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
440     /* 32: LE atomic, 34: EBB + ext EBB */
441     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
442     /* 40: Radix MMU */
443     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
444     /* 42: PM, 44: PC RA, 46: SC vec'd */
445     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
446     /* 48: SIMD, 50: QP BFP, 52: String */
447     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
448     /* 54: DecFP, 56: DecI, 58: SHA */
449     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
450     /* 60: NM atomic, 62: RNG */
451     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
452     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
453     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
454     /* 72: [P]HASHST/[P]HASHCHK */
455     0x80, 0x00,                         /* 72 - 73 */
456 };
457 
458 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
459 {
460     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
461     int i;
462 
463     pnv_dt_xscom(chip, fdt, 0,
464                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
465                  cpu_to_be64(PNV10_XSCOM_SIZE),
466                  compat, sizeof(compat));
467 
468     for (i = 0; i < chip->nr_cores; i++) {
469         PnvCore *pnv_core = chip->cores[i];
470         int offset;
471 
472         offset = pnv_dt_core(chip, pnv_core, fdt);
473 
474         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
475                            pa_features_31, sizeof(pa_features_31))));
476 
477         if (pnv_core->big_core) {
478             i++; /* Big-core groups two QEMU cores */
479         }
480     }
481 
482     if (chip->ram_size) {
483         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
484     }
485 
486     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
487 }
488 
489 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
490 {
491     uint32_t io_base = d->ioport_id;
492     uint32_t io_regs[] = {
493         cpu_to_be32(1),
494         cpu_to_be32(io_base),
495         cpu_to_be32(2)
496     };
497     char *name;
498     int node;
499 
500     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
501     node = fdt_add_subnode(fdt, lpc_off, name);
502     _FDT(node);
503     g_free(name);
504 
505     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
506     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
507 }
508 
509 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
510 {
511     const char compatible[] = "ns16550\0pnpPNP,501";
512     uint32_t io_base = d->ioport_id;
513     uint32_t io_regs[] = {
514         cpu_to_be32(1),
515         cpu_to_be32(io_base),
516         cpu_to_be32(8)
517     };
518     uint32_t irq;
519     char *name;
520     int node;
521 
522     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
523 
524     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
525     node = fdt_add_subnode(fdt, lpc_off, name);
526     _FDT(node);
527     g_free(name);
528 
529     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
530     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
531                       sizeof(compatible))));
532 
533     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
534     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
535     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
536     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
537                            fdt_get_phandle(fdt, lpc_off))));
538 
539     /* This is needed by Linux */
540     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
541 }
542 
543 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
544 {
545     const char compatible[] = "bt\0ipmi-bt";
546     uint32_t io_base;
547     uint32_t io_regs[] = {
548         cpu_to_be32(1),
549         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
550         cpu_to_be32(3)
551     };
552     uint32_t irq;
553     char *name;
554     int node;
555 
556     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
557     io_regs[1] = cpu_to_be32(io_base);
558 
559     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
560 
561     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
562     node = fdt_add_subnode(fdt, lpc_off, name);
563     _FDT(node);
564     g_free(name);
565 
566     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
567     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
568                       sizeof(compatible))));
569 
570     /* Mark it as reserved to avoid Linux trying to claim it */
571     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
572     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
573     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
574                            fdt_get_phandle(fdt, lpc_off))));
575 }
576 
577 typedef struct ForeachPopulateArgs {
578     void *fdt;
579     int offset;
580 } ForeachPopulateArgs;
581 
582 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
583 {
584     ForeachPopulateArgs *args = opaque;
585     ISADevice *d = ISA_DEVICE(dev);
586 
587     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
588         pnv_dt_rtc(d, args->fdt, args->offset);
589     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
590         pnv_dt_serial(d, args->fdt, args->offset);
591     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
592         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
593     } else {
594         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
595                      d->ioport_id);
596     }
597 
598     return 0;
599 }
600 
601 /*
602  * The default LPC bus of a multichip system is on chip 0. It's
603  * recognized by the firmware (skiboot) using a "primary" property.
604  */
605 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
606 {
607     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
608     ForeachPopulateArgs args = {
609         .fdt = fdt,
610         .offset = isa_offset,
611     };
612     uint32_t phandle;
613 
614     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
615 
616     phandle = qemu_fdt_alloc_phandle(fdt);
617     assert(phandle > 0);
618     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
619 
620     /*
621      * ISA devices are not necessarily parented to the ISA bus so we
622      * can not use object_child_foreach()
623      */
624     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
625                        &args);
626 }
627 
628 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
629 {
630     int off;
631 
632     off = fdt_add_subnode(fdt, 0, "ibm,opal");
633     off = fdt_add_subnode(fdt, off, "power-mgt");
634 
635     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
636 }
637 
638 static void *pnv_dt_create(MachineState *machine)
639 {
640     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
641     PnvMachineState *pnv = PNV_MACHINE(machine);
642     void *fdt;
643     char *buf;
644     int off;
645     int i;
646 
647     fdt = g_malloc0(FDT_MAX_SIZE);
648     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
649 
650     /* /qemu node */
651     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
652 
653     /* Root node */
654     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
655     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
656     _FDT((fdt_setprop_string(fdt, 0, "model",
657                              "IBM PowerNV (emulated by qemu)")));
658     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
659 
660     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
661     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
662     if (qemu_uuid_set) {
663         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
664     }
665     g_free(buf);
666 
667     off = fdt_add_subnode(fdt, 0, "chosen");
668     if (machine->kernel_cmdline) {
669         _FDT((fdt_setprop_string(fdt, off, "bootargs",
670                                  machine->kernel_cmdline)));
671     }
672 
673     if (pnv->initrd_size) {
674         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
675         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
676 
677         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
678                                &start_prop, sizeof(start_prop))));
679         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
680                                &end_prop, sizeof(end_prop))));
681     }
682 
683     /* Populate device tree for each chip */
684     for (i = 0; i < pnv->num_chips; i++) {
685         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
686     }
687 
688     /* Populate ISA devices on chip 0 */
689     pnv_dt_isa(pnv, fdt);
690 
691     if (pnv->bmc) {
692         pnv_dt_bmc_sensors(pnv->bmc, fdt);
693     }
694 
695     /* Create an extra node for power management on machines that support it */
696     if (pmc->dt_power_mgt) {
697         pmc->dt_power_mgt(pnv, fdt);
698     }
699 
700     return fdt;
701 }
702 
703 static void pnv_powerdown_notify(Notifier *n, void *opaque)
704 {
705     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
706 
707     if (pnv->bmc) {
708         pnv_bmc_powerdown(pnv->bmc);
709     }
710 }
711 
712 static void pnv_reset(MachineState *machine, ResetType type)
713 {
714     PnvMachineState *pnv = PNV_MACHINE(machine);
715     IPMIBmc *bmc;
716     void *fdt;
717 
718     qemu_devices_reset(type);
719 
720     /*
721      * The machine should provide by default an internal BMC simulator.
722      * If not, try to use the BMC device that was provided on the command
723      * line.
724      */
725     bmc = pnv_bmc_find(&error_fatal);
726     if (!pnv->bmc) {
727         if (!bmc) {
728             if (!qtest_enabled()) {
729                 warn_report("machine has no BMC device. Use '-device "
730                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
731                             "to define one");
732             }
733         } else {
734             pnv_bmc_set_pnor(bmc, pnv->pnor);
735             pnv->bmc = bmc;
736         }
737     }
738 
739     if (machine->fdt) {
740         fdt = machine->fdt;
741     } else {
742         fdt = pnv_dt_create(machine);
743         /* Pack resulting tree */
744         _FDT((fdt_pack(fdt)));
745     }
746 
747     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
748 
749     /* Update machine->fdt with latest fdt */
750     if (machine->fdt != fdt) {
751         /*
752          * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
753          * the existing machine->fdt to avoid leaking it during
754          * a reset.
755          */
756         g_free(machine->fdt);
757         machine->fdt = fdt;
758     }
759 }
760 
761 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
762 {
763     Pnv8Chip *chip8 = PNV8_CHIP(chip);
764     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
765 
766     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
767 
768     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
769 }
770 
771 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
772 {
773     Pnv8Chip *chip8 = PNV8_CHIP(chip);
774     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
775 
776     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
777 
778     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
779 }
780 
781 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
782 {
783     Pnv9Chip *chip9 = PNV9_CHIP(chip);
784     qemu_irq irq;
785 
786     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
787     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
788 
789     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
790     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
791     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
792     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
793     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
794     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
795     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
796     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
797 
798     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
799 }
800 
801 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
802 {
803     Pnv10Chip *chip10 = PNV10_CHIP(chip);
804     qemu_irq irq;
805 
806     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
807     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
808 
809     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
810     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
811     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
812     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
813     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
814     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
815     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
816     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
817 
818     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
819 }
820 
821 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
822 {
823     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
824 }
825 
826 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
827 {
828     Pnv8Chip *chip8 = PNV8_CHIP(chip);
829     int i;
830 
831     ics_pic_print_info(&chip8->psi.ics, buf);
832 
833     for (i = 0; i < chip8->num_phbs; i++) {
834         PnvPHB *phb = chip8->phbs[i];
835         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
836 
837         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
838         ics_pic_print_info(&phb3->lsis, buf);
839     }
840 }
841 
842 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
843 {
844     GString *buf = opaque;
845     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
846 
847     if (!phb) {
848         return 0;
849     }
850 
851     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
852 
853     return 0;
854 }
855 
856 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
857 {
858     Pnv9Chip *chip9 = PNV9_CHIP(chip);
859 
860     pnv_xive_pic_print_info(&chip9->xive, buf);
861     pnv_psi_pic_print_info(&chip9->psi, buf);
862     object_child_foreach_recursive(OBJECT(chip),
863                          pnv_chip_power9_pic_print_info_child, buf);
864 }
865 
866 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
867                                                 uint32_t core_id)
868 {
869     return PNV_XSCOM_EX_BASE(core_id);
870 }
871 
872 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
873                                                 uint32_t core_id)
874 {
875     return PNV9_XSCOM_EC_BASE(core_id);
876 }
877 
878 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
879                                                  uint32_t core_id)
880 {
881     return PNV10_XSCOM_EC_BASE(core_id);
882 }
883 
884 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
885 {
886     PowerPCCPUClass *ppc_default =
887         POWERPC_CPU_CLASS(object_class_by_name(default_type));
888     PowerPCCPUClass *ppc =
889         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
890 
891     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
892 }
893 
894 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
895 {
896     ISADevice *dev = isa_new("isa-ipmi-bt");
897 
898     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
899     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
900     isa_realize_and_unref(dev, bus, &error_fatal);
901 }
902 
903 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
904 {
905     Pnv10Chip *chip10 = PNV10_CHIP(chip);
906 
907     pnv_xive2_pic_print_info(&chip10->xive, buf);
908     pnv_psi_pic_print_info(&chip10->psi, buf);
909     object_child_foreach_recursive(OBJECT(chip),
910                          pnv_chip_power9_pic_print_info_child, buf);
911 }
912 
913 /* Always give the first 1GB to chip 0 else we won't boot */
914 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
915 {
916     MachineState *machine = MACHINE(pnv);
917     uint64_t ram_per_chip;
918 
919     assert(machine->ram_size >= 1 * GiB);
920 
921     ram_per_chip = machine->ram_size / pnv->num_chips;
922     if (ram_per_chip >= 1 * GiB) {
923         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
924     }
925 
926     assert(pnv->num_chips > 1);
927 
928     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
929     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
930 }
931 
932 static void pnv_init(MachineState *machine)
933 {
934     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
935     PnvMachineState *pnv = PNV_MACHINE(machine);
936     MachineClass *mc = MACHINE_GET_CLASS(machine);
937     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
938     int max_smt_threads = pmc->max_smt_threads;
939     char *fw_filename;
940     long fw_size;
941     uint64_t chip_ram_start = 0;
942     int i;
943     char *chip_typename;
944     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
945     DeviceState *dev;
946 
947     if (kvm_enabled()) {
948         error_report("machine %s does not support the KVM accelerator",
949                      mc->name);
950         exit(EXIT_FAILURE);
951     }
952 
953     /* allocate RAM */
954     if (machine->ram_size < mc->default_ram_size) {
955         char *sz = size_to_str(mc->default_ram_size);
956         error_report("Invalid RAM size, should be bigger than %s", sz);
957         g_free(sz);
958         exit(EXIT_FAILURE);
959     }
960 
961     /* checks for invalid option combinations */
962     if (machine->dtb && (strlen(machine->kernel_cmdline) != 0)) {
963         error_report("-append and -dtb cannot be used together, as passed"
964                 " command line is ignored in case of custom dtb");
965         exit(EXIT_FAILURE);
966     }
967 
968     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
969 
970     /*
971      * Create our simple PNOR device
972      */
973     dev = qdev_new(TYPE_PNV_PNOR);
974     if (pnor) {
975         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
976     }
977     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
978     pnv->pnor = PNV_PNOR(dev);
979 
980     /* load skiboot firmware  */
981     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
982     if (!fw_filename) {
983         error_report("Could not find OPAL firmware '%s'", bios_name);
984         exit(1);
985     }
986 
987     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
988     if (fw_size < 0) {
989         error_report("Could not load OPAL firmware '%s'", fw_filename);
990         exit(1);
991     }
992     g_free(fw_filename);
993 
994     /* load kernel */
995     if (machine->kernel_filename) {
996         long kernel_size;
997 
998         kernel_size = load_image_targphys(machine->kernel_filename,
999                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
1000         if (kernel_size < 0) {
1001             error_report("Could not load kernel '%s'",
1002                          machine->kernel_filename);
1003             exit(1);
1004         }
1005     }
1006 
1007     /* load initrd */
1008     if (machine->initrd_filename) {
1009         pnv->initrd_base = INITRD_LOAD_ADDR;
1010         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
1011                                   pnv->initrd_base, INITRD_MAX_SIZE);
1012         if (pnv->initrd_size < 0) {
1013             error_report("Could not load initial ram disk '%s'",
1014                          machine->initrd_filename);
1015             exit(1);
1016         }
1017     }
1018 
1019     /* load dtb if passed */
1020     if (machine->dtb) {
1021         int fdt_size;
1022 
1023         warn_report("with manually passed dtb, some options like '-append'"
1024                 " will get ignored and the dtb passed will be used as-is");
1025 
1026         /* read the file 'machine->dtb', and load it into 'fdt' buffer */
1027         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
1028         if (!machine->fdt) {
1029             error_report("Could not load dtb '%s'", machine->dtb);
1030             exit(1);
1031         }
1032     }
1033 
1034     /* MSIs are supported on this platform */
1035     msi_nonbroken = true;
1036 
1037     /*
1038      * Check compatibility of the specified CPU with the machine
1039      * default.
1040      */
1041     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
1042         error_report("invalid CPU model '%s' for %s machine",
1043                      machine->cpu_type, mc->name);
1044         exit(1);
1045     }
1046 
1047     /* Create the processor chips */
1048     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
1049     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
1050                                     i, machine->cpu_type);
1051     if (!object_class_by_name(chip_typename)) {
1052         error_report("invalid chip model '%.*s' for %s machine",
1053                      i, machine->cpu_type, mc->name);
1054         exit(1);
1055     }
1056 
1057     /* Set lpar-per-core mode if lpar-per-thread is not supported */
1058     if (!pmc->has_lpar_per_thread) {
1059         pnv->lpar_per_core = true;
1060     }
1061 
1062     pnv->num_chips =
1063         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1064 
1065     if (pnv->big_core) {
1066         if (machine->smp.threads % 2 == 1) {
1067             error_report("Cannot support %d threads with big-core option "
1068                          "because it must be an even number",
1069                          machine->smp.threads);
1070             exit(1);
1071         }
1072         max_smt_threads *= 2;
1073     }
1074 
1075     if (machine->smp.threads > max_smt_threads) {
1076         error_report("Cannot support more than %d threads/core "
1077                      "on %s machine", max_smt_threads, mc->desc);
1078         if (pmc->max_smt_threads == 4) {
1079             error_report("(use big-core=on for 8 threads per core)");
1080         }
1081         exit(1);
1082     }
1083 
1084     if (pnv->big_core) {
1085         /*
1086          * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
1087          * per core, so adjust topology here. pnv_dt_core() processor
1088          * device-tree and TCG SMT code make the 2 cores appear as one big core
1089          * from software point of view. pnv pervasive models and xscoms tend to
1090          * see the big core as 2 small core halves.
1091          */
1092         machine->smp.cores *= 2;
1093         machine->smp.threads /= 2;
1094     }
1095 
1096     if (!is_power_of_2(machine->smp.threads)) {
1097         error_report("Cannot support %d threads/core on a powernv "
1098                      "machine because it must be a power of 2",
1099                      machine->smp.threads);
1100         exit(1);
1101     }
1102 
1103     /*
1104      * TODO: should we decide on how many chips we can create based
1105      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1106      */
1107     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1108         error_report("invalid number of chips: '%d'", pnv->num_chips);
1109         error_printf(
1110             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1111         exit(1);
1112     }
1113 
1114     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1115     for (i = 0; i < pnv->num_chips; i++) {
1116         char chip_name[32];
1117         Object *chip = OBJECT(qdev_new(chip_typename));
1118         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1119 
1120         pnv->chips[i] = PNV_CHIP(chip);
1121 
1122         /* Distribute RAM among the chips  */
1123         object_property_set_int(chip, "ram-start", chip_ram_start,
1124                                 &error_fatal);
1125         object_property_set_int(chip, "ram-size", chip_ram_size,
1126                                 &error_fatal);
1127         chip_ram_start += chip_ram_size;
1128 
1129         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1130         object_property_add_child(OBJECT(pnv), chip_name, chip);
1131         object_property_set_int(chip, "chip-id", i, &error_fatal);
1132         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1133                                 &error_fatal);
1134         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1135                                 &error_fatal);
1136         object_property_set_bool(chip, "big-core", pnv->big_core,
1137                                 &error_fatal);
1138         object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
1139                                 &error_fatal);
1140         /*
1141          * The POWER8 machine use the XICS interrupt interface.
1142          * Propagate the XICS fabric to the chip and its controllers.
1143          */
1144         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1145             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1146         }
1147         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1148             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1149                                      &error_abort);
1150         }
1151         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1152     }
1153     g_free(chip_typename);
1154 
1155     /* Instantiate ISA bus on chip 0 */
1156     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1157 
1158     /* Create serial port */
1159     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1160 
1161     /* Create an RTC ISA device too */
1162     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1163 
1164     /*
1165      * Create the machine BMC simulator and the IPMI BT device for
1166      * communication with the BMC
1167      */
1168     if (defaults_enabled()) {
1169         pnv->bmc = pnv_bmc_create(pnv->pnor);
1170         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1171     }
1172 
1173     /*
1174      * The PNOR is mapped on the LPC FW address space by the BMC.
1175      * Since we can not reach the remote BMC machine with LPC memops,
1176      * map it always for now.
1177      */
1178     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1179                                 &pnv->pnor->mmio);
1180 
1181     /*
1182      * OpenPOWER systems use a IPMI SEL Event message to notify the
1183      * host to powerdown
1184      */
1185     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1186     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1187 
1188     /*
1189      * Create/Connect any machine-specific I2C devices
1190      */
1191     if (pmc->i2c_init) {
1192         pmc->i2c_init(pnv);
1193     }
1194 }
1195 
1196 /*
1197  *    0:21  Reserved - Read as zeros
1198  *   22:24  Chip ID
1199  *   25:28  Core number
1200  *   29:31  Thread ID
1201  */
1202 static void pnv_get_pir_tir_p8(PnvChip *chip,
1203                                 uint32_t core_id, uint32_t thread_id,
1204                                 uint32_t *pir, uint32_t *tir)
1205 {
1206     if (pir) {
1207         *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1208     }
1209     if (tir) {
1210         *tir = thread_id;
1211     }
1212 }
1213 
1214 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1215                                         Error **errp)
1216 {
1217     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1218     Error *local_err = NULL;
1219     Object *obj;
1220     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1221 
1222     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1223     if (local_err) {
1224         error_propagate(errp, local_err);
1225         return;
1226     }
1227 
1228     pnv_cpu->intc = obj;
1229 }
1230 
1231 
1232 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1233 {
1234     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1235 
1236     icp_reset(ICP(pnv_cpu->intc));
1237 }
1238 
1239 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1240 {
1241     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1242 
1243     icp_destroy(ICP(pnv_cpu->intc));
1244     pnv_cpu->intc = NULL;
1245 }
1246 
1247 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1248                                             GString *buf)
1249 {
1250     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1251 }
1252 
1253 /*
1254  *    0:48  Reserved - Read as zeroes
1255  *   49:52  Node ID
1256  *   53:55  Chip ID
1257  *   56     Reserved - Read as zero
1258  *   57:61  Core number
1259  *   62:63  Thread ID
1260  *
1261  * We only care about the lower bits. uint32_t is fine for the moment.
1262  */
1263 static void pnv_get_pir_tir_p9(PnvChip *chip,
1264                                 uint32_t core_id, uint32_t thread_id,
1265                                 uint32_t *pir, uint32_t *tir)
1266 {
1267     if (chip->big_core) {
1268         /* Big-core interleaves thread ID between small-cores */
1269         thread_id <<= 1;
1270         thread_id |= core_id & 1;
1271         core_id >>= 1;
1272 
1273         if (pir) {
1274             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1275         }
1276     } else {
1277         if (pir) {
1278             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1279         }
1280     }
1281     if (tir) {
1282         *tir = thread_id;
1283     }
1284 }
1285 
1286 /*
1287  *    0:48  Reserved - Read as zeroes
1288  *   49:52  Node ID
1289  *   53:55  Chip ID
1290  *   56     Reserved - Read as zero
1291  *   57:59  Quad ID
1292  *   60     Core Chiplet Pair ID
1293  *   61:63  Thread/Core Chiplet ID t0-t2
1294  *
1295  * We only care about the lower bits. uint32_t is fine for the moment.
1296  */
1297 static void pnv_get_pir_tir_p10(PnvChip *chip,
1298                                 uint32_t core_id, uint32_t thread_id,
1299                                 uint32_t *pir, uint32_t *tir)
1300 {
1301     if (chip->big_core) {
1302         /* Big-core interleaves thread ID between small-cores */
1303         thread_id <<= 1;
1304         thread_id |= core_id & 1;
1305         core_id >>= 1;
1306 
1307         if (pir) {
1308             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1309         }
1310     } else {
1311         if (pir) {
1312             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1313         }
1314     }
1315     if (tir) {
1316         *tir = thread_id;
1317     }
1318 }
1319 
1320 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1321                                         Error **errp)
1322 {
1323     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1324     Error *local_err = NULL;
1325     Object *obj;
1326     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1327 
1328     /*
1329      * The core creates its interrupt presenter but the XIVE interrupt
1330      * controller object is initialized afterwards. Hopefully, it's
1331      * only used at runtime.
1332      */
1333     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1334                            &local_err);
1335     if (local_err) {
1336         error_propagate(errp, local_err);
1337         return;
1338     }
1339 
1340     pnv_cpu->intc = obj;
1341 }
1342 
1343 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1344 {
1345     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1346 
1347     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1348 }
1349 
1350 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1351 {
1352     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1353 
1354     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1355     pnv_cpu->intc = NULL;
1356 }
1357 
1358 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1359                                             GString *buf)
1360 {
1361     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1362 }
1363 
1364 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1365                                         Error **errp)
1366 {
1367     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1368     Error *local_err = NULL;
1369     Object *obj;
1370     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1371 
1372     /*
1373      * The core creates its interrupt presenter but the XIVE2 interrupt
1374      * controller object is initialized afterwards. Hopefully, it's
1375      * only used at runtime.
1376      */
1377     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1378                            &local_err);
1379     if (local_err) {
1380         error_propagate(errp, local_err);
1381         return;
1382     }
1383 
1384     pnv_cpu->intc = obj;
1385 }
1386 
1387 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1388 {
1389     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1390 
1391     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1392 }
1393 
1394 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1395 {
1396     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1397 
1398     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1399     pnv_cpu->intc = NULL;
1400 }
1401 
1402 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1403                                              GString *buf)
1404 {
1405     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1406 }
1407 
1408 /*
1409  * Allowed core identifiers on a POWER8 Processor Chip :
1410  *
1411  * <EX0 reserved>
1412  *  EX1  - Venice only
1413  *  EX2  - Venice only
1414  *  EX3  - Venice only
1415  *  EX4
1416  *  EX5
1417  *  EX6
1418  * <EX7,8 reserved> <reserved>
1419  *  EX9  - Venice only
1420  *  EX10 - Venice only
1421  *  EX11 - Venice only
1422  *  EX12
1423  *  EX13
1424  *  EX14
1425  * <EX15 reserved>
1426  */
1427 #define POWER8E_CORE_MASK  (0x7070ull)
1428 #define POWER8_CORE_MASK   (0x7e7eull)
1429 
1430 /*
1431  * POWER9 has 24 cores, ids starting at 0x0
1432  */
1433 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1434 
1435 
1436 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1437 
1438 static void pnv_chip_power8_instance_init(Object *obj)
1439 {
1440     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1441     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1442     int i;
1443 
1444     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1445                              (Object **)&chip8->xics,
1446                              object_property_allow_set_link,
1447                              OBJ_PROP_LINK_STRONG);
1448 
1449     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1450 
1451     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1452 
1453     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1454 
1455     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1456 
1457     if (defaults_enabled()) {
1458         chip8->num_phbs = pcc->num_phbs;
1459 
1460         for (i = 0; i < chip8->num_phbs; i++) {
1461             Object *phb = object_new(TYPE_PNV_PHB);
1462 
1463             /*
1464              * We need the chip to parent the PHB to allow the DT
1465              * to build correctly (via pnv_xscom_dt()).
1466              *
1467              * TODO: the PHB should be parented by a PEC device that, at
1468              * this moment, is not modelled powernv8/phb3.
1469              */
1470             object_property_add_child(obj, "phb[*]", phb);
1471             chip8->phbs[i] = PNV_PHB(phb);
1472         }
1473     }
1474 
1475 }
1476 
1477 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1478  {
1479     PnvChip *chip = PNV_CHIP(chip8);
1480     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1481     int i, j;
1482     char *name;
1483 
1484     name = g_strdup_printf("icp-%x", chip->chip_id);
1485     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1486     g_free(name);
1487     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1488                                 &chip8->icp_mmio);
1489 
1490     /* Map the ICP registers for each thread */
1491     for (i = 0; i < chip->nr_cores; i++) {
1492         PnvCore *pnv_core = chip->cores[i];
1493         int core_hwid = CPU_CORE(pnv_core)->core_id;
1494 
1495         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1496             uint32_t pir;
1497             PnvICPState *icp;
1498 
1499             pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1500             icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1501 
1502             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1503                                         &icp->mmio);
1504         }
1505     }
1506 }
1507 
1508 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1509 {
1510     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1511     PnvChip *chip = PNV_CHIP(dev);
1512     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1513     Pnv8Psi *psi8 = &chip8->psi;
1514     Error *local_err = NULL;
1515     int i;
1516 
1517     assert(chip8->xics);
1518 
1519     /* XSCOM bridge is first */
1520     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1521 
1522     pcc->parent_realize(dev, &local_err);
1523     if (local_err) {
1524         error_propagate(errp, local_err);
1525         return;
1526     }
1527 
1528     /* Processor Service Interface (PSI) Host Bridge */
1529     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1530                             &error_fatal);
1531     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1532                              OBJECT(chip8->xics), &error_abort);
1533     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1534         return;
1535     }
1536     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1537                             &PNV_PSI(psi8)->xscom_regs);
1538 
1539     /* Create LPC controller */
1540     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1541     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1542 
1543     chip->fw_mr = &chip8->lpc.isa_fw;
1544     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1545                                             (uint64_t) PNV_XSCOM_BASE(chip),
1546                                             PNV_XSCOM_LPC_BASE);
1547 
1548     /*
1549      * Interrupt Management Area. This is the memory region holding
1550      * all the Interrupt Control Presenter (ICP) registers
1551      */
1552     pnv_chip_icp_realize(chip8, &local_err);
1553     if (local_err) {
1554         error_propagate(errp, local_err);
1555         return;
1556     }
1557 
1558     /* HOMER (must be created before OCC) */
1559     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1560                              &error_abort);
1561     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1562         return;
1563     }
1564     /* Homer Xscom region */
1565     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1566     /* Homer RAM region */
1567     memory_region_add_subregion(get_system_memory(), chip8->homer.base,
1568                                 &chip8->homer.mem);
1569 
1570     /* Create the simplified OCC model */
1571     object_property_set_link(OBJECT(&chip8->occ), "homer",
1572                              OBJECT(&chip8->homer), &error_abort);
1573     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1574         return;
1575     }
1576     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1577     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1578                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1579 
1580     /* OCC SRAM model */
1581     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1582                                 &chip8->occ.sram_regs);
1583 
1584     /* PHB controllers */
1585     for (i = 0; i < chip8->num_phbs; i++) {
1586         PnvPHB *phb = chip8->phbs[i];
1587 
1588         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1589         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1590                                 &error_fatal);
1591         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1592                                  &error_fatal);
1593         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1594             return;
1595         }
1596     }
1597 }
1598 
1599 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1600 {
1601     addr &= (PNV_XSCOM_SIZE - 1);
1602     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1603 }
1604 
1605 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1606 {
1607     DeviceClass *dc = DEVICE_CLASS(klass);
1608     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1609 
1610     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1611     k->cores_mask = POWER8E_CORE_MASK;
1612     k->num_phbs = 3;
1613     k->get_pir_tir = pnv_get_pir_tir_p8;
1614     k->intc_create = pnv_chip_power8_intc_create;
1615     k->intc_reset = pnv_chip_power8_intc_reset;
1616     k->intc_destroy = pnv_chip_power8_intc_destroy;
1617     k->intc_print_info = pnv_chip_power8_intc_print_info;
1618     k->isa_create = pnv_chip_power8_isa_create;
1619     k->dt_populate = pnv_chip_power8_dt_populate;
1620     k->pic_print_info = pnv_chip_power8_pic_print_info;
1621     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1622     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1623     dc->desc = "PowerNV Chip POWER8E";
1624 
1625     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1626                                     &k->parent_realize);
1627 }
1628 
1629 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1630 {
1631     DeviceClass *dc = DEVICE_CLASS(klass);
1632     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1633 
1634     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1635     k->cores_mask = POWER8_CORE_MASK;
1636     k->num_phbs = 3;
1637     k->get_pir_tir = pnv_get_pir_tir_p8;
1638     k->intc_create = pnv_chip_power8_intc_create;
1639     k->intc_reset = pnv_chip_power8_intc_reset;
1640     k->intc_destroy = pnv_chip_power8_intc_destroy;
1641     k->intc_print_info = pnv_chip_power8_intc_print_info;
1642     k->isa_create = pnv_chip_power8_isa_create;
1643     k->dt_populate = pnv_chip_power8_dt_populate;
1644     k->pic_print_info = pnv_chip_power8_pic_print_info;
1645     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1646     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1647     dc->desc = "PowerNV Chip POWER8";
1648 
1649     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1650                                     &k->parent_realize);
1651 }
1652 
1653 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1654 {
1655     DeviceClass *dc = DEVICE_CLASS(klass);
1656     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1657 
1658     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1659     k->cores_mask = POWER8_CORE_MASK;
1660     k->num_phbs = 4;
1661     k->get_pir_tir = pnv_get_pir_tir_p8;
1662     k->intc_create = pnv_chip_power8_intc_create;
1663     k->intc_reset = pnv_chip_power8_intc_reset;
1664     k->intc_destroy = pnv_chip_power8_intc_destroy;
1665     k->intc_print_info = pnv_chip_power8_intc_print_info;
1666     k->isa_create = pnv_chip_power8nvl_isa_create;
1667     k->dt_populate = pnv_chip_power8_dt_populate;
1668     k->pic_print_info = pnv_chip_power8_pic_print_info;
1669     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1670     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1671     dc->desc = "PowerNV Chip POWER8NVL";
1672 
1673     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1674                                     &k->parent_realize);
1675 }
1676 
1677 static void pnv_chip_power9_instance_init(Object *obj)
1678 {
1679     PnvChip *chip = PNV_CHIP(obj);
1680     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1681     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1682     int i;
1683 
1684     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1685     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1686     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1687                               "xive-fabric");
1688 
1689     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1690 
1691     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1692 
1693     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1694 
1695     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1696 
1697     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1698 
1699     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1700 
1701     /* Number of PECs is the chip default */
1702     chip->num_pecs = pcc->num_pecs;
1703 
1704     for (i = 0; i < chip->num_pecs; i++) {
1705         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1706                                 TYPE_PNV_PHB4_PEC);
1707     }
1708 
1709     for (i = 0; i < pcc->i2c_num_engines; i++) {
1710         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1711     }
1712 }
1713 
1714 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1715                                       PnvCore *pnv_core,
1716                                       const char *type)
1717 {
1718     char eq_name[32];
1719     int core_id = CPU_CORE(pnv_core)->core_id;
1720 
1721     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1722     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1723                                        sizeof(*eq), type,
1724                                        &error_fatal, NULL);
1725 
1726     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1727     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1728 }
1729 
1730 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1731 {
1732     PnvChip *chip = PNV_CHIP(chip9);
1733     int i;
1734 
1735     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1736     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1737 
1738     for (i = 0; i < chip9->nr_quads; i++) {
1739         PnvQuad *eq = &chip9->quads[i];
1740 
1741         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1742                                   PNV_QUAD_TYPE_NAME("power9"));
1743 
1744         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1745                                 &eq->xscom_regs);
1746     }
1747 }
1748 
1749 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1750 {
1751     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1752     int i;
1753 
1754     for (i = 0; i < chip->num_pecs; i++) {
1755         PnvPhb4PecState *pec = &chip9->pecs[i];
1756         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1757         uint32_t pec_cplt_base;
1758         uint32_t pec_nest_base;
1759         uint32_t pec_pci_base;
1760 
1761         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1762         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1763                                 &error_fatal);
1764         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1765                                  &error_fatal);
1766         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1767             return;
1768         }
1769 
1770         pec_cplt_base = pecc->xscom_cplt_base(pec);
1771         pec_nest_base = pecc->xscom_nest_base(pec);
1772         pec_pci_base = pecc->xscom_pci_base(pec);
1773 
1774         pnv_xscom_add_subregion(chip, pec_cplt_base,
1775                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
1776         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1777         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1778     }
1779 }
1780 
1781 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1782 {
1783     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1784     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1785     PnvChip *chip = PNV_CHIP(dev);
1786     Pnv9Psi *psi9 = &chip9->psi;
1787     Error *local_err = NULL;
1788     int i;
1789 
1790     /* XSCOM bridge is first */
1791     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1792 
1793     pcc->parent_realize(dev, &local_err);
1794     if (local_err) {
1795         error_propagate(errp, local_err);
1796         return;
1797     }
1798 
1799     /* ADU */
1800     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1801                              &error_abort);
1802     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1803         return;
1804     }
1805     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1806                             &chip9->adu.xscom_regs);
1807 
1808     pnv_chip_quad_realize(chip9, &local_err);
1809     if (local_err) {
1810         error_propagate(errp, local_err);
1811         return;
1812     }
1813 
1814     /* XIVE interrupt controller (POWER9) */
1815     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1816                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1817     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1818                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1819     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1820                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1821     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1822                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1823     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1824                              &error_abort);
1825     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1826         return;
1827     }
1828     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1829                             &chip9->xive.xscom_regs);
1830 
1831     /* Processor Service Interface (PSI) Host Bridge */
1832     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1833                             &error_fatal);
1834     /* This is the only device with 4k ESB pages */
1835     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1836                             &error_fatal);
1837     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1838         return;
1839     }
1840     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1841                             &PNV_PSI(psi9)->xscom_regs);
1842 
1843     /* LPC */
1844     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1845         return;
1846     }
1847     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1848                                 &chip9->lpc.xscom_regs);
1849 
1850     chip->fw_mr = &chip9->lpc.isa_fw;
1851     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1852                                             (uint64_t) PNV9_LPCM_BASE(chip));
1853 
1854     /* ChipTOD */
1855     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1856                              chip->chip_id == 0, &error_abort);
1857     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1858                              chip->chip_id == 1, &error_abort);
1859     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1860                              &error_abort);
1861     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1862         return;
1863     }
1864     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1865                             &chip9->chiptod.xscom_regs);
1866 
1867     /* SBE */
1868     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1869         return;
1870     }
1871     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1872                             &chip9->sbe.xscom_ctrl_regs);
1873     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1874                             &chip9->sbe.xscom_mbox_regs);
1875     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1876                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1877 
1878     /* HOMER (must be created before OCC) */
1879     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1880                              &error_abort);
1881     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1882         return;
1883     }
1884     /* Homer Xscom region */
1885     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1886     /* Homer RAM region */
1887     memory_region_add_subregion(get_system_memory(), chip9->homer.base,
1888                                 &chip9->homer.mem);
1889 
1890     /* Create the simplified OCC model */
1891     object_property_set_link(OBJECT(&chip9->occ), "homer",
1892                              OBJECT(&chip9->homer), &error_abort);
1893     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1894         return;
1895     }
1896     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1897     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1898                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1899 
1900     /* OCC SRAM model */
1901     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1902                                 &chip9->occ.sram_regs);
1903 
1904     /* PEC PHBs */
1905     pnv_chip_power9_pec_realize(chip, &local_err);
1906     if (local_err) {
1907         error_propagate(errp, local_err);
1908         return;
1909     }
1910 
1911     /*
1912      * I2C
1913      */
1914     for (i = 0; i < pcc->i2c_num_engines; i++) {
1915         Object *obj =  OBJECT(&chip9->i2c[i]);
1916 
1917         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1918         object_property_set_int(obj, "num-busses",
1919                                 pcc->i2c_ports_per_engine[i],
1920                                 &error_fatal);
1921         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1922         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1923             return;
1924         }
1925         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1926                                 (chip9->i2c[i].engine - 1) *
1927                                         PNV9_XSCOM_I2CM_SIZE,
1928                                 &chip9->i2c[i].xscom_regs);
1929         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1930                               qdev_get_gpio_in(DEVICE(psi9),
1931                                                PSIHB9_IRQ_SBE_I2C));
1932     }
1933 }
1934 
1935 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1936 {
1937     addr &= (PNV9_XSCOM_SIZE - 1);
1938     return addr >> 3;
1939 }
1940 
1941 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1942 {
1943     DeviceClass *dc = DEVICE_CLASS(klass);
1944     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1945     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1946 
1947     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1948     k->cores_mask = POWER9_CORE_MASK;
1949     k->get_pir_tir = pnv_get_pir_tir_p9;
1950     k->intc_create = pnv_chip_power9_intc_create;
1951     k->intc_reset = pnv_chip_power9_intc_reset;
1952     k->intc_destroy = pnv_chip_power9_intc_destroy;
1953     k->intc_print_info = pnv_chip_power9_intc_print_info;
1954     k->isa_create = pnv_chip_power9_isa_create;
1955     k->dt_populate = pnv_chip_power9_dt_populate;
1956     k->pic_print_info = pnv_chip_power9_pic_print_info;
1957     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1958     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1959     dc->desc = "PowerNV Chip POWER9";
1960     k->num_pecs = PNV9_CHIP_MAX_PEC;
1961     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1962     k->i2c_ports_per_engine = i2c_ports_per_engine;
1963 
1964     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1965                                     &k->parent_realize);
1966 }
1967 
1968 static void pnv_chip_power10_instance_init(Object *obj)
1969 {
1970     PnvChip *chip = PNV_CHIP(obj);
1971     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1972     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1973     int i;
1974 
1975     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1976     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1977     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1978                               "xive-fabric");
1979     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1980     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1981     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1982                             TYPE_PNV10_CHIPTOD);
1983     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1984     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1985     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1986     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1987                             TYPE_PNV_N1_CHIPLET);
1988 
1989     chip->num_pecs = pcc->num_pecs;
1990 
1991     for (i = 0; i < chip->num_pecs; i++) {
1992         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1993                                 TYPE_PNV_PHB5_PEC);
1994     }
1995 
1996     for (i = 0; i < pcc->i2c_num_engines; i++) {
1997         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1998     }
1999 
2000     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2001         object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
2002                                 TYPE_PNV_SPI);
2003     }
2004 }
2005 
2006 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
2007 {
2008     PnvChip *chip = PNV_CHIP(chip10);
2009     int i;
2010 
2011     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
2012     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
2013 
2014     for (i = 0; i < chip10->nr_quads; i++) {
2015         PnvQuad *eq = &chip10->quads[i];
2016 
2017         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
2018                                   PNV_QUAD_TYPE_NAME("power10"));
2019 
2020         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
2021                                 &eq->xscom_regs);
2022 
2023         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
2024                                 &eq->xscom_qme_regs);
2025     }
2026 }
2027 
2028 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
2029 {
2030     Pnv10Chip *chip10 = PNV10_CHIP(chip);
2031     int i;
2032 
2033     for (i = 0; i < chip->num_pecs; i++) {
2034         PnvPhb4PecState *pec = &chip10->pecs[i];
2035         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
2036         uint32_t pec_cplt_base;
2037         uint32_t pec_nest_base;
2038         uint32_t pec_pci_base;
2039 
2040         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
2041         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
2042                                 &error_fatal);
2043         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
2044                                  &error_fatal);
2045         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
2046             return;
2047         }
2048 
2049         pec_cplt_base = pecc->xscom_cplt_base(pec);
2050         pec_nest_base = pecc->xscom_nest_base(pec);
2051         pec_pci_base = pecc->xscom_pci_base(pec);
2052 
2053         pnv_xscom_add_subregion(chip, pec_cplt_base,
2054                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
2055         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
2056         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
2057     }
2058 }
2059 
2060 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
2061 {
2062     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
2063     PnvChip *chip = PNV_CHIP(dev);
2064     Pnv10Chip *chip10 = PNV10_CHIP(dev);
2065     Error *local_err = NULL;
2066     int i;
2067 
2068     /* XSCOM bridge is first */
2069     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
2070 
2071     pcc->parent_realize(dev, &local_err);
2072     if (local_err) {
2073         error_propagate(errp, local_err);
2074         return;
2075     }
2076 
2077     /* ADU */
2078     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
2079                              &error_abort);
2080     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
2081         return;
2082     }
2083     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
2084                             &chip10->adu.xscom_regs);
2085 
2086     pnv_chip_power10_quad_realize(chip10, &local_err);
2087     if (local_err) {
2088         error_propagate(errp, local_err);
2089         return;
2090     }
2091 
2092     /* XIVE2 interrupt controller (POWER10) */
2093     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
2094                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
2095     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
2096                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
2097     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
2098                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
2099     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
2100                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
2101     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
2102                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
2103     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
2104                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
2105     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
2106                              &error_abort);
2107     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
2108         return;
2109     }
2110     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
2111                             &chip10->xive.xscom_regs);
2112 
2113     /* Processor Service Interface (PSI) Host Bridge */
2114     object_property_set_int(OBJECT(&chip10->psi), "bar",
2115                             PNV10_PSIHB_BASE(chip), &error_fatal);
2116     /* PSI can now be configured to use 64k ESB pages on POWER10 */
2117     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2118                             &error_fatal);
2119     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2120         return;
2121     }
2122     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2123                             &PNV_PSI(&chip10->psi)->xscom_regs);
2124 
2125     /* LPC */
2126     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2127         return;
2128     }
2129     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2130                                 &chip10->lpc.xscom_regs);
2131 
2132     chip->fw_mr = &chip10->lpc.isa_fw;
2133     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2134                                             (uint64_t) PNV10_LPCM_BASE(chip));
2135 
2136     /* ChipTOD */
2137     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2138                              chip->chip_id == 0, &error_abort);
2139     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2140                              chip->chip_id == 1, &error_abort);
2141     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2142                              &error_abort);
2143     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2144         return;
2145     }
2146     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2147                             &chip10->chiptod.xscom_regs);
2148 
2149     /* HOMER (must be created before OCC) */
2150     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2151                              &error_abort);
2152     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2153         return;
2154     }
2155     /* Homer Xscom region */
2156     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2157                             &chip10->homer.pba_regs);
2158     /* Homer RAM region */
2159     memory_region_add_subregion(get_system_memory(), chip10->homer.base,
2160                                 &chip10->homer.mem);
2161 
2162     /* Create the simplified OCC model */
2163     object_property_set_link(OBJECT(&chip10->occ), "homer",
2164                              OBJECT(&chip10->homer), &error_abort);
2165     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2166         return;
2167     }
2168     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2169                             &chip10->occ.xscom_regs);
2170     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2171                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2172 
2173     /* OCC SRAM model */
2174     memory_region_add_subregion(get_system_memory(),
2175                                 PNV10_OCC_SENSOR_BASE(chip),
2176                                 &chip10->occ.sram_regs);
2177 
2178     /* SBE */
2179     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2180         return;
2181     }
2182     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2183                             &chip10->sbe.xscom_ctrl_regs);
2184     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2185                             &chip10->sbe.xscom_mbox_regs);
2186     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2187                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2188 
2189     /* N1 chiplet */
2190     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2191         return;
2192     }
2193     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2194              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2195 
2196     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2197                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2198 
2199     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2200                            &chip10->n1_chiplet.xscom_pb_es_mr);
2201 
2202     /* PHBs */
2203     pnv_chip_power10_phb_realize(chip, &local_err);
2204     if (local_err) {
2205         error_propagate(errp, local_err);
2206         return;
2207     }
2208 
2209 
2210     /*
2211      * I2C
2212      */
2213     for (i = 0; i < pcc->i2c_num_engines; i++) {
2214         Object *obj =  OBJECT(&chip10->i2c[i]);
2215 
2216         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2217         object_property_set_int(obj, "num-busses",
2218                                 pcc->i2c_ports_per_engine[i],
2219                                 &error_fatal);
2220         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2221         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2222             return;
2223         }
2224         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2225                                 (chip10->i2c[i].engine - 1) *
2226                                         PNV10_XSCOM_I2CM_SIZE,
2227                                 &chip10->i2c[i].xscom_regs);
2228         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2229                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2230                                                PSIHB9_IRQ_SBE_I2C));
2231     }
2232     /* PIB SPI Controller */
2233     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2234         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
2235                                 i, &error_fatal);
2236         /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
2237         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
2238                                 (i == 2) ? 1 : 4, &error_fatal);
2239         if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
2240                                         (&chip10->pib_spic[i])), errp)) {
2241             return;
2242         }
2243         pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
2244                                 i * PNV10_XSCOM_PIB_SPIC_SIZE,
2245                                 &chip10->pib_spic[i].xscom_spic_regs);
2246     }
2247 }
2248 
2249 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2250 {
2251     int i;
2252     for (i = 0; i < pnv->num_chips; i++) {
2253         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2254 
2255         /*
2256          * Add a PCA9552 I2C device for PCIe hotplug control
2257          * to engine 2, bus 1, address 0x63
2258          */
2259         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2260                                                 "pca9552", 0x63);
2261 
2262         /*
2263          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2264          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2265          * after hypervisor code sets a SLOTx_EN pin high.
2266          */
2267         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2268         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2269         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2270         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2271         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2272 
2273         /*
2274          * Add a PCA9554 I2C device for cable card presence detection
2275          * to engine 2, bus 1, address 0x25
2276          */
2277         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2278     }
2279 }
2280 
2281 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2282 {
2283     addr &= (PNV10_XSCOM_SIZE - 1);
2284     return addr >> 3;
2285 }
2286 
2287 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2288 {
2289     DeviceClass *dc = DEVICE_CLASS(klass);
2290     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2291     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2292 
2293     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2294     k->cores_mask = POWER10_CORE_MASK;
2295     k->get_pir_tir = pnv_get_pir_tir_p10;
2296     k->intc_create = pnv_chip_power10_intc_create;
2297     k->intc_reset = pnv_chip_power10_intc_reset;
2298     k->intc_destroy = pnv_chip_power10_intc_destroy;
2299     k->intc_print_info = pnv_chip_power10_intc_print_info;
2300     k->isa_create = pnv_chip_power10_isa_create;
2301     k->dt_populate = pnv_chip_power10_dt_populate;
2302     k->pic_print_info = pnv_chip_power10_pic_print_info;
2303     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2304     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2305     dc->desc = "PowerNV Chip POWER10";
2306     k->num_pecs = PNV10_CHIP_MAX_PEC;
2307     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2308     k->i2c_ports_per_engine = i2c_ports_per_engine;
2309 
2310     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2311                                     &k->parent_realize);
2312 }
2313 
2314 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
2315                                    Error **errp)
2316 {
2317     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2318     int cores_max;
2319 
2320     /*
2321      * No custom mask for this chip, let's use the default one from *
2322      * the chip class
2323      */
2324     if (!chip->cores_mask) {
2325         chip->cores_mask = pcc->cores_mask;
2326     }
2327 
2328     /* filter alien core ids ! some are reserved */
2329     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2330         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2331                    chip->cores_mask);
2332         return;
2333     }
2334     chip->cores_mask &= pcc->cores_mask;
2335 
2336     /* Ensure small-cores a paired up in big-core mode */
2337     if (pnv->big_core) {
2338         uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
2339         uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
2340 
2341         if (even_cores ^ (odd_cores >> 1)) {
2342             error_setg(errp, "warning: unpaired cores in big-core mode !");
2343             return;
2344         }
2345     }
2346 
2347     /* now that we have a sane layout, let check the number of cores */
2348     cores_max = ctpop64(chip->cores_mask);
2349     if (chip->nr_cores > cores_max) {
2350         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2351                    cores_max);
2352         return;
2353     }
2354 }
2355 
2356 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2357 {
2358     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2359     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
2360     Error *error = NULL;
2361     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2362     const char *typename = pnv_chip_core_typename(chip);
2363     int i, core_hwid;
2364 
2365     if (!object_class_by_name(typename)) {
2366         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2367         return;
2368     }
2369 
2370     /* Cores */
2371     pnv_chip_core_sanitize(pnv, chip, &error);
2372     if (error) {
2373         error_propagate(errp, error);
2374         return;
2375     }
2376 
2377     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2378 
2379     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2380              && (i < chip->nr_cores); core_hwid++) {
2381         char core_name[32];
2382         PnvCore *pnv_core;
2383         uint64_t xscom_core_base;
2384 
2385         if (!(chip->cores_mask & (1ull << core_hwid))) {
2386             continue;
2387         }
2388 
2389         pnv_core = PNV_CORE(object_new(typename));
2390 
2391         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2392         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2393         chip->cores[i] = pnv_core;
2394         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2395                                 chip->nr_threads, &error_fatal);
2396         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2397                                 core_hwid, &error_fatal);
2398         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2399                                 &error_fatal);
2400         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2401                                 &error_fatal);
2402         object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
2403                                 &error_fatal);
2404         object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
2405                                 pmc->quirk_tb_big_core, &error_fatal);
2406         object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
2407                                 chip->lpar_per_core, &error_fatal);
2408         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2409                                  &error_abort);
2410 
2411         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2412 
2413         /* Each core has an XSCOM MMIO region */
2414         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2415 
2416         pnv_xscom_add_subregion(chip, xscom_core_base,
2417                                 &pnv_core->xscom_regs);
2418         i++;
2419     }
2420 }
2421 
2422 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2423 {
2424     PnvChip *chip = PNV_CHIP(dev);
2425     Error *error = NULL;
2426 
2427     /* Cores */
2428     pnv_chip_core_realize(chip, &error);
2429     if (error) {
2430         error_propagate(errp, error);
2431         return;
2432     }
2433 }
2434 
2435 static const Property pnv_chip_properties[] = {
2436     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2437     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2438     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2439     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2440     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2441     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2442     DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
2443     DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
2444 };
2445 
2446 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2447 {
2448     DeviceClass *dc = DEVICE_CLASS(klass);
2449 
2450     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2451     dc->realize = pnv_chip_realize;
2452     device_class_set_props(dc, pnv_chip_properties);
2453     dc->desc = "PowerNV Chip";
2454 }
2455 
2456 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2457 {
2458     int i;
2459 
2460     for (i = 0; i < chip->nr_cores; i++) {
2461         PnvCore *pc = chip->cores[i];
2462         CPUCore *cc = CPU_CORE(pc);
2463 
2464         if (cc->core_id == core_id) {
2465             return pc;
2466         }
2467     }
2468     return NULL;
2469 }
2470 
2471 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2472 {
2473     int i, j;
2474 
2475     for (i = 0; i < chip->nr_cores; i++) {
2476         PnvCore *pc = chip->cores[i];
2477         CPUCore *cc = CPU_CORE(pc);
2478 
2479         for (j = 0; j < cc->nr_threads; j++) {
2480             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2481                 return pc->threads[j];
2482             }
2483         }
2484     }
2485     return NULL;
2486 }
2487 
2488 static void pnv_chip_foreach_cpu(PnvChip *chip,
2489                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2490                    void *opaque)
2491 {
2492     int i, j;
2493 
2494     for (i = 0; i < chip->nr_cores; i++) {
2495         PnvCore *pc = chip->cores[i];
2496 
2497         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2498             fn(chip, pc->threads[j], opaque);
2499         }
2500     }
2501 }
2502 
2503 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2504 {
2505     PnvMachineState *pnv = PNV_MACHINE(xi);
2506     int i, j;
2507 
2508     for (i = 0; i < pnv->num_chips; i++) {
2509         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2510 
2511         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2512             return &chip8->psi.ics;
2513         }
2514 
2515         for (j = 0; j < chip8->num_phbs; j++) {
2516             PnvPHB *phb = chip8->phbs[j];
2517             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2518 
2519             if (ics_valid_irq(&phb3->lsis, irq)) {
2520                 return &phb3->lsis;
2521             }
2522 
2523             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2524                 return ICS(&phb3->msis);
2525             }
2526         }
2527     }
2528     return NULL;
2529 }
2530 
2531 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2532 {
2533     int i;
2534 
2535     for (i = 0; i < pnv->num_chips; i++) {
2536         PnvChip *chip = pnv->chips[i];
2537         if (chip->chip_id == chip_id) {
2538             return chip;
2539         }
2540     }
2541     return NULL;
2542 }
2543 
2544 static void pnv_ics_resend(XICSFabric *xi)
2545 {
2546     PnvMachineState *pnv = PNV_MACHINE(xi);
2547     int i, j;
2548 
2549     for (i = 0; i < pnv->num_chips; i++) {
2550         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2551 
2552         ics_resend(&chip8->psi.ics);
2553 
2554         for (j = 0; j < chip8->num_phbs; j++) {
2555             PnvPHB *phb = chip8->phbs[j];
2556             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2557 
2558             ics_resend(&phb3->lsis);
2559             ics_resend(ICS(&phb3->msis));
2560         }
2561     }
2562 }
2563 
2564 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2565 {
2566     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2567 
2568     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2569 }
2570 
2571 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2572                                     void *opaque)
2573 {
2574     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2575 }
2576 
2577 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2578 {
2579     PnvMachineState *pnv = PNV_MACHINE(obj);
2580     int i;
2581 
2582     for (i = 0; i < pnv->num_chips; i++) {
2583         PnvChip *chip = pnv->chips[i];
2584 
2585         /* First CPU presenters */
2586         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2587 
2588         /* Then other devices, PHB, PSI, XIVE */
2589         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2590     }
2591 }
2592 
2593 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2594                          uint8_t nvt_blk, uint32_t nvt_idx,
2595                          bool cam_ignore, uint8_t priority,
2596                          uint32_t logic_serv,
2597                          XiveTCTXMatch *match)
2598 {
2599     PnvMachineState *pnv = PNV_MACHINE(xfb);
2600     int total_count = 0;
2601     int i;
2602 
2603     for (i = 0; i < pnv->num_chips; i++) {
2604         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2605         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2606         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2607         int count;
2608 
2609         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2610                                priority, logic_serv, match);
2611 
2612         if (count < 0) {
2613             return count;
2614         }
2615 
2616         total_count += count;
2617     }
2618 
2619     return total_count;
2620 }
2621 
2622 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2623                                 uint8_t nvt_blk, uint32_t nvt_idx,
2624                                 bool cam_ignore, uint8_t priority,
2625                                 uint32_t logic_serv,
2626                                 XiveTCTXMatch *match)
2627 {
2628     PnvMachineState *pnv = PNV_MACHINE(xfb);
2629     int total_count = 0;
2630     int i;
2631 
2632     for (i = 0; i < pnv->num_chips; i++) {
2633         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2634         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2635         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2636         int count;
2637 
2638         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2639                                priority, logic_serv, match);
2640 
2641         if (count < 0) {
2642             return count;
2643         }
2644 
2645         total_count += count;
2646     }
2647 
2648     return total_count;
2649 }
2650 
2651 static bool pnv_machine_get_big_core(Object *obj, Error **errp)
2652 {
2653     PnvMachineState *pnv = PNV_MACHINE(obj);
2654     return pnv->big_core;
2655 }
2656 
2657 static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
2658 {
2659     PnvMachineState *pnv = PNV_MACHINE(obj);
2660     pnv->big_core = value;
2661 }
2662 
2663 static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
2664 {
2665     PnvMachineState *pnv = PNV_MACHINE(obj);
2666     return pnv->lpar_per_core;
2667 }
2668 
2669 static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
2670 {
2671     PnvMachineState *pnv = PNV_MACHINE(obj);
2672     pnv->lpar_per_core = value;
2673 }
2674 
2675 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2676 {
2677     PnvMachineState *pnv = PNV_MACHINE(obj);
2678 
2679     return !!pnv->fw_load_addr;
2680 }
2681 
2682 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2683 {
2684     PnvMachineState *pnv = PNV_MACHINE(obj);
2685 
2686     if (value) {
2687         pnv->fw_load_addr = 0x8000000;
2688     }
2689 }
2690 
2691 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2692 {
2693     MachineClass *mc = MACHINE_CLASS(oc);
2694     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2695     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2696     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2697 
2698     static GlobalProperty phb_compat[] = {
2699         { TYPE_PNV_PHB, "version", "3" },
2700         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2701     };
2702 
2703     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2704     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2705     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2706 
2707     xic->icp_get = pnv_icp_get;
2708     xic->ics_get = pnv_ics_get;
2709     xic->ics_resend = pnv_ics_resend;
2710 
2711     pmc->compat = compat;
2712     pmc->compat_size = sizeof(compat);
2713     pmc->max_smt_threads = 8;
2714     /* POWER8 is always lpar-per-core mode */
2715     pmc->has_lpar_per_thread = false;
2716 
2717     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2718 }
2719 
2720 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2721 {
2722     MachineClass *mc = MACHINE_CLASS(oc);
2723     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2724     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2725     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2726 
2727     static GlobalProperty phb_compat[] = {
2728         { TYPE_PNV_PHB, "version", "4" },
2729         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2730     };
2731 
2732     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2733     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2734     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2735 
2736     xfc->match_nvt = pnv_match_nvt;
2737 
2738     pmc->compat = compat;
2739     pmc->compat_size = sizeof(compat);
2740     pmc->max_smt_threads = 4;
2741     pmc->has_lpar_per_thread = true;
2742     pmc->dt_power_mgt = pnv_dt_power_mgt;
2743 
2744     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2745 
2746     object_class_property_add_bool(oc, "big-core",
2747                                    pnv_machine_get_big_core,
2748                                    pnv_machine_set_big_core);
2749     object_class_property_set_description(oc, "big-core",
2750                               "Use big-core (aka fused-core) mode");
2751 
2752     object_class_property_add_bool(oc, "lpar-per-core",
2753                                    pnv_machine_get_lpar_per_core,
2754                                    pnv_machine_set_lpar_per_core);
2755     object_class_property_set_description(oc, "lpar-per-core",
2756                               "Use 1 LPAR per core mode");
2757 }
2758 
2759 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2760 {
2761     MachineClass *mc = MACHINE_CLASS(oc);
2762     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2763     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2764     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2765 
2766     static GlobalProperty phb_compat[] = {
2767         { TYPE_PNV_PHB, "version", "5" },
2768         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2769     };
2770 
2771     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2772     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2773 
2774     mc->alias = "powernv";
2775 
2776     pmc->compat = compat;
2777     pmc->compat_size = sizeof(compat);
2778     pmc->max_smt_threads = 4;
2779     pmc->has_lpar_per_thread = true;
2780     pmc->quirk_tb_big_core = true;
2781     pmc->dt_power_mgt = pnv_dt_power_mgt;
2782 
2783     xfc->match_nvt = pnv10_xive_match_nvt;
2784 
2785     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2786 }
2787 
2788 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2789 {
2790     MachineClass *mc = MACHINE_CLASS(oc);
2791 
2792     pnv_machine_p10_common_class_init(oc, data);
2793     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2794 
2795     /*
2796      * This is the parent of POWER10 Rainier class, so properies go here
2797      * rather than common init (which would add them to both parent and
2798      * child which is invalid).
2799      */
2800     object_class_property_add_bool(oc, "big-core",
2801                                    pnv_machine_get_big_core,
2802                                    pnv_machine_set_big_core);
2803     object_class_property_set_description(oc, "big-core",
2804                               "Use big-core (aka fused-core) mode");
2805 
2806     object_class_property_add_bool(oc, "lpar-per-core",
2807                                    pnv_machine_get_lpar_per_core,
2808                                    pnv_machine_set_lpar_per_core);
2809     object_class_property_set_description(oc, "lpar-per-core",
2810                               "Use 1 LPAR per core mode");
2811 }
2812 
2813 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2814 {
2815     MachineClass *mc = MACHINE_CLASS(oc);
2816     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2817 
2818     pnv_machine_p10_common_class_init(oc, data);
2819     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2820     pmc->i2c_init = pnv_rainier_i2c_init;
2821 }
2822 
2823 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2824 {
2825     CPUPPCState *env = cpu_env(cs);
2826 
2827     cpu_synchronize_state(cs);
2828     ppc_cpu_do_system_reset(cs);
2829     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2830         /*
2831          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2832          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2833          * (PPC_BIT(43)).
2834          */
2835         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2836             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2837             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2838         }
2839     } else {
2840         /*
2841          * For non-powersave system resets, SRR1[42:45] are defined to be
2842          * implementation-dependent. The POWER9 User Manual specifies that
2843          * an external (SCOM driven, which may come from a BMC nmi command or
2844          * another CPU requesting a NMI IPI) system reset exception should be
2845          * 0b0010 (PPC_BIT(44)).
2846          */
2847         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2848     }
2849     if (arg.host_int == 1) {
2850         cpu_resume(cs);
2851     }
2852 }
2853 
2854 /*
2855  * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
2856  * paused.
2857  */
2858 void pnv_cpu_do_nmi_resume(CPUState *cs)
2859 {
2860     async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
2861 }
2862 
2863 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2864 {
2865     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
2866 }
2867 
2868 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2869 {
2870     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2871     int i;
2872 
2873     for (i = 0; i < pnv->num_chips; i++) {
2874         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2875     }
2876 }
2877 
2878 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2879 {
2880     MachineClass *mc = MACHINE_CLASS(oc);
2881     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2882     NMIClass *nc = NMI_CLASS(oc);
2883 
2884     mc->desc = "IBM PowerNV (Non-Virtualized)";
2885     mc->init = pnv_init;
2886     mc->reset = pnv_reset;
2887     mc->max_cpus = MAX_CPUS;
2888     /* Pnv provides a AHCI device for storage */
2889     mc->block_default_type = IF_IDE;
2890     mc->no_parallel = 1;
2891     mc->default_boot_order = NULL;
2892     /*
2893      * RAM defaults to less than 2048 for 32-bit hosts, and large
2894      * enough to fit the maximum initrd size at it's load address
2895      */
2896     mc->default_ram_size = 1 * GiB;
2897     mc->default_ram_id = "pnv.ram";
2898     ispc->print_info = pnv_pic_print_info;
2899     nc->nmi_monitor_handler = pnv_nmi;
2900 
2901     object_class_property_add_bool(oc, "hb-mode",
2902                                    pnv_machine_get_hb, pnv_machine_set_hb);
2903     object_class_property_set_description(oc, "hb-mode",
2904                               "Use a hostboot like boot loader");
2905 }
2906 
2907 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2908     {                                             \
2909         .name          = type,                    \
2910         .class_init    = class_initfn,            \
2911         .parent        = TYPE_PNV8_CHIP,          \
2912     }
2913 
2914 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2915     {                                             \
2916         .name          = type,                    \
2917         .class_init    = class_initfn,            \
2918         .parent        = TYPE_PNV9_CHIP,          \
2919     }
2920 
2921 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2922     {                                              \
2923         .name          = type,                     \
2924         .class_init    = class_initfn,             \
2925         .parent        = TYPE_PNV10_CHIP,          \
2926     }
2927 
2928 static const TypeInfo types[] = {
2929     {
2930         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2931         .parent        = MACHINE_TYPE_NAME("powernv10"),
2932         .class_init    = pnv_machine_p10_rainier_class_init,
2933     },
2934     {
2935         .name          = MACHINE_TYPE_NAME("powernv10"),
2936         .parent        = TYPE_PNV_MACHINE,
2937         .class_init    = pnv_machine_power10_class_init,
2938         .interfaces = (InterfaceInfo[]) {
2939             { TYPE_XIVE_FABRIC },
2940             { },
2941         },
2942     },
2943     {
2944         .name          = MACHINE_TYPE_NAME("powernv9"),
2945         .parent        = TYPE_PNV_MACHINE,
2946         .class_init    = pnv_machine_power9_class_init,
2947         .interfaces = (InterfaceInfo[]) {
2948             { TYPE_XIVE_FABRIC },
2949             { },
2950         },
2951     },
2952     {
2953         .name          = MACHINE_TYPE_NAME("powernv8"),
2954         .parent        = TYPE_PNV_MACHINE,
2955         .class_init    = pnv_machine_power8_class_init,
2956         .interfaces = (InterfaceInfo[]) {
2957             { TYPE_XICS_FABRIC },
2958             { },
2959         },
2960     },
2961     {
2962         .name          = TYPE_PNV_MACHINE,
2963         .parent        = TYPE_MACHINE,
2964         .abstract       = true,
2965         .instance_size = sizeof(PnvMachineState),
2966         .class_init    = pnv_machine_class_init,
2967         .class_size    = sizeof(PnvMachineClass),
2968         .interfaces = (InterfaceInfo[]) {
2969             { TYPE_INTERRUPT_STATS_PROVIDER },
2970             { TYPE_NMI },
2971             { },
2972         },
2973     },
2974     {
2975         .name          = TYPE_PNV_CHIP,
2976         .parent        = TYPE_SYS_BUS_DEVICE,
2977         .class_init    = pnv_chip_class_init,
2978         .instance_size = sizeof(PnvChip),
2979         .class_size    = sizeof(PnvChipClass),
2980         .abstract      = true,
2981     },
2982 
2983     /*
2984      * P10 chip and variants
2985      */
2986     {
2987         .name          = TYPE_PNV10_CHIP,
2988         .parent        = TYPE_PNV_CHIP,
2989         .instance_init = pnv_chip_power10_instance_init,
2990         .instance_size = sizeof(Pnv10Chip),
2991     },
2992     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2993 
2994     /*
2995      * P9 chip and variants
2996      */
2997     {
2998         .name          = TYPE_PNV9_CHIP,
2999         .parent        = TYPE_PNV_CHIP,
3000         .instance_init = pnv_chip_power9_instance_init,
3001         .instance_size = sizeof(Pnv9Chip),
3002     },
3003     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
3004 
3005     /*
3006      * P8 chip and variants
3007      */
3008     {
3009         .name          = TYPE_PNV8_CHIP,
3010         .parent        = TYPE_PNV_CHIP,
3011         .instance_init = pnv_chip_power8_instance_init,
3012         .instance_size = sizeof(Pnv8Chip),
3013     },
3014     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
3015     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
3016     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
3017                           pnv_chip_power8nvl_class_init),
3018 };
3019 
3020 DEFINE_TYPES(types)
3021