xref: /openbmc/qemu/hw/ppc/pnv.c (revision 709044fd2da7797ae9f60088b832af085542eda6)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/cpus.h"
27 #include "sysemu/device_tree.h"
28 #include "hw/hw.h"
29 #include "target/ppc/cpu.h"
30 #include "qemu/log.h"
31 #include "hw/ppc/fdt.h"
32 #include "hw/ppc/ppc.h"
33 #include "hw/ppc/pnv.h"
34 #include "hw/ppc/pnv_core.h"
35 #include "hw/loader.h"
36 #include "exec/address-spaces.h"
37 #include "qapi/visitor.h"
38 #include "monitor/monitor.h"
39 #include "hw/intc/intc.h"
40 #include "hw/ipmi/ipmi.h"
41 #include "target/ppc/mmu-hash64.h"
42 
43 #include "hw/ppc/xics.h"
44 #include "hw/ppc/pnv_xscom.h"
45 
46 #include "hw/isa/isa.h"
47 #include "hw/char/serial.h"
48 #include "hw/timer/mc146818rtc.h"
49 
50 #include <libfdt.h>
51 
52 #define FDT_MAX_SIZE            (1 * MiB)
53 
54 #define FW_FILE_NAME            "skiboot.lid"
55 #define FW_LOAD_ADDR            0x0
56 #define FW_MAX_SIZE             (4 * MiB)
57 
58 #define KERNEL_LOAD_ADDR        0x20000000
59 #define KERNEL_MAX_SIZE         (256 * MiB)
60 #define INITRD_LOAD_ADDR        0x60000000
61 #define INITRD_MAX_SIZE         (256 * MiB)
62 
63 static const char *pnv_chip_core_typename(const PnvChip *o)
64 {
65     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
66     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
67     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
68     const char *core_type = object_class_get_name(object_class_by_name(s));
69     g_free(s);
70     return core_type;
71 }
72 
73 /*
74  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
75  *     4 * 4 sockets * 12 cores * 8 threads = 1536
76  * Let's make it 2^11
77  */
78 #define MAX_CPUS                2048
79 
80 /*
81  * Memory nodes are created by hostboot, one for each range of memory
82  * that has a different "affinity". In practice, it means one range
83  * per chip.
84  */
85 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
86 {
87     char *mem_name;
88     uint64_t mem_reg_property[2];
89     int off;
90 
91     mem_reg_property[0] = cpu_to_be64(start);
92     mem_reg_property[1] = cpu_to_be64(size);
93 
94     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
95     off = fdt_add_subnode(fdt, 0, mem_name);
96     g_free(mem_name);
97 
98     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
99     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
100                        sizeof(mem_reg_property))));
101     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
102 }
103 
104 static int get_cpus_node(void *fdt)
105 {
106     int cpus_offset = fdt_path_offset(fdt, "/cpus");
107 
108     if (cpus_offset < 0) {
109         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
110         if (cpus_offset) {
111             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
112             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
113         }
114     }
115     _FDT(cpus_offset);
116     return cpus_offset;
117 }
118 
119 /*
120  * The PowerNV cores (and threads) need to use real HW ids and not an
121  * incremental index like it has been done on other platforms. This HW
122  * id is stored in the CPU PIR, it is used to create cpu nodes in the
123  * device tree, used in XSCOM to address cores and in interrupt
124  * servers.
125  */
126 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
127 {
128     PowerPCCPU *cpu = pc->threads[0];
129     CPUState *cs = CPU(cpu);
130     DeviceClass *dc = DEVICE_GET_CLASS(cs);
131     int smt_threads = CPU_CORE(pc)->nr_threads;
132     CPUPPCState *env = &cpu->env;
133     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
134     uint32_t servers_prop[smt_threads];
135     int i;
136     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
137                        0xffffffff, 0xffffffff};
138     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
139     uint32_t cpufreq = 1000000000;
140     uint32_t page_sizes_prop[64];
141     size_t page_sizes_prop_size;
142     const uint8_t pa_features[] = { 24, 0,
143                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
144                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
145                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
146                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
147     int offset;
148     char *nodename;
149     int cpus_offset = get_cpus_node(fdt);
150 
151     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
152     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
153     _FDT(offset);
154     g_free(nodename);
155 
156     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
157 
158     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
159     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
160     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
163     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
164                             env->dcache_line_size)));
165     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
166                             env->dcache_line_size)));
167     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
168                             env->icache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
170                             env->icache_line_size)));
171 
172     if (pcc->l1_dcache_size) {
173         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
174                                pcc->l1_dcache_size)));
175     } else {
176         warn_report("Unknown L1 dcache size for cpu");
177     }
178     if (pcc->l1_icache_size) {
179         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
180                                pcc->l1_icache_size)));
181     } else {
182         warn_report("Unknown L1 icache size for cpu");
183     }
184 
185     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
186     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
187     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
188     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
189     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
190 
191     if (env->spr_cb[SPR_PURR].oea_read) {
192         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
193     }
194 
195     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
196         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
197                            segs, sizeof(segs))));
198     }
199 
200     /* Advertise VMX/VSX (vector extensions) if available
201      *   0 / no property == no vector extensions
202      *   1               == VMX / Altivec available
203      *   2               == VSX available */
204     if (env->insns_flags & PPC_ALTIVEC) {
205         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
206 
207         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
208     }
209 
210     /* Advertise DFP (Decimal Floating Point) if available
211      *   0 / no property == no DFP
212      *   1               == DFP available */
213     if (env->insns_flags2 & PPC2_DFP) {
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
215     }
216 
217     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
218                                                       sizeof(page_sizes_prop));
219     if (page_sizes_prop_size) {
220         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
221                            page_sizes_prop, page_sizes_prop_size)));
222     }
223 
224     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
225                        pa_features, sizeof(pa_features))));
226 
227     /* Build interrupt servers properties */
228     for (i = 0; i < smt_threads; i++) {
229         servers_prop[i] = cpu_to_be32(pc->pir + i);
230     }
231     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
232                        servers_prop, sizeof(servers_prop))));
233 }
234 
235 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
236                        uint32_t nr_threads)
237 {
238     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
239     char *name;
240     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
241     uint32_t irange[2], i, rsize;
242     uint64_t *reg;
243     int offset;
244 
245     irange[0] = cpu_to_be32(pir);
246     irange[1] = cpu_to_be32(nr_threads);
247 
248     rsize = sizeof(uint64_t) * 2 * nr_threads;
249     reg = g_malloc(rsize);
250     for (i = 0; i < nr_threads; i++) {
251         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
252         reg[i * 2 + 1] = cpu_to_be64(0x1000);
253     }
254 
255     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
256     offset = fdt_add_subnode(fdt, 0, name);
257     _FDT(offset);
258     g_free(name);
259 
260     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
261     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
262     _FDT((fdt_setprop_string(fdt, offset, "device_type",
263                               "PowerPC-External-Interrupt-Presentation")));
264     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
265     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
266                        irange, sizeof(irange))));
267     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
268     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
269     g_free(reg);
270 }
271 
272 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
273 {
274     const char *typename = pnv_chip_core_typename(chip);
275     size_t typesize = object_type_get_instance_size(typename);
276     int i;
277 
278     pnv_dt_xscom(chip, fdt, 0);
279 
280     for (i = 0; i < chip->nr_cores; i++) {
281         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
282 
283         pnv_dt_core(chip, pnv_core, fdt);
284 
285         /* Interrupt Control Presenters (ICP). One per core. */
286         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
287     }
288 
289     if (chip->ram_size) {
290         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
291     }
292 }
293 
294 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
295 {
296     const char *typename = pnv_chip_core_typename(chip);
297     size_t typesize = object_type_get_instance_size(typename);
298     int i;
299 
300     pnv_dt_xscom(chip, fdt, 0);
301 
302     for (i = 0; i < chip->nr_cores; i++) {
303         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
304 
305         pnv_dt_core(chip, pnv_core, fdt);
306     }
307 
308     if (chip->ram_size) {
309         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
310     }
311 
312     pnv_dt_lpc(chip, fdt, 0);
313 }
314 
315 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
316 {
317     uint32_t io_base = d->ioport_id;
318     uint32_t io_regs[] = {
319         cpu_to_be32(1),
320         cpu_to_be32(io_base),
321         cpu_to_be32(2)
322     };
323     char *name;
324     int node;
325 
326     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
327     node = fdt_add_subnode(fdt, lpc_off, name);
328     _FDT(node);
329     g_free(name);
330 
331     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
332     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
333 }
334 
335 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
336 {
337     const char compatible[] = "ns16550\0pnpPNP,501";
338     uint32_t io_base = d->ioport_id;
339     uint32_t io_regs[] = {
340         cpu_to_be32(1),
341         cpu_to_be32(io_base),
342         cpu_to_be32(8)
343     };
344     char *name;
345     int node;
346 
347     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
348     node = fdt_add_subnode(fdt, lpc_off, name);
349     _FDT(node);
350     g_free(name);
351 
352     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
353     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
354                       sizeof(compatible))));
355 
356     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
357     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
358     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
359     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
360                            fdt_get_phandle(fdt, lpc_off))));
361 
362     /* This is needed by Linux */
363     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
364 }
365 
366 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
367 {
368     const char compatible[] = "bt\0ipmi-bt";
369     uint32_t io_base;
370     uint32_t io_regs[] = {
371         cpu_to_be32(1),
372         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
373         cpu_to_be32(3)
374     };
375     uint32_t irq;
376     char *name;
377     int node;
378 
379     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
380     io_regs[1] = cpu_to_be32(io_base);
381 
382     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     /* Mark it as reserved to avoid Linux trying to claim it */
394     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 }
399 
400 typedef struct ForeachPopulateArgs {
401     void *fdt;
402     int offset;
403 } ForeachPopulateArgs;
404 
405 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
406 {
407     ForeachPopulateArgs *args = opaque;
408     ISADevice *d = ISA_DEVICE(dev);
409 
410     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
411         pnv_dt_rtc(d, args->fdt, args->offset);
412     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
413         pnv_dt_serial(d, args->fdt, args->offset);
414     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
415         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
416     } else {
417         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
418                      d->ioport_id);
419     }
420 
421     return 0;
422 }
423 
424 /* The default LPC bus of a multichip system is on chip 0. It's
425  * recognized by the firmware (skiboot) using a "primary" property.
426  */
427 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
428 {
429     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
430     ForeachPopulateArgs args = {
431         .fdt = fdt,
432         .offset = isa_offset,
433     };
434 
435     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
436 
437     /* ISA devices are not necessarily parented to the ISA bus so we
438      * can not use object_child_foreach() */
439     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
440                        &args);
441 }
442 
443 static void pnv_dt_power_mgt(void *fdt)
444 {
445     int off;
446 
447     off = fdt_add_subnode(fdt, 0, "ibm,opal");
448     off = fdt_add_subnode(fdt, off, "power-mgt");
449 
450     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
451 }
452 
453 static void *pnv_dt_create(MachineState *machine)
454 {
455     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
456     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
457     PnvMachineState *pnv = PNV_MACHINE(machine);
458     void *fdt;
459     char *buf;
460     int off;
461     int i;
462 
463     fdt = g_malloc0(FDT_MAX_SIZE);
464     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
465 
466     /* Root node */
467     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
468     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
469     _FDT((fdt_setprop_string(fdt, 0, "model",
470                              "IBM PowerNV (emulated by qemu)")));
471     if (pnv_is_power9(pnv)) {
472         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
473                           sizeof(plat_compat9))));
474     } else {
475         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
476                           sizeof(plat_compat8))));
477     }
478 
479 
480     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
481     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
482     if (qemu_uuid_set) {
483         _FDT((fdt_property_string(fdt, "system-id", buf)));
484     }
485     g_free(buf);
486 
487     off = fdt_add_subnode(fdt, 0, "chosen");
488     if (machine->kernel_cmdline) {
489         _FDT((fdt_setprop_string(fdt, off, "bootargs",
490                                  machine->kernel_cmdline)));
491     }
492 
493     if (pnv->initrd_size) {
494         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
495         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
496 
497         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
498                                &start_prop, sizeof(start_prop))));
499         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
500                                &end_prop, sizeof(end_prop))));
501     }
502 
503     /* Populate device tree for each chip */
504     for (i = 0; i < pnv->num_chips; i++) {
505         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
506     }
507 
508     /* Populate ISA devices on chip 0 */
509     pnv_dt_isa(pnv, fdt);
510 
511     if (pnv->bmc) {
512         pnv_dt_bmc_sensors(pnv->bmc, fdt);
513     }
514 
515     /* Create an extra node for power management on Power9 */
516     if (pnv_is_power9(pnv)) {
517         pnv_dt_power_mgt(fdt);
518     }
519 
520     return fdt;
521 }
522 
523 static void pnv_powerdown_notify(Notifier *n, void *opaque)
524 {
525     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
526 
527     if (pnv->bmc) {
528         pnv_bmc_powerdown(pnv->bmc);
529     }
530 }
531 
532 static void pnv_reset(void)
533 {
534     MachineState *machine = MACHINE(qdev_get_machine());
535     PnvMachineState *pnv = PNV_MACHINE(machine);
536     void *fdt;
537     Object *obj;
538 
539     qemu_devices_reset();
540 
541     /* OpenPOWER systems have a BMC, which can be defined on the
542      * command line with:
543      *
544      *   -device ipmi-bmc-sim,id=bmc0
545      *
546      * This is the internal simulator but it could also be an external
547      * BMC.
548      */
549     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
550     if (obj) {
551         pnv->bmc = IPMI_BMC(obj);
552     }
553 
554     fdt = pnv_dt_create(machine);
555 
556     /* Pack resulting tree */
557     _FDT((fdt_pack(fdt)));
558 
559     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
560     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
561 }
562 
563 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
564 {
565     Pnv8Chip *chip8 = PNV8_CHIP(chip);
566     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
567 }
568 
569 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
570 {
571     Pnv8Chip *chip8 = PNV8_CHIP(chip);
572     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
573 }
574 
575 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
576 {
577     Pnv9Chip *chip9 = PNV9_CHIP(chip);
578     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
579 }
580 
581 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
582 {
583     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
584 }
585 
586 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589 
590     ics_pic_print_info(&chip8->psi.ics, mon);
591 }
592 
593 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
594 {
595     Pnv9Chip *chip9 = PNV9_CHIP(chip);
596 
597     pnv_xive_pic_print_info(&chip9->xive, mon);
598     pnv_psi_pic_print_info(&chip9->psi, mon);
599 }
600 
601 static void pnv_init(MachineState *machine)
602 {
603     PnvMachineState *pnv = PNV_MACHINE(machine);
604     MemoryRegion *ram;
605     char *fw_filename;
606     long fw_size;
607     int i;
608     char *chip_typename;
609 
610     /* allocate RAM */
611     if (machine->ram_size < (1 * GiB)) {
612         warn_report("skiboot may not work with < 1GB of RAM");
613     }
614 
615     ram = g_new(MemoryRegion, 1);
616     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
617                                          machine->ram_size);
618     memory_region_add_subregion(get_system_memory(), 0, ram);
619 
620     /* load skiboot firmware  */
621     if (bios_name == NULL) {
622         bios_name = FW_FILE_NAME;
623     }
624 
625     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
626     if (!fw_filename) {
627         error_report("Could not find OPAL firmware '%s'", bios_name);
628         exit(1);
629     }
630 
631     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
632     if (fw_size < 0) {
633         error_report("Could not load OPAL firmware '%s'", fw_filename);
634         exit(1);
635     }
636     g_free(fw_filename);
637 
638     /* load kernel */
639     if (machine->kernel_filename) {
640         long kernel_size;
641 
642         kernel_size = load_image_targphys(machine->kernel_filename,
643                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
644         if (kernel_size < 0) {
645             error_report("Could not load kernel '%s'",
646                          machine->kernel_filename);
647             exit(1);
648         }
649     }
650 
651     /* load initrd */
652     if (machine->initrd_filename) {
653         pnv->initrd_base = INITRD_LOAD_ADDR;
654         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
655                                   pnv->initrd_base, INITRD_MAX_SIZE);
656         if (pnv->initrd_size < 0) {
657             error_report("Could not load initial ram disk '%s'",
658                          machine->initrd_filename);
659             exit(1);
660         }
661     }
662 
663     /* Create the processor chips */
664     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
665     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
666                                     i, machine->cpu_type);
667     if (!object_class_by_name(chip_typename)) {
668         error_report("invalid CPU model '%.*s' for %s machine",
669                      i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
670         exit(1);
671     }
672 
673     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
674     for (i = 0; i < pnv->num_chips; i++) {
675         char chip_name[32];
676         Object *chip = object_new(chip_typename);
677 
678         pnv->chips[i] = PNV_CHIP(chip);
679 
680         /* TODO: put all the memory in one node on chip 0 until we find a
681          * way to specify different ranges for each chip
682          */
683         if (i == 0) {
684             object_property_set_int(chip, machine->ram_size, "ram-size",
685                                     &error_fatal);
686         }
687 
688         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
689         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
690         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
691                                 &error_fatal);
692         object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
693         object_property_set_bool(chip, true, "realized", &error_fatal);
694     }
695     g_free(chip_typename);
696 
697     /* Instantiate ISA bus on chip 0 */
698     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
699 
700     /* Create serial port */
701     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
702 
703     /* Create an RTC ISA device too */
704     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
705 
706     /* OpenPOWER systems use a IPMI SEL Event message to notify the
707      * host to powerdown */
708     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
709     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
710 }
711 
712 /*
713  *    0:21  Reserved - Read as zeros
714  *   22:24  Chip ID
715  *   25:28  Core number
716  *   29:31  Thread ID
717  */
718 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
719 {
720     return (chip->chip_id << 7) | (core_id << 3);
721 }
722 
723 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
724                                         Error **errp)
725 {
726     Error *local_err = NULL;
727     Object *obj;
728     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
729 
730     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
731                      &local_err);
732     if (local_err) {
733         error_propagate(errp, local_err);
734         return;
735     }
736 
737     pnv_cpu->intc = obj;
738 }
739 
740 /*
741  *    0:48  Reserved - Read as zeroes
742  *   49:52  Node ID
743  *   53:55  Chip ID
744  *   56     Reserved - Read as zero
745  *   57:61  Core number
746  *   62:63  Thread ID
747  *
748  * We only care about the lower bits. uint32_t is fine for the moment.
749  */
750 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
751 {
752     return (chip->chip_id << 8) | (core_id << 2);
753 }
754 
755 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
756                                         Error **errp)
757 {
758     Pnv9Chip *chip9 = PNV9_CHIP(chip);
759     Error *local_err = NULL;
760     Object *obj;
761     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
762 
763     /*
764      * The core creates its interrupt presenter but the XIVE interrupt
765      * controller object is initialized afterwards. Hopefully, it's
766      * only used at runtime.
767      */
768     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
769     if (local_err) {
770         error_propagate(errp, local_err);
771         return;
772     }
773 
774     pnv_cpu->intc = obj;
775 }
776 
777 /* Allowed core identifiers on a POWER8 Processor Chip :
778  *
779  * <EX0 reserved>
780  *  EX1  - Venice only
781  *  EX2  - Venice only
782  *  EX3  - Venice only
783  *  EX4
784  *  EX5
785  *  EX6
786  * <EX7,8 reserved> <reserved>
787  *  EX9  - Venice only
788  *  EX10 - Venice only
789  *  EX11 - Venice only
790  *  EX12
791  *  EX13
792  *  EX14
793  * <EX15 reserved>
794  */
795 #define POWER8E_CORE_MASK  (0x7070ull)
796 #define POWER8_CORE_MASK   (0x7e7eull)
797 
798 /*
799  * POWER9 has 24 cores, ids starting at 0x0
800  */
801 #define POWER9_CORE_MASK   (0xffffffffffffffull)
802 
803 static void pnv_chip_power8_instance_init(Object *obj)
804 {
805     Pnv8Chip *chip8 = PNV8_CHIP(obj);
806 
807     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
808                             TYPE_PNV8_PSI, &error_abort, NULL);
809     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
810                                    OBJECT(qdev_get_machine()), &error_abort);
811 
812     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
813                             TYPE_PNV8_LPC, &error_abort, NULL);
814     object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
815                                    OBJECT(&chip8->psi), &error_abort);
816 
817     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
818                             TYPE_PNV8_OCC, &error_abort, NULL);
819     object_property_add_const_link(OBJECT(&chip8->occ), "psi",
820                                    OBJECT(&chip8->psi), &error_abort);
821 }
822 
823 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
824  {
825     PnvChip *chip = PNV_CHIP(chip8);
826     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
827     const char *typename = pnv_chip_core_typename(chip);
828     size_t typesize = object_type_get_instance_size(typename);
829     int i, j;
830     char *name;
831     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
832 
833     name = g_strdup_printf("icp-%x", chip->chip_id);
834     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
835     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
836     g_free(name);
837 
838     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
839 
840     /* Map the ICP registers for each thread */
841     for (i = 0; i < chip->nr_cores; i++) {
842         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
843         int core_hwid = CPU_CORE(pnv_core)->core_id;
844 
845         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
846             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
847             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
848 
849             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
850                                         &icp->mmio);
851         }
852     }
853 }
854 
855 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
856 {
857     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
858     PnvChip *chip = PNV_CHIP(dev);
859     Pnv8Chip *chip8 = PNV8_CHIP(dev);
860     Pnv8Psi *psi8 = &chip8->psi;
861     Error *local_err = NULL;
862 
863     /* XSCOM bridge is first */
864     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
865     if (local_err) {
866         error_propagate(errp, local_err);
867         return;
868     }
869     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
870 
871     pcc->parent_realize(dev, &local_err);
872     if (local_err) {
873         error_propagate(errp, local_err);
874         return;
875     }
876 
877     /* Processor Service Interface (PSI) Host Bridge */
878     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
879                             "bar", &error_fatal);
880     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
881     if (local_err) {
882         error_propagate(errp, local_err);
883         return;
884     }
885     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
886                             &PNV_PSI(psi8)->xscom_regs);
887 
888     /* Create LPC controller */
889     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
890                              &error_fatal);
891     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
892 
893     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
894                                             (uint64_t) PNV_XSCOM_BASE(chip),
895                                             PNV_XSCOM_LPC_BASE);
896 
897     /* Interrupt Management Area. This is the memory region holding
898      * all the Interrupt Control Presenter (ICP) registers */
899     pnv_chip_icp_realize(chip8, &local_err);
900     if (local_err) {
901         error_propagate(errp, local_err);
902         return;
903     }
904 
905     /* Create the simplified OCC model */
906     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
907     if (local_err) {
908         error_propagate(errp, local_err);
909         return;
910     }
911     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
912 }
913 
914 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
915 {
916     DeviceClass *dc = DEVICE_CLASS(klass);
917     PnvChipClass *k = PNV_CHIP_CLASS(klass);
918 
919     k->chip_type = PNV_CHIP_POWER8E;
920     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
921     k->cores_mask = POWER8E_CORE_MASK;
922     k->core_pir = pnv_chip_core_pir_p8;
923     k->intc_create = pnv_chip_power8_intc_create;
924     k->isa_create = pnv_chip_power8_isa_create;
925     k->dt_populate = pnv_chip_power8_dt_populate;
926     k->pic_print_info = pnv_chip_power8_pic_print_info;
927     k->xscom_base = 0x003fc0000000000ull;
928     dc->desc = "PowerNV Chip POWER8E";
929 
930     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
931                                     &k->parent_realize);
932 }
933 
934 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
935 {
936     DeviceClass *dc = DEVICE_CLASS(klass);
937     PnvChipClass *k = PNV_CHIP_CLASS(klass);
938 
939     k->chip_type = PNV_CHIP_POWER8;
940     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
941     k->cores_mask = POWER8_CORE_MASK;
942     k->core_pir = pnv_chip_core_pir_p8;
943     k->intc_create = pnv_chip_power8_intc_create;
944     k->isa_create = pnv_chip_power8_isa_create;
945     k->dt_populate = pnv_chip_power8_dt_populate;
946     k->pic_print_info = pnv_chip_power8_pic_print_info;
947     k->xscom_base = 0x003fc0000000000ull;
948     dc->desc = "PowerNV Chip POWER8";
949 
950     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
951                                     &k->parent_realize);
952 }
953 
954 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
955 {
956     DeviceClass *dc = DEVICE_CLASS(klass);
957     PnvChipClass *k = PNV_CHIP_CLASS(klass);
958 
959     k->chip_type = PNV_CHIP_POWER8NVL;
960     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
961     k->cores_mask = POWER8_CORE_MASK;
962     k->core_pir = pnv_chip_core_pir_p8;
963     k->intc_create = pnv_chip_power8_intc_create;
964     k->isa_create = pnv_chip_power8nvl_isa_create;
965     k->dt_populate = pnv_chip_power8_dt_populate;
966     k->pic_print_info = pnv_chip_power8_pic_print_info;
967     k->xscom_base = 0x003fc0000000000ull;
968     dc->desc = "PowerNV Chip POWER8NVL";
969 
970     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
971                                     &k->parent_realize);
972 }
973 
974 static void pnv_chip_power9_instance_init(Object *obj)
975 {
976     Pnv9Chip *chip9 = PNV9_CHIP(obj);
977 
978     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
979                             TYPE_PNV_XIVE, &error_abort, NULL);
980     object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
981                                    &error_abort);
982 
983     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
984                             TYPE_PNV9_PSI, &error_abort, NULL);
985     object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
986                                    &error_abort);
987 
988     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
989                             TYPE_PNV9_LPC, &error_abort, NULL);
990     object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
991                                    OBJECT(&chip9->psi), &error_abort);
992 
993     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
994                             TYPE_PNV9_OCC, &error_abort, NULL);
995     object_property_add_const_link(OBJECT(&chip9->occ), "psi",
996                                    OBJECT(&chip9->psi), &error_abort);
997 }
998 
999 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1000 {
1001     PnvChip *chip = PNV_CHIP(chip9);
1002     const char *typename = pnv_chip_core_typename(chip);
1003     size_t typesize = object_type_get_instance_size(typename);
1004     int i;
1005 
1006     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1007     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1008 
1009     for (i = 0; i < chip9->nr_quads; i++) {
1010         char eq_name[32];
1011         PnvQuad *eq = &chip9->quads[i];
1012         PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1013         int core_id = CPU_CORE(pnv_core)->core_id;
1014 
1015         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1016         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1017                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1018 
1019         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1020         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1021 
1022         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1023                                 &eq->xscom_regs);
1024     }
1025 }
1026 
1027 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1028 {
1029     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1030     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1031     PnvChip *chip = PNV_CHIP(dev);
1032     Pnv9Psi *psi9 = &chip9->psi;
1033     Error *local_err = NULL;
1034 
1035     /* XSCOM bridge is first */
1036     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1037     if (local_err) {
1038         error_propagate(errp, local_err);
1039         return;
1040     }
1041     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1042 
1043     pcc->parent_realize(dev, &local_err);
1044     if (local_err) {
1045         error_propagate(errp, local_err);
1046         return;
1047     }
1048 
1049     pnv_chip_quad_realize(chip9, &local_err);
1050     if (local_err) {
1051         error_propagate(errp, local_err);
1052         return;
1053     }
1054 
1055     /* XIVE interrupt controller (POWER9) */
1056     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1057                             "ic-bar", &error_fatal);
1058     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1059                             "vc-bar", &error_fatal);
1060     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1061                             "pc-bar", &error_fatal);
1062     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1063                             "tm-bar", &error_fatal);
1064     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1065                              &local_err);
1066     if (local_err) {
1067         error_propagate(errp, local_err);
1068         return;
1069     }
1070     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1071                             &chip9->xive.xscom_regs);
1072 
1073     /* Processor Service Interface (PSI) Host Bridge */
1074     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1075                             "bar", &error_fatal);
1076     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1077     if (local_err) {
1078         error_propagate(errp, local_err);
1079         return;
1080     }
1081     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1082                             &PNV_PSI(psi9)->xscom_regs);
1083 
1084     /* LPC */
1085     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1086     if (local_err) {
1087         error_propagate(errp, local_err);
1088         return;
1089     }
1090     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1091                                 &chip9->lpc.xscom_regs);
1092 
1093     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1094                                             (uint64_t) PNV9_LPCM_BASE(chip));
1095 
1096     /* Create the simplified OCC model */
1097     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1098     if (local_err) {
1099         error_propagate(errp, local_err);
1100         return;
1101     }
1102     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1103 }
1104 
1105 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1106 {
1107     DeviceClass *dc = DEVICE_CLASS(klass);
1108     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1109 
1110     k->chip_type = PNV_CHIP_POWER9;
1111     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1112     k->cores_mask = POWER9_CORE_MASK;
1113     k->core_pir = pnv_chip_core_pir_p9;
1114     k->intc_create = pnv_chip_power9_intc_create;
1115     k->isa_create = pnv_chip_power9_isa_create;
1116     k->dt_populate = pnv_chip_power9_dt_populate;
1117     k->pic_print_info = pnv_chip_power9_pic_print_info;
1118     k->xscom_base = 0x00603fc00000000ull;
1119     dc->desc = "PowerNV Chip POWER9";
1120 
1121     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1122                                     &k->parent_realize);
1123 }
1124 
1125 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1126 {
1127     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1128     int cores_max;
1129 
1130     /*
1131      * No custom mask for this chip, let's use the default one from *
1132      * the chip class
1133      */
1134     if (!chip->cores_mask) {
1135         chip->cores_mask = pcc->cores_mask;
1136     }
1137 
1138     /* filter alien core ids ! some are reserved */
1139     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1140         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1141                    chip->cores_mask);
1142         return;
1143     }
1144     chip->cores_mask &= pcc->cores_mask;
1145 
1146     /* now that we have a sane layout, let check the number of cores */
1147     cores_max = ctpop64(chip->cores_mask);
1148     if (chip->nr_cores > cores_max) {
1149         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1150                    cores_max);
1151         return;
1152     }
1153 }
1154 
1155 static void pnv_chip_instance_init(Object *obj)
1156 {
1157     PNV_CHIP(obj)->xscom_base = PNV_CHIP_GET_CLASS(obj)->xscom_base;
1158 }
1159 
1160 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1161 {
1162     Error *error = NULL;
1163     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1164     const char *typename = pnv_chip_core_typename(chip);
1165     size_t typesize = object_type_get_instance_size(typename);
1166     int i, core_hwid;
1167 
1168     if (!object_class_by_name(typename)) {
1169         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1170         return;
1171     }
1172 
1173     /* Cores */
1174     pnv_chip_core_sanitize(chip, &error);
1175     if (error) {
1176         error_propagate(errp, error);
1177         return;
1178     }
1179 
1180     chip->cores = g_malloc0(typesize * chip->nr_cores);
1181 
1182     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1183              && (i < chip->nr_cores); core_hwid++) {
1184         char core_name[32];
1185         void *pnv_core = chip->cores + i * typesize;
1186         uint64_t xscom_core_base;
1187 
1188         if (!(chip->cores_mask & (1ull << core_hwid))) {
1189             continue;
1190         }
1191 
1192         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1193         object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1194                                 typename, &error_fatal, NULL);
1195         object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
1196                                 &error_fatal);
1197         object_property_set_int(OBJECT(pnv_core), core_hwid,
1198                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1199         object_property_set_int(OBJECT(pnv_core),
1200                                 pcc->core_pir(chip, core_hwid),
1201                                 "pir", &error_fatal);
1202         object_property_add_const_link(OBJECT(pnv_core), "chip",
1203                                        OBJECT(chip), &error_fatal);
1204         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1205                                  &error_fatal);
1206 
1207         /* Each core has an XSCOM MMIO region */
1208         if (!pnv_chip_is_power9(chip)) {
1209             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1210         } else {
1211             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1212         }
1213 
1214         pnv_xscom_add_subregion(chip, xscom_core_base,
1215                                 &PNV_CORE(pnv_core)->xscom_regs);
1216         i++;
1217     }
1218 }
1219 
1220 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1221 {
1222     PnvChip *chip = PNV_CHIP(dev);
1223     Error *error = NULL;
1224 
1225     /* Cores */
1226     pnv_chip_core_realize(chip, &error);
1227     if (error) {
1228         error_propagate(errp, error);
1229         return;
1230     }
1231 }
1232 
1233 static Property pnv_chip_properties[] = {
1234     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1235     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1236     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1237     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1238     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1239     DEFINE_PROP_END_OF_LIST(),
1240 };
1241 
1242 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1243 {
1244     DeviceClass *dc = DEVICE_CLASS(klass);
1245 
1246     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1247     dc->realize = pnv_chip_realize;
1248     dc->props = pnv_chip_properties;
1249     dc->desc = "PowerNV Chip";
1250 }
1251 
1252 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1253 {
1254     PnvMachineState *pnv = PNV_MACHINE(xi);
1255     int i;
1256 
1257     for (i = 0; i < pnv->num_chips; i++) {
1258         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1259 
1260         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1261             return &chip8->psi.ics;
1262         }
1263     }
1264     return NULL;
1265 }
1266 
1267 static void pnv_ics_resend(XICSFabric *xi)
1268 {
1269     PnvMachineState *pnv = PNV_MACHINE(xi);
1270     int i;
1271 
1272     for (i = 0; i < pnv->num_chips; i++) {
1273         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1274         ics_resend(&chip8->psi.ics);
1275     }
1276 }
1277 
1278 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1279 {
1280     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1281 
1282     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1283 }
1284 
1285 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1286                                Monitor *mon)
1287 {
1288     PnvMachineState *pnv = PNV_MACHINE(obj);
1289     int i;
1290     CPUState *cs;
1291 
1292     CPU_FOREACH(cs) {
1293         PowerPCCPU *cpu = POWERPC_CPU(cs);
1294 
1295         if (pnv_chip_is_power9(pnv->chips[0])) {
1296             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1297         } else {
1298             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1299         }
1300     }
1301 
1302     for (i = 0; i < pnv->num_chips; i++) {
1303         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1304     }
1305 }
1306 
1307 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1308                               void *opaque, Error **errp)
1309 {
1310     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1311 }
1312 
1313 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1314                               void *opaque, Error **errp)
1315 {
1316     PnvMachineState *pnv = PNV_MACHINE(obj);
1317     uint32_t num_chips;
1318     Error *local_err = NULL;
1319 
1320     visit_type_uint32(v, name, &num_chips, &local_err);
1321     if (local_err) {
1322         error_propagate(errp, local_err);
1323         return;
1324     }
1325 
1326     /*
1327      * TODO: should we decide on how many chips we can create based
1328      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1329      */
1330     if (!is_power_of_2(num_chips) || num_chips > 4) {
1331         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1332         return;
1333     }
1334 
1335     pnv->num_chips = num_chips;
1336 }
1337 
1338 static void pnv_machine_instance_init(Object *obj)
1339 {
1340     PnvMachineState *pnv = PNV_MACHINE(obj);
1341     pnv->num_chips = 1;
1342 }
1343 
1344 static void pnv_machine_class_props_init(ObjectClass *oc)
1345 {
1346     object_class_property_add(oc, "num-chips", "uint32",
1347                               pnv_get_num_chips, pnv_set_num_chips,
1348                               NULL, NULL, NULL);
1349     object_class_property_set_description(oc, "num-chips",
1350                               "Specifies the number of processor chips",
1351                               NULL);
1352 }
1353 
1354 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1355 {
1356     MachineClass *mc = MACHINE_CLASS(oc);
1357     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1358     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1359 
1360     mc->desc = "IBM PowerNV (Non-Virtualized)";
1361     mc->init = pnv_init;
1362     mc->reset = pnv_reset;
1363     mc->max_cpus = MAX_CPUS;
1364     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1365     mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1366                                       * storage */
1367     mc->no_parallel = 1;
1368     mc->default_boot_order = NULL;
1369     mc->default_ram_size = 1 * GiB;
1370     xic->icp_get = pnv_icp_get;
1371     xic->ics_get = pnv_ics_get;
1372     xic->ics_resend = pnv_ics_resend;
1373     ispc->print_info = pnv_pic_print_info;
1374 
1375     pnv_machine_class_props_init(oc);
1376 }
1377 
1378 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1379     {                                             \
1380         .name          = type,                    \
1381         .class_init    = class_initfn,            \
1382         .parent        = TYPE_PNV8_CHIP,          \
1383     }
1384 
1385 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1386     {                                             \
1387         .name          = type,                    \
1388         .class_init    = class_initfn,            \
1389         .parent        = TYPE_PNV9_CHIP,          \
1390     }
1391 
1392 static const TypeInfo types[] = {
1393     {
1394         .name          = TYPE_PNV_MACHINE,
1395         .parent        = TYPE_MACHINE,
1396         .instance_size = sizeof(PnvMachineState),
1397         .instance_init = pnv_machine_instance_init,
1398         .class_init    = pnv_machine_class_init,
1399         .interfaces = (InterfaceInfo[]) {
1400             { TYPE_XICS_FABRIC },
1401             { TYPE_INTERRUPT_STATS_PROVIDER },
1402             { },
1403         },
1404     },
1405     {
1406         .name          = TYPE_PNV_CHIP,
1407         .parent        = TYPE_SYS_BUS_DEVICE,
1408         .class_init    = pnv_chip_class_init,
1409         .instance_init = pnv_chip_instance_init,
1410         .instance_size = sizeof(PnvChip),
1411         .class_size    = sizeof(PnvChipClass),
1412         .abstract      = true,
1413     },
1414 
1415     /*
1416      * P9 chip and variants
1417      */
1418     {
1419         .name          = TYPE_PNV9_CHIP,
1420         .parent        = TYPE_PNV_CHIP,
1421         .instance_init = pnv_chip_power9_instance_init,
1422         .instance_size = sizeof(Pnv9Chip),
1423     },
1424     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1425 
1426     /*
1427      * P8 chip and variants
1428      */
1429     {
1430         .name          = TYPE_PNV8_CHIP,
1431         .parent        = TYPE_PNV_CHIP,
1432         .instance_init = pnv_chip_power8_instance_init,
1433         .instance_size = sizeof(Pnv8Chip),
1434     },
1435     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1436     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1437     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1438                           pnv_chip_power8nvl_class_init),
1439 };
1440 
1441 DEFINE_TYPES(types)
1442