xref: /openbmc/qemu/hw/ppc/pnv.c (revision 6e7c96ae)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial-isa.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define KERNEL_LOAD_ADDR        0x20000000
68 #define KERNEL_MAX_SIZE         (128 * MiB)
69 #define INITRD_LOAD_ADDR        0x28000000
70 #define INITRD_MAX_SIZE         (128 * MiB)
71 
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77     const char *core_type = object_class_get_name(object_class_by_name(s));
78     g_free(s);
79     return core_type;
80 }
81 
82 /*
83  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84  *     4 * 4 sockets * 12 cores * 8 threads = 1536
85  * Let's make it 2^11
86  */
87 #define MAX_CPUS                2048
88 
89 /*
90  * Memory nodes are created by hostboot, one for each range of memory
91  * that has a different "affinity". In practice, it means one range
92  * per chip.
93  */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96     char *mem_name;
97     uint64_t mem_reg_property[2];
98     int off;
99 
100     mem_reg_property[0] = cpu_to_be64(start);
101     mem_reg_property[1] = cpu_to_be64(size);
102 
103     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104     off = fdt_add_subnode(fdt, 0, mem_name);
105     g_free(mem_name);
106 
107     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                        sizeof(mem_reg_property))));
110     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112 
113 static int get_cpus_node(void *fdt)
114 {
115     int cpus_offset = fdt_path_offset(fdt, "/cpus");
116 
117     if (cpus_offset < 0) {
118         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119         if (cpus_offset) {
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122         }
123     }
124     _FDT(cpus_offset);
125     return cpus_offset;
126 }
127 
128 /*
129  * The PowerNV cores (and threads) need to use real HW ids and not an
130  * incremental index like it has been done on other platforms. This HW
131  * id is stored in the CPU PIR, it is used to create cpu nodes in the
132  * device tree, used in XSCOM to address cores and in interrupt
133  * servers.
134  */
135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137     PowerPCCPU *cpu = pc->threads[0];
138     CPUState *cs = CPU(cpu);
139     DeviceClass *dc = DEVICE_GET_CLASS(cs);
140     int smt_threads = CPU_CORE(pc)->nr_threads;
141     CPUPPCState *env = &cpu->env;
142     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144     uint32_t *servers_prop;
145     int i;
146     uint32_t pir, tir;
147     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148                        0xffffffff, 0xffffffff};
149     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150     uint32_t cpufreq = 1000000000;
151     uint32_t page_sizes_prop[64];
152     size_t page_sizes_prop_size;
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
158 
159     /* Only one DT node per (big) core */
160     g_assert(tir == 0);
161 
162     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
163     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
164     _FDT(offset);
165     g_free(nodename);
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
170     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
171     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
172 
173     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
174     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
175                             env->dcache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
177                             env->dcache_line_size)));
178     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
179                             env->icache_line_size)));
180     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
181                             env->icache_line_size)));
182 
183     if (pcc->l1_dcache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
185                                pcc->l1_dcache_size)));
186     } else {
187         warn_report("Unknown L1 dcache size for cpu");
188     }
189     if (pcc->l1_icache_size) {
190         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
191                                pcc->l1_icache_size)));
192     } else {
193         warn_report("Unknown L1 icache size for cpu");
194     }
195 
196     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
198     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
199                            cpu->hash64_opts->slb_size)));
200     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
201     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
202 
203     if (ppc_has_spr(cpu, SPR_PURR)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
205     }
206 
207     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
208         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
209                            segs, sizeof(segs))));
210     }
211 
212     /*
213      * Advertise VMX/VSX (vector extensions) if available
214      *   0 / no property == no vector extensions
215      *   1               == VMX / Altivec available
216      *   2               == VSX available
217      */
218     if (env->insns_flags & PPC_ALTIVEC) {
219         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
220 
221         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
222     }
223 
224     /*
225      * Advertise DFP (Decimal Floating Point) if available
226      *   0 / no property == no DFP
227      *   1               == DFP available
228      */
229     if (env->insns_flags2 & PPC2_DFP) {
230         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
231     }
232 
233     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
234                                                       sizeof(page_sizes_prop));
235     if (page_sizes_prop_size) {
236         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
237                            page_sizes_prop, page_sizes_prop_size)));
238     }
239 
240     /* Build interrupt servers properties */
241     if (pc->big_core) {
242         servers_prop = g_new(uint32_t, smt_threads * 2);
243         for (i = 0; i < smt_threads; i++) {
244             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
245             servers_prop[i * 2] = cpu_to_be32(pir);
246 
247             pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
248             servers_prop[i * 2 + 1] = cpu_to_be32(pir);
249         }
250         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
251                           servers_prop, sizeof(*servers_prop) * smt_threads
252                                         * 2)));
253     } else {
254         servers_prop = g_new(uint32_t, smt_threads);
255         for (i = 0; i < smt_threads; i++) {
256             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
257             servers_prop[i] = cpu_to_be32(pir);
258         }
259         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
260                           servers_prop, sizeof(*servers_prop) * smt_threads)));
261     }
262     g_free(servers_prop);
263 
264     return offset;
265 }
266 
267 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
268                        uint32_t nr_threads)
269 {
270     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
271     uint32_t pir;
272     uint64_t addr;
273     char *name;
274     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
275     uint32_t irange[2], i, rsize;
276     uint64_t *reg;
277     int offset;
278 
279     pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
280     addr = PNV_ICP_BASE(chip) | (pir << 12);
281 
282     irange[0] = cpu_to_be32(pir);
283     irange[1] = cpu_to_be32(nr_threads);
284 
285     rsize = sizeof(uint64_t) * 2 * nr_threads;
286     reg = g_malloc(rsize);
287     for (i = 0; i < nr_threads; i++) {
288         /* We know P8 PIR is linear with thread id */
289         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
290         reg[i * 2 + 1] = cpu_to_be64(0x1000);
291     }
292 
293     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
294     offset = fdt_add_subnode(fdt, 0, name);
295     _FDT(offset);
296     g_free(name);
297 
298     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
299     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
300     _FDT((fdt_setprop_string(fdt, offset, "device_type",
301                               "PowerPC-External-Interrupt-Presentation")));
302     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
303     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
304                        irange, sizeof(irange))));
305     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
306     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
307     g_free(reg);
308 }
309 
310 /*
311  * Adds a PnvPHB to the chip on P8.
312  * Implemented here, like for defaults PHBs
313  */
314 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
315 {
316     Pnv8Chip *chip8 = PNV8_CHIP(chip);
317 
318     phb->chip = chip;
319 
320     chip8->phbs[chip8->num_phbs] = phb;
321     chip8->num_phbs++;
322     return chip;
323 }
324 
325 /*
326  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
327  * HTM is always enabled because TCG does implement HTM, it's just a
328  * degenerate implementation.
329  */
330 static const uint8_t pa_features_207[] = { 24, 0,
331                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
332                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
333                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
334                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
335 
336 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
337 {
338     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
339     int i;
340 
341     pnv_dt_xscom(chip, fdt, 0,
342                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
343                  cpu_to_be64(PNV_XSCOM_SIZE),
344                  compat, sizeof(compat));
345 
346     for (i = 0; i < chip->nr_cores; i++) {
347         PnvCore *pnv_core = chip->cores[i];
348         int offset;
349 
350         offset = pnv_dt_core(chip, pnv_core, fdt);
351 
352         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
353                            pa_features_207, sizeof(pa_features_207))));
354 
355         /* Interrupt Control Presenters (ICP). One per core. */
356         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
357     }
358 
359     if (chip->ram_size) {
360         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
361     }
362 }
363 
364 /*
365  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
366  */
367 static const uint8_t pa_features_300[] = { 66, 0,
368     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
369     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
370     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
371     /* 6: DS207 */
372     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
373     /* 16: Vector */
374     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
375     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
376     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
377     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
378     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
379     /* 32: LE atomic, 34: EBB + ext EBB */
380     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
381     /* 40: Radix MMU */
382     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
383     /* 42: PM, 44: PC RA, 46: SC vec'd */
384     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
385     /* 48: SIMD, 50: QP BFP, 52: String */
386     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
387     /* 54: DecFP, 56: DecI, 58: SHA */
388     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
389     /* 60: NM atomic, 62: RNG */
390     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
391 };
392 
393 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
394 {
395     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
396     int i;
397 
398     pnv_dt_xscom(chip, fdt, 0,
399                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
400                  cpu_to_be64(PNV9_XSCOM_SIZE),
401                  compat, sizeof(compat));
402 
403     for (i = 0; i < chip->nr_cores; i++) {
404         PnvCore *pnv_core = chip->cores[i];
405         int offset;
406 
407         offset = pnv_dt_core(chip, pnv_core, fdt);
408 
409         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
410                            pa_features_300, sizeof(pa_features_300))));
411 
412         if (pnv_core->big_core) {
413             i++; /* Big-core groups two QEMU cores */
414         }
415     }
416 
417     if (chip->ram_size) {
418         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
419     }
420 
421     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
422 }
423 
424 /*
425  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
426  * always disables copy/paste.
427  */
428 static const uint8_t pa_features_31[] = { 74, 0,
429     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
430     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
431     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
432     /* 6: DS207 */
433     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
434     /* 16: Vector */
435     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
436     /* 18: Vec. Scalar, 20: Vec. XOR */
437     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
438     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
439     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
440     /* 32: LE atomic, 34: EBB + ext EBB */
441     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
442     /* 40: Radix MMU */
443     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
444     /* 42: PM, 44: PC RA, 46: SC vec'd */
445     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
446     /* 48: SIMD, 50: QP BFP, 52: String */
447     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
448     /* 54: DecFP, 56: DecI, 58: SHA */
449     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
450     /* 60: NM atomic, 62: RNG */
451     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
452     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
453     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
454     /* 72: [P]HASHST/[P]HASHCHK */
455     0x80, 0x00,                         /* 72 - 73 */
456 };
457 
458 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
459 {
460     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
461     int i;
462 
463     pnv_dt_xscom(chip, fdt, 0,
464                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
465                  cpu_to_be64(PNV10_XSCOM_SIZE),
466                  compat, sizeof(compat));
467 
468     for (i = 0; i < chip->nr_cores; i++) {
469         PnvCore *pnv_core = chip->cores[i];
470         int offset;
471 
472         offset = pnv_dt_core(chip, pnv_core, fdt);
473 
474         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
475                            pa_features_31, sizeof(pa_features_31))));
476 
477         if (pnv_core->big_core) {
478             i++; /* Big-core groups two QEMU cores */
479         }
480     }
481 
482     if (chip->ram_size) {
483         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
484     }
485 
486     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
487 }
488 
489 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
490 {
491     uint32_t io_base = d->ioport_id;
492     uint32_t io_regs[] = {
493         cpu_to_be32(1),
494         cpu_to_be32(io_base),
495         cpu_to_be32(2)
496     };
497     char *name;
498     int node;
499 
500     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
501     node = fdt_add_subnode(fdt, lpc_off, name);
502     _FDT(node);
503     g_free(name);
504 
505     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
506     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
507 }
508 
509 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
510 {
511     const char compatible[] = "ns16550\0pnpPNP,501";
512     uint32_t io_base = d->ioport_id;
513     uint32_t io_regs[] = {
514         cpu_to_be32(1),
515         cpu_to_be32(io_base),
516         cpu_to_be32(8)
517     };
518     uint32_t irq;
519     char *name;
520     int node;
521 
522     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
523 
524     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
525     node = fdt_add_subnode(fdt, lpc_off, name);
526     _FDT(node);
527     g_free(name);
528 
529     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
530     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
531                       sizeof(compatible))));
532 
533     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
534     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
535     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
536     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
537                            fdt_get_phandle(fdt, lpc_off))));
538 
539     /* This is needed by Linux */
540     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
541 }
542 
543 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
544 {
545     const char compatible[] = "bt\0ipmi-bt";
546     uint32_t io_base;
547     uint32_t io_regs[] = {
548         cpu_to_be32(1),
549         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
550         cpu_to_be32(3)
551     };
552     uint32_t irq;
553     char *name;
554     int node;
555 
556     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
557     io_regs[1] = cpu_to_be32(io_base);
558 
559     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
560 
561     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
562     node = fdt_add_subnode(fdt, lpc_off, name);
563     _FDT(node);
564     g_free(name);
565 
566     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
567     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
568                       sizeof(compatible))));
569 
570     /* Mark it as reserved to avoid Linux trying to claim it */
571     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
572     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
573     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
574                            fdt_get_phandle(fdt, lpc_off))));
575 }
576 
577 typedef struct ForeachPopulateArgs {
578     void *fdt;
579     int offset;
580 } ForeachPopulateArgs;
581 
582 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
583 {
584     ForeachPopulateArgs *args = opaque;
585     ISADevice *d = ISA_DEVICE(dev);
586 
587     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
588         pnv_dt_rtc(d, args->fdt, args->offset);
589     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
590         pnv_dt_serial(d, args->fdt, args->offset);
591     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
592         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
593     } else {
594         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
595                      d->ioport_id);
596     }
597 
598     return 0;
599 }
600 
601 /*
602  * The default LPC bus of a multichip system is on chip 0. It's
603  * recognized by the firmware (skiboot) using a "primary" property.
604  */
605 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
606 {
607     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
608     ForeachPopulateArgs args = {
609         .fdt = fdt,
610         .offset = isa_offset,
611     };
612     uint32_t phandle;
613 
614     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
615 
616     phandle = qemu_fdt_alloc_phandle(fdt);
617     assert(phandle > 0);
618     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
619 
620     /*
621      * ISA devices are not necessarily parented to the ISA bus so we
622      * can not use object_child_foreach()
623      */
624     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
625                        &args);
626 }
627 
628 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
629 {
630     int off;
631 
632     off = fdt_add_subnode(fdt, 0, "ibm,opal");
633     off = fdt_add_subnode(fdt, off, "power-mgt");
634 
635     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
636 }
637 
638 static void *pnv_dt_create(MachineState *machine)
639 {
640     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
641     PnvMachineState *pnv = PNV_MACHINE(machine);
642     void *fdt;
643     char *buf;
644     int off;
645     int i;
646 
647     fdt = g_malloc0(FDT_MAX_SIZE);
648     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
649 
650     /* /qemu node */
651     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
652 
653     /* Root node */
654     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
655     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
656     _FDT((fdt_setprop_string(fdt, 0, "model",
657                              "IBM PowerNV (emulated by qemu)")));
658     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
659 
660     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
661     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
662     if (qemu_uuid_set) {
663         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
664     }
665     g_free(buf);
666 
667     off = fdt_add_subnode(fdt, 0, "chosen");
668     if (machine->kernel_cmdline) {
669         _FDT((fdt_setprop_string(fdt, off, "bootargs",
670                                  machine->kernel_cmdline)));
671     }
672 
673     if (pnv->initrd_size) {
674         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
675         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
676 
677         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
678                                &start_prop, sizeof(start_prop))));
679         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
680                                &end_prop, sizeof(end_prop))));
681     }
682 
683     /* Populate device tree for each chip */
684     for (i = 0; i < pnv->num_chips; i++) {
685         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
686     }
687 
688     /* Populate ISA devices on chip 0 */
689     pnv_dt_isa(pnv, fdt);
690 
691     if (pnv->bmc) {
692         pnv_dt_bmc_sensors(pnv->bmc, fdt);
693     }
694 
695     /* Create an extra node for power management on machines that support it */
696     if (pmc->dt_power_mgt) {
697         pmc->dt_power_mgt(pnv, fdt);
698     }
699 
700     return fdt;
701 }
702 
703 static void pnv_powerdown_notify(Notifier *n, void *opaque)
704 {
705     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
706 
707     if (pnv->bmc) {
708         pnv_bmc_powerdown(pnv->bmc);
709     }
710 }
711 
712 static void pnv_reset(MachineState *machine, ResetType type)
713 {
714     PnvMachineState *pnv = PNV_MACHINE(machine);
715     IPMIBmc *bmc;
716     void *fdt;
717 
718     qemu_devices_reset(type);
719 
720     /*
721      * The machine should provide by default an internal BMC simulator.
722      * If not, try to use the BMC device that was provided on the command
723      * line.
724      */
725     bmc = pnv_bmc_find(&error_fatal);
726     if (!pnv->bmc) {
727         if (!bmc) {
728             if (!qtest_enabled()) {
729                 warn_report("machine has no BMC device. Use '-device "
730                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
731                             "to define one");
732             }
733         } else {
734             pnv_bmc_set_pnor(bmc, pnv->pnor);
735             pnv->bmc = bmc;
736         }
737     }
738 
739     if (machine->fdt) {
740         fdt = machine->fdt;
741     } else {
742         fdt = pnv_dt_create(machine);
743         /* Pack resulting tree */
744         _FDT((fdt_pack(fdt)));
745     }
746 
747     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
748     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
749 
750     /* Update machine->fdt with latest fdt */
751     if (machine->fdt != fdt) {
752         /*
753          * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
754          * the existing machine->fdt to avoid leaking it during
755          * a reset.
756          */
757         g_free(machine->fdt);
758         machine->fdt = fdt;
759     }
760 }
761 
762 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
763 {
764     Pnv8Chip *chip8 = PNV8_CHIP(chip);
765     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
766 
767     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
768 
769     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
770 }
771 
772 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
773 {
774     Pnv8Chip *chip8 = PNV8_CHIP(chip);
775     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
776 
777     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
778 
779     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
780 }
781 
782 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
783 {
784     Pnv9Chip *chip9 = PNV9_CHIP(chip);
785     qemu_irq irq;
786 
787     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
788     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
789 
790     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
791     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
792     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
793     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
794     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
795     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
796     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
797     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
798 
799     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
800 }
801 
802 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
803 {
804     Pnv10Chip *chip10 = PNV10_CHIP(chip);
805     qemu_irq irq;
806 
807     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
808     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
809 
810     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
811     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
812     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
813     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
814     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
815     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
816     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
817     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
818 
819     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
820 }
821 
822 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
823 {
824     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
825 }
826 
827 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
828 {
829     Pnv8Chip *chip8 = PNV8_CHIP(chip);
830     int i;
831 
832     ics_pic_print_info(&chip8->psi.ics, buf);
833 
834     for (i = 0; i < chip8->num_phbs; i++) {
835         PnvPHB *phb = chip8->phbs[i];
836         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
837 
838         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
839         ics_pic_print_info(&phb3->lsis, buf);
840     }
841 }
842 
843 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
844 {
845     GString *buf = opaque;
846     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
847 
848     if (!phb) {
849         return 0;
850     }
851 
852     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
853 
854     return 0;
855 }
856 
857 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
858 {
859     Pnv9Chip *chip9 = PNV9_CHIP(chip);
860 
861     pnv_xive_pic_print_info(&chip9->xive, buf);
862     pnv_psi_pic_print_info(&chip9->psi, buf);
863     object_child_foreach_recursive(OBJECT(chip),
864                          pnv_chip_power9_pic_print_info_child, buf);
865 }
866 
867 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
868                                                 uint32_t core_id)
869 {
870     return PNV_XSCOM_EX_BASE(core_id);
871 }
872 
873 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
874                                                 uint32_t core_id)
875 {
876     return PNV9_XSCOM_EC_BASE(core_id);
877 }
878 
879 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
880                                                  uint32_t core_id)
881 {
882     return PNV10_XSCOM_EC_BASE(core_id);
883 }
884 
885 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
886 {
887     PowerPCCPUClass *ppc_default =
888         POWERPC_CPU_CLASS(object_class_by_name(default_type));
889     PowerPCCPUClass *ppc =
890         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
891 
892     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
893 }
894 
895 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
896 {
897     ISADevice *dev = isa_new("isa-ipmi-bt");
898 
899     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
900     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
901     isa_realize_and_unref(dev, bus, &error_fatal);
902 }
903 
904 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
905 {
906     Pnv10Chip *chip10 = PNV10_CHIP(chip);
907 
908     pnv_xive2_pic_print_info(&chip10->xive, buf);
909     pnv_psi_pic_print_info(&chip10->psi, buf);
910     object_child_foreach_recursive(OBJECT(chip),
911                          pnv_chip_power9_pic_print_info_child, buf);
912 }
913 
914 /* Always give the first 1GB to chip 0 else we won't boot */
915 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
916 {
917     MachineState *machine = MACHINE(pnv);
918     uint64_t ram_per_chip;
919 
920     assert(machine->ram_size >= 1 * GiB);
921 
922     ram_per_chip = machine->ram_size / pnv->num_chips;
923     if (ram_per_chip >= 1 * GiB) {
924         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
925     }
926 
927     assert(pnv->num_chips > 1);
928 
929     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
930     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
931 }
932 
933 static void pnv_init(MachineState *machine)
934 {
935     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
936     PnvMachineState *pnv = PNV_MACHINE(machine);
937     MachineClass *mc = MACHINE_GET_CLASS(machine);
938     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
939     int max_smt_threads = pmc->max_smt_threads;
940     char *fw_filename;
941     long fw_size;
942     uint64_t chip_ram_start = 0;
943     int i;
944     char *chip_typename;
945     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
946     DeviceState *dev;
947 
948     if (kvm_enabled()) {
949         error_report("machine %s does not support the KVM accelerator",
950                      mc->name);
951         exit(EXIT_FAILURE);
952     }
953 
954     /* allocate RAM */
955     if (machine->ram_size < mc->default_ram_size) {
956         char *sz = size_to_str(mc->default_ram_size);
957         error_report("Invalid RAM size, should be bigger than %s", sz);
958         g_free(sz);
959         exit(EXIT_FAILURE);
960     }
961 
962     /* checks for invalid option combinations */
963     if (machine->dtb && (strlen(machine->kernel_cmdline) != 0)) {
964         error_report("-append and -dtb cannot be used together, as passed"
965                 " command line is ignored in case of custom dtb");
966         exit(EXIT_FAILURE);
967     }
968 
969     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
970 
971     /*
972      * Create our simple PNOR device
973      */
974     dev = qdev_new(TYPE_PNV_PNOR);
975     if (pnor) {
976         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
977     }
978     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
979     pnv->pnor = PNV_PNOR(dev);
980 
981     /* load skiboot firmware  */
982     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
983     if (!fw_filename) {
984         error_report("Could not find OPAL firmware '%s'", bios_name);
985         exit(1);
986     }
987 
988     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
989     if (fw_size < 0) {
990         error_report("Could not load OPAL firmware '%s'", fw_filename);
991         exit(1);
992     }
993     g_free(fw_filename);
994 
995     /* load kernel */
996     if (machine->kernel_filename) {
997         long kernel_size;
998 
999         kernel_size = load_image_targphys(machine->kernel_filename,
1000                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
1001         if (kernel_size < 0) {
1002             error_report("Could not load kernel '%s'",
1003                          machine->kernel_filename);
1004             exit(1);
1005         }
1006     }
1007 
1008     /* load initrd */
1009     if (machine->initrd_filename) {
1010         pnv->initrd_base = INITRD_LOAD_ADDR;
1011         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
1012                                   pnv->initrd_base, INITRD_MAX_SIZE);
1013         if (pnv->initrd_size < 0) {
1014             error_report("Could not load initial ram disk '%s'",
1015                          machine->initrd_filename);
1016             exit(1);
1017         }
1018     }
1019 
1020     /* load dtb if passed */
1021     if (machine->dtb) {
1022         int fdt_size;
1023 
1024         warn_report("with manually passed dtb, some options like '-append'"
1025                 " will get ignored and the dtb passed will be used as-is");
1026 
1027         /* read the file 'machine->dtb', and load it into 'fdt' buffer */
1028         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
1029         if (!machine->fdt) {
1030             error_report("Could not load dtb '%s'", machine->dtb);
1031             exit(1);
1032         }
1033     }
1034 
1035     /* MSIs are supported on this platform */
1036     msi_nonbroken = true;
1037 
1038     /*
1039      * Check compatibility of the specified CPU with the machine
1040      * default.
1041      */
1042     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
1043         error_report("invalid CPU model '%s' for %s machine",
1044                      machine->cpu_type, mc->name);
1045         exit(1);
1046     }
1047 
1048     /* Create the processor chips */
1049     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
1050     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
1051                                     i, machine->cpu_type);
1052     if (!object_class_by_name(chip_typename)) {
1053         error_report("invalid chip model '%.*s' for %s machine",
1054                      i, machine->cpu_type, mc->name);
1055         exit(1);
1056     }
1057 
1058     /* Set lpar-per-core mode if lpar-per-thread is not supported */
1059     if (!pmc->has_lpar_per_thread) {
1060         pnv->lpar_per_core = true;
1061     }
1062 
1063     pnv->num_chips =
1064         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1065 
1066     if (pnv->big_core) {
1067         if (machine->smp.threads % 2 == 1) {
1068             error_report("Cannot support %d threads with big-core option "
1069                          "because it must be an even number",
1070                          machine->smp.threads);
1071             exit(1);
1072         }
1073         max_smt_threads *= 2;
1074     }
1075 
1076     if (machine->smp.threads > max_smt_threads) {
1077         error_report("Cannot support more than %d threads/core "
1078                      "on %s machine", max_smt_threads, mc->desc);
1079         if (pmc->max_smt_threads == 4) {
1080             error_report("(use big-core=on for 8 threads per core)");
1081         }
1082         exit(1);
1083     }
1084 
1085     if (pnv->big_core) {
1086         /*
1087          * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
1088          * per core, so adjust topology here. pnv_dt_core() processor
1089          * device-tree and TCG SMT code make the 2 cores appear as one big core
1090          * from software point of view. pnv pervasive models and xscoms tend to
1091          * see the big core as 2 small core halves.
1092          */
1093         machine->smp.cores *= 2;
1094         machine->smp.threads /= 2;
1095     }
1096 
1097     if (!is_power_of_2(machine->smp.threads)) {
1098         error_report("Cannot support %d threads/core on a powernv "
1099                      "machine because it must be a power of 2",
1100                      machine->smp.threads);
1101         exit(1);
1102     }
1103 
1104     /*
1105      * TODO: should we decide on how many chips we can create based
1106      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1107      */
1108     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1109         error_report("invalid number of chips: '%d'", pnv->num_chips);
1110         error_printf(
1111             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1112         exit(1);
1113     }
1114 
1115     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1116     for (i = 0; i < pnv->num_chips; i++) {
1117         char chip_name[32];
1118         Object *chip = OBJECT(qdev_new(chip_typename));
1119         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1120 
1121         pnv->chips[i] = PNV_CHIP(chip);
1122 
1123         /* Distribute RAM among the chips  */
1124         object_property_set_int(chip, "ram-start", chip_ram_start,
1125                                 &error_fatal);
1126         object_property_set_int(chip, "ram-size", chip_ram_size,
1127                                 &error_fatal);
1128         chip_ram_start += chip_ram_size;
1129 
1130         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1131         object_property_add_child(OBJECT(pnv), chip_name, chip);
1132         object_property_set_int(chip, "chip-id", i, &error_fatal);
1133         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1134                                 &error_fatal);
1135         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1136                                 &error_fatal);
1137         object_property_set_bool(chip, "big-core", pnv->big_core,
1138                                 &error_fatal);
1139         object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
1140                                 &error_fatal);
1141         /*
1142          * The POWER8 machine use the XICS interrupt interface.
1143          * Propagate the XICS fabric to the chip and its controllers.
1144          */
1145         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1146             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1147         }
1148         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1149             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1150                                      &error_abort);
1151         }
1152         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1153     }
1154     g_free(chip_typename);
1155 
1156     /* Instantiate ISA bus on chip 0 */
1157     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1158 
1159     /* Create serial port */
1160     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1161 
1162     /* Create an RTC ISA device too */
1163     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1164 
1165     /*
1166      * Create the machine BMC simulator and the IPMI BT device for
1167      * communication with the BMC
1168      */
1169     if (defaults_enabled()) {
1170         pnv->bmc = pnv_bmc_create(pnv->pnor);
1171         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1172     }
1173 
1174     /*
1175      * The PNOR is mapped on the LPC FW address space by the BMC.
1176      * Since we can not reach the remote BMC machine with LPC memops,
1177      * map it always for now.
1178      */
1179     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1180                                 &pnv->pnor->mmio);
1181 
1182     /*
1183      * OpenPOWER systems use a IPMI SEL Event message to notify the
1184      * host to powerdown
1185      */
1186     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1187     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1188 
1189     /*
1190      * Create/Connect any machine-specific I2C devices
1191      */
1192     if (pmc->i2c_init) {
1193         pmc->i2c_init(pnv);
1194     }
1195 }
1196 
1197 /*
1198  *    0:21  Reserved - Read as zeros
1199  *   22:24  Chip ID
1200  *   25:28  Core number
1201  *   29:31  Thread ID
1202  */
1203 static void pnv_get_pir_tir_p8(PnvChip *chip,
1204                                 uint32_t core_id, uint32_t thread_id,
1205                                 uint32_t *pir, uint32_t *tir)
1206 {
1207     if (pir) {
1208         *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1209     }
1210     if (tir) {
1211         *tir = thread_id;
1212     }
1213 }
1214 
1215 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1216                                         Error **errp)
1217 {
1218     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1219     Error *local_err = NULL;
1220     Object *obj;
1221     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1222 
1223     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1224     if (local_err) {
1225         error_propagate(errp, local_err);
1226         return;
1227     }
1228 
1229     pnv_cpu->intc = obj;
1230 }
1231 
1232 
1233 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1234 {
1235     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1236 
1237     icp_reset(ICP(pnv_cpu->intc));
1238 }
1239 
1240 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1241 {
1242     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1243 
1244     icp_destroy(ICP(pnv_cpu->intc));
1245     pnv_cpu->intc = NULL;
1246 }
1247 
1248 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1249                                             GString *buf)
1250 {
1251     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1252 }
1253 
1254 /*
1255  *    0:48  Reserved - Read as zeroes
1256  *   49:52  Node ID
1257  *   53:55  Chip ID
1258  *   56     Reserved - Read as zero
1259  *   57:61  Core number
1260  *   62:63  Thread ID
1261  *
1262  * We only care about the lower bits. uint32_t is fine for the moment.
1263  */
1264 static void pnv_get_pir_tir_p9(PnvChip *chip,
1265                                 uint32_t core_id, uint32_t thread_id,
1266                                 uint32_t *pir, uint32_t *tir)
1267 {
1268     if (chip->big_core) {
1269         /* Big-core interleaves thread ID between small-cores */
1270         thread_id <<= 1;
1271         thread_id |= core_id & 1;
1272         core_id >>= 1;
1273 
1274         if (pir) {
1275             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1276         }
1277     } else {
1278         if (pir) {
1279             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1280         }
1281     }
1282     if (tir) {
1283         *tir = thread_id;
1284     }
1285 }
1286 
1287 /*
1288  *    0:48  Reserved - Read as zeroes
1289  *   49:52  Node ID
1290  *   53:55  Chip ID
1291  *   56     Reserved - Read as zero
1292  *   57:59  Quad ID
1293  *   60     Core Chiplet Pair ID
1294  *   61:63  Thread/Core Chiplet ID t0-t2
1295  *
1296  * We only care about the lower bits. uint32_t is fine for the moment.
1297  */
1298 static void pnv_get_pir_tir_p10(PnvChip *chip,
1299                                 uint32_t core_id, uint32_t thread_id,
1300                                 uint32_t *pir, uint32_t *tir)
1301 {
1302     if (chip->big_core) {
1303         /* Big-core interleaves thread ID between small-cores */
1304         thread_id <<= 1;
1305         thread_id |= core_id & 1;
1306         core_id >>= 1;
1307 
1308         if (pir) {
1309             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1310         }
1311     } else {
1312         if (pir) {
1313             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1314         }
1315     }
1316     if (tir) {
1317         *tir = thread_id;
1318     }
1319 }
1320 
1321 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1322                                         Error **errp)
1323 {
1324     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1325     Error *local_err = NULL;
1326     Object *obj;
1327     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1328 
1329     /*
1330      * The core creates its interrupt presenter but the XIVE interrupt
1331      * controller object is initialized afterwards. Hopefully, it's
1332      * only used at runtime.
1333      */
1334     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1335                            &local_err);
1336     if (local_err) {
1337         error_propagate(errp, local_err);
1338         return;
1339     }
1340 
1341     pnv_cpu->intc = obj;
1342 }
1343 
1344 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1345 {
1346     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1347 
1348     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1349 }
1350 
1351 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1352 {
1353     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1354 
1355     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1356     pnv_cpu->intc = NULL;
1357 }
1358 
1359 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1360                                             GString *buf)
1361 {
1362     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1363 }
1364 
1365 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1366                                         Error **errp)
1367 {
1368     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1369     Error *local_err = NULL;
1370     Object *obj;
1371     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1372 
1373     /*
1374      * The core creates its interrupt presenter but the XIVE2 interrupt
1375      * controller object is initialized afterwards. Hopefully, it's
1376      * only used at runtime.
1377      */
1378     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1379                            &local_err);
1380     if (local_err) {
1381         error_propagate(errp, local_err);
1382         return;
1383     }
1384 
1385     pnv_cpu->intc = obj;
1386 }
1387 
1388 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1389 {
1390     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1391 
1392     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1393 }
1394 
1395 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1396 {
1397     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1398 
1399     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1400     pnv_cpu->intc = NULL;
1401 }
1402 
1403 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1404                                              GString *buf)
1405 {
1406     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1407 }
1408 
1409 /*
1410  * Allowed core identifiers on a POWER8 Processor Chip :
1411  *
1412  * <EX0 reserved>
1413  *  EX1  - Venice only
1414  *  EX2  - Venice only
1415  *  EX3  - Venice only
1416  *  EX4
1417  *  EX5
1418  *  EX6
1419  * <EX7,8 reserved> <reserved>
1420  *  EX9  - Venice only
1421  *  EX10 - Venice only
1422  *  EX11 - Venice only
1423  *  EX12
1424  *  EX13
1425  *  EX14
1426  * <EX15 reserved>
1427  */
1428 #define POWER8E_CORE_MASK  (0x7070ull)
1429 #define POWER8_CORE_MASK   (0x7e7eull)
1430 
1431 /*
1432  * POWER9 has 24 cores, ids starting at 0x0
1433  */
1434 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1435 
1436 
1437 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1438 
1439 static void pnv_chip_power8_instance_init(Object *obj)
1440 {
1441     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1442     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1443     int i;
1444 
1445     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1446                              (Object **)&chip8->xics,
1447                              object_property_allow_set_link,
1448                              OBJ_PROP_LINK_STRONG);
1449 
1450     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1451 
1452     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1453 
1454     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1455 
1456     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1457 
1458     if (defaults_enabled()) {
1459         chip8->num_phbs = pcc->num_phbs;
1460 
1461         for (i = 0; i < chip8->num_phbs; i++) {
1462             Object *phb = object_new(TYPE_PNV_PHB);
1463 
1464             /*
1465              * We need the chip to parent the PHB to allow the DT
1466              * to build correctly (via pnv_xscom_dt()).
1467              *
1468              * TODO: the PHB should be parented by a PEC device that, at
1469              * this moment, is not modelled powernv8/phb3.
1470              */
1471             object_property_add_child(obj, "phb[*]", phb);
1472             chip8->phbs[i] = PNV_PHB(phb);
1473         }
1474     }
1475 
1476 }
1477 
1478 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1479  {
1480     PnvChip *chip = PNV_CHIP(chip8);
1481     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1482     int i, j;
1483     char *name;
1484 
1485     name = g_strdup_printf("icp-%x", chip->chip_id);
1486     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1487     g_free(name);
1488     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1489                                 &chip8->icp_mmio);
1490 
1491     /* Map the ICP registers for each thread */
1492     for (i = 0; i < chip->nr_cores; i++) {
1493         PnvCore *pnv_core = chip->cores[i];
1494         int core_hwid = CPU_CORE(pnv_core)->core_id;
1495 
1496         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1497             uint32_t pir;
1498             PnvICPState *icp;
1499 
1500             pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1501             icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1502 
1503             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1504                                         &icp->mmio);
1505         }
1506     }
1507 }
1508 
1509 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1510 {
1511     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1512     PnvChip *chip = PNV_CHIP(dev);
1513     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1514     Pnv8Psi *psi8 = &chip8->psi;
1515     Error *local_err = NULL;
1516     int i;
1517 
1518     assert(chip8->xics);
1519 
1520     /* XSCOM bridge is first */
1521     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1522 
1523     pcc->parent_realize(dev, &local_err);
1524     if (local_err) {
1525         error_propagate(errp, local_err);
1526         return;
1527     }
1528 
1529     /* Processor Service Interface (PSI) Host Bridge */
1530     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1531                             &error_fatal);
1532     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1533                              OBJECT(chip8->xics), &error_abort);
1534     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1535         return;
1536     }
1537     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1538                             &PNV_PSI(psi8)->xscom_regs);
1539 
1540     /* Create LPC controller */
1541     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1542     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1543 
1544     chip->fw_mr = &chip8->lpc.isa_fw;
1545     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1546                                             (uint64_t) PNV_XSCOM_BASE(chip),
1547                                             PNV_XSCOM_LPC_BASE);
1548 
1549     /*
1550      * Interrupt Management Area. This is the memory region holding
1551      * all the Interrupt Control Presenter (ICP) registers
1552      */
1553     pnv_chip_icp_realize(chip8, &local_err);
1554     if (local_err) {
1555         error_propagate(errp, local_err);
1556         return;
1557     }
1558 
1559     /* Create the simplified OCC model */
1560     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1561         return;
1562     }
1563     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1564     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1565                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1566 
1567     /* OCC SRAM model */
1568     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1569                                 &chip8->occ.sram_regs);
1570 
1571     /* HOMER */
1572     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1573                              &error_abort);
1574     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1575         return;
1576     }
1577     /* Homer Xscom region */
1578     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1579 
1580     /* Homer mmio region */
1581     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1582                                 &chip8->homer.regs);
1583 
1584     /* PHB controllers */
1585     for (i = 0; i < chip8->num_phbs; i++) {
1586         PnvPHB *phb = chip8->phbs[i];
1587 
1588         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1589         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1590                                 &error_fatal);
1591         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1592                                  &error_fatal);
1593         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1594             return;
1595         }
1596     }
1597 }
1598 
1599 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1600 {
1601     addr &= (PNV_XSCOM_SIZE - 1);
1602     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1603 }
1604 
1605 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1606 {
1607     DeviceClass *dc = DEVICE_CLASS(klass);
1608     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1609 
1610     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1611     k->cores_mask = POWER8E_CORE_MASK;
1612     k->num_phbs = 3;
1613     k->get_pir_tir = pnv_get_pir_tir_p8;
1614     k->intc_create = pnv_chip_power8_intc_create;
1615     k->intc_reset = pnv_chip_power8_intc_reset;
1616     k->intc_destroy = pnv_chip_power8_intc_destroy;
1617     k->intc_print_info = pnv_chip_power8_intc_print_info;
1618     k->isa_create = pnv_chip_power8_isa_create;
1619     k->dt_populate = pnv_chip_power8_dt_populate;
1620     k->pic_print_info = pnv_chip_power8_pic_print_info;
1621     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1622     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1623     dc->desc = "PowerNV Chip POWER8E";
1624 
1625     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1626                                     &k->parent_realize);
1627 }
1628 
1629 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1630 {
1631     DeviceClass *dc = DEVICE_CLASS(klass);
1632     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1633 
1634     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1635     k->cores_mask = POWER8_CORE_MASK;
1636     k->num_phbs = 3;
1637     k->get_pir_tir = pnv_get_pir_tir_p8;
1638     k->intc_create = pnv_chip_power8_intc_create;
1639     k->intc_reset = pnv_chip_power8_intc_reset;
1640     k->intc_destroy = pnv_chip_power8_intc_destroy;
1641     k->intc_print_info = pnv_chip_power8_intc_print_info;
1642     k->isa_create = pnv_chip_power8_isa_create;
1643     k->dt_populate = pnv_chip_power8_dt_populate;
1644     k->pic_print_info = pnv_chip_power8_pic_print_info;
1645     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1646     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1647     dc->desc = "PowerNV Chip POWER8";
1648 
1649     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1650                                     &k->parent_realize);
1651 }
1652 
1653 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1654 {
1655     DeviceClass *dc = DEVICE_CLASS(klass);
1656     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1657 
1658     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1659     k->cores_mask = POWER8_CORE_MASK;
1660     k->num_phbs = 4;
1661     k->get_pir_tir = pnv_get_pir_tir_p8;
1662     k->intc_create = pnv_chip_power8_intc_create;
1663     k->intc_reset = pnv_chip_power8_intc_reset;
1664     k->intc_destroy = pnv_chip_power8_intc_destroy;
1665     k->intc_print_info = pnv_chip_power8_intc_print_info;
1666     k->isa_create = pnv_chip_power8nvl_isa_create;
1667     k->dt_populate = pnv_chip_power8_dt_populate;
1668     k->pic_print_info = pnv_chip_power8_pic_print_info;
1669     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1670     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1671     dc->desc = "PowerNV Chip POWER8NVL";
1672 
1673     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1674                                     &k->parent_realize);
1675 }
1676 
1677 static void pnv_chip_power9_instance_init(Object *obj)
1678 {
1679     PnvChip *chip = PNV_CHIP(obj);
1680     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1681     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1682     int i;
1683 
1684     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1685     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1686     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1687                               "xive-fabric");
1688 
1689     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1690 
1691     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1692 
1693     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1694 
1695     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1696 
1697     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1698 
1699     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1700 
1701     /* Number of PECs is the chip default */
1702     chip->num_pecs = pcc->num_pecs;
1703 
1704     for (i = 0; i < chip->num_pecs; i++) {
1705         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1706                                 TYPE_PNV_PHB4_PEC);
1707     }
1708 
1709     for (i = 0; i < pcc->i2c_num_engines; i++) {
1710         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1711     }
1712 }
1713 
1714 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1715                                       PnvCore *pnv_core,
1716                                       const char *type)
1717 {
1718     char eq_name[32];
1719     int core_id = CPU_CORE(pnv_core)->core_id;
1720 
1721     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1722     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1723                                        sizeof(*eq), type,
1724                                        &error_fatal, NULL);
1725 
1726     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1727     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1728 }
1729 
1730 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1731 {
1732     PnvChip *chip = PNV_CHIP(chip9);
1733     int i;
1734 
1735     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1736     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1737 
1738     for (i = 0; i < chip9->nr_quads; i++) {
1739         PnvQuad *eq = &chip9->quads[i];
1740 
1741         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1742                                   PNV_QUAD_TYPE_NAME("power9"));
1743 
1744         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1745                                 &eq->xscom_regs);
1746     }
1747 }
1748 
1749 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1750 {
1751     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1752     int i;
1753 
1754     for (i = 0; i < chip->num_pecs; i++) {
1755         PnvPhb4PecState *pec = &chip9->pecs[i];
1756         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1757         uint32_t pec_nest_base;
1758         uint32_t pec_pci_base;
1759 
1760         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1761         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1762                                 &error_fatal);
1763         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1764                                  &error_fatal);
1765         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1766             return;
1767         }
1768 
1769         pec_nest_base = pecc->xscom_nest_base(pec);
1770         pec_pci_base = pecc->xscom_pci_base(pec);
1771 
1772         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1773         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1774     }
1775 }
1776 
1777 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1778 {
1779     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1780     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1781     PnvChip *chip = PNV_CHIP(dev);
1782     Pnv9Psi *psi9 = &chip9->psi;
1783     Error *local_err = NULL;
1784     int i;
1785 
1786     /* XSCOM bridge is first */
1787     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1788 
1789     pcc->parent_realize(dev, &local_err);
1790     if (local_err) {
1791         error_propagate(errp, local_err);
1792         return;
1793     }
1794 
1795     /* ADU */
1796     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1797                              &error_abort);
1798     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1799         return;
1800     }
1801     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1802                             &chip9->adu.xscom_regs);
1803 
1804     pnv_chip_quad_realize(chip9, &local_err);
1805     if (local_err) {
1806         error_propagate(errp, local_err);
1807         return;
1808     }
1809 
1810     /* XIVE interrupt controller (POWER9) */
1811     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1812                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1813     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1814                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1815     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1816                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1817     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1818                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1819     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1820                              &error_abort);
1821     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1822         return;
1823     }
1824     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1825                             &chip9->xive.xscom_regs);
1826 
1827     /* Processor Service Interface (PSI) Host Bridge */
1828     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1829                             &error_fatal);
1830     /* This is the only device with 4k ESB pages */
1831     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1832                             &error_fatal);
1833     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1834         return;
1835     }
1836     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1837                             &PNV_PSI(psi9)->xscom_regs);
1838 
1839     /* LPC */
1840     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1841         return;
1842     }
1843     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1844                                 &chip9->lpc.xscom_regs);
1845 
1846     chip->fw_mr = &chip9->lpc.isa_fw;
1847     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1848                                             (uint64_t) PNV9_LPCM_BASE(chip));
1849 
1850     /* ChipTOD */
1851     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1852                              chip->chip_id == 0, &error_abort);
1853     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1854                              chip->chip_id == 1, &error_abort);
1855     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1856                              &error_abort);
1857     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1858         return;
1859     }
1860     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1861                             &chip9->chiptod.xscom_regs);
1862 
1863     /* Create the simplified OCC model */
1864     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1865         return;
1866     }
1867     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1868     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1869                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1870 
1871     /* OCC SRAM model */
1872     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1873                                 &chip9->occ.sram_regs);
1874 
1875     /* SBE */
1876     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1877         return;
1878     }
1879     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1880                             &chip9->sbe.xscom_ctrl_regs);
1881     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1882                             &chip9->sbe.xscom_mbox_regs);
1883     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1884                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1885 
1886     /* HOMER */
1887     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1888                              &error_abort);
1889     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1890         return;
1891     }
1892     /* Homer Xscom region */
1893     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1894 
1895     /* Homer mmio region */
1896     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1897                                 &chip9->homer.regs);
1898 
1899     /* PEC PHBs */
1900     pnv_chip_power9_pec_realize(chip, &local_err);
1901     if (local_err) {
1902         error_propagate(errp, local_err);
1903         return;
1904     }
1905 
1906     /*
1907      * I2C
1908      */
1909     for (i = 0; i < pcc->i2c_num_engines; i++) {
1910         Object *obj =  OBJECT(&chip9->i2c[i]);
1911 
1912         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1913         object_property_set_int(obj, "num-busses",
1914                                 pcc->i2c_ports_per_engine[i],
1915                                 &error_fatal);
1916         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1917         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1918             return;
1919         }
1920         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1921                                 (chip9->i2c[i].engine - 1) *
1922                                         PNV9_XSCOM_I2CM_SIZE,
1923                                 &chip9->i2c[i].xscom_regs);
1924         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1925                               qdev_get_gpio_in(DEVICE(psi9),
1926                                                PSIHB9_IRQ_SBE_I2C));
1927     }
1928 }
1929 
1930 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1931 {
1932     addr &= (PNV9_XSCOM_SIZE - 1);
1933     return addr >> 3;
1934 }
1935 
1936 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1937 {
1938     DeviceClass *dc = DEVICE_CLASS(klass);
1939     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1940     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1941 
1942     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1943     k->cores_mask = POWER9_CORE_MASK;
1944     k->get_pir_tir = pnv_get_pir_tir_p9;
1945     k->intc_create = pnv_chip_power9_intc_create;
1946     k->intc_reset = pnv_chip_power9_intc_reset;
1947     k->intc_destroy = pnv_chip_power9_intc_destroy;
1948     k->intc_print_info = pnv_chip_power9_intc_print_info;
1949     k->isa_create = pnv_chip_power9_isa_create;
1950     k->dt_populate = pnv_chip_power9_dt_populate;
1951     k->pic_print_info = pnv_chip_power9_pic_print_info;
1952     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1953     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1954     dc->desc = "PowerNV Chip POWER9";
1955     k->num_pecs = PNV9_CHIP_MAX_PEC;
1956     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1957     k->i2c_ports_per_engine = i2c_ports_per_engine;
1958 
1959     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1960                                     &k->parent_realize);
1961 }
1962 
1963 static void pnv_chip_power10_instance_init(Object *obj)
1964 {
1965     PnvChip *chip = PNV_CHIP(obj);
1966     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1967     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1968     int i;
1969 
1970     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1971     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1972     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1973                               "xive-fabric");
1974     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1975     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1976     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1977                             TYPE_PNV10_CHIPTOD);
1978     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1979     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1980     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1981     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1982                             TYPE_PNV_N1_CHIPLET);
1983 
1984     chip->num_pecs = pcc->num_pecs;
1985 
1986     for (i = 0; i < chip->num_pecs; i++) {
1987         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1988                                 TYPE_PNV_PHB5_PEC);
1989     }
1990 
1991     for (i = 0; i < pcc->i2c_num_engines; i++) {
1992         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1993     }
1994 
1995     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
1996         object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
1997                                 TYPE_PNV_SPI);
1998     }
1999 }
2000 
2001 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
2002 {
2003     PnvChip *chip = PNV_CHIP(chip10);
2004     int i;
2005 
2006     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
2007     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
2008 
2009     for (i = 0; i < chip10->nr_quads; i++) {
2010         PnvQuad *eq = &chip10->quads[i];
2011 
2012         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
2013                                   PNV_QUAD_TYPE_NAME("power10"));
2014 
2015         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
2016                                 &eq->xscom_regs);
2017 
2018         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
2019                                 &eq->xscom_qme_regs);
2020     }
2021 }
2022 
2023 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
2024 {
2025     Pnv10Chip *chip10 = PNV10_CHIP(chip);
2026     int i;
2027 
2028     for (i = 0; i < chip->num_pecs; i++) {
2029         PnvPhb4PecState *pec = &chip10->pecs[i];
2030         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
2031         uint32_t pec_nest_base;
2032         uint32_t pec_pci_base;
2033 
2034         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
2035         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
2036                                 &error_fatal);
2037         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
2038                                  &error_fatal);
2039         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
2040             return;
2041         }
2042 
2043         pec_nest_base = pecc->xscom_nest_base(pec);
2044         pec_pci_base = pecc->xscom_pci_base(pec);
2045 
2046         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
2047         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
2048     }
2049 }
2050 
2051 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
2052 {
2053     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
2054     PnvChip *chip = PNV_CHIP(dev);
2055     Pnv10Chip *chip10 = PNV10_CHIP(dev);
2056     Error *local_err = NULL;
2057     int i;
2058 
2059     /* XSCOM bridge is first */
2060     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
2061 
2062     pcc->parent_realize(dev, &local_err);
2063     if (local_err) {
2064         error_propagate(errp, local_err);
2065         return;
2066     }
2067 
2068     /* ADU */
2069     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
2070                              &error_abort);
2071     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
2072         return;
2073     }
2074     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
2075                             &chip10->adu.xscom_regs);
2076 
2077     pnv_chip_power10_quad_realize(chip10, &local_err);
2078     if (local_err) {
2079         error_propagate(errp, local_err);
2080         return;
2081     }
2082 
2083     /* XIVE2 interrupt controller (POWER10) */
2084     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
2085                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
2086     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
2087                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
2088     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
2089                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
2090     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
2091                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
2092     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
2093                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
2094     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
2095                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
2096     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
2097                              &error_abort);
2098     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
2099         return;
2100     }
2101     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
2102                             &chip10->xive.xscom_regs);
2103 
2104     /* Processor Service Interface (PSI) Host Bridge */
2105     object_property_set_int(OBJECT(&chip10->psi), "bar",
2106                             PNV10_PSIHB_BASE(chip), &error_fatal);
2107     /* PSI can now be configured to use 64k ESB pages on POWER10 */
2108     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2109                             &error_fatal);
2110     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2111         return;
2112     }
2113     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2114                             &PNV_PSI(&chip10->psi)->xscom_regs);
2115 
2116     /* LPC */
2117     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2118         return;
2119     }
2120     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2121                                 &chip10->lpc.xscom_regs);
2122 
2123     chip->fw_mr = &chip10->lpc.isa_fw;
2124     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2125                                             (uint64_t) PNV10_LPCM_BASE(chip));
2126 
2127     /* ChipTOD */
2128     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2129                              chip->chip_id == 0, &error_abort);
2130     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2131                              chip->chip_id == 1, &error_abort);
2132     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2133                              &error_abort);
2134     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2135         return;
2136     }
2137     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2138                             &chip10->chiptod.xscom_regs);
2139 
2140     /* Create the simplified OCC model */
2141     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2142         return;
2143     }
2144     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2145                             &chip10->occ.xscom_regs);
2146     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2147                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2148 
2149     /* OCC SRAM model */
2150     memory_region_add_subregion(get_system_memory(),
2151                                 PNV10_OCC_SENSOR_BASE(chip),
2152                                 &chip10->occ.sram_regs);
2153 
2154     /* SBE */
2155     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2156         return;
2157     }
2158     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2159                             &chip10->sbe.xscom_ctrl_regs);
2160     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2161                             &chip10->sbe.xscom_mbox_regs);
2162     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2163                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2164 
2165     /* HOMER */
2166     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2167                              &error_abort);
2168     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2169         return;
2170     }
2171     /* Homer Xscom region */
2172     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2173                             &chip10->homer.pba_regs);
2174 
2175     /* Homer mmio region */
2176     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2177                                 &chip10->homer.regs);
2178 
2179     /* N1 chiplet */
2180     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2181         return;
2182     }
2183     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2184              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2185 
2186     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2187                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2188 
2189     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2190                            &chip10->n1_chiplet.xscom_pb_es_mr);
2191 
2192     /* PHBs */
2193     pnv_chip_power10_phb_realize(chip, &local_err);
2194     if (local_err) {
2195         error_propagate(errp, local_err);
2196         return;
2197     }
2198 
2199 
2200     /*
2201      * I2C
2202      */
2203     for (i = 0; i < pcc->i2c_num_engines; i++) {
2204         Object *obj =  OBJECT(&chip10->i2c[i]);
2205 
2206         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2207         object_property_set_int(obj, "num-busses",
2208                                 pcc->i2c_ports_per_engine[i],
2209                                 &error_fatal);
2210         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2211         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2212             return;
2213         }
2214         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2215                                 (chip10->i2c[i].engine - 1) *
2216                                         PNV10_XSCOM_I2CM_SIZE,
2217                                 &chip10->i2c[i].xscom_regs);
2218         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2219                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2220                                                PSIHB9_IRQ_SBE_I2C));
2221     }
2222     /* PIB SPI Controller */
2223     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2224         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
2225                                 i, &error_fatal);
2226         /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
2227         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
2228                                 (i == 2) ? 1 : 4, &error_fatal);
2229         if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
2230                                         (&chip10->pib_spic[i])), errp)) {
2231             return;
2232         }
2233         pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
2234                                 i * PNV10_XSCOM_PIB_SPIC_SIZE,
2235                                 &chip10->pib_spic[i].xscom_spic_regs);
2236     }
2237 }
2238 
2239 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2240 {
2241     int i;
2242     for (i = 0; i < pnv->num_chips; i++) {
2243         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2244 
2245         /*
2246          * Add a PCA9552 I2C device for PCIe hotplug control
2247          * to engine 2, bus 1, address 0x63
2248          */
2249         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2250                                                 "pca9552", 0x63);
2251 
2252         /*
2253          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2254          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2255          * after hypervisor code sets a SLOTx_EN pin high.
2256          */
2257         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2258         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2259         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2260         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2261         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2262 
2263         /*
2264          * Add a PCA9554 I2C device for cable card presence detection
2265          * to engine 2, bus 1, address 0x25
2266          */
2267         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2268     }
2269 }
2270 
2271 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2272 {
2273     addr &= (PNV10_XSCOM_SIZE - 1);
2274     return addr >> 3;
2275 }
2276 
2277 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2278 {
2279     DeviceClass *dc = DEVICE_CLASS(klass);
2280     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2281     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2282 
2283     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2284     k->cores_mask = POWER10_CORE_MASK;
2285     k->get_pir_tir = pnv_get_pir_tir_p10;
2286     k->intc_create = pnv_chip_power10_intc_create;
2287     k->intc_reset = pnv_chip_power10_intc_reset;
2288     k->intc_destroy = pnv_chip_power10_intc_destroy;
2289     k->intc_print_info = pnv_chip_power10_intc_print_info;
2290     k->isa_create = pnv_chip_power10_isa_create;
2291     k->dt_populate = pnv_chip_power10_dt_populate;
2292     k->pic_print_info = pnv_chip_power10_pic_print_info;
2293     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2294     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2295     dc->desc = "PowerNV Chip POWER10";
2296     k->num_pecs = PNV10_CHIP_MAX_PEC;
2297     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2298     k->i2c_ports_per_engine = i2c_ports_per_engine;
2299 
2300     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2301                                     &k->parent_realize);
2302 }
2303 
2304 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
2305                                    Error **errp)
2306 {
2307     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2308     int cores_max;
2309 
2310     /*
2311      * No custom mask for this chip, let's use the default one from *
2312      * the chip class
2313      */
2314     if (!chip->cores_mask) {
2315         chip->cores_mask = pcc->cores_mask;
2316     }
2317 
2318     /* filter alien core ids ! some are reserved */
2319     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2320         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2321                    chip->cores_mask);
2322         return;
2323     }
2324     chip->cores_mask &= pcc->cores_mask;
2325 
2326     /* Ensure small-cores a paired up in big-core mode */
2327     if (pnv->big_core) {
2328         uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
2329         uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
2330 
2331         if (even_cores ^ (odd_cores >> 1)) {
2332             error_setg(errp, "warning: unpaired cores in big-core mode !");
2333             return;
2334         }
2335     }
2336 
2337     /* now that we have a sane layout, let check the number of cores */
2338     cores_max = ctpop64(chip->cores_mask);
2339     if (chip->nr_cores > cores_max) {
2340         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2341                    cores_max);
2342         return;
2343     }
2344 }
2345 
2346 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2347 {
2348     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2349     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
2350     Error *error = NULL;
2351     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2352     const char *typename = pnv_chip_core_typename(chip);
2353     int i, core_hwid;
2354 
2355     if (!object_class_by_name(typename)) {
2356         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2357         return;
2358     }
2359 
2360     /* Cores */
2361     pnv_chip_core_sanitize(pnv, chip, &error);
2362     if (error) {
2363         error_propagate(errp, error);
2364         return;
2365     }
2366 
2367     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2368 
2369     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2370              && (i < chip->nr_cores); core_hwid++) {
2371         char core_name[32];
2372         PnvCore *pnv_core;
2373         uint64_t xscom_core_base;
2374 
2375         if (!(chip->cores_mask & (1ull << core_hwid))) {
2376             continue;
2377         }
2378 
2379         pnv_core = PNV_CORE(object_new(typename));
2380 
2381         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2382         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2383         chip->cores[i] = pnv_core;
2384         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2385                                 chip->nr_threads, &error_fatal);
2386         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2387                                 core_hwid, &error_fatal);
2388         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2389                                 &error_fatal);
2390         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2391                                 &error_fatal);
2392         object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
2393                                 &error_fatal);
2394         object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
2395                                 pmc->quirk_tb_big_core, &error_fatal);
2396         object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
2397                                 chip->lpar_per_core, &error_fatal);
2398         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2399                                  &error_abort);
2400 
2401         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2402 
2403         /* Each core has an XSCOM MMIO region */
2404         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2405 
2406         pnv_xscom_add_subregion(chip, xscom_core_base,
2407                                 &pnv_core->xscom_regs);
2408         i++;
2409     }
2410 }
2411 
2412 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2413 {
2414     PnvChip *chip = PNV_CHIP(dev);
2415     Error *error = NULL;
2416 
2417     /* Cores */
2418     pnv_chip_core_realize(chip, &error);
2419     if (error) {
2420         error_propagate(errp, error);
2421         return;
2422     }
2423 }
2424 
2425 static Property pnv_chip_properties[] = {
2426     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2427     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2428     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2429     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2430     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2431     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2432     DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
2433     DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
2434     DEFINE_PROP_END_OF_LIST(),
2435 };
2436 
2437 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2438 {
2439     DeviceClass *dc = DEVICE_CLASS(klass);
2440 
2441     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2442     dc->realize = pnv_chip_realize;
2443     device_class_set_props(dc, pnv_chip_properties);
2444     dc->desc = "PowerNV Chip";
2445 }
2446 
2447 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2448 {
2449     int i;
2450 
2451     for (i = 0; i < chip->nr_cores; i++) {
2452         PnvCore *pc = chip->cores[i];
2453         CPUCore *cc = CPU_CORE(pc);
2454 
2455         if (cc->core_id == core_id) {
2456             return pc;
2457         }
2458     }
2459     return NULL;
2460 }
2461 
2462 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2463 {
2464     int i, j;
2465 
2466     for (i = 0; i < chip->nr_cores; i++) {
2467         PnvCore *pc = chip->cores[i];
2468         CPUCore *cc = CPU_CORE(pc);
2469 
2470         for (j = 0; j < cc->nr_threads; j++) {
2471             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2472                 return pc->threads[j];
2473             }
2474         }
2475     }
2476     return NULL;
2477 }
2478 
2479 static void pnv_chip_foreach_cpu(PnvChip *chip,
2480                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2481                    void *opaque)
2482 {
2483     int i, j;
2484 
2485     for (i = 0; i < chip->nr_cores; i++) {
2486         PnvCore *pc = chip->cores[i];
2487 
2488         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2489             fn(chip, pc->threads[j], opaque);
2490         }
2491     }
2492 }
2493 
2494 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2495 {
2496     PnvMachineState *pnv = PNV_MACHINE(xi);
2497     int i, j;
2498 
2499     for (i = 0; i < pnv->num_chips; i++) {
2500         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2501 
2502         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2503             return &chip8->psi.ics;
2504         }
2505 
2506         for (j = 0; j < chip8->num_phbs; j++) {
2507             PnvPHB *phb = chip8->phbs[j];
2508             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2509 
2510             if (ics_valid_irq(&phb3->lsis, irq)) {
2511                 return &phb3->lsis;
2512             }
2513 
2514             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2515                 return ICS(&phb3->msis);
2516             }
2517         }
2518     }
2519     return NULL;
2520 }
2521 
2522 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2523 {
2524     int i;
2525 
2526     for (i = 0; i < pnv->num_chips; i++) {
2527         PnvChip *chip = pnv->chips[i];
2528         if (chip->chip_id == chip_id) {
2529             return chip;
2530         }
2531     }
2532     return NULL;
2533 }
2534 
2535 static void pnv_ics_resend(XICSFabric *xi)
2536 {
2537     PnvMachineState *pnv = PNV_MACHINE(xi);
2538     int i, j;
2539 
2540     for (i = 0; i < pnv->num_chips; i++) {
2541         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2542 
2543         ics_resend(&chip8->psi.ics);
2544 
2545         for (j = 0; j < chip8->num_phbs; j++) {
2546             PnvPHB *phb = chip8->phbs[j];
2547             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2548 
2549             ics_resend(&phb3->lsis);
2550             ics_resend(ICS(&phb3->msis));
2551         }
2552     }
2553 }
2554 
2555 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2556 {
2557     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2558 
2559     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2560 }
2561 
2562 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2563                                     void *opaque)
2564 {
2565     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2566 }
2567 
2568 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2569 {
2570     PnvMachineState *pnv = PNV_MACHINE(obj);
2571     int i;
2572 
2573     for (i = 0; i < pnv->num_chips; i++) {
2574         PnvChip *chip = pnv->chips[i];
2575 
2576         /* First CPU presenters */
2577         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2578 
2579         /* Then other devices, PHB, PSI, XIVE */
2580         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2581     }
2582 }
2583 
2584 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2585                          uint8_t nvt_blk, uint32_t nvt_idx,
2586                          bool cam_ignore, uint8_t priority,
2587                          uint32_t logic_serv,
2588                          XiveTCTXMatch *match)
2589 {
2590     PnvMachineState *pnv = PNV_MACHINE(xfb);
2591     int total_count = 0;
2592     int i;
2593 
2594     for (i = 0; i < pnv->num_chips; i++) {
2595         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2596         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2597         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2598         int count;
2599 
2600         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2601                                priority, logic_serv, match);
2602 
2603         if (count < 0) {
2604             return count;
2605         }
2606 
2607         total_count += count;
2608     }
2609 
2610     return total_count;
2611 }
2612 
2613 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2614                                 uint8_t nvt_blk, uint32_t nvt_idx,
2615                                 bool cam_ignore, uint8_t priority,
2616                                 uint32_t logic_serv,
2617                                 XiveTCTXMatch *match)
2618 {
2619     PnvMachineState *pnv = PNV_MACHINE(xfb);
2620     int total_count = 0;
2621     int i;
2622 
2623     for (i = 0; i < pnv->num_chips; i++) {
2624         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2625         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2626         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2627         int count;
2628 
2629         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2630                                priority, logic_serv, match);
2631 
2632         if (count < 0) {
2633             return count;
2634         }
2635 
2636         total_count += count;
2637     }
2638 
2639     return total_count;
2640 }
2641 
2642 static bool pnv_machine_get_big_core(Object *obj, Error **errp)
2643 {
2644     PnvMachineState *pnv = PNV_MACHINE(obj);
2645     return pnv->big_core;
2646 }
2647 
2648 static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
2649 {
2650     PnvMachineState *pnv = PNV_MACHINE(obj);
2651     pnv->big_core = value;
2652 }
2653 
2654 static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
2655 {
2656     PnvMachineState *pnv = PNV_MACHINE(obj);
2657     return pnv->lpar_per_core;
2658 }
2659 
2660 static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
2661 {
2662     PnvMachineState *pnv = PNV_MACHINE(obj);
2663     pnv->lpar_per_core = value;
2664 }
2665 
2666 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2667 {
2668     PnvMachineState *pnv = PNV_MACHINE(obj);
2669 
2670     return !!pnv->fw_load_addr;
2671 }
2672 
2673 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2674 {
2675     PnvMachineState *pnv = PNV_MACHINE(obj);
2676 
2677     if (value) {
2678         pnv->fw_load_addr = 0x8000000;
2679     }
2680 }
2681 
2682 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2683 {
2684     MachineClass *mc = MACHINE_CLASS(oc);
2685     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2686     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2687     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2688 
2689     static GlobalProperty phb_compat[] = {
2690         { TYPE_PNV_PHB, "version", "3" },
2691         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2692     };
2693 
2694     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2695     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2696     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2697 
2698     xic->icp_get = pnv_icp_get;
2699     xic->ics_get = pnv_ics_get;
2700     xic->ics_resend = pnv_ics_resend;
2701 
2702     pmc->compat = compat;
2703     pmc->compat_size = sizeof(compat);
2704     pmc->max_smt_threads = 8;
2705     /* POWER8 is always lpar-per-core mode */
2706     pmc->has_lpar_per_thread = false;
2707 
2708     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2709 }
2710 
2711 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2712 {
2713     MachineClass *mc = MACHINE_CLASS(oc);
2714     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2715     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2716     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2717 
2718     static GlobalProperty phb_compat[] = {
2719         { TYPE_PNV_PHB, "version", "4" },
2720         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2721     };
2722 
2723     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2724     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2725     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2726 
2727     xfc->match_nvt = pnv_match_nvt;
2728 
2729     pmc->compat = compat;
2730     pmc->compat_size = sizeof(compat);
2731     pmc->max_smt_threads = 4;
2732     pmc->has_lpar_per_thread = true;
2733     pmc->dt_power_mgt = pnv_dt_power_mgt;
2734 
2735     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2736 
2737     object_class_property_add_bool(oc, "big-core",
2738                                    pnv_machine_get_big_core,
2739                                    pnv_machine_set_big_core);
2740     object_class_property_set_description(oc, "big-core",
2741                               "Use big-core (aka fused-core) mode");
2742 
2743     object_class_property_add_bool(oc, "lpar-per-core",
2744                                    pnv_machine_get_lpar_per_core,
2745                                    pnv_machine_set_lpar_per_core);
2746     object_class_property_set_description(oc, "lpar-per-core",
2747                               "Use 1 LPAR per core mode");
2748 }
2749 
2750 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2751 {
2752     MachineClass *mc = MACHINE_CLASS(oc);
2753     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2754     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2755     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2756 
2757     static GlobalProperty phb_compat[] = {
2758         { TYPE_PNV_PHB, "version", "5" },
2759         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2760     };
2761 
2762     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2763     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2764 
2765     mc->alias = "powernv";
2766 
2767     pmc->compat = compat;
2768     pmc->compat_size = sizeof(compat);
2769     pmc->max_smt_threads = 4;
2770     pmc->has_lpar_per_thread = true;
2771     pmc->quirk_tb_big_core = true;
2772     pmc->dt_power_mgt = pnv_dt_power_mgt;
2773 
2774     xfc->match_nvt = pnv10_xive_match_nvt;
2775 
2776     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2777 }
2778 
2779 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2780 {
2781     MachineClass *mc = MACHINE_CLASS(oc);
2782 
2783     pnv_machine_p10_common_class_init(oc, data);
2784     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2785 
2786     /*
2787      * This is the parent of POWER10 Rainier class, so properies go here
2788      * rather than common init (which would add them to both parent and
2789      * child which is invalid).
2790      */
2791     object_class_property_add_bool(oc, "big-core",
2792                                    pnv_machine_get_big_core,
2793                                    pnv_machine_set_big_core);
2794     object_class_property_set_description(oc, "big-core",
2795                               "Use big-core (aka fused-core) mode");
2796 
2797     object_class_property_add_bool(oc, "lpar-per-core",
2798                                    pnv_machine_get_lpar_per_core,
2799                                    pnv_machine_set_lpar_per_core);
2800     object_class_property_set_description(oc, "lpar-per-core",
2801                               "Use 1 LPAR per core mode");
2802 }
2803 
2804 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2805 {
2806     MachineClass *mc = MACHINE_CLASS(oc);
2807     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2808 
2809     pnv_machine_p10_common_class_init(oc, data);
2810     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2811     pmc->i2c_init = pnv_rainier_i2c_init;
2812 }
2813 
2814 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2815 {
2816     CPUPPCState *env = cpu_env(cs);
2817 
2818     cpu_synchronize_state(cs);
2819     ppc_cpu_do_system_reset(cs);
2820     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2821         /*
2822          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2823          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2824          * (PPC_BIT(43)).
2825          */
2826         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2827             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2828             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2829         }
2830     } else {
2831         /*
2832          * For non-powersave system resets, SRR1[42:45] are defined to be
2833          * implementation-dependent. The POWER9 User Manual specifies that
2834          * an external (SCOM driven, which may come from a BMC nmi command or
2835          * another CPU requesting a NMI IPI) system reset exception should be
2836          * 0b0010 (PPC_BIT(44)).
2837          */
2838         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2839     }
2840     if (arg.host_int == 1) {
2841         cpu_resume(cs);
2842     }
2843 }
2844 
2845 /*
2846  * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
2847  * paused.
2848  */
2849 void pnv_cpu_do_nmi_resume(CPUState *cs)
2850 {
2851     async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
2852 }
2853 
2854 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2855 {
2856     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
2857 }
2858 
2859 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2860 {
2861     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2862     int i;
2863 
2864     for (i = 0; i < pnv->num_chips; i++) {
2865         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2866     }
2867 }
2868 
2869 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2870 {
2871     MachineClass *mc = MACHINE_CLASS(oc);
2872     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2873     NMIClass *nc = NMI_CLASS(oc);
2874 
2875     mc->desc = "IBM PowerNV (Non-Virtualized)";
2876     mc->init = pnv_init;
2877     mc->reset = pnv_reset;
2878     mc->max_cpus = MAX_CPUS;
2879     /* Pnv provides a AHCI device for storage */
2880     mc->block_default_type = IF_IDE;
2881     mc->no_parallel = 1;
2882     mc->default_boot_order = NULL;
2883     /*
2884      * RAM defaults to less than 2048 for 32-bit hosts, and large
2885      * enough to fit the maximum initrd size at it's load address
2886      */
2887     mc->default_ram_size = 1 * GiB;
2888     mc->default_ram_id = "pnv.ram";
2889     ispc->print_info = pnv_pic_print_info;
2890     nc->nmi_monitor_handler = pnv_nmi;
2891 
2892     object_class_property_add_bool(oc, "hb-mode",
2893                                    pnv_machine_get_hb, pnv_machine_set_hb);
2894     object_class_property_set_description(oc, "hb-mode",
2895                               "Use a hostboot like boot loader");
2896 }
2897 
2898 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2899     {                                             \
2900         .name          = type,                    \
2901         .class_init    = class_initfn,            \
2902         .parent        = TYPE_PNV8_CHIP,          \
2903     }
2904 
2905 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2906     {                                             \
2907         .name          = type,                    \
2908         .class_init    = class_initfn,            \
2909         .parent        = TYPE_PNV9_CHIP,          \
2910     }
2911 
2912 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2913     {                                              \
2914         .name          = type,                     \
2915         .class_init    = class_initfn,             \
2916         .parent        = TYPE_PNV10_CHIP,          \
2917     }
2918 
2919 static const TypeInfo types[] = {
2920     {
2921         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2922         .parent        = MACHINE_TYPE_NAME("powernv10"),
2923         .class_init    = pnv_machine_p10_rainier_class_init,
2924     },
2925     {
2926         .name          = MACHINE_TYPE_NAME("powernv10"),
2927         .parent        = TYPE_PNV_MACHINE,
2928         .class_init    = pnv_machine_power10_class_init,
2929         .interfaces = (InterfaceInfo[]) {
2930             { TYPE_XIVE_FABRIC },
2931             { },
2932         },
2933     },
2934     {
2935         .name          = MACHINE_TYPE_NAME("powernv9"),
2936         .parent        = TYPE_PNV_MACHINE,
2937         .class_init    = pnv_machine_power9_class_init,
2938         .interfaces = (InterfaceInfo[]) {
2939             { TYPE_XIVE_FABRIC },
2940             { },
2941         },
2942     },
2943     {
2944         .name          = MACHINE_TYPE_NAME("powernv8"),
2945         .parent        = TYPE_PNV_MACHINE,
2946         .class_init    = pnv_machine_power8_class_init,
2947         .interfaces = (InterfaceInfo[]) {
2948             { TYPE_XICS_FABRIC },
2949             { },
2950         },
2951     },
2952     {
2953         .name          = TYPE_PNV_MACHINE,
2954         .parent        = TYPE_MACHINE,
2955         .abstract       = true,
2956         .instance_size = sizeof(PnvMachineState),
2957         .class_init    = pnv_machine_class_init,
2958         .class_size    = sizeof(PnvMachineClass),
2959         .interfaces = (InterfaceInfo[]) {
2960             { TYPE_INTERRUPT_STATS_PROVIDER },
2961             { TYPE_NMI },
2962             { },
2963         },
2964     },
2965     {
2966         .name          = TYPE_PNV_CHIP,
2967         .parent        = TYPE_SYS_BUS_DEVICE,
2968         .class_init    = pnv_chip_class_init,
2969         .instance_size = sizeof(PnvChip),
2970         .class_size    = sizeof(PnvChipClass),
2971         .abstract      = true,
2972     },
2973 
2974     /*
2975      * P10 chip and variants
2976      */
2977     {
2978         .name          = TYPE_PNV10_CHIP,
2979         .parent        = TYPE_PNV_CHIP,
2980         .instance_init = pnv_chip_power10_instance_init,
2981         .instance_size = sizeof(Pnv10Chip),
2982     },
2983     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2984 
2985     /*
2986      * P9 chip and variants
2987      */
2988     {
2989         .name          = TYPE_PNV9_CHIP,
2990         .parent        = TYPE_PNV_CHIP,
2991         .instance_init = pnv_chip_power9_instance_init,
2992         .instance_size = sizeof(Pnv9Chip),
2993     },
2994     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2995 
2996     /*
2997      * P8 chip and variants
2998      */
2999     {
3000         .name          = TYPE_PNV8_CHIP,
3001         .parent        = TYPE_PNV_CHIP,
3002         .instance_init = pnv_chip_power8_instance_init,
3003         .instance_size = sizeof(Pnv8Chip),
3004     },
3005     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
3006     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
3007     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
3008                           pnv_chip_power8nvl_class_init),
3009 };
3010 
3011 DEFINE_TYPES(types)
3012