xref: /openbmc/qemu/hw/ppc/pnv.c (revision 6ab425d8)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44 
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49 
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54 
55 #include <libfdt.h>
56 
57 #define FDT_MAX_SIZE            (1 * MiB)
58 
59 #define FW_FILE_NAME            "skiboot.lid"
60 #define FW_LOAD_ADDR            0x0
61 #define FW_MAX_SIZE             (4 * MiB)
62 
63 #define KERNEL_LOAD_ADDR        0x20000000
64 #define KERNEL_MAX_SIZE         (256 * MiB)
65 #define INITRD_LOAD_ADDR        0x60000000
66 #define INITRD_MAX_SIZE         (256 * MiB)
67 
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73     const char *core_type = object_class_get_name(object_class_by_name(s));
74     g_free(s);
75     return core_type;
76 }
77 
78 /*
79  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80  *     4 * 4 sockets * 12 cores * 8 threads = 1536
81  * Let's make it 2^11
82  */
83 #define MAX_CPUS                2048
84 
85 /*
86  * Memory nodes are created by hostboot, one for each range of memory
87  * that has a different "affinity". In practice, it means one range
88  * per chip.
89  */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92     char *mem_name;
93     uint64_t mem_reg_property[2];
94     int off;
95 
96     mem_reg_property[0] = cpu_to_be64(start);
97     mem_reg_property[1] = cpu_to_be64(size);
98 
99     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100     off = fdt_add_subnode(fdt, 0, mem_name);
101     g_free(mem_name);
102 
103     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105                        sizeof(mem_reg_property))));
106     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108 
109 static int get_cpus_node(void *fdt)
110 {
111     int cpus_offset = fdt_path_offset(fdt, "/cpus");
112 
113     if (cpus_offset < 0) {
114         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115         if (cpus_offset) {
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118         }
119     }
120     _FDT(cpus_offset);
121     return cpus_offset;
122 }
123 
124 /*
125  * The PowerNV cores (and threads) need to use real HW ids and not an
126  * incremental index like it has been done on other platforms. This HW
127  * id is stored in the CPU PIR, it is used to create cpu nodes in the
128  * device tree, used in XSCOM to address cores and in interrupt
129  * servers.
130  */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133     PowerPCCPU *cpu = pc->threads[0];
134     CPUState *cs = CPU(cpu);
135     DeviceClass *dc = DEVICE_GET_CLASS(cs);
136     int smt_threads = CPU_CORE(pc)->nr_threads;
137     CPUPPCState *env = &cpu->env;
138     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139     uint32_t servers_prop[smt_threads];
140     int i;
141     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142                        0xffffffff, 0xffffffff};
143     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144     uint32_t cpufreq = 1000000000;
145     uint32_t page_sizes_prop[64];
146     size_t page_sizes_prop_size;
147     const uint8_t pa_features[] = { 24, 0,
148                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152     int offset;
153     char *nodename;
154     int cpus_offset = get_cpus_node(fdt);
155 
156     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158     _FDT(offset);
159     g_free(nodename);
160 
161     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169                             env->dcache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173                             env->icache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175                             env->icache_line_size)));
176 
177     if (pcc->l1_dcache_size) {
178         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179                                pcc->l1_dcache_size)));
180     } else {
181         warn_report("Unknown L1 dcache size for cpu");
182     }
183     if (pcc->l1_icache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185                                pcc->l1_icache_size)));
186     } else {
187         warn_report("Unknown L1 icache size for cpu");
188     }
189 
190     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193                            cpu->hash64_opts->slb_size)));
194     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196 
197     if (env->spr_cb[SPR_PURR].oea_read) {
198         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199     }
200 
201     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203                            segs, sizeof(segs))));
204     }
205 
206     /*
207      * Advertise VMX/VSX (vector extensions) if available
208      *   0 / no property == no vector extensions
209      *   1               == VMX / Altivec available
210      *   2               == VSX available
211      */
212     if (env->insns_flags & PPC_ALTIVEC) {
213         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214 
215         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216     }
217 
218     /*
219      * Advertise DFP (Decimal Floating Point) if available
220      *   0 / no property == no DFP
221      *   1               == DFP available
222      */
223     if (env->insns_flags2 & PPC2_DFP) {
224         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225     }
226 
227     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228                                                       sizeof(page_sizes_prop));
229     if (page_sizes_prop_size) {
230         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231                            page_sizes_prop, page_sizes_prop_size)));
232     }
233 
234     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235                        pa_features, sizeof(pa_features))));
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pc->pir + i);
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(servers_prop))));
243 }
244 
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246                        uint32_t nr_threads)
247 {
248     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249     char *name;
250     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251     uint32_t irange[2], i, rsize;
252     uint64_t *reg;
253     int offset;
254 
255     irange[0] = cpu_to_be32(pir);
256     irange[1] = cpu_to_be32(nr_threads);
257 
258     rsize = sizeof(uint64_t) * 2 * nr_threads;
259     reg = g_malloc(rsize);
260     for (i = 0; i < nr_threads; i++) {
261         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262         reg[i * 2 + 1] = cpu_to_be64(0x1000);
263     }
264 
265     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266     offset = fdt_add_subnode(fdt, 0, name);
267     _FDT(offset);
268     g_free(name);
269 
270     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272     _FDT((fdt_setprop_string(fdt, offset, "device_type",
273                               "PowerPC-External-Interrupt-Presentation")));
274     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276                        irange, sizeof(irange))));
277     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279     g_free(reg);
280 }
281 
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0,
288                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
289                  cpu_to_be64(PNV_XSCOM_SIZE),
290                  compat, sizeof(compat));
291 
292     for (i = 0; i < chip->nr_cores; i++) {
293         PnvCore *pnv_core = chip->cores[i];
294 
295         pnv_dt_core(chip, pnv_core, fdt);
296 
297         /* Interrupt Control Presenters (ICP). One per core. */
298         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299     }
300 
301     if (chip->ram_size) {
302         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303     }
304 }
305 
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309     int i;
310 
311     pnv_dt_xscom(chip, fdt, 0,
312                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313                  cpu_to_be64(PNV9_XSCOM_SIZE),
314                  compat, sizeof(compat));
315 
316     for (i = 0; i < chip->nr_cores; i++) {
317         PnvCore *pnv_core = chip->cores[i];
318 
319         pnv_dt_core(chip, pnv_core, fdt);
320     }
321 
322     if (chip->ram_size) {
323         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324     }
325 
326     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328 
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332     int i;
333 
334     pnv_dt_xscom(chip, fdt, 0,
335                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336                  cpu_to_be64(PNV10_XSCOM_SIZE),
337                  compat, sizeof(compat));
338 
339     for (i = 0; i < chip->nr_cores; i++) {
340         PnvCore *pnv_core = chip->cores[i];
341 
342         pnv_dt_core(chip, pnv_core, fdt);
343     }
344 
345     if (chip->ram_size) {
346         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347     }
348 
349     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351 
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354     uint32_t io_base = d->ioport_id;
355     uint32_t io_regs[] = {
356         cpu_to_be32(1),
357         cpu_to_be32(io_base),
358         cpu_to_be32(2)
359     };
360     char *name;
361     int node;
362 
363     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364     node = fdt_add_subnode(fdt, lpc_off, name);
365     _FDT(node);
366     g_free(name);
367 
368     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371 
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374     const char compatible[] = "ns16550\0pnpPNP,501";
375     uint32_t io_base = d->ioport_id;
376     uint32_t io_regs[] = {
377         cpu_to_be32(1),
378         cpu_to_be32(io_base),
379         cpu_to_be32(8)
380     };
381     char *name;
382     int node;
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 
399     /* This is needed by Linux */
400     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402 
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405     const char compatible[] = "bt\0ipmi-bt";
406     uint32_t io_base;
407     uint32_t io_regs[] = {
408         cpu_to_be32(1),
409         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410         cpu_to_be32(3)
411     };
412     uint32_t irq;
413     char *name;
414     int node;
415 
416     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417     io_regs[1] = cpu_to_be32(io_base);
418 
419     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420 
421     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422     node = fdt_add_subnode(fdt, lpc_off, name);
423     _FDT(node);
424     g_free(name);
425 
426     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428                       sizeof(compatible))));
429 
430     /* Mark it as reserved to avoid Linux trying to claim it */
431     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434                            fdt_get_phandle(fdt, lpc_off))));
435 }
436 
437 typedef struct ForeachPopulateArgs {
438     void *fdt;
439     int offset;
440 } ForeachPopulateArgs;
441 
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444     ForeachPopulateArgs *args = opaque;
445     ISADevice *d = ISA_DEVICE(dev);
446 
447     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448         pnv_dt_rtc(d, args->fdt, args->offset);
449     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450         pnv_dt_serial(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453     } else {
454         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455                      d->ioport_id);
456     }
457 
458     return 0;
459 }
460 
461 /*
462  * The default LPC bus of a multichip system is on chip 0. It's
463  * recognized by the firmware (skiboot) using a "primary" property.
464  */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468     ForeachPopulateArgs args = {
469         .fdt = fdt,
470         .offset = isa_offset,
471     };
472     uint32_t phandle;
473 
474     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475 
476     phandle = qemu_fdt_alloc_phandle(fdt);
477     assert(phandle > 0);
478     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479 
480     /*
481      * ISA devices are not necessarily parented to the ISA bus so we
482      * can not use object_child_foreach()
483      */
484     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485                        &args);
486 }
487 
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490     int off;
491 
492     off = fdt_add_subnode(fdt, 0, "ibm,opal");
493     off = fdt_add_subnode(fdt, off, "power-mgt");
494 
495     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497 
498 static void *pnv_dt_create(MachineState *machine)
499 {
500     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501     PnvMachineState *pnv = PNV_MACHINE(machine);
502     void *fdt;
503     char *buf;
504     int off;
505     int i;
506 
507     fdt = g_malloc0(FDT_MAX_SIZE);
508     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509 
510     /* /qemu node */
511     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512 
513     /* Root node */
514     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516     _FDT((fdt_setprop_string(fdt, 0, "model",
517                              "IBM PowerNV (emulated by qemu)")));
518     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519 
520     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
521     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522     if (qemu_uuid_set) {
523         _FDT((fdt_property_string(fdt, "system-id", buf)));
524     }
525     g_free(buf);
526 
527     off = fdt_add_subnode(fdt, 0, "chosen");
528     if (machine->kernel_cmdline) {
529         _FDT((fdt_setprop_string(fdt, off, "bootargs",
530                                  machine->kernel_cmdline)));
531     }
532 
533     if (pnv->initrd_size) {
534         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536 
537         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538                                &start_prop, sizeof(start_prop))));
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540                                &end_prop, sizeof(end_prop))));
541     }
542 
543     /* Populate device tree for each chip */
544     for (i = 0; i < pnv->num_chips; i++) {
545         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546     }
547 
548     /* Populate ISA devices on chip 0 */
549     pnv_dt_isa(pnv, fdt);
550 
551     if (pnv->bmc) {
552         pnv_dt_bmc_sensors(pnv->bmc, fdt);
553     }
554 
555     /* Create an extra node for power management on machines that support it */
556     if (pmc->dt_power_mgt) {
557         pmc->dt_power_mgt(pnv, fdt);
558     }
559 
560     return fdt;
561 }
562 
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566 
567     if (pnv->bmc) {
568         pnv_bmc_powerdown(pnv->bmc);
569     }
570 }
571 
572 static void pnv_reset(MachineState *machine)
573 {
574     void *fdt;
575 
576     qemu_devices_reset();
577 
578     fdt = pnv_dt_create(machine);
579 
580     /* Pack resulting tree */
581     _FDT((fdt_pack(fdt)));
582 
583     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
584     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
585 
586     g_free(fdt);
587 }
588 
589 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
590 {
591     Pnv8Chip *chip8 = PNV8_CHIP(chip);
592     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
593 }
594 
595 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
596 {
597     Pnv8Chip *chip8 = PNV8_CHIP(chip);
598     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
599 }
600 
601 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
602 {
603     Pnv9Chip *chip9 = PNV9_CHIP(chip);
604     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
605 }
606 
607 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
608 {
609     Pnv10Chip *chip10 = PNV10_CHIP(chip);
610     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
611 }
612 
613 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
614 {
615     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
616 }
617 
618 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     int i;
622 
623     ics_pic_print_info(&chip8->psi.ics, mon);
624     for (i = 0; i < chip->num_phbs; i++) {
625         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
626         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
627     }
628 }
629 
630 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
631 {
632     Pnv9Chip *chip9 = PNV9_CHIP(chip);
633     int i, j;
634 
635     pnv_xive_pic_print_info(&chip9->xive, mon);
636     pnv_psi_pic_print_info(&chip9->psi, mon);
637 
638     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
639         PnvPhb4PecState *pec = &chip9->pecs[i];
640         for (j = 0; j < pec->num_stacks; j++) {
641             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
642         }
643     }
644 }
645 
646 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
647                                                 uint32_t core_id)
648 {
649     return PNV_XSCOM_EX_BASE(core_id);
650 }
651 
652 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
653                                                 uint32_t core_id)
654 {
655     return PNV9_XSCOM_EC_BASE(core_id);
656 }
657 
658 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
659                                                  uint32_t core_id)
660 {
661     return PNV10_XSCOM_EC_BASE(core_id);
662 }
663 
664 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
665 {
666     PowerPCCPUClass *ppc_default =
667         POWERPC_CPU_CLASS(object_class_by_name(default_type));
668     PowerPCCPUClass *ppc =
669         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
670 
671     return ppc_default->pvr_match(ppc_default, ppc->pvr);
672 }
673 
674 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
675 {
676     Object *obj;
677 
678     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
679     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
680     object_property_set_int(obj, irq, "irq", &error_fatal);
681     object_property_set_bool(obj, true, "realized", &error_fatal);
682 }
683 
684 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
685 {
686     Pnv10Chip *chip10 = PNV10_CHIP(chip);
687 
688     pnv_psi_pic_print_info(&chip10->psi, mon);
689 }
690 
691 static void pnv_init(MachineState *machine)
692 {
693     PnvMachineState *pnv = PNV_MACHINE(machine);
694     MachineClass *mc = MACHINE_GET_CLASS(machine);
695     MemoryRegion *ram;
696     char *fw_filename;
697     long fw_size;
698     int i;
699     char *chip_typename;
700     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
701     DeviceState *dev;
702 
703     /* allocate RAM */
704     if (machine->ram_size < (1 * GiB)) {
705         warn_report("skiboot may not work with < 1GB of RAM");
706     }
707 
708     ram = g_new(MemoryRegion, 1);
709     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
710                                          machine->ram_size);
711     memory_region_add_subregion(get_system_memory(), 0, ram);
712 
713     /*
714      * Create our simple PNOR device
715      */
716     dev = qdev_create(NULL, TYPE_PNV_PNOR);
717     if (pnor) {
718         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
719                             &error_abort);
720     }
721     qdev_init_nofail(dev);
722     pnv->pnor = PNV_PNOR(dev);
723 
724     /* load skiboot firmware  */
725     if (bios_name == NULL) {
726         bios_name = FW_FILE_NAME;
727     }
728 
729     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
730     if (!fw_filename) {
731         error_report("Could not find OPAL firmware '%s'", bios_name);
732         exit(1);
733     }
734 
735     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
736     if (fw_size < 0) {
737         error_report("Could not load OPAL firmware '%s'", fw_filename);
738         exit(1);
739     }
740     g_free(fw_filename);
741 
742     /* load kernel */
743     if (machine->kernel_filename) {
744         long kernel_size;
745 
746         kernel_size = load_image_targphys(machine->kernel_filename,
747                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
748         if (kernel_size < 0) {
749             error_report("Could not load kernel '%s'",
750                          machine->kernel_filename);
751             exit(1);
752         }
753     }
754 
755     /* load initrd */
756     if (machine->initrd_filename) {
757         pnv->initrd_base = INITRD_LOAD_ADDR;
758         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
759                                   pnv->initrd_base, INITRD_MAX_SIZE);
760         if (pnv->initrd_size < 0) {
761             error_report("Could not load initial ram disk '%s'",
762                          machine->initrd_filename);
763             exit(1);
764         }
765     }
766 
767     /* MSIs are supported on this platform */
768     msi_nonbroken = true;
769 
770     /*
771      * Check compatibility of the specified CPU with the machine
772      * default.
773      */
774     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
775         error_report("invalid CPU model '%s' for %s machine",
776                      machine->cpu_type, mc->name);
777         exit(1);
778     }
779 
780     /* Create the processor chips */
781     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
782     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
783                                     i, machine->cpu_type);
784     if (!object_class_by_name(chip_typename)) {
785         error_report("invalid chip model '%.*s' for %s machine",
786                      i, machine->cpu_type, mc->name);
787         exit(1);
788     }
789 
790     pnv->num_chips =
791         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
792     /*
793      * TODO: should we decide on how many chips we can create based
794      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
795      */
796     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
797         error_report("invalid number of chips: '%d'", pnv->num_chips);
798         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
799         exit(1);
800     }
801 
802     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
803     for (i = 0; i < pnv->num_chips; i++) {
804         char chip_name[32];
805         Object *chip = object_new(chip_typename);
806 
807         pnv->chips[i] = PNV_CHIP(chip);
808 
809         /*
810          * TODO: put all the memory in one node on chip 0 until we find a
811          * way to specify different ranges for each chip
812          */
813         if (i == 0) {
814             object_property_set_int(chip, machine->ram_size, "ram-size",
815                                     &error_fatal);
816         }
817 
818         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
819         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
820         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
821                                 &error_fatal);
822         object_property_set_int(chip, machine->smp.cores,
823                                 "nr-cores", &error_fatal);
824         object_property_set_int(chip, machine->smp.threads,
825                                 "nr-threads", &error_fatal);
826         /*
827          * The POWER8 machine use the XICS interrupt interface.
828          * Propagate the XICS fabric to the chip and its controllers.
829          */
830         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
831             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
832         }
833         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
834             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
835                                      &error_abort);
836         }
837         object_property_set_bool(chip, true, "realized", &error_fatal);
838     }
839     g_free(chip_typename);
840 
841     /* Create the machine BMC simulator */
842     pnv->bmc = pnv_bmc_create(pnv->pnor);
843 
844     /* Instantiate ISA bus on chip 0 */
845     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
846 
847     /* Create serial port */
848     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
849 
850     /* Create an RTC ISA device too */
851     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
852 
853     /* Create the IPMI BT device for communication with the BMC */
854     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
855 
856     /*
857      * OpenPOWER systems use a IPMI SEL Event message to notify the
858      * host to powerdown
859      */
860     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
861     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
862 }
863 
864 /*
865  *    0:21  Reserved - Read as zeros
866  *   22:24  Chip ID
867  *   25:28  Core number
868  *   29:31  Thread ID
869  */
870 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
871 {
872     return (chip->chip_id << 7) | (core_id << 3);
873 }
874 
875 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
876                                         Error **errp)
877 {
878     Pnv8Chip *chip8 = PNV8_CHIP(chip);
879     Error *local_err = NULL;
880     Object *obj;
881     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
882 
883     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
884     if (local_err) {
885         error_propagate(errp, local_err);
886         return;
887     }
888 
889     pnv_cpu->intc = obj;
890 }
891 
892 
893 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
894 {
895     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
896 
897     icp_reset(ICP(pnv_cpu->intc));
898 }
899 
900 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
901 {
902     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
903 
904     icp_destroy(ICP(pnv_cpu->intc));
905     pnv_cpu->intc = NULL;
906 }
907 
908 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
909                                             Monitor *mon)
910 {
911     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
912 }
913 
914 /*
915  *    0:48  Reserved - Read as zeroes
916  *   49:52  Node ID
917  *   53:55  Chip ID
918  *   56     Reserved - Read as zero
919  *   57:61  Core number
920  *   62:63  Thread ID
921  *
922  * We only care about the lower bits. uint32_t is fine for the moment.
923  */
924 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
925 {
926     return (chip->chip_id << 8) | (core_id << 2);
927 }
928 
929 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
930 {
931     return (chip->chip_id << 8) | (core_id << 2);
932 }
933 
934 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
935                                         Error **errp)
936 {
937     Pnv9Chip *chip9 = PNV9_CHIP(chip);
938     Error *local_err = NULL;
939     Object *obj;
940     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
941 
942     /*
943      * The core creates its interrupt presenter but the XIVE interrupt
944      * controller object is initialized afterwards. Hopefully, it's
945      * only used at runtime.
946      */
947     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
948                            &local_err);
949     if (local_err) {
950         error_propagate(errp, local_err);
951         return;
952     }
953 
954     pnv_cpu->intc = obj;
955 }
956 
957 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
958 {
959     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
960 
961     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
962 }
963 
964 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
965 {
966     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
967 
968     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
969     pnv_cpu->intc = NULL;
970 }
971 
972 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
973                                             Monitor *mon)
974 {
975     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
976 }
977 
978 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
979                                         Error **errp)
980 {
981     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
982 
983     /* Will be defined when the interrupt controller is */
984     pnv_cpu->intc = NULL;
985 }
986 
987 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
988 {
989     ;
990 }
991 
992 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
993 {
994     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
995 
996     pnv_cpu->intc = NULL;
997 }
998 
999 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1000                                              Monitor *mon)
1001 {
1002 }
1003 
1004 /*
1005  * Allowed core identifiers on a POWER8 Processor Chip :
1006  *
1007  * <EX0 reserved>
1008  *  EX1  - Venice only
1009  *  EX2  - Venice only
1010  *  EX3  - Venice only
1011  *  EX4
1012  *  EX5
1013  *  EX6
1014  * <EX7,8 reserved> <reserved>
1015  *  EX9  - Venice only
1016  *  EX10 - Venice only
1017  *  EX11 - Venice only
1018  *  EX12
1019  *  EX13
1020  *  EX14
1021  * <EX15 reserved>
1022  */
1023 #define POWER8E_CORE_MASK  (0x7070ull)
1024 #define POWER8_CORE_MASK   (0x7e7eull)
1025 
1026 /*
1027  * POWER9 has 24 cores, ids starting at 0x0
1028  */
1029 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1030 
1031 
1032 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1033 
1034 static void pnv_chip_power8_instance_init(Object *obj)
1035 {
1036     PnvChip *chip = PNV_CHIP(obj);
1037     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1038     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1039     int i;
1040 
1041     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1042                              (Object **)&chip8->xics,
1043                              object_property_allow_set_link,
1044                              OBJ_PROP_LINK_STRONG,
1045                              &error_abort);
1046 
1047     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1048                             TYPE_PNV8_PSI, &error_abort, NULL);
1049 
1050     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1051                             TYPE_PNV8_LPC, &error_abort, NULL);
1052 
1053     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1054                             TYPE_PNV8_OCC, &error_abort, NULL);
1055 
1056     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1057                             TYPE_PNV8_HOMER, &error_abort, NULL);
1058 
1059     for (i = 0; i < pcc->num_phbs; i++) {
1060         object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1061                                 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1062                                 &error_abort, NULL);
1063     }
1064 
1065     /*
1066      * Number of PHBs is the chip default
1067      */
1068     chip->num_phbs = pcc->num_phbs;
1069 }
1070 
1071 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1072  {
1073     PnvChip *chip = PNV_CHIP(chip8);
1074     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1075     int i, j;
1076     char *name;
1077 
1078     name = g_strdup_printf("icp-%x", chip->chip_id);
1079     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1080     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1081     g_free(name);
1082 
1083     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1084 
1085     /* Map the ICP registers for each thread */
1086     for (i = 0; i < chip->nr_cores; i++) {
1087         PnvCore *pnv_core = chip->cores[i];
1088         int core_hwid = CPU_CORE(pnv_core)->core_id;
1089 
1090         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1091             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1092             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1093 
1094             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1095                                         &icp->mmio);
1096         }
1097     }
1098 }
1099 
1100 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1101 {
1102     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1103     PnvChip *chip = PNV_CHIP(dev);
1104     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1105     Pnv8Psi *psi8 = &chip8->psi;
1106     Error *local_err = NULL;
1107     int i;
1108 
1109     assert(chip8->xics);
1110 
1111     /* XSCOM bridge is first */
1112     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1113     if (local_err) {
1114         error_propagate(errp, local_err);
1115         return;
1116     }
1117     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1118 
1119     pcc->parent_realize(dev, &local_err);
1120     if (local_err) {
1121         error_propagate(errp, local_err);
1122         return;
1123     }
1124 
1125     /* Processor Service Interface (PSI) Host Bridge */
1126     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1127                             "bar", &error_fatal);
1128     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1129                              ICS_PROP_XICS, &error_abort);
1130     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1131     if (local_err) {
1132         error_propagate(errp, local_err);
1133         return;
1134     }
1135     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1136                             &PNV_PSI(psi8)->xscom_regs);
1137 
1138     /* Create LPC controller */
1139     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1140                              &error_abort);
1141     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1142                              &error_fatal);
1143     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1144 
1145     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1146                                             (uint64_t) PNV_XSCOM_BASE(chip),
1147                                             PNV_XSCOM_LPC_BASE);
1148 
1149     /*
1150      * Interrupt Management Area. This is the memory region holding
1151      * all the Interrupt Control Presenter (ICP) registers
1152      */
1153     pnv_chip_icp_realize(chip8, &local_err);
1154     if (local_err) {
1155         error_propagate(errp, local_err);
1156         return;
1157     }
1158 
1159     /* Create the simplified OCC model */
1160     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1161                              &error_abort);
1162     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1163     if (local_err) {
1164         error_propagate(errp, local_err);
1165         return;
1166     }
1167     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1168 
1169     /* OCC SRAM model */
1170     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1171                                 &chip8->occ.sram_regs);
1172 
1173     /* HOMER */
1174     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1175                              &error_abort);
1176     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1177                              &local_err);
1178     if (local_err) {
1179         error_propagate(errp, local_err);
1180         return;
1181     }
1182     /* Homer Xscom region */
1183     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1184 
1185     /* Homer mmio region */
1186     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1187                                 &chip8->homer.regs);
1188 
1189     /* PHB3 controllers */
1190     for (i = 0; i < chip->num_phbs; i++) {
1191         PnvPHB3 *phb = &chip8->phbs[i];
1192         PnvPBCQState *pbcq = &phb->pbcq;
1193 
1194         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1195         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1196                                 &error_fatal);
1197         object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1198         if (local_err) {
1199             error_propagate(errp, local_err);
1200             return;
1201         }
1202         qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1203 
1204         /* Populate the XSCOM address space. */
1205         pnv_xscom_add_subregion(chip,
1206                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1207                                 &pbcq->xscom_nest_regs);
1208         pnv_xscom_add_subregion(chip,
1209                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1210                                 &pbcq->xscom_pci_regs);
1211         pnv_xscom_add_subregion(chip,
1212                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1213                                 &pbcq->xscom_spci_regs);
1214     }
1215 }
1216 
1217 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1218 {
1219     addr &= (PNV_XSCOM_SIZE - 1);
1220     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1221 }
1222 
1223 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1224 {
1225     DeviceClass *dc = DEVICE_CLASS(klass);
1226     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1227 
1228     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1229     k->cores_mask = POWER8E_CORE_MASK;
1230     k->num_phbs = 3;
1231     k->core_pir = pnv_chip_core_pir_p8;
1232     k->intc_create = pnv_chip_power8_intc_create;
1233     k->intc_reset = pnv_chip_power8_intc_reset;
1234     k->intc_destroy = pnv_chip_power8_intc_destroy;
1235     k->intc_print_info = pnv_chip_power8_intc_print_info;
1236     k->isa_create = pnv_chip_power8_isa_create;
1237     k->dt_populate = pnv_chip_power8_dt_populate;
1238     k->pic_print_info = pnv_chip_power8_pic_print_info;
1239     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1240     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1241     dc->desc = "PowerNV Chip POWER8E";
1242 
1243     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1244                                     &k->parent_realize);
1245 }
1246 
1247 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1248 {
1249     DeviceClass *dc = DEVICE_CLASS(klass);
1250     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1251 
1252     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1253     k->cores_mask = POWER8_CORE_MASK;
1254     k->num_phbs = 3;
1255     k->core_pir = pnv_chip_core_pir_p8;
1256     k->intc_create = pnv_chip_power8_intc_create;
1257     k->intc_reset = pnv_chip_power8_intc_reset;
1258     k->intc_destroy = pnv_chip_power8_intc_destroy;
1259     k->intc_print_info = pnv_chip_power8_intc_print_info;
1260     k->isa_create = pnv_chip_power8_isa_create;
1261     k->dt_populate = pnv_chip_power8_dt_populate;
1262     k->pic_print_info = pnv_chip_power8_pic_print_info;
1263     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1264     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1265     dc->desc = "PowerNV Chip POWER8";
1266 
1267     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1268                                     &k->parent_realize);
1269 }
1270 
1271 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1272 {
1273     DeviceClass *dc = DEVICE_CLASS(klass);
1274     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1275 
1276     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1277     k->cores_mask = POWER8_CORE_MASK;
1278     k->num_phbs = 3;
1279     k->core_pir = pnv_chip_core_pir_p8;
1280     k->intc_create = pnv_chip_power8_intc_create;
1281     k->intc_reset = pnv_chip_power8_intc_reset;
1282     k->intc_destroy = pnv_chip_power8_intc_destroy;
1283     k->intc_print_info = pnv_chip_power8_intc_print_info;
1284     k->isa_create = pnv_chip_power8nvl_isa_create;
1285     k->dt_populate = pnv_chip_power8_dt_populate;
1286     k->pic_print_info = pnv_chip_power8_pic_print_info;
1287     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1288     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1289     dc->desc = "PowerNV Chip POWER8NVL";
1290 
1291     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1292                                     &k->parent_realize);
1293 }
1294 
1295 static void pnv_chip_power9_instance_init(Object *obj)
1296 {
1297     PnvChip *chip = PNV_CHIP(obj);
1298     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1299     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1300     int i;
1301 
1302     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1303                             TYPE_PNV_XIVE, &error_abort, NULL);
1304     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1305                               "xive-fabric", &error_abort);
1306 
1307     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1308                             TYPE_PNV9_PSI, &error_abort, NULL);
1309 
1310     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1311                             TYPE_PNV9_LPC, &error_abort, NULL);
1312 
1313     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1314                             TYPE_PNV9_OCC, &error_abort, NULL);
1315 
1316     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1317                             TYPE_PNV9_HOMER, &error_abort, NULL);
1318 
1319     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1320         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1321                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1322                                 &error_abort, NULL);
1323     }
1324 
1325     /*
1326      * Number of PHBs is the chip default
1327      */
1328     chip->num_phbs = pcc->num_phbs;
1329 }
1330 
1331 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1332 {
1333     PnvChip *chip = PNV_CHIP(chip9);
1334     int i;
1335 
1336     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1337     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1338 
1339     for (i = 0; i < chip9->nr_quads; i++) {
1340         char eq_name[32];
1341         PnvQuad *eq = &chip9->quads[i];
1342         PnvCore *pnv_core = chip->cores[i * 4];
1343         int core_id = CPU_CORE(pnv_core)->core_id;
1344 
1345         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1346         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1347                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1348 
1349         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1350         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1351 
1352         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1353                                 &eq->xscom_regs);
1354     }
1355 }
1356 
1357 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1358 {
1359     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1360     Error *local_err = NULL;
1361     int i, j;
1362     int phb_id = 0;
1363 
1364     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1365         PnvPhb4PecState *pec = &chip9->pecs[i];
1366         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1367         uint32_t pec_nest_base;
1368         uint32_t pec_pci_base;
1369 
1370         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1371         /*
1372          * PEC0 -> 1 stack
1373          * PEC1 -> 2 stacks
1374          * PEC2 -> 3 stacks
1375          */
1376         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1377                                 &error_fatal);
1378         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1379                                  &error_fatal);
1380         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1381                                  "system-memory", &error_abort);
1382         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1383         if (local_err) {
1384             error_propagate(errp, local_err);
1385             return;
1386         }
1387 
1388         pec_nest_base = pecc->xscom_nest_base(pec);
1389         pec_pci_base = pecc->xscom_pci_base(pec);
1390 
1391         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1392         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1393 
1394         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1395              j++, phb_id++) {
1396             PnvPhb4PecStack *stack = &pec->stacks[j];
1397             Object *obj = OBJECT(&stack->phb);
1398 
1399             object_property_set_int(obj, phb_id, "index", &error_fatal);
1400             object_property_set_int(obj, chip->chip_id, "chip-id",
1401                                     &error_fatal);
1402             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1403                                     &error_fatal);
1404             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1405                                     &error_fatal);
1406             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1407             object_property_set_bool(obj, true, "realized", &local_err);
1408             if (local_err) {
1409                 error_propagate(errp, local_err);
1410                 return;
1411             }
1412             qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1413 
1414             /* Populate the XSCOM address space. */
1415             pnv_xscom_add_subregion(chip,
1416                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1417                                    &stack->nest_regs_mr);
1418             pnv_xscom_add_subregion(chip,
1419                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1420                                     &stack->pci_regs_mr);
1421             pnv_xscom_add_subregion(chip,
1422                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1423                                     0x40 * stack->stack_no,
1424                                     &stack->phb_regs_mr);
1425         }
1426     }
1427 }
1428 
1429 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1430 {
1431     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1432     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1433     PnvChip *chip = PNV_CHIP(dev);
1434     Pnv9Psi *psi9 = &chip9->psi;
1435     Error *local_err = NULL;
1436 
1437     /* XSCOM bridge is first */
1438     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1439     if (local_err) {
1440         error_propagate(errp, local_err);
1441         return;
1442     }
1443     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1444 
1445     pcc->parent_realize(dev, &local_err);
1446     if (local_err) {
1447         error_propagate(errp, local_err);
1448         return;
1449     }
1450 
1451     pnv_chip_quad_realize(chip9, &local_err);
1452     if (local_err) {
1453         error_propagate(errp, local_err);
1454         return;
1455     }
1456 
1457     /* XIVE interrupt controller (POWER9) */
1458     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1459                             "ic-bar", &error_fatal);
1460     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1461                             "vc-bar", &error_fatal);
1462     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1463                             "pc-bar", &error_fatal);
1464     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1465                             "tm-bar", &error_fatal);
1466     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1467                              &error_abort);
1468     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1469                              &local_err);
1470     if (local_err) {
1471         error_propagate(errp, local_err);
1472         return;
1473     }
1474     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1475                             &chip9->xive.xscom_regs);
1476 
1477     /* Processor Service Interface (PSI) Host Bridge */
1478     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1479                             "bar", &error_fatal);
1480     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1481     if (local_err) {
1482         error_propagate(errp, local_err);
1483         return;
1484     }
1485     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1486                             &PNV_PSI(psi9)->xscom_regs);
1487 
1488     /* LPC */
1489     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1490                              &error_abort);
1491     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1492     if (local_err) {
1493         error_propagate(errp, local_err);
1494         return;
1495     }
1496     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1497                                 &chip9->lpc.xscom_regs);
1498 
1499     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1500                                             (uint64_t) PNV9_LPCM_BASE(chip));
1501 
1502     /* Create the simplified OCC model */
1503     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1504                              &error_abort);
1505     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1506     if (local_err) {
1507         error_propagate(errp, local_err);
1508         return;
1509     }
1510     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1511 
1512     /* OCC SRAM model */
1513     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1514                                 &chip9->occ.sram_regs);
1515 
1516     /* HOMER */
1517     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1518                              &error_abort);
1519     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1520                              &local_err);
1521     if (local_err) {
1522         error_propagate(errp, local_err);
1523         return;
1524     }
1525     /* Homer Xscom region */
1526     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1527 
1528     /* Homer mmio region */
1529     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1530                                 &chip9->homer.regs);
1531 
1532     /* PHBs */
1533     pnv_chip_power9_phb_realize(chip, &local_err);
1534     if (local_err) {
1535         error_propagate(errp, local_err);
1536         return;
1537     }
1538 }
1539 
1540 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1541 {
1542     addr &= (PNV9_XSCOM_SIZE - 1);
1543     return addr >> 3;
1544 }
1545 
1546 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1547 {
1548     DeviceClass *dc = DEVICE_CLASS(klass);
1549     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1550 
1551     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1552     k->cores_mask = POWER9_CORE_MASK;
1553     k->core_pir = pnv_chip_core_pir_p9;
1554     k->intc_create = pnv_chip_power9_intc_create;
1555     k->intc_reset = pnv_chip_power9_intc_reset;
1556     k->intc_destroy = pnv_chip_power9_intc_destroy;
1557     k->intc_print_info = pnv_chip_power9_intc_print_info;
1558     k->isa_create = pnv_chip_power9_isa_create;
1559     k->dt_populate = pnv_chip_power9_dt_populate;
1560     k->pic_print_info = pnv_chip_power9_pic_print_info;
1561     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1562     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1563     dc->desc = "PowerNV Chip POWER9";
1564     k->num_phbs = 6;
1565 
1566     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1567                                     &k->parent_realize);
1568 }
1569 
1570 static void pnv_chip_power10_instance_init(Object *obj)
1571 {
1572     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1573 
1574     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1575                             TYPE_PNV10_PSI, &error_abort, NULL);
1576     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1577                             TYPE_PNV10_LPC, &error_abort, NULL);
1578 }
1579 
1580 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1581 {
1582     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1583     PnvChip *chip = PNV_CHIP(dev);
1584     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1585     Error *local_err = NULL;
1586 
1587     /* XSCOM bridge is first */
1588     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1589     if (local_err) {
1590         error_propagate(errp, local_err);
1591         return;
1592     }
1593     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1594 
1595     pcc->parent_realize(dev, &local_err);
1596     if (local_err) {
1597         error_propagate(errp, local_err);
1598         return;
1599     }
1600 
1601     /* Processor Service Interface (PSI) Host Bridge */
1602     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1603                             "bar", &error_fatal);
1604     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1605                              &local_err);
1606     if (local_err) {
1607         error_propagate(errp, local_err);
1608         return;
1609     }
1610     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1611                             &PNV_PSI(&chip10->psi)->xscom_regs);
1612 
1613     /* LPC */
1614     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1615                              &error_abort);
1616     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1617                              &local_err);
1618     if (local_err) {
1619         error_propagate(errp, local_err);
1620         return;
1621     }
1622     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1623                                 &chip10->lpc.xscom_regs);
1624 
1625     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1626                                             (uint64_t) PNV10_LPCM_BASE(chip));
1627 }
1628 
1629 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1630 {
1631     addr &= (PNV10_XSCOM_SIZE - 1);
1632     return addr >> 3;
1633 }
1634 
1635 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1636 {
1637     DeviceClass *dc = DEVICE_CLASS(klass);
1638     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1639 
1640     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1641     k->cores_mask = POWER10_CORE_MASK;
1642     k->core_pir = pnv_chip_core_pir_p10;
1643     k->intc_create = pnv_chip_power10_intc_create;
1644     k->intc_reset = pnv_chip_power10_intc_reset;
1645     k->intc_destroy = pnv_chip_power10_intc_destroy;
1646     k->intc_print_info = pnv_chip_power10_intc_print_info;
1647     k->isa_create = pnv_chip_power10_isa_create;
1648     k->dt_populate = pnv_chip_power10_dt_populate;
1649     k->pic_print_info = pnv_chip_power10_pic_print_info;
1650     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1651     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1652     dc->desc = "PowerNV Chip POWER10";
1653 
1654     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1655                                     &k->parent_realize);
1656 }
1657 
1658 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1659 {
1660     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1661     int cores_max;
1662 
1663     /*
1664      * No custom mask for this chip, let's use the default one from *
1665      * the chip class
1666      */
1667     if (!chip->cores_mask) {
1668         chip->cores_mask = pcc->cores_mask;
1669     }
1670 
1671     /* filter alien core ids ! some are reserved */
1672     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1673         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1674                    chip->cores_mask);
1675         return;
1676     }
1677     chip->cores_mask &= pcc->cores_mask;
1678 
1679     /* now that we have a sane layout, let check the number of cores */
1680     cores_max = ctpop64(chip->cores_mask);
1681     if (chip->nr_cores > cores_max) {
1682         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1683                    cores_max);
1684         return;
1685     }
1686 }
1687 
1688 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1689 {
1690     Error *error = NULL;
1691     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1692     const char *typename = pnv_chip_core_typename(chip);
1693     int i, core_hwid;
1694     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1695 
1696     if (!object_class_by_name(typename)) {
1697         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1698         return;
1699     }
1700 
1701     /* Cores */
1702     pnv_chip_core_sanitize(chip, &error);
1703     if (error) {
1704         error_propagate(errp, error);
1705         return;
1706     }
1707 
1708     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1709 
1710     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1711              && (i < chip->nr_cores); core_hwid++) {
1712         char core_name[32];
1713         PnvCore *pnv_core;
1714         uint64_t xscom_core_base;
1715 
1716         if (!(chip->cores_mask & (1ull << core_hwid))) {
1717             continue;
1718         }
1719 
1720         pnv_core = PNV_CORE(object_new(typename));
1721 
1722         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1723         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1724                                   &error_abort);
1725         chip->cores[i] = pnv_core;
1726         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1727                                 "nr-threads", &error_fatal);
1728         object_property_set_int(OBJECT(pnv_core), core_hwid,
1729                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1730         object_property_set_int(OBJECT(pnv_core),
1731                                 pcc->core_pir(chip, core_hwid),
1732                                 "pir", &error_fatal);
1733         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1734                                 "hrmor", &error_fatal);
1735         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1736                                  &error_abort);
1737         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1738                                  &error_fatal);
1739 
1740         /* Each core has an XSCOM MMIO region */
1741         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1742 
1743         pnv_xscom_add_subregion(chip, xscom_core_base,
1744                                 &pnv_core->xscom_regs);
1745         i++;
1746     }
1747 }
1748 
1749 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1750 {
1751     PnvChip *chip = PNV_CHIP(dev);
1752     Error *error = NULL;
1753 
1754     /* Cores */
1755     pnv_chip_core_realize(chip, &error);
1756     if (error) {
1757         error_propagate(errp, error);
1758         return;
1759     }
1760 }
1761 
1762 static Property pnv_chip_properties[] = {
1763     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1764     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1765     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1766     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1767     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1768     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1769     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1770     DEFINE_PROP_END_OF_LIST(),
1771 };
1772 
1773 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1774 {
1775     DeviceClass *dc = DEVICE_CLASS(klass);
1776 
1777     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1778     dc->realize = pnv_chip_realize;
1779     device_class_set_props(dc, pnv_chip_properties);
1780     dc->desc = "PowerNV Chip";
1781 }
1782 
1783 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1784 {
1785     int i, j;
1786 
1787     for (i = 0; i < chip->nr_cores; i++) {
1788         PnvCore *pc = chip->cores[i];
1789         CPUCore *cc = CPU_CORE(pc);
1790 
1791         for (j = 0; j < cc->nr_threads; j++) {
1792             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1793                 return pc->threads[j];
1794             }
1795         }
1796     }
1797     return NULL;
1798 }
1799 
1800 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1801 {
1802     PnvMachineState *pnv = PNV_MACHINE(xi);
1803     int i, j;
1804 
1805     for (i = 0; i < pnv->num_chips; i++) {
1806         PnvChip *chip = pnv->chips[i];
1807         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1808 
1809         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1810             return &chip8->psi.ics;
1811         }
1812         for (j = 0; j < chip->num_phbs; j++) {
1813             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1814                 return &chip8->phbs[j].lsis;
1815             }
1816             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1817                 return ICS(&chip8->phbs[j].msis);
1818             }
1819         }
1820     }
1821     return NULL;
1822 }
1823 
1824 static void pnv_ics_resend(XICSFabric *xi)
1825 {
1826     PnvMachineState *pnv = PNV_MACHINE(xi);
1827     int i, j;
1828 
1829     for (i = 0; i < pnv->num_chips; i++) {
1830         PnvChip *chip = pnv->chips[i];
1831         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1832 
1833         ics_resend(&chip8->psi.ics);
1834         for (j = 0; j < chip->num_phbs; j++) {
1835             ics_resend(&chip8->phbs[j].lsis);
1836             ics_resend(ICS(&chip8->phbs[j].msis));
1837         }
1838     }
1839 }
1840 
1841 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1842 {
1843     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1844 
1845     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1846 }
1847 
1848 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1849                                Monitor *mon)
1850 {
1851     PnvMachineState *pnv = PNV_MACHINE(obj);
1852     int i;
1853     CPUState *cs;
1854 
1855     CPU_FOREACH(cs) {
1856         PowerPCCPU *cpu = POWERPC_CPU(cs);
1857 
1858         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1859         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1860                                                            mon);
1861     }
1862 
1863     for (i = 0; i < pnv->num_chips; i++) {
1864         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1865     }
1866 }
1867 
1868 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1869                          uint8_t nvt_blk, uint32_t nvt_idx,
1870                          bool cam_ignore, uint8_t priority,
1871                          uint32_t logic_serv,
1872                          XiveTCTXMatch *match)
1873 {
1874     PnvMachineState *pnv = PNV_MACHINE(xfb);
1875     int total_count = 0;
1876     int i;
1877 
1878     for (i = 0; i < pnv->num_chips; i++) {
1879         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1880         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1881         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1882         int count;
1883 
1884         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1885                                priority, logic_serv, match);
1886 
1887         if (count < 0) {
1888             return count;
1889         }
1890 
1891         total_count += count;
1892     }
1893 
1894     return total_count;
1895 }
1896 
1897 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1898 {
1899     MachineClass *mc = MACHINE_CLASS(oc);
1900     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1901     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1902     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1903 
1904     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1905     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1906 
1907     xic->icp_get = pnv_icp_get;
1908     xic->ics_get = pnv_ics_get;
1909     xic->ics_resend = pnv_ics_resend;
1910 
1911     pmc->compat = compat;
1912     pmc->compat_size = sizeof(compat);
1913 }
1914 
1915 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1916 {
1917     MachineClass *mc = MACHINE_CLASS(oc);
1918     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1919     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1920     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1921 
1922     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1923     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1924     xfc->match_nvt = pnv_match_nvt;
1925 
1926     mc->alias = "powernv";
1927 
1928     pmc->compat = compat;
1929     pmc->compat_size = sizeof(compat);
1930     pmc->dt_power_mgt = pnv_dt_power_mgt;
1931 }
1932 
1933 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1934 {
1935     MachineClass *mc = MACHINE_CLASS(oc);
1936     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1937     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1938 
1939     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1940     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1941 
1942     pmc->compat = compat;
1943     pmc->compat_size = sizeof(compat);
1944     pmc->dt_power_mgt = pnv_dt_power_mgt;
1945 }
1946 
1947 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1948 {
1949     PnvMachineState *pnv = PNV_MACHINE(obj);
1950 
1951     return !!pnv->fw_load_addr;
1952 }
1953 
1954 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1955 {
1956     PnvMachineState *pnv = PNV_MACHINE(obj);
1957 
1958     if (value) {
1959         pnv->fw_load_addr = 0x8000000;
1960     }
1961 }
1962 
1963 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1964 {
1965     MachineClass *mc = MACHINE_CLASS(oc);
1966     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1967 
1968     mc->desc = "IBM PowerNV (Non-Virtualized)";
1969     mc->init = pnv_init;
1970     mc->reset = pnv_reset;
1971     mc->max_cpus = MAX_CPUS;
1972     /* Pnv provides a AHCI device for storage */
1973     mc->block_default_type = IF_IDE;
1974     mc->no_parallel = 1;
1975     mc->default_boot_order = NULL;
1976     /*
1977      * RAM defaults to less than 2048 for 32-bit hosts, and large
1978      * enough to fit the maximum initrd size at it's load address
1979      */
1980     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1981     ispc->print_info = pnv_pic_print_info;
1982 
1983     object_class_property_add_bool(oc, "hb-mode",
1984                                    pnv_machine_get_hb, pnv_machine_set_hb,
1985                                    &error_abort);
1986     object_class_property_set_description(oc, "hb-mode",
1987                               "Use a hostboot like boot loader",
1988                               NULL);
1989 }
1990 
1991 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1992     {                                             \
1993         .name          = type,                    \
1994         .class_init    = class_initfn,            \
1995         .parent        = TYPE_PNV8_CHIP,          \
1996     }
1997 
1998 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1999     {                                             \
2000         .name          = type,                    \
2001         .class_init    = class_initfn,            \
2002         .parent        = TYPE_PNV9_CHIP,          \
2003     }
2004 
2005 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2006     {                                              \
2007         .name          = type,                     \
2008         .class_init    = class_initfn,             \
2009         .parent        = TYPE_PNV10_CHIP,          \
2010     }
2011 
2012 static const TypeInfo types[] = {
2013     {
2014         .name          = MACHINE_TYPE_NAME("powernv10"),
2015         .parent        = TYPE_PNV_MACHINE,
2016         .class_init    = pnv_machine_power10_class_init,
2017     },
2018     {
2019         .name          = MACHINE_TYPE_NAME("powernv9"),
2020         .parent        = TYPE_PNV_MACHINE,
2021         .class_init    = pnv_machine_power9_class_init,
2022         .interfaces = (InterfaceInfo[]) {
2023             { TYPE_XIVE_FABRIC },
2024             { },
2025         },
2026     },
2027     {
2028         .name          = MACHINE_TYPE_NAME("powernv8"),
2029         .parent        = TYPE_PNV_MACHINE,
2030         .class_init    = pnv_machine_power8_class_init,
2031         .interfaces = (InterfaceInfo[]) {
2032             { TYPE_XICS_FABRIC },
2033             { },
2034         },
2035     },
2036     {
2037         .name          = TYPE_PNV_MACHINE,
2038         .parent        = TYPE_MACHINE,
2039         .abstract       = true,
2040         .instance_size = sizeof(PnvMachineState),
2041         .class_init    = pnv_machine_class_init,
2042         .class_size    = sizeof(PnvMachineClass),
2043         .interfaces = (InterfaceInfo[]) {
2044             { TYPE_INTERRUPT_STATS_PROVIDER },
2045             { },
2046         },
2047     },
2048     {
2049         .name          = TYPE_PNV_CHIP,
2050         .parent        = TYPE_SYS_BUS_DEVICE,
2051         .class_init    = pnv_chip_class_init,
2052         .instance_size = sizeof(PnvChip),
2053         .class_size    = sizeof(PnvChipClass),
2054         .abstract      = true,
2055     },
2056 
2057     /*
2058      * P10 chip and variants
2059      */
2060     {
2061         .name          = TYPE_PNV10_CHIP,
2062         .parent        = TYPE_PNV_CHIP,
2063         .instance_init = pnv_chip_power10_instance_init,
2064         .instance_size = sizeof(Pnv10Chip),
2065     },
2066     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2067 
2068     /*
2069      * P9 chip and variants
2070      */
2071     {
2072         .name          = TYPE_PNV9_CHIP,
2073         .parent        = TYPE_PNV_CHIP,
2074         .instance_init = pnv_chip_power9_instance_init,
2075         .instance_size = sizeof(Pnv9Chip),
2076     },
2077     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2078 
2079     /*
2080      * P8 chip and variants
2081      */
2082     {
2083         .name          = TYPE_PNV8_CHIP,
2084         .parent        = TYPE_PNV_CHIP,
2085         .instance_init = pnv_chip_power8_instance_init,
2086         .instance_size = sizeof(Pnv8Chip),
2087     },
2088     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2089     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2090     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2091                           pnv_chip_power8nvl_class_init),
2092 };
2093 
2094 DEFINE_TYPES(types)
2095