xref: /openbmc/qemu/hw/ppc/pnv.c (revision 6a0acfff)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/cpus.h"
28 #include "sysemu/device_tree.h"
29 #include "hw/hw.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/ppc/pnv_xscom.h"
46 
47 #include "hw/isa/isa.h"
48 #include "hw/char/serial.h"
49 #include "hw/timer/mc146818rtc.h"
50 
51 #include <libfdt.h>
52 
53 #define FDT_MAX_SIZE            (1 * MiB)
54 
55 #define FW_FILE_NAME            "skiboot.lid"
56 #define FW_LOAD_ADDR            0x0
57 #define FW_MAX_SIZE             (4 * MiB)
58 
59 #define KERNEL_LOAD_ADDR        0x20000000
60 #define KERNEL_MAX_SIZE         (256 * MiB)
61 #define INITRD_LOAD_ADDR        0x60000000
62 #define INITRD_MAX_SIZE         (256 * MiB)
63 
64 static const char *pnv_chip_core_typename(const PnvChip *o)
65 {
66     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
67     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
68     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
69     const char *core_type = object_class_get_name(object_class_by_name(s));
70     g_free(s);
71     return core_type;
72 }
73 
74 /*
75  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
76  *     4 * 4 sockets * 12 cores * 8 threads = 1536
77  * Let's make it 2^11
78  */
79 #define MAX_CPUS                2048
80 
81 /*
82  * Memory nodes are created by hostboot, one for each range of memory
83  * that has a different "affinity". In practice, it means one range
84  * per chip.
85  */
86 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
87 {
88     char *mem_name;
89     uint64_t mem_reg_property[2];
90     int off;
91 
92     mem_reg_property[0] = cpu_to_be64(start);
93     mem_reg_property[1] = cpu_to_be64(size);
94 
95     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
96     off = fdt_add_subnode(fdt, 0, mem_name);
97     g_free(mem_name);
98 
99     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
100     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
101                        sizeof(mem_reg_property))));
102     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
103 }
104 
105 static int get_cpus_node(void *fdt)
106 {
107     int cpus_offset = fdt_path_offset(fdt, "/cpus");
108 
109     if (cpus_offset < 0) {
110         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
111         if (cpus_offset) {
112             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
113             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
114         }
115     }
116     _FDT(cpus_offset);
117     return cpus_offset;
118 }
119 
120 /*
121  * The PowerNV cores (and threads) need to use real HW ids and not an
122  * incremental index like it has been done on other platforms. This HW
123  * id is stored in the CPU PIR, it is used to create cpu nodes in the
124  * device tree, used in XSCOM to address cores and in interrupt
125  * servers.
126  */
127 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
128 {
129     PowerPCCPU *cpu = pc->threads[0];
130     CPUState *cs = CPU(cpu);
131     DeviceClass *dc = DEVICE_GET_CLASS(cs);
132     int smt_threads = CPU_CORE(pc)->nr_threads;
133     CPUPPCState *env = &cpu->env;
134     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
135     uint32_t servers_prop[smt_threads];
136     int i;
137     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
138                        0xffffffff, 0xffffffff};
139     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
140     uint32_t cpufreq = 1000000000;
141     uint32_t page_sizes_prop[64];
142     size_t page_sizes_prop_size;
143     const uint8_t pa_features[] = { 24, 0,
144                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
145                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
146                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
147                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
148     int offset;
149     char *nodename;
150     int cpus_offset = get_cpus_node(fdt);
151 
152     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
153     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
154     _FDT(offset);
155     g_free(nodename);
156 
157     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
158 
159     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
161     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
164     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
165                             env->dcache_line_size)));
166     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
167                             env->dcache_line_size)));
168     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
169                             env->icache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
171                             env->icache_line_size)));
172 
173     if (pcc->l1_dcache_size) {
174         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
175                                pcc->l1_dcache_size)));
176     } else {
177         warn_report("Unknown L1 dcache size for cpu");
178     }
179     if (pcc->l1_icache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
181                                pcc->l1_icache_size)));
182     } else {
183         warn_report("Unknown L1 icache size for cpu");
184     }
185 
186     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
187     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
188     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
189     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
190     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
191 
192     if (env->spr_cb[SPR_PURR].oea_read) {
193         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
194     }
195 
196     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
198                            segs, sizeof(segs))));
199     }
200 
201     /* Advertise VMX/VSX (vector extensions) if available
202      *   0 / no property == no vector extensions
203      *   1               == VMX / Altivec available
204      *   2               == VSX available */
205     if (env->insns_flags & PPC_ALTIVEC) {
206         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
207 
208         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
209     }
210 
211     /* Advertise DFP (Decimal Floating Point) if available
212      *   0 / no property == no DFP
213      *   1               == DFP available */
214     if (env->insns_flags2 & PPC2_DFP) {
215         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
216     }
217 
218     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
219                                                       sizeof(page_sizes_prop));
220     if (page_sizes_prop_size) {
221         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
222                            page_sizes_prop, page_sizes_prop_size)));
223     }
224 
225     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
226                        pa_features, sizeof(pa_features))));
227 
228     /* Build interrupt servers properties */
229     for (i = 0; i < smt_threads; i++) {
230         servers_prop[i] = cpu_to_be32(pc->pir + i);
231     }
232     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
233                        servers_prop, sizeof(servers_prop))));
234 }
235 
236 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
237                        uint32_t nr_threads)
238 {
239     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
240     char *name;
241     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
242     uint32_t irange[2], i, rsize;
243     uint64_t *reg;
244     int offset;
245 
246     irange[0] = cpu_to_be32(pir);
247     irange[1] = cpu_to_be32(nr_threads);
248 
249     rsize = sizeof(uint64_t) * 2 * nr_threads;
250     reg = g_malloc(rsize);
251     for (i = 0; i < nr_threads; i++) {
252         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
253         reg[i * 2 + 1] = cpu_to_be64(0x1000);
254     }
255 
256     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
257     offset = fdt_add_subnode(fdt, 0, name);
258     _FDT(offset);
259     g_free(name);
260 
261     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
262     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
263     _FDT((fdt_setprop_string(fdt, offset, "device_type",
264                               "PowerPC-External-Interrupt-Presentation")));
265     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
266     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
267                        irange, sizeof(irange))));
268     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
269     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
270     g_free(reg);
271 }
272 
273 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
274 {
275     const char *typename = pnv_chip_core_typename(chip);
276     size_t typesize = object_type_get_instance_size(typename);
277     int i;
278 
279     pnv_dt_xscom(chip, fdt, 0);
280 
281     for (i = 0; i < chip->nr_cores; i++) {
282         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
283 
284         pnv_dt_core(chip, pnv_core, fdt);
285 
286         /* Interrupt Control Presenters (ICP). One per core. */
287         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
288     }
289 
290     if (chip->ram_size) {
291         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
292     }
293 }
294 
295 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
296 {
297     const char *typename = pnv_chip_core_typename(chip);
298     size_t typesize = object_type_get_instance_size(typename);
299     int i;
300 
301     pnv_dt_xscom(chip, fdt, 0);
302 
303     for (i = 0; i < chip->nr_cores; i++) {
304         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
305 
306         pnv_dt_core(chip, pnv_core, fdt);
307     }
308 
309     if (chip->ram_size) {
310         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
311     }
312 
313     pnv_dt_lpc(chip, fdt, 0);
314 }
315 
316 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
317 {
318     uint32_t io_base = d->ioport_id;
319     uint32_t io_regs[] = {
320         cpu_to_be32(1),
321         cpu_to_be32(io_base),
322         cpu_to_be32(2)
323     };
324     char *name;
325     int node;
326 
327     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
328     node = fdt_add_subnode(fdt, lpc_off, name);
329     _FDT(node);
330     g_free(name);
331 
332     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
333     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
334 }
335 
336 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
337 {
338     const char compatible[] = "ns16550\0pnpPNP,501";
339     uint32_t io_base = d->ioport_id;
340     uint32_t io_regs[] = {
341         cpu_to_be32(1),
342         cpu_to_be32(io_base),
343         cpu_to_be32(8)
344     };
345     char *name;
346     int node;
347 
348     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
349     node = fdt_add_subnode(fdt, lpc_off, name);
350     _FDT(node);
351     g_free(name);
352 
353     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
354     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
355                       sizeof(compatible))));
356 
357     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
358     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
359     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
360     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
361                            fdt_get_phandle(fdt, lpc_off))));
362 
363     /* This is needed by Linux */
364     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
365 }
366 
367 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
368 {
369     const char compatible[] = "bt\0ipmi-bt";
370     uint32_t io_base;
371     uint32_t io_regs[] = {
372         cpu_to_be32(1),
373         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
374         cpu_to_be32(3)
375     };
376     uint32_t irq;
377     char *name;
378     int node;
379 
380     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
381     io_regs[1] = cpu_to_be32(io_base);
382 
383     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
384 
385     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
386     node = fdt_add_subnode(fdt, lpc_off, name);
387     _FDT(node);
388     g_free(name);
389 
390     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
391     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
392                       sizeof(compatible))));
393 
394     /* Mark it as reserved to avoid Linux trying to claim it */
395     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
398                            fdt_get_phandle(fdt, lpc_off))));
399 }
400 
401 typedef struct ForeachPopulateArgs {
402     void *fdt;
403     int offset;
404 } ForeachPopulateArgs;
405 
406 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
407 {
408     ForeachPopulateArgs *args = opaque;
409     ISADevice *d = ISA_DEVICE(dev);
410 
411     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
412         pnv_dt_rtc(d, args->fdt, args->offset);
413     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
414         pnv_dt_serial(d, args->fdt, args->offset);
415     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
416         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
417     } else {
418         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
419                      d->ioport_id);
420     }
421 
422     return 0;
423 }
424 
425 /* The default LPC bus of a multichip system is on chip 0. It's
426  * recognized by the firmware (skiboot) using a "primary" property.
427  */
428 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
429 {
430     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
431     ForeachPopulateArgs args = {
432         .fdt = fdt,
433         .offset = isa_offset,
434     };
435 
436     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
437 
438     /* ISA devices are not necessarily parented to the ISA bus so we
439      * can not use object_child_foreach() */
440     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
441                        &args);
442 }
443 
444 static void pnv_dt_power_mgt(void *fdt)
445 {
446     int off;
447 
448     off = fdt_add_subnode(fdt, 0, "ibm,opal");
449     off = fdt_add_subnode(fdt, off, "power-mgt");
450 
451     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
452 }
453 
454 static void *pnv_dt_create(MachineState *machine)
455 {
456     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
457     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
458     PnvMachineState *pnv = PNV_MACHINE(machine);
459     void *fdt;
460     char *buf;
461     int off;
462     int i;
463 
464     fdt = g_malloc0(FDT_MAX_SIZE);
465     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
466 
467     /* Root node */
468     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
469     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
470     _FDT((fdt_setprop_string(fdt, 0, "model",
471                              "IBM PowerNV (emulated by qemu)")));
472     if (pnv_is_power9(pnv)) {
473         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
474                           sizeof(plat_compat9))));
475     } else {
476         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
477                           sizeof(plat_compat8))));
478     }
479 
480 
481     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
482     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
483     if (qemu_uuid_set) {
484         _FDT((fdt_property_string(fdt, "system-id", buf)));
485     }
486     g_free(buf);
487 
488     off = fdt_add_subnode(fdt, 0, "chosen");
489     if (machine->kernel_cmdline) {
490         _FDT((fdt_setprop_string(fdt, off, "bootargs",
491                                  machine->kernel_cmdline)));
492     }
493 
494     if (pnv->initrd_size) {
495         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
496         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
497 
498         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
499                                &start_prop, sizeof(start_prop))));
500         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
501                                &end_prop, sizeof(end_prop))));
502     }
503 
504     /* Populate device tree for each chip */
505     for (i = 0; i < pnv->num_chips; i++) {
506         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
507     }
508 
509     /* Populate ISA devices on chip 0 */
510     pnv_dt_isa(pnv, fdt);
511 
512     if (pnv->bmc) {
513         pnv_dt_bmc_sensors(pnv->bmc, fdt);
514     }
515 
516     /* Create an extra node for power management on Power9 */
517     if (pnv_is_power9(pnv)) {
518         pnv_dt_power_mgt(fdt);
519     }
520 
521     return fdt;
522 }
523 
524 static void pnv_powerdown_notify(Notifier *n, void *opaque)
525 {
526     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
527 
528     if (pnv->bmc) {
529         pnv_bmc_powerdown(pnv->bmc);
530     }
531 }
532 
533 static void pnv_reset(MachineState *machine)
534 {
535     PnvMachineState *pnv = PNV_MACHINE(machine);
536     void *fdt;
537     Object *obj;
538 
539     qemu_devices_reset();
540 
541     /* OpenPOWER systems have a BMC, which can be defined on the
542      * command line with:
543      *
544      *   -device ipmi-bmc-sim,id=bmc0
545      *
546      * This is the internal simulator but it could also be an external
547      * BMC.
548      */
549     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
550     if (obj) {
551         pnv->bmc = IPMI_BMC(obj);
552     }
553 
554     fdt = pnv_dt_create(machine);
555 
556     /* Pack resulting tree */
557     _FDT((fdt_pack(fdt)));
558 
559     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
560     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
561 }
562 
563 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
564 {
565     Pnv8Chip *chip8 = PNV8_CHIP(chip);
566     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
567 }
568 
569 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
570 {
571     Pnv8Chip *chip8 = PNV8_CHIP(chip);
572     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
573 }
574 
575 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
576 {
577     Pnv9Chip *chip9 = PNV9_CHIP(chip);
578     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
579 }
580 
581 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
582 {
583     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
584 }
585 
586 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589 
590     ics_pic_print_info(&chip8->psi.ics, mon);
591 }
592 
593 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
594 {
595     Pnv9Chip *chip9 = PNV9_CHIP(chip);
596 
597     pnv_xive_pic_print_info(&chip9->xive, mon);
598     pnv_psi_pic_print_info(&chip9->psi, mon);
599 }
600 
601 static void pnv_init(MachineState *machine)
602 {
603     PnvMachineState *pnv = PNV_MACHINE(machine);
604     MemoryRegion *ram;
605     char *fw_filename;
606     long fw_size;
607     int i;
608     char *chip_typename;
609 
610     /* allocate RAM */
611     if (machine->ram_size < (1 * GiB)) {
612         warn_report("skiboot may not work with < 1GB of RAM");
613     }
614 
615     ram = g_new(MemoryRegion, 1);
616     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
617                                          machine->ram_size);
618     memory_region_add_subregion(get_system_memory(), 0, ram);
619 
620     /* load skiboot firmware  */
621     if (bios_name == NULL) {
622         bios_name = FW_FILE_NAME;
623     }
624 
625     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
626     if (!fw_filename) {
627         error_report("Could not find OPAL firmware '%s'", bios_name);
628         exit(1);
629     }
630 
631     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
632     if (fw_size < 0) {
633         error_report("Could not load OPAL firmware '%s'", fw_filename);
634         exit(1);
635     }
636     g_free(fw_filename);
637 
638     /* load kernel */
639     if (machine->kernel_filename) {
640         long kernel_size;
641 
642         kernel_size = load_image_targphys(machine->kernel_filename,
643                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
644         if (kernel_size < 0) {
645             error_report("Could not load kernel '%s'",
646                          machine->kernel_filename);
647             exit(1);
648         }
649     }
650 
651     /* load initrd */
652     if (machine->initrd_filename) {
653         pnv->initrd_base = INITRD_LOAD_ADDR;
654         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
655                                   pnv->initrd_base, INITRD_MAX_SIZE);
656         if (pnv->initrd_size < 0) {
657             error_report("Could not load initial ram disk '%s'",
658                          machine->initrd_filename);
659             exit(1);
660         }
661     }
662 
663     /* Create the processor chips */
664     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
665     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
666                                     i, machine->cpu_type);
667     if (!object_class_by_name(chip_typename)) {
668         error_report("invalid CPU model '%.*s' for %s machine",
669                      i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
670         exit(1);
671     }
672 
673     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
674     for (i = 0; i < pnv->num_chips; i++) {
675         char chip_name[32];
676         Object *chip = object_new(chip_typename);
677 
678         pnv->chips[i] = PNV_CHIP(chip);
679 
680         /* TODO: put all the memory in one node on chip 0 until we find a
681          * way to specify different ranges for each chip
682          */
683         if (i == 0) {
684             object_property_set_int(chip, machine->ram_size, "ram-size",
685                                     &error_fatal);
686         }
687 
688         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
689         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
690         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
691                                 &error_fatal);
692         object_property_set_int(chip, machine->smp.cores,
693                                 "nr-cores", &error_fatal);
694         object_property_set_bool(chip, true, "realized", &error_fatal);
695     }
696     g_free(chip_typename);
697 
698     /* Instantiate ISA bus on chip 0 */
699     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
700 
701     /* Create serial port */
702     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
703 
704     /* Create an RTC ISA device too */
705     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
706 
707     /* OpenPOWER systems use a IPMI SEL Event message to notify the
708      * host to powerdown */
709     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
710     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
711 }
712 
713 /*
714  *    0:21  Reserved - Read as zeros
715  *   22:24  Chip ID
716  *   25:28  Core number
717  *   29:31  Thread ID
718  */
719 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
720 {
721     return (chip->chip_id << 7) | (core_id << 3);
722 }
723 
724 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
725                                         Error **errp)
726 {
727     Error *local_err = NULL;
728     Object *obj;
729     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
730 
731     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
732                      &local_err);
733     if (local_err) {
734         error_propagate(errp, local_err);
735         return;
736     }
737 
738     pnv_cpu->intc = obj;
739 }
740 
741 /*
742  *    0:48  Reserved - Read as zeroes
743  *   49:52  Node ID
744  *   53:55  Chip ID
745  *   56     Reserved - Read as zero
746  *   57:61  Core number
747  *   62:63  Thread ID
748  *
749  * We only care about the lower bits. uint32_t is fine for the moment.
750  */
751 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
752 {
753     return (chip->chip_id << 8) | (core_id << 2);
754 }
755 
756 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
757                                         Error **errp)
758 {
759     Pnv9Chip *chip9 = PNV9_CHIP(chip);
760     Error *local_err = NULL;
761     Object *obj;
762     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
763 
764     /*
765      * The core creates its interrupt presenter but the XIVE interrupt
766      * controller object is initialized afterwards. Hopefully, it's
767      * only used at runtime.
768      */
769     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
770     if (local_err) {
771         error_propagate(errp, local_err);
772         return;
773     }
774 
775     pnv_cpu->intc = obj;
776 }
777 
778 /* Allowed core identifiers on a POWER8 Processor Chip :
779  *
780  * <EX0 reserved>
781  *  EX1  - Venice only
782  *  EX2  - Venice only
783  *  EX3  - Venice only
784  *  EX4
785  *  EX5
786  *  EX6
787  * <EX7,8 reserved> <reserved>
788  *  EX9  - Venice only
789  *  EX10 - Venice only
790  *  EX11 - Venice only
791  *  EX12
792  *  EX13
793  *  EX14
794  * <EX15 reserved>
795  */
796 #define POWER8E_CORE_MASK  (0x7070ull)
797 #define POWER8_CORE_MASK   (0x7e7eull)
798 
799 /*
800  * POWER9 has 24 cores, ids starting at 0x0
801  */
802 #define POWER9_CORE_MASK   (0xffffffffffffffull)
803 
804 static void pnv_chip_power8_instance_init(Object *obj)
805 {
806     Pnv8Chip *chip8 = PNV8_CHIP(obj);
807 
808     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
809                             TYPE_PNV8_PSI, &error_abort, NULL);
810     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
811                                    OBJECT(qdev_get_machine()), &error_abort);
812 
813     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
814                             TYPE_PNV8_LPC, &error_abort, NULL);
815     object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
816                                    OBJECT(&chip8->psi), &error_abort);
817 
818     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
819                             TYPE_PNV8_OCC, &error_abort, NULL);
820     object_property_add_const_link(OBJECT(&chip8->occ), "psi",
821                                    OBJECT(&chip8->psi), &error_abort);
822 }
823 
824 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
825  {
826     PnvChip *chip = PNV_CHIP(chip8);
827     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
828     const char *typename = pnv_chip_core_typename(chip);
829     size_t typesize = object_type_get_instance_size(typename);
830     int i, j;
831     char *name;
832     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
833 
834     name = g_strdup_printf("icp-%x", chip->chip_id);
835     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
836     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
837     g_free(name);
838 
839     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
840 
841     /* Map the ICP registers for each thread */
842     for (i = 0; i < chip->nr_cores; i++) {
843         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
844         int core_hwid = CPU_CORE(pnv_core)->core_id;
845 
846         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
847             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
848             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
849 
850             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
851                                         &icp->mmio);
852         }
853     }
854 }
855 
856 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
857 {
858     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
859     PnvChip *chip = PNV_CHIP(dev);
860     Pnv8Chip *chip8 = PNV8_CHIP(dev);
861     Pnv8Psi *psi8 = &chip8->psi;
862     Error *local_err = NULL;
863 
864     /* XSCOM bridge is first */
865     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
866     if (local_err) {
867         error_propagate(errp, local_err);
868         return;
869     }
870     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
871 
872     pcc->parent_realize(dev, &local_err);
873     if (local_err) {
874         error_propagate(errp, local_err);
875         return;
876     }
877 
878     /* Processor Service Interface (PSI) Host Bridge */
879     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
880                             "bar", &error_fatal);
881     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
882     if (local_err) {
883         error_propagate(errp, local_err);
884         return;
885     }
886     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
887                             &PNV_PSI(psi8)->xscom_regs);
888 
889     /* Create LPC controller */
890     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
891                              &error_fatal);
892     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
893 
894     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
895                                             (uint64_t) PNV_XSCOM_BASE(chip),
896                                             PNV_XSCOM_LPC_BASE);
897 
898     /* Interrupt Management Area. This is the memory region holding
899      * all the Interrupt Control Presenter (ICP) registers */
900     pnv_chip_icp_realize(chip8, &local_err);
901     if (local_err) {
902         error_propagate(errp, local_err);
903         return;
904     }
905 
906     /* Create the simplified OCC model */
907     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
908     if (local_err) {
909         error_propagate(errp, local_err);
910         return;
911     }
912     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
913 }
914 
915 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
916 {
917     DeviceClass *dc = DEVICE_CLASS(klass);
918     PnvChipClass *k = PNV_CHIP_CLASS(klass);
919 
920     k->chip_type = PNV_CHIP_POWER8E;
921     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
922     k->cores_mask = POWER8E_CORE_MASK;
923     k->core_pir = pnv_chip_core_pir_p8;
924     k->intc_create = pnv_chip_power8_intc_create;
925     k->isa_create = pnv_chip_power8_isa_create;
926     k->dt_populate = pnv_chip_power8_dt_populate;
927     k->pic_print_info = pnv_chip_power8_pic_print_info;
928     dc->desc = "PowerNV Chip POWER8E";
929 
930     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
931                                     &k->parent_realize);
932 }
933 
934 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
935 {
936     DeviceClass *dc = DEVICE_CLASS(klass);
937     PnvChipClass *k = PNV_CHIP_CLASS(klass);
938 
939     k->chip_type = PNV_CHIP_POWER8;
940     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
941     k->cores_mask = POWER8_CORE_MASK;
942     k->core_pir = pnv_chip_core_pir_p8;
943     k->intc_create = pnv_chip_power8_intc_create;
944     k->isa_create = pnv_chip_power8_isa_create;
945     k->dt_populate = pnv_chip_power8_dt_populate;
946     k->pic_print_info = pnv_chip_power8_pic_print_info;
947     dc->desc = "PowerNV Chip POWER8";
948 
949     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
950                                     &k->parent_realize);
951 }
952 
953 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
954 {
955     DeviceClass *dc = DEVICE_CLASS(klass);
956     PnvChipClass *k = PNV_CHIP_CLASS(klass);
957 
958     k->chip_type = PNV_CHIP_POWER8NVL;
959     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
960     k->cores_mask = POWER8_CORE_MASK;
961     k->core_pir = pnv_chip_core_pir_p8;
962     k->intc_create = pnv_chip_power8_intc_create;
963     k->isa_create = pnv_chip_power8nvl_isa_create;
964     k->dt_populate = pnv_chip_power8_dt_populate;
965     k->pic_print_info = pnv_chip_power8_pic_print_info;
966     dc->desc = "PowerNV Chip POWER8NVL";
967 
968     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
969                                     &k->parent_realize);
970 }
971 
972 static void pnv_chip_power9_instance_init(Object *obj)
973 {
974     Pnv9Chip *chip9 = PNV9_CHIP(obj);
975 
976     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
977                             TYPE_PNV_XIVE, &error_abort, NULL);
978     object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
979                                    &error_abort);
980 
981     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
982                             TYPE_PNV9_PSI, &error_abort, NULL);
983     object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
984                                    &error_abort);
985 
986     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
987                             TYPE_PNV9_LPC, &error_abort, NULL);
988     object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
989                                    OBJECT(&chip9->psi), &error_abort);
990 
991     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
992                             TYPE_PNV9_OCC, &error_abort, NULL);
993     object_property_add_const_link(OBJECT(&chip9->occ), "psi",
994                                    OBJECT(&chip9->psi), &error_abort);
995 }
996 
997 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
998 {
999     PnvChip *chip = PNV_CHIP(chip9);
1000     const char *typename = pnv_chip_core_typename(chip);
1001     size_t typesize = object_type_get_instance_size(typename);
1002     int i;
1003 
1004     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1005     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1006 
1007     for (i = 0; i < chip9->nr_quads; i++) {
1008         char eq_name[32];
1009         PnvQuad *eq = &chip9->quads[i];
1010         PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1011         int core_id = CPU_CORE(pnv_core)->core_id;
1012 
1013         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1014         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1015                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1016 
1017         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1018         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1019 
1020         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1021                                 &eq->xscom_regs);
1022     }
1023 }
1024 
1025 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1026 {
1027     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1028     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1029     PnvChip *chip = PNV_CHIP(dev);
1030     Pnv9Psi *psi9 = &chip9->psi;
1031     Error *local_err = NULL;
1032 
1033     /* XSCOM bridge is first */
1034     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1035     if (local_err) {
1036         error_propagate(errp, local_err);
1037         return;
1038     }
1039     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1040 
1041     pcc->parent_realize(dev, &local_err);
1042     if (local_err) {
1043         error_propagate(errp, local_err);
1044         return;
1045     }
1046 
1047     pnv_chip_quad_realize(chip9, &local_err);
1048     if (local_err) {
1049         error_propagate(errp, local_err);
1050         return;
1051     }
1052 
1053     /* XIVE interrupt controller (POWER9) */
1054     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1055                             "ic-bar", &error_fatal);
1056     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1057                             "vc-bar", &error_fatal);
1058     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1059                             "pc-bar", &error_fatal);
1060     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1061                             "tm-bar", &error_fatal);
1062     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1063                              &local_err);
1064     if (local_err) {
1065         error_propagate(errp, local_err);
1066         return;
1067     }
1068     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1069                             &chip9->xive.xscom_regs);
1070 
1071     /* Processor Service Interface (PSI) Host Bridge */
1072     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1073                             "bar", &error_fatal);
1074     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1075     if (local_err) {
1076         error_propagate(errp, local_err);
1077         return;
1078     }
1079     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1080                             &PNV_PSI(psi9)->xscom_regs);
1081 
1082     /* LPC */
1083     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1084     if (local_err) {
1085         error_propagate(errp, local_err);
1086         return;
1087     }
1088     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1089                                 &chip9->lpc.xscom_regs);
1090 
1091     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1092                                             (uint64_t) PNV9_LPCM_BASE(chip));
1093 
1094     /* Create the simplified OCC model */
1095     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1096     if (local_err) {
1097         error_propagate(errp, local_err);
1098         return;
1099     }
1100     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1101 }
1102 
1103 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1104 {
1105     DeviceClass *dc = DEVICE_CLASS(klass);
1106     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1107 
1108     k->chip_type = PNV_CHIP_POWER9;
1109     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1110     k->cores_mask = POWER9_CORE_MASK;
1111     k->core_pir = pnv_chip_core_pir_p9;
1112     k->intc_create = pnv_chip_power9_intc_create;
1113     k->isa_create = pnv_chip_power9_isa_create;
1114     k->dt_populate = pnv_chip_power9_dt_populate;
1115     k->pic_print_info = pnv_chip_power9_pic_print_info;
1116     dc->desc = "PowerNV Chip POWER9";
1117 
1118     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1119                                     &k->parent_realize);
1120 }
1121 
1122 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1123 {
1124     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1125     int cores_max;
1126 
1127     /*
1128      * No custom mask for this chip, let's use the default one from *
1129      * the chip class
1130      */
1131     if (!chip->cores_mask) {
1132         chip->cores_mask = pcc->cores_mask;
1133     }
1134 
1135     /* filter alien core ids ! some are reserved */
1136     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1137         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1138                    chip->cores_mask);
1139         return;
1140     }
1141     chip->cores_mask &= pcc->cores_mask;
1142 
1143     /* now that we have a sane layout, let check the number of cores */
1144     cores_max = ctpop64(chip->cores_mask);
1145     if (chip->nr_cores > cores_max) {
1146         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1147                    cores_max);
1148         return;
1149     }
1150 }
1151 
1152 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1153 {
1154     MachineState *ms = MACHINE(qdev_get_machine());
1155     Error *error = NULL;
1156     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1157     const char *typename = pnv_chip_core_typename(chip);
1158     size_t typesize = object_type_get_instance_size(typename);
1159     int i, core_hwid;
1160 
1161     if (!object_class_by_name(typename)) {
1162         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1163         return;
1164     }
1165 
1166     /* Cores */
1167     pnv_chip_core_sanitize(chip, &error);
1168     if (error) {
1169         error_propagate(errp, error);
1170         return;
1171     }
1172 
1173     chip->cores = g_malloc0(typesize * chip->nr_cores);
1174 
1175     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1176              && (i < chip->nr_cores); core_hwid++) {
1177         char core_name[32];
1178         void *pnv_core = chip->cores + i * typesize;
1179         uint64_t xscom_core_base;
1180 
1181         if (!(chip->cores_mask & (1ull << core_hwid))) {
1182             continue;
1183         }
1184 
1185         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1186         object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1187                                 typename, &error_fatal, NULL);
1188         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1189                                 &error_fatal);
1190         object_property_set_int(OBJECT(pnv_core), core_hwid,
1191                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1192         object_property_set_int(OBJECT(pnv_core),
1193                                 pcc->core_pir(chip, core_hwid),
1194                                 "pir", &error_fatal);
1195         object_property_add_const_link(OBJECT(pnv_core), "chip",
1196                                        OBJECT(chip), &error_fatal);
1197         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1198                                  &error_fatal);
1199 
1200         /* Each core has an XSCOM MMIO region */
1201         if (!pnv_chip_is_power9(chip)) {
1202             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1203         } else {
1204             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1205         }
1206 
1207         pnv_xscom_add_subregion(chip, xscom_core_base,
1208                                 &PNV_CORE(pnv_core)->xscom_regs);
1209         i++;
1210     }
1211 }
1212 
1213 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1214 {
1215     PnvChip *chip = PNV_CHIP(dev);
1216     Error *error = NULL;
1217 
1218     /* Cores */
1219     pnv_chip_core_realize(chip, &error);
1220     if (error) {
1221         error_propagate(errp, error);
1222         return;
1223     }
1224 }
1225 
1226 static Property pnv_chip_properties[] = {
1227     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1228     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1229     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1230     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1231     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1232     DEFINE_PROP_END_OF_LIST(),
1233 };
1234 
1235 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1236 {
1237     DeviceClass *dc = DEVICE_CLASS(klass);
1238 
1239     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1240     dc->realize = pnv_chip_realize;
1241     dc->props = pnv_chip_properties;
1242     dc->desc = "PowerNV Chip";
1243 }
1244 
1245 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1246 {
1247     PnvMachineState *pnv = PNV_MACHINE(xi);
1248     int i;
1249 
1250     for (i = 0; i < pnv->num_chips; i++) {
1251         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1252 
1253         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1254             return &chip8->psi.ics;
1255         }
1256     }
1257     return NULL;
1258 }
1259 
1260 static void pnv_ics_resend(XICSFabric *xi)
1261 {
1262     PnvMachineState *pnv = PNV_MACHINE(xi);
1263     int i;
1264 
1265     for (i = 0; i < pnv->num_chips; i++) {
1266         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1267         ics_resend(&chip8->psi.ics);
1268     }
1269 }
1270 
1271 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1272 {
1273     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1274 
1275     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1276 }
1277 
1278 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1279                                Monitor *mon)
1280 {
1281     PnvMachineState *pnv = PNV_MACHINE(obj);
1282     int i;
1283     CPUState *cs;
1284 
1285     CPU_FOREACH(cs) {
1286         PowerPCCPU *cpu = POWERPC_CPU(cs);
1287 
1288         if (pnv_chip_is_power9(pnv->chips[0])) {
1289             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1290         } else {
1291             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1292         }
1293     }
1294 
1295     for (i = 0; i < pnv->num_chips; i++) {
1296         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1297     }
1298 }
1299 
1300 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1301                               void *opaque, Error **errp)
1302 {
1303     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1304 }
1305 
1306 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1307                               void *opaque, Error **errp)
1308 {
1309     PnvMachineState *pnv = PNV_MACHINE(obj);
1310     uint32_t num_chips;
1311     Error *local_err = NULL;
1312 
1313     visit_type_uint32(v, name, &num_chips, &local_err);
1314     if (local_err) {
1315         error_propagate(errp, local_err);
1316         return;
1317     }
1318 
1319     /*
1320      * TODO: should we decide on how many chips we can create based
1321      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1322      */
1323     if (!is_power_of_2(num_chips) || num_chips > 4) {
1324         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1325         return;
1326     }
1327 
1328     pnv->num_chips = num_chips;
1329 }
1330 
1331 static void pnv_machine_instance_init(Object *obj)
1332 {
1333     PnvMachineState *pnv = PNV_MACHINE(obj);
1334     pnv->num_chips = 1;
1335 }
1336 
1337 static void pnv_machine_class_props_init(ObjectClass *oc)
1338 {
1339     object_class_property_add(oc, "num-chips", "uint32",
1340                               pnv_get_num_chips, pnv_set_num_chips,
1341                               NULL, NULL, NULL);
1342     object_class_property_set_description(oc, "num-chips",
1343                               "Specifies the number of processor chips",
1344                               NULL);
1345 }
1346 
1347 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1348 {
1349     MachineClass *mc = MACHINE_CLASS(oc);
1350     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1351     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1352 
1353     mc->desc = "IBM PowerNV (Non-Virtualized)";
1354     mc->init = pnv_init;
1355     mc->reset = pnv_reset;
1356     mc->max_cpus = MAX_CPUS;
1357     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1358     mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1359                                       * storage */
1360     mc->no_parallel = 1;
1361     mc->default_boot_order = NULL;
1362     mc->default_ram_size = 1 * GiB;
1363     xic->icp_get = pnv_icp_get;
1364     xic->ics_get = pnv_ics_get;
1365     xic->ics_resend = pnv_ics_resend;
1366     ispc->print_info = pnv_pic_print_info;
1367 
1368     pnv_machine_class_props_init(oc);
1369 }
1370 
1371 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1372     {                                             \
1373         .name          = type,                    \
1374         .class_init    = class_initfn,            \
1375         .parent        = TYPE_PNV8_CHIP,          \
1376     }
1377 
1378 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1379     {                                             \
1380         .name          = type,                    \
1381         .class_init    = class_initfn,            \
1382         .parent        = TYPE_PNV9_CHIP,          \
1383     }
1384 
1385 static const TypeInfo types[] = {
1386     {
1387         .name          = TYPE_PNV_MACHINE,
1388         .parent        = TYPE_MACHINE,
1389         .instance_size = sizeof(PnvMachineState),
1390         .instance_init = pnv_machine_instance_init,
1391         .class_init    = pnv_machine_class_init,
1392         .interfaces = (InterfaceInfo[]) {
1393             { TYPE_XICS_FABRIC },
1394             { TYPE_INTERRUPT_STATS_PROVIDER },
1395             { },
1396         },
1397     },
1398     {
1399         .name          = TYPE_PNV_CHIP,
1400         .parent        = TYPE_SYS_BUS_DEVICE,
1401         .class_init    = pnv_chip_class_init,
1402         .instance_size = sizeof(PnvChip),
1403         .class_size    = sizeof(PnvChipClass),
1404         .abstract      = true,
1405     },
1406 
1407     /*
1408      * P9 chip and variants
1409      */
1410     {
1411         .name          = TYPE_PNV9_CHIP,
1412         .parent        = TYPE_PNV_CHIP,
1413         .instance_init = pnv_chip_power9_instance_init,
1414         .instance_size = sizeof(Pnv9Chip),
1415     },
1416     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1417 
1418     /*
1419      * P8 chip and variants
1420      */
1421     {
1422         .name          = TYPE_PNV8_CHIP,
1423         .parent        = TYPE_PNV_CHIP,
1424         .instance_init = pnv_chip_power8_instance_init,
1425         .instance_size = sizeof(Pnv8Chip),
1426     },
1427     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1428     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1429     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1430                           pnv_chip_power8nvl_class_init),
1431 };
1432 
1433 DEFINE_TYPES(types)
1434