xref: /openbmc/qemu/hw/ppc/pnv.c (revision 65a117da)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "sysemu/hw_accel.h"
31 #include "target/ppc/cpu.h"
32 #include "qemu/log.h"
33 #include "hw/ppc/fdt.h"
34 #include "hw/ppc/ppc.h"
35 #include "hw/ppc/pnv.h"
36 #include "hw/ppc/pnv_core.h"
37 #include "hw/loader.h"
38 #include "hw/nmi.h"
39 #include "exec/address-spaces.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51 
52 #include "hw/isa/isa.h"
53 #include "hw/boards.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (4 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (256 * MiB)
67 #define INITRD_LOAD_ADDR        0x60000000
68 #define INITRD_MAX_SIZE         (256 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (env->spr_cb[SPR_PURR].oea_read) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_property_string(fdt, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             warn_report("machine has no BMC device. Use '-device "
591                         "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
592                         "to define one");
593         } else {
594             pnv_bmc_set_pnor(bmc, pnv->pnor);
595             pnv->bmc = bmc;
596         }
597     }
598 
599     fdt = pnv_dt_create(machine);
600 
601     /* Pack resulting tree */
602     _FDT((fdt_pack(fdt)));
603 
604     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
605     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
606 
607     g_free(fdt);
608 }
609 
610 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
611 {
612     Pnv8Chip *chip8 = PNV8_CHIP(chip);
613     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
614 }
615 
616 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
617 {
618     Pnv8Chip *chip8 = PNV8_CHIP(chip);
619     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
620 }
621 
622 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
623 {
624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
625     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
626 }
627 
628 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
629 {
630     Pnv10Chip *chip10 = PNV10_CHIP(chip);
631     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
632 }
633 
634 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
635 {
636     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
637 }
638 
639 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
640 {
641     Pnv8Chip *chip8 = PNV8_CHIP(chip);
642     int i;
643 
644     ics_pic_print_info(&chip8->psi.ics, mon);
645     for (i = 0; i < chip->num_phbs; i++) {
646         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
647         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
648     }
649 }
650 
651 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
652 {
653     Pnv9Chip *chip9 = PNV9_CHIP(chip);
654     int i, j;
655 
656     pnv_xive_pic_print_info(&chip9->xive, mon);
657     pnv_psi_pic_print_info(&chip9->psi, mon);
658 
659     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
660         PnvPhb4PecState *pec = &chip9->pecs[i];
661         for (j = 0; j < pec->num_stacks; j++) {
662             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
663         }
664     }
665 }
666 
667 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
668                                                 uint32_t core_id)
669 {
670     return PNV_XSCOM_EX_BASE(core_id);
671 }
672 
673 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
674                                                 uint32_t core_id)
675 {
676     return PNV9_XSCOM_EC_BASE(core_id);
677 }
678 
679 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
680                                                  uint32_t core_id)
681 {
682     return PNV10_XSCOM_EC_BASE(core_id);
683 }
684 
685 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
686 {
687     PowerPCCPUClass *ppc_default =
688         POWERPC_CPU_CLASS(object_class_by_name(default_type));
689     PowerPCCPUClass *ppc =
690         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
691 
692     return ppc_default->pvr_match(ppc_default, ppc->pvr);
693 }
694 
695 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
696 {
697     Object *obj;
698 
699     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
700     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
701     object_property_set_int(obj, irq, "irq", &error_fatal);
702     object_property_set_bool(obj, true, "realized", &error_fatal);
703 }
704 
705 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
706 {
707     Pnv10Chip *chip10 = PNV10_CHIP(chip);
708 
709     pnv_psi_pic_print_info(&chip10->psi, mon);
710 }
711 
712 static void pnv_init(MachineState *machine)
713 {
714     PnvMachineState *pnv = PNV_MACHINE(machine);
715     MachineClass *mc = MACHINE_GET_CLASS(machine);
716     char *fw_filename;
717     long fw_size;
718     int i;
719     char *chip_typename;
720     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
721     DeviceState *dev;
722 
723     /* allocate RAM */
724     if (machine->ram_size < (1 * GiB)) {
725         warn_report("skiboot may not work with < 1GB of RAM");
726     }
727     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
728 
729     /*
730      * Create our simple PNOR device
731      */
732     dev = qdev_create(NULL, TYPE_PNV_PNOR);
733     if (pnor) {
734         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
735                             &error_abort);
736     }
737     qdev_init_nofail(dev);
738     pnv->pnor = PNV_PNOR(dev);
739 
740     /* load skiboot firmware  */
741     if (bios_name == NULL) {
742         bios_name = FW_FILE_NAME;
743     }
744 
745     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
746     if (!fw_filename) {
747         error_report("Could not find OPAL firmware '%s'", bios_name);
748         exit(1);
749     }
750 
751     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
752     if (fw_size < 0) {
753         error_report("Could not load OPAL firmware '%s'", fw_filename);
754         exit(1);
755     }
756     g_free(fw_filename);
757 
758     /* load kernel */
759     if (machine->kernel_filename) {
760         long kernel_size;
761 
762         kernel_size = load_image_targphys(machine->kernel_filename,
763                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
764         if (kernel_size < 0) {
765             error_report("Could not load kernel '%s'",
766                          machine->kernel_filename);
767             exit(1);
768         }
769     }
770 
771     /* load initrd */
772     if (machine->initrd_filename) {
773         pnv->initrd_base = INITRD_LOAD_ADDR;
774         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
775                                   pnv->initrd_base, INITRD_MAX_SIZE);
776         if (pnv->initrd_size < 0) {
777             error_report("Could not load initial ram disk '%s'",
778                          machine->initrd_filename);
779             exit(1);
780         }
781     }
782 
783     /* MSIs are supported on this platform */
784     msi_nonbroken = true;
785 
786     /*
787      * Check compatibility of the specified CPU with the machine
788      * default.
789      */
790     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
791         error_report("invalid CPU model '%s' for %s machine",
792                      machine->cpu_type, mc->name);
793         exit(1);
794     }
795 
796     /* Create the processor chips */
797     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
798     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
799                                     i, machine->cpu_type);
800     if (!object_class_by_name(chip_typename)) {
801         error_report("invalid chip model '%.*s' for %s machine",
802                      i, machine->cpu_type, mc->name);
803         exit(1);
804     }
805 
806     pnv->num_chips =
807         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
808     /*
809      * TODO: should we decide on how many chips we can create based
810      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
811      */
812     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
813         error_report("invalid number of chips: '%d'", pnv->num_chips);
814         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
815         exit(1);
816     }
817 
818     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
819     for (i = 0; i < pnv->num_chips; i++) {
820         char chip_name[32];
821         Object *chip = object_new(chip_typename);
822 
823         pnv->chips[i] = PNV_CHIP(chip);
824 
825         /*
826          * TODO: put all the memory in one node on chip 0 until we find a
827          * way to specify different ranges for each chip
828          */
829         if (i == 0) {
830             object_property_set_int(chip, machine->ram_size, "ram-size",
831                                     &error_fatal);
832         }
833 
834         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
835         object_property_add_child(OBJECT(pnv), chip_name, chip);
836         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
837                                 &error_fatal);
838         object_property_set_int(chip, machine->smp.cores,
839                                 "nr-cores", &error_fatal);
840         object_property_set_int(chip, machine->smp.threads,
841                                 "nr-threads", &error_fatal);
842         /*
843          * The POWER8 machine use the XICS interrupt interface.
844          * Propagate the XICS fabric to the chip and its controllers.
845          */
846         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
847             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
848         }
849         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
850             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
851                                      &error_abort);
852         }
853         object_property_set_bool(chip, true, "realized", &error_fatal);
854     }
855     g_free(chip_typename);
856 
857     /* Instantiate ISA bus on chip 0 */
858     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
859 
860     /* Create serial port */
861     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
862 
863     /* Create an RTC ISA device too */
864     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
865 
866     /*
867      * Create the machine BMC simulator and the IPMI BT device for
868      * communication with the BMC
869      */
870     if (defaults_enabled()) {
871         pnv->bmc = pnv_bmc_create(pnv->pnor);
872         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
873     }
874 
875     /*
876      * OpenPOWER systems use a IPMI SEL Event message to notify the
877      * host to powerdown
878      */
879     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
880     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
881 }
882 
883 /*
884  *    0:21  Reserved - Read as zeros
885  *   22:24  Chip ID
886  *   25:28  Core number
887  *   29:31  Thread ID
888  */
889 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
890 {
891     return (chip->chip_id << 7) | (core_id << 3);
892 }
893 
894 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
895                                         Error **errp)
896 {
897     Pnv8Chip *chip8 = PNV8_CHIP(chip);
898     Error *local_err = NULL;
899     Object *obj;
900     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
901 
902     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
903     if (local_err) {
904         error_propagate(errp, local_err);
905         return;
906     }
907 
908     pnv_cpu->intc = obj;
909 }
910 
911 
912 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
913 {
914     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
915 
916     icp_reset(ICP(pnv_cpu->intc));
917 }
918 
919 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
920 {
921     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
922 
923     icp_destroy(ICP(pnv_cpu->intc));
924     pnv_cpu->intc = NULL;
925 }
926 
927 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
928                                             Monitor *mon)
929 {
930     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
931 }
932 
933 /*
934  *    0:48  Reserved - Read as zeroes
935  *   49:52  Node ID
936  *   53:55  Chip ID
937  *   56     Reserved - Read as zero
938  *   57:61  Core number
939  *   62:63  Thread ID
940  *
941  * We only care about the lower bits. uint32_t is fine for the moment.
942  */
943 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
944 {
945     return (chip->chip_id << 8) | (core_id << 2);
946 }
947 
948 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
949 {
950     return (chip->chip_id << 8) | (core_id << 2);
951 }
952 
953 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
954                                         Error **errp)
955 {
956     Pnv9Chip *chip9 = PNV9_CHIP(chip);
957     Error *local_err = NULL;
958     Object *obj;
959     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
960 
961     /*
962      * The core creates its interrupt presenter but the XIVE interrupt
963      * controller object is initialized afterwards. Hopefully, it's
964      * only used at runtime.
965      */
966     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
967                            &local_err);
968     if (local_err) {
969         error_propagate(errp, local_err);
970         return;
971     }
972 
973     pnv_cpu->intc = obj;
974 }
975 
976 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
977 {
978     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
979 
980     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
981 }
982 
983 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
984 {
985     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
986 
987     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
988     pnv_cpu->intc = NULL;
989 }
990 
991 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
992                                             Monitor *mon)
993 {
994     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
995 }
996 
997 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
998                                         Error **errp)
999 {
1000     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1001 
1002     /* Will be defined when the interrupt controller is */
1003     pnv_cpu->intc = NULL;
1004 }
1005 
1006 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1007 {
1008     ;
1009 }
1010 
1011 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1012 {
1013     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1014 
1015     pnv_cpu->intc = NULL;
1016 }
1017 
1018 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1019                                              Monitor *mon)
1020 {
1021 }
1022 
1023 /*
1024  * Allowed core identifiers on a POWER8 Processor Chip :
1025  *
1026  * <EX0 reserved>
1027  *  EX1  - Venice only
1028  *  EX2  - Venice only
1029  *  EX3  - Venice only
1030  *  EX4
1031  *  EX5
1032  *  EX6
1033  * <EX7,8 reserved> <reserved>
1034  *  EX9  - Venice only
1035  *  EX10 - Venice only
1036  *  EX11 - Venice only
1037  *  EX12
1038  *  EX13
1039  *  EX14
1040  * <EX15 reserved>
1041  */
1042 #define POWER8E_CORE_MASK  (0x7070ull)
1043 #define POWER8_CORE_MASK   (0x7e7eull)
1044 
1045 /*
1046  * POWER9 has 24 cores, ids starting at 0x0
1047  */
1048 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1049 
1050 
1051 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1052 
1053 static void pnv_chip_power8_instance_init(Object *obj)
1054 {
1055     PnvChip *chip = PNV_CHIP(obj);
1056     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1057     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1058     int i;
1059 
1060     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1061                              (Object **)&chip8->xics,
1062                              object_property_allow_set_link,
1063                              OBJ_PROP_LINK_STRONG);
1064 
1065     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1066                             TYPE_PNV8_PSI, &error_abort, NULL);
1067 
1068     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1069                             TYPE_PNV8_LPC, &error_abort, NULL);
1070 
1071     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1072                             TYPE_PNV8_OCC, &error_abort, NULL);
1073 
1074     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1075                             TYPE_PNV8_HOMER, &error_abort, NULL);
1076 
1077     for (i = 0; i < pcc->num_phbs; i++) {
1078         object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1079                                 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1080                                 &error_abort, NULL);
1081     }
1082 
1083     /*
1084      * Number of PHBs is the chip default
1085      */
1086     chip->num_phbs = pcc->num_phbs;
1087 }
1088 
1089 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1090  {
1091     PnvChip *chip = PNV_CHIP(chip8);
1092     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1093     int i, j;
1094     char *name;
1095 
1096     name = g_strdup_printf("icp-%x", chip->chip_id);
1097     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1098     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1099     g_free(name);
1100 
1101     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1102 
1103     /* Map the ICP registers for each thread */
1104     for (i = 0; i < chip->nr_cores; i++) {
1105         PnvCore *pnv_core = chip->cores[i];
1106         int core_hwid = CPU_CORE(pnv_core)->core_id;
1107 
1108         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1109             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1110             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1111 
1112             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1113                                         &icp->mmio);
1114         }
1115     }
1116 }
1117 
1118 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1119 {
1120     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1121     PnvChip *chip = PNV_CHIP(dev);
1122     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1123     Pnv8Psi *psi8 = &chip8->psi;
1124     Error *local_err = NULL;
1125     int i;
1126 
1127     assert(chip8->xics);
1128 
1129     /* XSCOM bridge is first */
1130     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1131     if (local_err) {
1132         error_propagate(errp, local_err);
1133         return;
1134     }
1135     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1136 
1137     pcc->parent_realize(dev, &local_err);
1138     if (local_err) {
1139         error_propagate(errp, local_err);
1140         return;
1141     }
1142 
1143     /* Processor Service Interface (PSI) Host Bridge */
1144     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1145                             "bar", &error_fatal);
1146     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1147                              ICS_PROP_XICS, &error_abort);
1148     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1149     if (local_err) {
1150         error_propagate(errp, local_err);
1151         return;
1152     }
1153     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1154                             &PNV_PSI(psi8)->xscom_regs);
1155 
1156     /* Create LPC controller */
1157     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1158                              &error_abort);
1159     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1160                              &error_fatal);
1161     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1162 
1163     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1164                                             (uint64_t) PNV_XSCOM_BASE(chip),
1165                                             PNV_XSCOM_LPC_BASE);
1166 
1167     /*
1168      * Interrupt Management Area. This is the memory region holding
1169      * all the Interrupt Control Presenter (ICP) registers
1170      */
1171     pnv_chip_icp_realize(chip8, &local_err);
1172     if (local_err) {
1173         error_propagate(errp, local_err);
1174         return;
1175     }
1176 
1177     /* Create the simplified OCC model */
1178     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1179                              &error_abort);
1180     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1181     if (local_err) {
1182         error_propagate(errp, local_err);
1183         return;
1184     }
1185     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1186 
1187     /* OCC SRAM model */
1188     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1189                                 &chip8->occ.sram_regs);
1190 
1191     /* HOMER */
1192     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1193                              &error_abort);
1194     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1195                              &local_err);
1196     if (local_err) {
1197         error_propagate(errp, local_err);
1198         return;
1199     }
1200     /* Homer Xscom region */
1201     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1202 
1203     /* Homer mmio region */
1204     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1205                                 &chip8->homer.regs);
1206 
1207     /* PHB3 controllers */
1208     for (i = 0; i < chip->num_phbs; i++) {
1209         PnvPHB3 *phb = &chip8->phbs[i];
1210         PnvPBCQState *pbcq = &phb->pbcq;
1211 
1212         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1213         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1214                                 &error_fatal);
1215         object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1216         if (local_err) {
1217             error_propagate(errp, local_err);
1218             return;
1219         }
1220         qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1221 
1222         /* Populate the XSCOM address space. */
1223         pnv_xscom_add_subregion(chip,
1224                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1225                                 &pbcq->xscom_nest_regs);
1226         pnv_xscom_add_subregion(chip,
1227                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1228                                 &pbcq->xscom_pci_regs);
1229         pnv_xscom_add_subregion(chip,
1230                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1231                                 &pbcq->xscom_spci_regs);
1232     }
1233 }
1234 
1235 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1236 {
1237     addr &= (PNV_XSCOM_SIZE - 1);
1238     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1239 }
1240 
1241 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1242 {
1243     DeviceClass *dc = DEVICE_CLASS(klass);
1244     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1245 
1246     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1247     k->cores_mask = POWER8E_CORE_MASK;
1248     k->num_phbs = 3;
1249     k->core_pir = pnv_chip_core_pir_p8;
1250     k->intc_create = pnv_chip_power8_intc_create;
1251     k->intc_reset = pnv_chip_power8_intc_reset;
1252     k->intc_destroy = pnv_chip_power8_intc_destroy;
1253     k->intc_print_info = pnv_chip_power8_intc_print_info;
1254     k->isa_create = pnv_chip_power8_isa_create;
1255     k->dt_populate = pnv_chip_power8_dt_populate;
1256     k->pic_print_info = pnv_chip_power8_pic_print_info;
1257     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1258     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1259     dc->desc = "PowerNV Chip POWER8E";
1260 
1261     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1262                                     &k->parent_realize);
1263 }
1264 
1265 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1266 {
1267     DeviceClass *dc = DEVICE_CLASS(klass);
1268     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1269 
1270     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1271     k->cores_mask = POWER8_CORE_MASK;
1272     k->num_phbs = 3;
1273     k->core_pir = pnv_chip_core_pir_p8;
1274     k->intc_create = pnv_chip_power8_intc_create;
1275     k->intc_reset = pnv_chip_power8_intc_reset;
1276     k->intc_destroy = pnv_chip_power8_intc_destroy;
1277     k->intc_print_info = pnv_chip_power8_intc_print_info;
1278     k->isa_create = pnv_chip_power8_isa_create;
1279     k->dt_populate = pnv_chip_power8_dt_populate;
1280     k->pic_print_info = pnv_chip_power8_pic_print_info;
1281     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1282     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1283     dc->desc = "PowerNV Chip POWER8";
1284 
1285     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1286                                     &k->parent_realize);
1287 }
1288 
1289 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1290 {
1291     DeviceClass *dc = DEVICE_CLASS(klass);
1292     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1293 
1294     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1295     k->cores_mask = POWER8_CORE_MASK;
1296     k->num_phbs = 3;
1297     k->core_pir = pnv_chip_core_pir_p8;
1298     k->intc_create = pnv_chip_power8_intc_create;
1299     k->intc_reset = pnv_chip_power8_intc_reset;
1300     k->intc_destroy = pnv_chip_power8_intc_destroy;
1301     k->intc_print_info = pnv_chip_power8_intc_print_info;
1302     k->isa_create = pnv_chip_power8nvl_isa_create;
1303     k->dt_populate = pnv_chip_power8_dt_populate;
1304     k->pic_print_info = pnv_chip_power8_pic_print_info;
1305     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1306     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1307     dc->desc = "PowerNV Chip POWER8NVL";
1308 
1309     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1310                                     &k->parent_realize);
1311 }
1312 
1313 static void pnv_chip_power9_instance_init(Object *obj)
1314 {
1315     PnvChip *chip = PNV_CHIP(obj);
1316     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1317     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1318     int i;
1319 
1320     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1321                             TYPE_PNV_XIVE, &error_abort, NULL);
1322     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1323                               "xive-fabric");
1324 
1325     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1326                             TYPE_PNV9_PSI, &error_abort, NULL);
1327 
1328     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1329                             TYPE_PNV9_LPC, &error_abort, NULL);
1330 
1331     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1332                             TYPE_PNV9_OCC, &error_abort, NULL);
1333 
1334     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1335                             TYPE_PNV9_HOMER, &error_abort, NULL);
1336 
1337     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1338         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1339                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1340                                 &error_abort, NULL);
1341     }
1342 
1343     /*
1344      * Number of PHBs is the chip default
1345      */
1346     chip->num_phbs = pcc->num_phbs;
1347 }
1348 
1349 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1350 {
1351     PnvChip *chip = PNV_CHIP(chip9);
1352     int i;
1353 
1354     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1355     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1356 
1357     for (i = 0; i < chip9->nr_quads; i++) {
1358         char eq_name[32];
1359         PnvQuad *eq = &chip9->quads[i];
1360         PnvCore *pnv_core = chip->cores[i * 4];
1361         int core_id = CPU_CORE(pnv_core)->core_id;
1362 
1363         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1364         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1365                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1366 
1367         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1368         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1369 
1370         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1371                                 &eq->xscom_regs);
1372     }
1373 }
1374 
1375 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1376 {
1377     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1378     Error *local_err = NULL;
1379     int i, j;
1380     int phb_id = 0;
1381 
1382     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1383         PnvPhb4PecState *pec = &chip9->pecs[i];
1384         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1385         uint32_t pec_nest_base;
1386         uint32_t pec_pci_base;
1387 
1388         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1389         /*
1390          * PEC0 -> 1 stack
1391          * PEC1 -> 2 stacks
1392          * PEC2 -> 3 stacks
1393          */
1394         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1395                                 &error_fatal);
1396         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1397                                  &error_fatal);
1398         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1399                                  "system-memory", &error_abort);
1400         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1401         if (local_err) {
1402             error_propagate(errp, local_err);
1403             return;
1404         }
1405 
1406         pec_nest_base = pecc->xscom_nest_base(pec);
1407         pec_pci_base = pecc->xscom_pci_base(pec);
1408 
1409         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1410         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1411 
1412         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1413              j++, phb_id++) {
1414             PnvPhb4PecStack *stack = &pec->stacks[j];
1415             Object *obj = OBJECT(&stack->phb);
1416 
1417             object_property_set_int(obj, phb_id, "index", &error_fatal);
1418             object_property_set_int(obj, chip->chip_id, "chip-id",
1419                                     &error_fatal);
1420             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1421                                     &error_fatal);
1422             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1423                                     &error_fatal);
1424             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1425             object_property_set_bool(obj, true, "realized", &local_err);
1426             if (local_err) {
1427                 error_propagate(errp, local_err);
1428                 return;
1429             }
1430             qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1431 
1432             /* Populate the XSCOM address space. */
1433             pnv_xscom_add_subregion(chip,
1434                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1435                                    &stack->nest_regs_mr);
1436             pnv_xscom_add_subregion(chip,
1437                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1438                                     &stack->pci_regs_mr);
1439             pnv_xscom_add_subregion(chip,
1440                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1441                                     0x40 * stack->stack_no,
1442                                     &stack->phb_regs_mr);
1443         }
1444     }
1445 }
1446 
1447 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1448 {
1449     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1450     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1451     PnvChip *chip = PNV_CHIP(dev);
1452     Pnv9Psi *psi9 = &chip9->psi;
1453     Error *local_err = NULL;
1454 
1455     /* XSCOM bridge is first */
1456     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1457     if (local_err) {
1458         error_propagate(errp, local_err);
1459         return;
1460     }
1461     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1462 
1463     pcc->parent_realize(dev, &local_err);
1464     if (local_err) {
1465         error_propagate(errp, local_err);
1466         return;
1467     }
1468 
1469     pnv_chip_quad_realize(chip9, &local_err);
1470     if (local_err) {
1471         error_propagate(errp, local_err);
1472         return;
1473     }
1474 
1475     /* XIVE interrupt controller (POWER9) */
1476     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1477                             "ic-bar", &error_fatal);
1478     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1479                             "vc-bar", &error_fatal);
1480     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1481                             "pc-bar", &error_fatal);
1482     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1483                             "tm-bar", &error_fatal);
1484     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1485                              &error_abort);
1486     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1487                              &local_err);
1488     if (local_err) {
1489         error_propagate(errp, local_err);
1490         return;
1491     }
1492     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1493                             &chip9->xive.xscom_regs);
1494 
1495     /* Processor Service Interface (PSI) Host Bridge */
1496     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1497                             "bar", &error_fatal);
1498     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1499     if (local_err) {
1500         error_propagate(errp, local_err);
1501         return;
1502     }
1503     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1504                             &PNV_PSI(psi9)->xscom_regs);
1505 
1506     /* LPC */
1507     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1508                              &error_abort);
1509     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1510     if (local_err) {
1511         error_propagate(errp, local_err);
1512         return;
1513     }
1514     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1515                                 &chip9->lpc.xscom_regs);
1516 
1517     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1518                                             (uint64_t) PNV9_LPCM_BASE(chip));
1519 
1520     /* Create the simplified OCC model */
1521     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1522                              &error_abort);
1523     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1524     if (local_err) {
1525         error_propagate(errp, local_err);
1526         return;
1527     }
1528     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1529 
1530     /* OCC SRAM model */
1531     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1532                                 &chip9->occ.sram_regs);
1533 
1534     /* HOMER */
1535     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1536                              &error_abort);
1537     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1538                              &local_err);
1539     if (local_err) {
1540         error_propagate(errp, local_err);
1541         return;
1542     }
1543     /* Homer Xscom region */
1544     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1545 
1546     /* Homer mmio region */
1547     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1548                                 &chip9->homer.regs);
1549 
1550     /* PHBs */
1551     pnv_chip_power9_phb_realize(chip, &local_err);
1552     if (local_err) {
1553         error_propagate(errp, local_err);
1554         return;
1555     }
1556 }
1557 
1558 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1559 {
1560     addr &= (PNV9_XSCOM_SIZE - 1);
1561     return addr >> 3;
1562 }
1563 
1564 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1565 {
1566     DeviceClass *dc = DEVICE_CLASS(klass);
1567     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1568 
1569     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1570     k->cores_mask = POWER9_CORE_MASK;
1571     k->core_pir = pnv_chip_core_pir_p9;
1572     k->intc_create = pnv_chip_power9_intc_create;
1573     k->intc_reset = pnv_chip_power9_intc_reset;
1574     k->intc_destroy = pnv_chip_power9_intc_destroy;
1575     k->intc_print_info = pnv_chip_power9_intc_print_info;
1576     k->isa_create = pnv_chip_power9_isa_create;
1577     k->dt_populate = pnv_chip_power9_dt_populate;
1578     k->pic_print_info = pnv_chip_power9_pic_print_info;
1579     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1580     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1581     dc->desc = "PowerNV Chip POWER9";
1582     k->num_phbs = 6;
1583 
1584     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1585                                     &k->parent_realize);
1586 }
1587 
1588 static void pnv_chip_power10_instance_init(Object *obj)
1589 {
1590     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1591 
1592     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1593                             TYPE_PNV10_PSI, &error_abort, NULL);
1594     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1595                             TYPE_PNV10_LPC, &error_abort, NULL);
1596 }
1597 
1598 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1599 {
1600     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1601     PnvChip *chip = PNV_CHIP(dev);
1602     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1603     Error *local_err = NULL;
1604 
1605     /* XSCOM bridge is first */
1606     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1607     if (local_err) {
1608         error_propagate(errp, local_err);
1609         return;
1610     }
1611     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1612 
1613     pcc->parent_realize(dev, &local_err);
1614     if (local_err) {
1615         error_propagate(errp, local_err);
1616         return;
1617     }
1618 
1619     /* Processor Service Interface (PSI) Host Bridge */
1620     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1621                             "bar", &error_fatal);
1622     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1623                              &local_err);
1624     if (local_err) {
1625         error_propagate(errp, local_err);
1626         return;
1627     }
1628     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1629                             &PNV_PSI(&chip10->psi)->xscom_regs);
1630 
1631     /* LPC */
1632     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1633                              &error_abort);
1634     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1635                              &local_err);
1636     if (local_err) {
1637         error_propagate(errp, local_err);
1638         return;
1639     }
1640     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1641                                 &chip10->lpc.xscom_regs);
1642 
1643     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1644                                             (uint64_t) PNV10_LPCM_BASE(chip));
1645 }
1646 
1647 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1648 {
1649     addr &= (PNV10_XSCOM_SIZE - 1);
1650     return addr >> 3;
1651 }
1652 
1653 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1654 {
1655     DeviceClass *dc = DEVICE_CLASS(klass);
1656     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1657 
1658     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1659     k->cores_mask = POWER10_CORE_MASK;
1660     k->core_pir = pnv_chip_core_pir_p10;
1661     k->intc_create = pnv_chip_power10_intc_create;
1662     k->intc_reset = pnv_chip_power10_intc_reset;
1663     k->intc_destroy = pnv_chip_power10_intc_destroy;
1664     k->intc_print_info = pnv_chip_power10_intc_print_info;
1665     k->isa_create = pnv_chip_power10_isa_create;
1666     k->dt_populate = pnv_chip_power10_dt_populate;
1667     k->pic_print_info = pnv_chip_power10_pic_print_info;
1668     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1669     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1670     dc->desc = "PowerNV Chip POWER10";
1671 
1672     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1673                                     &k->parent_realize);
1674 }
1675 
1676 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1677 {
1678     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1679     int cores_max;
1680 
1681     /*
1682      * No custom mask for this chip, let's use the default one from *
1683      * the chip class
1684      */
1685     if (!chip->cores_mask) {
1686         chip->cores_mask = pcc->cores_mask;
1687     }
1688 
1689     /* filter alien core ids ! some are reserved */
1690     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1691         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1692                    chip->cores_mask);
1693         return;
1694     }
1695     chip->cores_mask &= pcc->cores_mask;
1696 
1697     /* now that we have a sane layout, let check the number of cores */
1698     cores_max = ctpop64(chip->cores_mask);
1699     if (chip->nr_cores > cores_max) {
1700         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1701                    cores_max);
1702         return;
1703     }
1704 }
1705 
1706 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1707 {
1708     Error *error = NULL;
1709     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1710     const char *typename = pnv_chip_core_typename(chip);
1711     int i, core_hwid;
1712     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1713 
1714     if (!object_class_by_name(typename)) {
1715         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1716         return;
1717     }
1718 
1719     /* Cores */
1720     pnv_chip_core_sanitize(chip, &error);
1721     if (error) {
1722         error_propagate(errp, error);
1723         return;
1724     }
1725 
1726     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1727 
1728     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1729              && (i < chip->nr_cores); core_hwid++) {
1730         char core_name[32];
1731         PnvCore *pnv_core;
1732         uint64_t xscom_core_base;
1733 
1734         if (!(chip->cores_mask & (1ull << core_hwid))) {
1735             continue;
1736         }
1737 
1738         pnv_core = PNV_CORE(object_new(typename));
1739 
1740         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1741         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1742         chip->cores[i] = pnv_core;
1743         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1744                                 "nr-threads", &error_fatal);
1745         object_property_set_int(OBJECT(pnv_core), core_hwid,
1746                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1747         object_property_set_int(OBJECT(pnv_core),
1748                                 pcc->core_pir(chip, core_hwid),
1749                                 "pir", &error_fatal);
1750         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1751                                 "hrmor", &error_fatal);
1752         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1753                                  &error_abort);
1754         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1755                                  &error_fatal);
1756 
1757         /* Each core has an XSCOM MMIO region */
1758         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1759 
1760         pnv_xscom_add_subregion(chip, xscom_core_base,
1761                                 &pnv_core->xscom_regs);
1762         i++;
1763     }
1764 }
1765 
1766 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1767 {
1768     PnvChip *chip = PNV_CHIP(dev);
1769     Error *error = NULL;
1770 
1771     /* Cores */
1772     pnv_chip_core_realize(chip, &error);
1773     if (error) {
1774         error_propagate(errp, error);
1775         return;
1776     }
1777 }
1778 
1779 static Property pnv_chip_properties[] = {
1780     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1781     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1782     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1783     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1784     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1785     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1786     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1787     DEFINE_PROP_END_OF_LIST(),
1788 };
1789 
1790 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1791 {
1792     DeviceClass *dc = DEVICE_CLASS(klass);
1793 
1794     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1795     dc->realize = pnv_chip_realize;
1796     device_class_set_props(dc, pnv_chip_properties);
1797     dc->desc = "PowerNV Chip";
1798 }
1799 
1800 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1801 {
1802     int i, j;
1803 
1804     for (i = 0; i < chip->nr_cores; i++) {
1805         PnvCore *pc = chip->cores[i];
1806         CPUCore *cc = CPU_CORE(pc);
1807 
1808         for (j = 0; j < cc->nr_threads; j++) {
1809             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1810                 return pc->threads[j];
1811             }
1812         }
1813     }
1814     return NULL;
1815 }
1816 
1817 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1818 {
1819     PnvMachineState *pnv = PNV_MACHINE(xi);
1820     int i, j;
1821 
1822     for (i = 0; i < pnv->num_chips; i++) {
1823         PnvChip *chip = pnv->chips[i];
1824         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1825 
1826         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1827             return &chip8->psi.ics;
1828         }
1829         for (j = 0; j < chip->num_phbs; j++) {
1830             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1831                 return &chip8->phbs[j].lsis;
1832             }
1833             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1834                 return ICS(&chip8->phbs[j].msis);
1835             }
1836         }
1837     }
1838     return NULL;
1839 }
1840 
1841 static void pnv_ics_resend(XICSFabric *xi)
1842 {
1843     PnvMachineState *pnv = PNV_MACHINE(xi);
1844     int i, j;
1845 
1846     for (i = 0; i < pnv->num_chips; i++) {
1847         PnvChip *chip = pnv->chips[i];
1848         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1849 
1850         ics_resend(&chip8->psi.ics);
1851         for (j = 0; j < chip->num_phbs; j++) {
1852             ics_resend(&chip8->phbs[j].lsis);
1853             ics_resend(ICS(&chip8->phbs[j].msis));
1854         }
1855     }
1856 }
1857 
1858 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1859 {
1860     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1861 
1862     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1863 }
1864 
1865 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1866                                Monitor *mon)
1867 {
1868     PnvMachineState *pnv = PNV_MACHINE(obj);
1869     int i;
1870     CPUState *cs;
1871 
1872     CPU_FOREACH(cs) {
1873         PowerPCCPU *cpu = POWERPC_CPU(cs);
1874 
1875         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1876         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1877                                                            mon);
1878     }
1879 
1880     for (i = 0; i < pnv->num_chips; i++) {
1881         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1882     }
1883 }
1884 
1885 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1886                          uint8_t nvt_blk, uint32_t nvt_idx,
1887                          bool cam_ignore, uint8_t priority,
1888                          uint32_t logic_serv,
1889                          XiveTCTXMatch *match)
1890 {
1891     PnvMachineState *pnv = PNV_MACHINE(xfb);
1892     int total_count = 0;
1893     int i;
1894 
1895     for (i = 0; i < pnv->num_chips; i++) {
1896         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1897         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1898         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1899         int count;
1900 
1901         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1902                                priority, logic_serv, match);
1903 
1904         if (count < 0) {
1905             return count;
1906         }
1907 
1908         total_count += count;
1909     }
1910 
1911     return total_count;
1912 }
1913 
1914 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1915 {
1916     MachineClass *mc = MACHINE_CLASS(oc);
1917     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1918     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1919     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1920 
1921     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1922     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1923 
1924     xic->icp_get = pnv_icp_get;
1925     xic->ics_get = pnv_ics_get;
1926     xic->ics_resend = pnv_ics_resend;
1927 
1928     pmc->compat = compat;
1929     pmc->compat_size = sizeof(compat);
1930 }
1931 
1932 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1933 {
1934     MachineClass *mc = MACHINE_CLASS(oc);
1935     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1936     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1937     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1938 
1939     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1940     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1941     xfc->match_nvt = pnv_match_nvt;
1942 
1943     mc->alias = "powernv";
1944 
1945     pmc->compat = compat;
1946     pmc->compat_size = sizeof(compat);
1947     pmc->dt_power_mgt = pnv_dt_power_mgt;
1948 }
1949 
1950 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1951 {
1952     MachineClass *mc = MACHINE_CLASS(oc);
1953     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1954     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1955 
1956     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1957     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1958 
1959     pmc->compat = compat;
1960     pmc->compat_size = sizeof(compat);
1961     pmc->dt_power_mgt = pnv_dt_power_mgt;
1962 }
1963 
1964 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1965 {
1966     PnvMachineState *pnv = PNV_MACHINE(obj);
1967 
1968     return !!pnv->fw_load_addr;
1969 }
1970 
1971 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1972 {
1973     PnvMachineState *pnv = PNV_MACHINE(obj);
1974 
1975     if (value) {
1976         pnv->fw_load_addr = 0x8000000;
1977     }
1978 }
1979 
1980 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1981 {
1982     PowerPCCPU *cpu = POWERPC_CPU(cs);
1983     CPUPPCState *env = &cpu->env;
1984 
1985     cpu_synchronize_state(cs);
1986     ppc_cpu_do_system_reset(cs);
1987     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1988         /*
1989          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1990          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1991          * (PPC_BIT(43)).
1992          */
1993         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1994             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1995             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1996         }
1997     } else {
1998         /*
1999          * For non-powersave system resets, SRR1[42:45] are defined to be
2000          * implementation-dependent. The POWER9 User Manual specifies that
2001          * an external (SCOM driven, which may come from a BMC nmi command or
2002          * another CPU requesting a NMI IPI) system reset exception should be
2003          * 0b0010 (PPC_BIT(44)).
2004          */
2005         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2006     }
2007 }
2008 
2009 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2010 {
2011     CPUState *cs;
2012 
2013     CPU_FOREACH(cs) {
2014         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2015     }
2016 }
2017 
2018 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2019 {
2020     MachineClass *mc = MACHINE_CLASS(oc);
2021     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2022     NMIClass *nc = NMI_CLASS(oc);
2023 
2024     mc->desc = "IBM PowerNV (Non-Virtualized)";
2025     mc->init = pnv_init;
2026     mc->reset = pnv_reset;
2027     mc->max_cpus = MAX_CPUS;
2028     /* Pnv provides a AHCI device for storage */
2029     mc->block_default_type = IF_IDE;
2030     mc->no_parallel = 1;
2031     mc->default_boot_order = NULL;
2032     /*
2033      * RAM defaults to less than 2048 for 32-bit hosts, and large
2034      * enough to fit the maximum initrd size at it's load address
2035      */
2036     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
2037     mc->default_ram_id = "pnv.ram";
2038     ispc->print_info = pnv_pic_print_info;
2039     nc->nmi_monitor_handler = pnv_nmi;
2040 
2041     object_class_property_add_bool(oc, "hb-mode",
2042                                    pnv_machine_get_hb, pnv_machine_set_hb);
2043     object_class_property_set_description(oc, "hb-mode",
2044                               "Use a hostboot like boot loader");
2045 }
2046 
2047 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2048     {                                             \
2049         .name          = type,                    \
2050         .class_init    = class_initfn,            \
2051         .parent        = TYPE_PNV8_CHIP,          \
2052     }
2053 
2054 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2055     {                                             \
2056         .name          = type,                    \
2057         .class_init    = class_initfn,            \
2058         .parent        = TYPE_PNV9_CHIP,          \
2059     }
2060 
2061 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2062     {                                              \
2063         .name          = type,                     \
2064         .class_init    = class_initfn,             \
2065         .parent        = TYPE_PNV10_CHIP,          \
2066     }
2067 
2068 static const TypeInfo types[] = {
2069     {
2070         .name          = MACHINE_TYPE_NAME("powernv10"),
2071         .parent        = TYPE_PNV_MACHINE,
2072         .class_init    = pnv_machine_power10_class_init,
2073     },
2074     {
2075         .name          = MACHINE_TYPE_NAME("powernv9"),
2076         .parent        = TYPE_PNV_MACHINE,
2077         .class_init    = pnv_machine_power9_class_init,
2078         .interfaces = (InterfaceInfo[]) {
2079             { TYPE_XIVE_FABRIC },
2080             { },
2081         },
2082     },
2083     {
2084         .name          = MACHINE_TYPE_NAME("powernv8"),
2085         .parent        = TYPE_PNV_MACHINE,
2086         .class_init    = pnv_machine_power8_class_init,
2087         .interfaces = (InterfaceInfo[]) {
2088             { TYPE_XICS_FABRIC },
2089             { },
2090         },
2091     },
2092     {
2093         .name          = TYPE_PNV_MACHINE,
2094         .parent        = TYPE_MACHINE,
2095         .abstract       = true,
2096         .instance_size = sizeof(PnvMachineState),
2097         .class_init    = pnv_machine_class_init,
2098         .class_size    = sizeof(PnvMachineClass),
2099         .interfaces = (InterfaceInfo[]) {
2100             { TYPE_INTERRUPT_STATS_PROVIDER },
2101             { TYPE_NMI },
2102             { },
2103         },
2104     },
2105     {
2106         .name          = TYPE_PNV_CHIP,
2107         .parent        = TYPE_SYS_BUS_DEVICE,
2108         .class_init    = pnv_chip_class_init,
2109         .instance_size = sizeof(PnvChip),
2110         .class_size    = sizeof(PnvChipClass),
2111         .abstract      = true,
2112     },
2113 
2114     /*
2115      * P10 chip and variants
2116      */
2117     {
2118         .name          = TYPE_PNV10_CHIP,
2119         .parent        = TYPE_PNV_CHIP,
2120         .instance_init = pnv_chip_power10_instance_init,
2121         .instance_size = sizeof(Pnv10Chip),
2122     },
2123     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2124 
2125     /*
2126      * P9 chip and variants
2127      */
2128     {
2129         .name          = TYPE_PNV9_CHIP,
2130         .parent        = TYPE_PNV_CHIP,
2131         .instance_init = pnv_chip_power9_instance_init,
2132         .instance_size = sizeof(Pnv9Chip),
2133     },
2134     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2135 
2136     /*
2137      * P8 chip and variants
2138      */
2139     {
2140         .name          = TYPE_PNV8_CHIP,
2141         .parent        = TYPE_PNV_CHIP,
2142         .instance_init = pnv_chip_power8_instance_init,
2143         .instance_size = sizeof(Pnv8Chip),
2144     },
2145     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2146     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2147     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2148                           pnv_chip_power8nvl_class_init),
2149 };
2150 
2151 DEFINE_TYPES(types)
2152