xref: /openbmc/qemu/hw/ppc/pnv.c (revision 5b723a5d8df44b69b8ba350e643059c8fd889315)
1  /*
2   * QEMU PowerPC PowerNV machine model
3   *
4   * Copyright (c) 2016, IBM Corporation.
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "qemu-common.h"
22  #include "qemu/datadir.h"
23  #include "qemu/units.h"
24  #include "qapi/error.h"
25  #include "sysemu/qtest.h"
26  #include "sysemu/sysemu.h"
27  #include "sysemu/numa.h"
28  #include "sysemu/reset.h"
29  #include "sysemu/runstate.h"
30  #include "sysemu/cpus.h"
31  #include "sysemu/device_tree.h"
32  #include "sysemu/hw_accel.h"
33  #include "target/ppc/cpu.h"
34  #include "qemu/log.h"
35  #include "hw/ppc/fdt.h"
36  #include "hw/ppc/ppc.h"
37  #include "hw/ppc/pnv.h"
38  #include "hw/ppc/pnv_core.h"
39  #include "hw/loader.h"
40  #include "hw/nmi.h"
41  #include "exec/address-spaces.h"
42  #include "qapi/visitor.h"
43  #include "monitor/monitor.h"
44  #include "hw/intc/intc.h"
45  #include "hw/ipmi/ipmi.h"
46  #include "target/ppc/mmu-hash64.h"
47  #include "hw/pci/msi.h"
48  
49  #include "hw/ppc/xics.h"
50  #include "hw/qdev-properties.h"
51  #include "hw/ppc/pnv_xscom.h"
52  #include "hw/ppc/pnv_pnor.h"
53  
54  #include "hw/isa/isa.h"
55  #include "hw/boards.h"
56  #include "hw/char/serial.h"
57  #include "hw/rtc/mc146818rtc.h"
58  
59  #include <libfdt.h>
60  
61  #define FDT_MAX_SIZE            (1 * MiB)
62  
63  #define FW_FILE_NAME            "skiboot.lid"
64  #define FW_LOAD_ADDR            0x0
65  #define FW_MAX_SIZE             (16 * MiB)
66  
67  #define KERNEL_LOAD_ADDR        0x20000000
68  #define KERNEL_MAX_SIZE         (256 * MiB)
69  #define INITRD_LOAD_ADDR        0x60000000
70  #define INITRD_MAX_SIZE         (256 * MiB)
71  
72  static const char *pnv_chip_core_typename(const PnvChip *o)
73  {
74      const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75      int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76      char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77      const char *core_type = object_class_get_name(object_class_by_name(s));
78      g_free(s);
79      return core_type;
80  }
81  
82  /*
83   * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84   *     4 * 4 sockets * 12 cores * 8 threads = 1536
85   * Let's make it 2^11
86   */
87  #define MAX_CPUS                2048
88  
89  /*
90   * Memory nodes are created by hostboot, one for each range of memory
91   * that has a different "affinity". In practice, it means one range
92   * per chip.
93   */
94  static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95  {
96      char *mem_name;
97      uint64_t mem_reg_property[2];
98      int off;
99  
100      mem_reg_property[0] = cpu_to_be64(start);
101      mem_reg_property[1] = cpu_to_be64(size);
102  
103      mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104      off = fdt_add_subnode(fdt, 0, mem_name);
105      g_free(mem_name);
106  
107      _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108      _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                         sizeof(mem_reg_property))));
110      _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111  }
112  
113  static int get_cpus_node(void *fdt)
114  {
115      int cpus_offset = fdt_path_offset(fdt, "/cpus");
116  
117      if (cpus_offset < 0) {
118          cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119          if (cpus_offset) {
120              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122          }
123      }
124      _FDT(cpus_offset);
125      return cpus_offset;
126  }
127  
128  /*
129   * The PowerNV cores (and threads) need to use real HW ids and not an
130   * incremental index like it has been done on other platforms. This HW
131   * id is stored in the CPU PIR, it is used to create cpu nodes in the
132   * device tree, used in XSCOM to address cores and in interrupt
133   * servers.
134   */
135  static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136  {
137      PowerPCCPU *cpu = pc->threads[0];
138      CPUState *cs = CPU(cpu);
139      DeviceClass *dc = DEVICE_GET_CLASS(cs);
140      int smt_threads = CPU_CORE(pc)->nr_threads;
141      CPUPPCState *env = &cpu->env;
142      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143      uint32_t servers_prop[smt_threads];
144      int i;
145      uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
146                         0xffffffff, 0xffffffff};
147      uint32_t tbfreq = PNV_TIMEBASE_FREQ;
148      uint32_t cpufreq = 1000000000;
149      uint32_t page_sizes_prop[64];
150      size_t page_sizes_prop_size;
151      const uint8_t pa_features[] = { 24, 0,
152                                      0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
153                                      0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
154                                      0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
155                                      0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
156      int offset;
157      char *nodename;
158      int cpus_offset = get_cpus_node(fdt);
159  
160      nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
161      offset = fdt_add_subnode(fdt, cpus_offset, nodename);
162      _FDT(offset);
163      g_free(nodename);
164  
165      _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
166  
167      _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
168      _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
169      _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
170  
171      _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
172      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
173                              env->dcache_line_size)));
174      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
175                              env->dcache_line_size)));
176      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
177                              env->icache_line_size)));
178      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
179                              env->icache_line_size)));
180  
181      if (pcc->l1_dcache_size) {
182          _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
183                                 pcc->l1_dcache_size)));
184      } else {
185          warn_report("Unknown L1 dcache size for cpu");
186      }
187      if (pcc->l1_icache_size) {
188          _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
189                                 pcc->l1_icache_size)));
190      } else {
191          warn_report("Unknown L1 icache size for cpu");
192      }
193  
194      _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
195      _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
196      _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
197                             cpu->hash64_opts->slb_size)));
198      _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
199      _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
200  
201      if (env->spr_cb[SPR_PURR].oea_read) {
202          _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
203      }
204  
205      if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
206          _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
207                             segs, sizeof(segs))));
208      }
209  
210      /*
211       * Advertise VMX/VSX (vector extensions) if available
212       *   0 / no property == no vector extensions
213       *   1               == VMX / Altivec available
214       *   2               == VSX available
215       */
216      if (env->insns_flags & PPC_ALTIVEC) {
217          uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
218  
219          _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
220      }
221  
222      /*
223       * Advertise DFP (Decimal Floating Point) if available
224       *   0 / no property == no DFP
225       *   1               == DFP available
226       */
227      if (env->insns_flags2 & PPC2_DFP) {
228          _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
229      }
230  
231      page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
232                                                        sizeof(page_sizes_prop));
233      if (page_sizes_prop_size) {
234          _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
235                             page_sizes_prop, page_sizes_prop_size)));
236      }
237  
238      _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
239                         pa_features, sizeof(pa_features))));
240  
241      /* Build interrupt servers properties */
242      for (i = 0; i < smt_threads; i++) {
243          servers_prop[i] = cpu_to_be32(pc->pir + i);
244      }
245      _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
246                         servers_prop, sizeof(servers_prop))));
247  }
248  
249  static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
250                         uint32_t nr_threads)
251  {
252      uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
253      char *name;
254      const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
255      uint32_t irange[2], i, rsize;
256      uint64_t *reg;
257      int offset;
258  
259      irange[0] = cpu_to_be32(pir);
260      irange[1] = cpu_to_be32(nr_threads);
261  
262      rsize = sizeof(uint64_t) * 2 * nr_threads;
263      reg = g_malloc(rsize);
264      for (i = 0; i < nr_threads; i++) {
265          reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
266          reg[i * 2 + 1] = cpu_to_be64(0x1000);
267      }
268  
269      name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
270      offset = fdt_add_subnode(fdt, 0, name);
271      _FDT(offset);
272      g_free(name);
273  
274      _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
275      _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
276      _FDT((fdt_setprop_string(fdt, offset, "device_type",
277                                "PowerPC-External-Interrupt-Presentation")));
278      _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
279      _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
280                         irange, sizeof(irange))));
281      _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
282      _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
283      g_free(reg);
284  }
285  
286  static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
287  {
288      static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
289      int i;
290  
291      pnv_dt_xscom(chip, fdt, 0,
292                   cpu_to_be64(PNV_XSCOM_BASE(chip)),
293                   cpu_to_be64(PNV_XSCOM_SIZE),
294                   compat, sizeof(compat));
295  
296      for (i = 0; i < chip->nr_cores; i++) {
297          PnvCore *pnv_core = chip->cores[i];
298  
299          pnv_dt_core(chip, pnv_core, fdt);
300  
301          /* Interrupt Control Presenters (ICP). One per core. */
302          pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
303      }
304  
305      if (chip->ram_size) {
306          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
307      }
308  }
309  
310  static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
311  {
312      static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
313      int i;
314  
315      pnv_dt_xscom(chip, fdt, 0,
316                   cpu_to_be64(PNV9_XSCOM_BASE(chip)),
317                   cpu_to_be64(PNV9_XSCOM_SIZE),
318                   compat, sizeof(compat));
319  
320      for (i = 0; i < chip->nr_cores; i++) {
321          PnvCore *pnv_core = chip->cores[i];
322  
323          pnv_dt_core(chip, pnv_core, fdt);
324      }
325  
326      if (chip->ram_size) {
327          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
328      }
329  
330      pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
331  }
332  
333  static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
334  {
335      static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
336      int i;
337  
338      pnv_dt_xscom(chip, fdt, 0,
339                   cpu_to_be64(PNV10_XSCOM_BASE(chip)),
340                   cpu_to_be64(PNV10_XSCOM_SIZE),
341                   compat, sizeof(compat));
342  
343      for (i = 0; i < chip->nr_cores; i++) {
344          PnvCore *pnv_core = chip->cores[i];
345  
346          pnv_dt_core(chip, pnv_core, fdt);
347      }
348  
349      if (chip->ram_size) {
350          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
351      }
352  
353      pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
354  }
355  
356  static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
357  {
358      uint32_t io_base = d->ioport_id;
359      uint32_t io_regs[] = {
360          cpu_to_be32(1),
361          cpu_to_be32(io_base),
362          cpu_to_be32(2)
363      };
364      char *name;
365      int node;
366  
367      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
368      node = fdt_add_subnode(fdt, lpc_off, name);
369      _FDT(node);
370      g_free(name);
371  
372      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
373      _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
374  }
375  
376  static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
377  {
378      const char compatible[] = "ns16550\0pnpPNP,501";
379      uint32_t io_base = d->ioport_id;
380      uint32_t io_regs[] = {
381          cpu_to_be32(1),
382          cpu_to_be32(io_base),
383          cpu_to_be32(8)
384      };
385      char *name;
386      int node;
387  
388      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
389      node = fdt_add_subnode(fdt, lpc_off, name);
390      _FDT(node);
391      g_free(name);
392  
393      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
394      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
395                        sizeof(compatible))));
396  
397      _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
398      _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
399      _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
400      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
401                             fdt_get_phandle(fdt, lpc_off))));
402  
403      /* This is needed by Linux */
404      _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
405  }
406  
407  static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
408  {
409      const char compatible[] = "bt\0ipmi-bt";
410      uint32_t io_base;
411      uint32_t io_regs[] = {
412          cpu_to_be32(1),
413          0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
414          cpu_to_be32(3)
415      };
416      uint32_t irq;
417      char *name;
418      int node;
419  
420      io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
421      io_regs[1] = cpu_to_be32(io_base);
422  
423      irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
424  
425      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
426      node = fdt_add_subnode(fdt, lpc_off, name);
427      _FDT(node);
428      g_free(name);
429  
430      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
431      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
432                        sizeof(compatible))));
433  
434      /* Mark it as reserved to avoid Linux trying to claim it */
435      _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
436      _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
437      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
438                             fdt_get_phandle(fdt, lpc_off))));
439  }
440  
441  typedef struct ForeachPopulateArgs {
442      void *fdt;
443      int offset;
444  } ForeachPopulateArgs;
445  
446  static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
447  {
448      ForeachPopulateArgs *args = opaque;
449      ISADevice *d = ISA_DEVICE(dev);
450  
451      if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
452          pnv_dt_rtc(d, args->fdt, args->offset);
453      } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
454          pnv_dt_serial(d, args->fdt, args->offset);
455      } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
456          pnv_dt_ipmi_bt(d, args->fdt, args->offset);
457      } else {
458          error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
459                       d->ioport_id);
460      }
461  
462      return 0;
463  }
464  
465  /*
466   * The default LPC bus of a multichip system is on chip 0. It's
467   * recognized by the firmware (skiboot) using a "primary" property.
468   */
469  static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
470  {
471      int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
472      ForeachPopulateArgs args = {
473          .fdt = fdt,
474          .offset = isa_offset,
475      };
476      uint32_t phandle;
477  
478      _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
479  
480      phandle = qemu_fdt_alloc_phandle(fdt);
481      assert(phandle > 0);
482      _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
483  
484      /*
485       * ISA devices are not necessarily parented to the ISA bus so we
486       * can not use object_child_foreach()
487       */
488      qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
489                         &args);
490  }
491  
492  static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
493  {
494      int off;
495  
496      off = fdt_add_subnode(fdt, 0, "ibm,opal");
497      off = fdt_add_subnode(fdt, off, "power-mgt");
498  
499      _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
500  }
501  
502  static void *pnv_dt_create(MachineState *machine)
503  {
504      PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
505      PnvMachineState *pnv = PNV_MACHINE(machine);
506      void *fdt;
507      char *buf;
508      int off;
509      int i;
510  
511      fdt = g_malloc0(FDT_MAX_SIZE);
512      _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
513  
514      /* /qemu node */
515      _FDT((fdt_add_subnode(fdt, 0, "qemu")));
516  
517      /* Root node */
518      _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
519      _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
520      _FDT((fdt_setprop_string(fdt, 0, "model",
521                               "IBM PowerNV (emulated by qemu)")));
522      _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
523  
524      buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
525      _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
526      if (qemu_uuid_set) {
527          _FDT((fdt_property_string(fdt, "system-id", buf)));
528      }
529      g_free(buf);
530  
531      off = fdt_add_subnode(fdt, 0, "chosen");
532      if (machine->kernel_cmdline) {
533          _FDT((fdt_setprop_string(fdt, off, "bootargs",
534                                   machine->kernel_cmdline)));
535      }
536  
537      if (pnv->initrd_size) {
538          uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
539          uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
540  
541          _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
542                                 &start_prop, sizeof(start_prop))));
543          _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
544                                 &end_prop, sizeof(end_prop))));
545      }
546  
547      /* Populate device tree for each chip */
548      for (i = 0; i < pnv->num_chips; i++) {
549          PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
550      }
551  
552      /* Populate ISA devices on chip 0 */
553      pnv_dt_isa(pnv, fdt);
554  
555      if (pnv->bmc) {
556          pnv_dt_bmc_sensors(pnv->bmc, fdt);
557      }
558  
559      /* Create an extra node for power management on machines that support it */
560      if (pmc->dt_power_mgt) {
561          pmc->dt_power_mgt(pnv, fdt);
562      }
563  
564      return fdt;
565  }
566  
567  static void pnv_powerdown_notify(Notifier *n, void *opaque)
568  {
569      PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
570  
571      if (pnv->bmc) {
572          pnv_bmc_powerdown(pnv->bmc);
573      }
574  }
575  
576  static void pnv_reset(MachineState *machine)
577  {
578      PnvMachineState *pnv = PNV_MACHINE(machine);
579      IPMIBmc *bmc;
580      void *fdt;
581  
582      qemu_devices_reset();
583  
584      /*
585       * The machine should provide by default an internal BMC simulator.
586       * If not, try to use the BMC device that was provided on the command
587       * line.
588       */
589      bmc = pnv_bmc_find(&error_fatal);
590      if (!pnv->bmc) {
591          if (!bmc) {
592              if (!qtest_enabled()) {
593                  warn_report("machine has no BMC device. Use '-device "
594                              "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
595                              "to define one");
596              }
597          } else {
598              pnv_bmc_set_pnor(bmc, pnv->pnor);
599              pnv->bmc = bmc;
600          }
601      }
602  
603      fdt = pnv_dt_create(machine);
604  
605      /* Pack resulting tree */
606      _FDT((fdt_pack(fdt)));
607  
608      qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
609      cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
610  
611      g_free(fdt);
612  }
613  
614  static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
615  {
616      Pnv8Chip *chip8 = PNV8_CHIP(chip);
617      return pnv_lpc_isa_create(&chip8->lpc, true, errp);
618  }
619  
620  static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
621  {
622      Pnv8Chip *chip8 = PNV8_CHIP(chip);
623      return pnv_lpc_isa_create(&chip8->lpc, false, errp);
624  }
625  
626  static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
627  {
628      Pnv9Chip *chip9 = PNV9_CHIP(chip);
629      return pnv_lpc_isa_create(&chip9->lpc, false, errp);
630  }
631  
632  static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
633  {
634      Pnv10Chip *chip10 = PNV10_CHIP(chip);
635      return pnv_lpc_isa_create(&chip10->lpc, false, errp);
636  }
637  
638  static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
639  {
640      return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
641  }
642  
643  static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
644  {
645      Pnv8Chip *chip8 = PNV8_CHIP(chip);
646      int i;
647  
648      ics_pic_print_info(&chip8->psi.ics, mon);
649      for (i = 0; i < chip->num_phbs; i++) {
650          pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
651          ics_pic_print_info(&chip8->phbs[i].lsis, mon);
652      }
653  }
654  
655  static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
656  {
657      Pnv9Chip *chip9 = PNV9_CHIP(chip);
658      int i, j;
659  
660      pnv_xive_pic_print_info(&chip9->xive, mon);
661      pnv_psi_pic_print_info(&chip9->psi, mon);
662  
663      for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
664          PnvPhb4PecState *pec = &chip9->pecs[i];
665          for (j = 0; j < pec->num_stacks; j++) {
666              pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
667          }
668      }
669  }
670  
671  static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
672                                                  uint32_t core_id)
673  {
674      return PNV_XSCOM_EX_BASE(core_id);
675  }
676  
677  static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
678                                                  uint32_t core_id)
679  {
680      return PNV9_XSCOM_EC_BASE(core_id);
681  }
682  
683  static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
684                                                   uint32_t core_id)
685  {
686      return PNV10_XSCOM_EC_BASE(core_id);
687  }
688  
689  static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
690  {
691      PowerPCCPUClass *ppc_default =
692          POWERPC_CPU_CLASS(object_class_by_name(default_type));
693      PowerPCCPUClass *ppc =
694          POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
695  
696      return ppc_default->pvr_match(ppc_default, ppc->pvr);
697  }
698  
699  static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
700  {
701      ISADevice *dev = isa_new("isa-ipmi-bt");
702  
703      object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
704      object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
705      isa_realize_and_unref(dev, bus, &error_fatal);
706  }
707  
708  static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
709  {
710      Pnv10Chip *chip10 = PNV10_CHIP(chip);
711  
712      pnv_psi_pic_print_info(&chip10->psi, mon);
713  }
714  
715  static void pnv_init(MachineState *machine)
716  {
717      const char *bios_name = machine->firmware ?: FW_FILE_NAME;
718      PnvMachineState *pnv = PNV_MACHINE(machine);
719      MachineClass *mc = MACHINE_GET_CLASS(machine);
720      char *fw_filename;
721      long fw_size;
722      int i;
723      char *chip_typename;
724      DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
725      DeviceState *dev;
726  
727      /* allocate RAM */
728      if (machine->ram_size < (1 * GiB)) {
729          warn_report("skiboot may not work with < 1GB of RAM");
730      }
731      memory_region_add_subregion(get_system_memory(), 0, machine->ram);
732  
733      /*
734       * Create our simple PNOR device
735       */
736      dev = qdev_new(TYPE_PNV_PNOR);
737      if (pnor) {
738          qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
739      }
740      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
741      pnv->pnor = PNV_PNOR(dev);
742  
743      /* load skiboot firmware  */
744      fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
745      if (!fw_filename) {
746          error_report("Could not find OPAL firmware '%s'", bios_name);
747          exit(1);
748      }
749  
750      fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
751      if (fw_size < 0) {
752          error_report("Could not load OPAL firmware '%s'", fw_filename);
753          exit(1);
754      }
755      g_free(fw_filename);
756  
757      /* load kernel */
758      if (machine->kernel_filename) {
759          long kernel_size;
760  
761          kernel_size = load_image_targphys(machine->kernel_filename,
762                                            KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
763          if (kernel_size < 0) {
764              error_report("Could not load kernel '%s'",
765                           machine->kernel_filename);
766              exit(1);
767          }
768      }
769  
770      /* load initrd */
771      if (machine->initrd_filename) {
772          pnv->initrd_base = INITRD_LOAD_ADDR;
773          pnv->initrd_size = load_image_targphys(machine->initrd_filename,
774                                    pnv->initrd_base, INITRD_MAX_SIZE);
775          if (pnv->initrd_size < 0) {
776              error_report("Could not load initial ram disk '%s'",
777                           machine->initrd_filename);
778              exit(1);
779          }
780      }
781  
782      /* MSIs are supported on this platform */
783      msi_nonbroken = true;
784  
785      /*
786       * Check compatibility of the specified CPU with the machine
787       * default.
788       */
789      if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
790          error_report("invalid CPU model '%s' for %s machine",
791                       machine->cpu_type, mc->name);
792          exit(1);
793      }
794  
795      /* Create the processor chips */
796      i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
797      chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
798                                      i, machine->cpu_type);
799      if (!object_class_by_name(chip_typename)) {
800          error_report("invalid chip model '%.*s' for %s machine",
801                       i, machine->cpu_type, mc->name);
802          exit(1);
803      }
804  
805      pnv->num_chips =
806          machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
807      /*
808       * TODO: should we decide on how many chips we can create based
809       * on #cores and Venice vs. Murano vs. Naples chip type etc...,
810       */
811      if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
812          error_report("invalid number of chips: '%d'", pnv->num_chips);
813          error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
814          exit(1);
815      }
816  
817      pnv->chips = g_new0(PnvChip *, pnv->num_chips);
818      for (i = 0; i < pnv->num_chips; i++) {
819          char chip_name[32];
820          Object *chip = OBJECT(qdev_new(chip_typename));
821  
822          pnv->chips[i] = PNV_CHIP(chip);
823  
824          /*
825           * TODO: put all the memory in one node on chip 0 until we find a
826           * way to specify different ranges for each chip
827           */
828          if (i == 0) {
829              object_property_set_int(chip, "ram-size", machine->ram_size,
830                                      &error_fatal);
831          }
832  
833          snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
834          object_property_add_child(OBJECT(pnv), chip_name, chip);
835          object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
836                                  &error_fatal);
837          object_property_set_int(chip, "nr-cores", machine->smp.cores,
838                                  &error_fatal);
839          object_property_set_int(chip, "nr-threads", machine->smp.threads,
840                                  &error_fatal);
841          /*
842           * The POWER8 machine use the XICS interrupt interface.
843           * Propagate the XICS fabric to the chip and its controllers.
844           */
845          if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
846              object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
847          }
848          if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
849              object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
850                                       &error_abort);
851          }
852          sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
853      }
854      g_free(chip_typename);
855  
856      /* Instantiate ISA bus on chip 0 */
857      pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
858  
859      /* Create serial port */
860      serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
861  
862      /* Create an RTC ISA device too */
863      mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
864  
865      /*
866       * Create the machine BMC simulator and the IPMI BT device for
867       * communication with the BMC
868       */
869      if (defaults_enabled()) {
870          pnv->bmc = pnv_bmc_create(pnv->pnor);
871          pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
872      }
873  
874      /*
875       * OpenPOWER systems use a IPMI SEL Event message to notify the
876       * host to powerdown
877       */
878      pnv->powerdown_notifier.notify = pnv_powerdown_notify;
879      qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
880  }
881  
882  /*
883   *    0:21  Reserved - Read as zeros
884   *   22:24  Chip ID
885   *   25:28  Core number
886   *   29:31  Thread ID
887   */
888  static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
889  {
890      return (chip->chip_id << 7) | (core_id << 3);
891  }
892  
893  static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
894                                          Error **errp)
895  {
896      Pnv8Chip *chip8 = PNV8_CHIP(chip);
897      Error *local_err = NULL;
898      Object *obj;
899      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
900  
901      obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
902      if (local_err) {
903          error_propagate(errp, local_err);
904          return;
905      }
906  
907      pnv_cpu->intc = obj;
908  }
909  
910  
911  static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
912  {
913      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
914  
915      icp_reset(ICP(pnv_cpu->intc));
916  }
917  
918  static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
919  {
920      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
921  
922      icp_destroy(ICP(pnv_cpu->intc));
923      pnv_cpu->intc = NULL;
924  }
925  
926  static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
927                                              Monitor *mon)
928  {
929      icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
930  }
931  
932  /*
933   *    0:48  Reserved - Read as zeroes
934   *   49:52  Node ID
935   *   53:55  Chip ID
936   *   56     Reserved - Read as zero
937   *   57:61  Core number
938   *   62:63  Thread ID
939   *
940   * We only care about the lower bits. uint32_t is fine for the moment.
941   */
942  static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
943  {
944      return (chip->chip_id << 8) | (core_id << 2);
945  }
946  
947  static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
948  {
949      return (chip->chip_id << 8) | (core_id << 2);
950  }
951  
952  static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
953                                          Error **errp)
954  {
955      Pnv9Chip *chip9 = PNV9_CHIP(chip);
956      Error *local_err = NULL;
957      Object *obj;
958      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
959  
960      /*
961       * The core creates its interrupt presenter but the XIVE interrupt
962       * controller object is initialized afterwards. Hopefully, it's
963       * only used at runtime.
964       */
965      obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
966                             &local_err);
967      if (local_err) {
968          error_propagate(errp, local_err);
969          return;
970      }
971  
972      pnv_cpu->intc = obj;
973  }
974  
975  static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
976  {
977      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
978  
979      xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
980  }
981  
982  static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
983  {
984      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
985  
986      xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
987      pnv_cpu->intc = NULL;
988  }
989  
990  static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
991                                              Monitor *mon)
992  {
993      xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
994  }
995  
996  static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
997                                          Error **errp)
998  {
999      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1000  
1001      /* Will be defined when the interrupt controller is */
1002      pnv_cpu->intc = NULL;
1003  }
1004  
1005  static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1006  {
1007      ;
1008  }
1009  
1010  static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1011  {
1012      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013  
1014      pnv_cpu->intc = NULL;
1015  }
1016  
1017  static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1018                                               Monitor *mon)
1019  {
1020  }
1021  
1022  /*
1023   * Allowed core identifiers on a POWER8 Processor Chip :
1024   *
1025   * <EX0 reserved>
1026   *  EX1  - Venice only
1027   *  EX2  - Venice only
1028   *  EX3  - Venice only
1029   *  EX4
1030   *  EX5
1031   *  EX6
1032   * <EX7,8 reserved> <reserved>
1033   *  EX9  - Venice only
1034   *  EX10 - Venice only
1035   *  EX11 - Venice only
1036   *  EX12
1037   *  EX13
1038   *  EX14
1039   * <EX15 reserved>
1040   */
1041  #define POWER8E_CORE_MASK  (0x7070ull)
1042  #define POWER8_CORE_MASK   (0x7e7eull)
1043  
1044  /*
1045   * POWER9 has 24 cores, ids starting at 0x0
1046   */
1047  #define POWER9_CORE_MASK   (0xffffffffffffffull)
1048  
1049  
1050  #define POWER10_CORE_MASK  (0xffffffffffffffull)
1051  
1052  static void pnv_chip_power8_instance_init(Object *obj)
1053  {
1054      PnvChip *chip = PNV_CHIP(obj);
1055      Pnv8Chip *chip8 = PNV8_CHIP(obj);
1056      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1057      int i;
1058  
1059      object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1060                               (Object **)&chip8->xics,
1061                               object_property_allow_set_link,
1062                               OBJ_PROP_LINK_STRONG);
1063  
1064      object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1065  
1066      object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1067  
1068      object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1069  
1070      object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1071  
1072      for (i = 0; i < pcc->num_phbs; i++) {
1073          object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1074      }
1075  
1076      /*
1077       * Number of PHBs is the chip default
1078       */
1079      chip->num_phbs = pcc->num_phbs;
1080  }
1081  
1082  static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1083   {
1084      PnvChip *chip = PNV_CHIP(chip8);
1085      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1086      int i, j;
1087      char *name;
1088  
1089      name = g_strdup_printf("icp-%x", chip->chip_id);
1090      memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1091      sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1092      g_free(name);
1093  
1094      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1095  
1096      /* Map the ICP registers for each thread */
1097      for (i = 0; i < chip->nr_cores; i++) {
1098          PnvCore *pnv_core = chip->cores[i];
1099          int core_hwid = CPU_CORE(pnv_core)->core_id;
1100  
1101          for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1102              uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1103              PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1104  
1105              memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1106                                          &icp->mmio);
1107          }
1108      }
1109  }
1110  
1111  static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1112  {
1113      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1114      PnvChip *chip = PNV_CHIP(dev);
1115      Pnv8Chip *chip8 = PNV8_CHIP(dev);
1116      Pnv8Psi *psi8 = &chip8->psi;
1117      Error *local_err = NULL;
1118      int i;
1119  
1120      assert(chip8->xics);
1121  
1122      /* XSCOM bridge is first */
1123      pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1124      if (local_err) {
1125          error_propagate(errp, local_err);
1126          return;
1127      }
1128      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1129  
1130      pcc->parent_realize(dev, &local_err);
1131      if (local_err) {
1132          error_propagate(errp, local_err);
1133          return;
1134      }
1135  
1136      /* Processor Service Interface (PSI) Host Bridge */
1137      object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1138                              &error_fatal);
1139      object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1140                               OBJECT(chip8->xics), &error_abort);
1141      if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1142          return;
1143      }
1144      pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1145                              &PNV_PSI(psi8)->xscom_regs);
1146  
1147      /* Create LPC controller */
1148      object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1149                               &error_abort);
1150      qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1151      pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1152  
1153      chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1154                                              (uint64_t) PNV_XSCOM_BASE(chip),
1155                                              PNV_XSCOM_LPC_BASE);
1156  
1157      /*
1158       * Interrupt Management Area. This is the memory region holding
1159       * all the Interrupt Control Presenter (ICP) registers
1160       */
1161      pnv_chip_icp_realize(chip8, &local_err);
1162      if (local_err) {
1163          error_propagate(errp, local_err);
1164          return;
1165      }
1166  
1167      /* Create the simplified OCC model */
1168      object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1169                               &error_abort);
1170      if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1171          return;
1172      }
1173      pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1174  
1175      /* OCC SRAM model */
1176      memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1177                                  &chip8->occ.sram_regs);
1178  
1179      /* HOMER */
1180      object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1181                               &error_abort);
1182      if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1183          return;
1184      }
1185      /* Homer Xscom region */
1186      pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1187  
1188      /* Homer mmio region */
1189      memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1190                                  &chip8->homer.regs);
1191  
1192      /* PHB3 controllers */
1193      for (i = 0; i < chip->num_phbs; i++) {
1194          PnvPHB3 *phb = &chip8->phbs[i];
1195          PnvPBCQState *pbcq = &phb->pbcq;
1196  
1197          object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1198          object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1199                                  &error_fatal);
1200          if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1201              return;
1202          }
1203  
1204          /* Populate the XSCOM address space. */
1205          pnv_xscom_add_subregion(chip,
1206                                  PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1207                                  &pbcq->xscom_nest_regs);
1208          pnv_xscom_add_subregion(chip,
1209                                  PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1210                                  &pbcq->xscom_pci_regs);
1211          pnv_xscom_add_subregion(chip,
1212                                  PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1213                                  &pbcq->xscom_spci_regs);
1214      }
1215  }
1216  
1217  static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1218  {
1219      addr &= (PNV_XSCOM_SIZE - 1);
1220      return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1221  }
1222  
1223  static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1224  {
1225      DeviceClass *dc = DEVICE_CLASS(klass);
1226      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1227  
1228      k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1229      k->cores_mask = POWER8E_CORE_MASK;
1230      k->num_phbs = 3;
1231      k->core_pir = pnv_chip_core_pir_p8;
1232      k->intc_create = pnv_chip_power8_intc_create;
1233      k->intc_reset = pnv_chip_power8_intc_reset;
1234      k->intc_destroy = pnv_chip_power8_intc_destroy;
1235      k->intc_print_info = pnv_chip_power8_intc_print_info;
1236      k->isa_create = pnv_chip_power8_isa_create;
1237      k->dt_populate = pnv_chip_power8_dt_populate;
1238      k->pic_print_info = pnv_chip_power8_pic_print_info;
1239      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1240      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1241      dc->desc = "PowerNV Chip POWER8E";
1242  
1243      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1244                                      &k->parent_realize);
1245  }
1246  
1247  static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1248  {
1249      DeviceClass *dc = DEVICE_CLASS(klass);
1250      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1251  
1252      k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1253      k->cores_mask = POWER8_CORE_MASK;
1254      k->num_phbs = 3;
1255      k->core_pir = pnv_chip_core_pir_p8;
1256      k->intc_create = pnv_chip_power8_intc_create;
1257      k->intc_reset = pnv_chip_power8_intc_reset;
1258      k->intc_destroy = pnv_chip_power8_intc_destroy;
1259      k->intc_print_info = pnv_chip_power8_intc_print_info;
1260      k->isa_create = pnv_chip_power8_isa_create;
1261      k->dt_populate = pnv_chip_power8_dt_populate;
1262      k->pic_print_info = pnv_chip_power8_pic_print_info;
1263      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1264      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1265      dc->desc = "PowerNV Chip POWER8";
1266  
1267      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1268                                      &k->parent_realize);
1269  }
1270  
1271  static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1272  {
1273      DeviceClass *dc = DEVICE_CLASS(klass);
1274      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1275  
1276      k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1277      k->cores_mask = POWER8_CORE_MASK;
1278      k->num_phbs = 3;
1279      k->core_pir = pnv_chip_core_pir_p8;
1280      k->intc_create = pnv_chip_power8_intc_create;
1281      k->intc_reset = pnv_chip_power8_intc_reset;
1282      k->intc_destroy = pnv_chip_power8_intc_destroy;
1283      k->intc_print_info = pnv_chip_power8_intc_print_info;
1284      k->isa_create = pnv_chip_power8nvl_isa_create;
1285      k->dt_populate = pnv_chip_power8_dt_populate;
1286      k->pic_print_info = pnv_chip_power8_pic_print_info;
1287      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1288      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1289      dc->desc = "PowerNV Chip POWER8NVL";
1290  
1291      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1292                                      &k->parent_realize);
1293  }
1294  
1295  static void pnv_chip_power9_instance_init(Object *obj)
1296  {
1297      PnvChip *chip = PNV_CHIP(obj);
1298      Pnv9Chip *chip9 = PNV9_CHIP(obj);
1299      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1300      int i;
1301  
1302      object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1303      object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1304                                "xive-fabric");
1305  
1306      object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1307  
1308      object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1309  
1310      object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1311  
1312      object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1313  
1314      for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1315          object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1316                                  TYPE_PNV_PHB4_PEC);
1317      }
1318  
1319      /*
1320       * Number of PHBs is the chip default
1321       */
1322      chip->num_phbs = pcc->num_phbs;
1323  }
1324  
1325  static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1326  {
1327      PnvChip *chip = PNV_CHIP(chip9);
1328      int i;
1329  
1330      chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1331      chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1332  
1333      for (i = 0; i < chip9->nr_quads; i++) {
1334          char eq_name[32];
1335          PnvQuad *eq = &chip9->quads[i];
1336          PnvCore *pnv_core = chip->cores[i * 4];
1337          int core_id = CPU_CORE(pnv_core)->core_id;
1338  
1339          snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1340          object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1341                                             sizeof(*eq), TYPE_PNV_QUAD,
1342                                             &error_fatal, NULL);
1343  
1344          object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1345          qdev_realize(DEVICE(eq), NULL, &error_fatal);
1346  
1347          pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1348                                  &eq->xscom_regs);
1349      }
1350  }
1351  
1352  static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1353  {
1354      Pnv9Chip *chip9 = PNV9_CHIP(chip);
1355      int i, j;
1356      int phb_id = 0;
1357  
1358      for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1359          PnvPhb4PecState *pec = &chip9->pecs[i];
1360          PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1361          uint32_t pec_nest_base;
1362          uint32_t pec_pci_base;
1363  
1364          object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1365          /*
1366           * PEC0 -> 1 stack
1367           * PEC1 -> 2 stacks
1368           * PEC2 -> 3 stacks
1369           */
1370          object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1371                                  &error_fatal);
1372          object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1373                                  &error_fatal);
1374          object_property_set_link(OBJECT(pec), "system-memory",
1375                                   OBJECT(get_system_memory()), &error_abort);
1376          if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1377              return;
1378          }
1379  
1380          pec_nest_base = pecc->xscom_nest_base(pec);
1381          pec_pci_base = pecc->xscom_pci_base(pec);
1382  
1383          pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1384          pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1385  
1386          for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1387               j++, phb_id++) {
1388              PnvPhb4PecStack *stack = &pec->stacks[j];
1389              Object *obj = OBJECT(&stack->phb);
1390  
1391              object_property_set_int(obj, "index", phb_id, &error_fatal);
1392              object_property_set_int(obj, "chip-id", chip->chip_id,
1393                                      &error_fatal);
1394              object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1395                                      &error_fatal);
1396              object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1397                                      &error_fatal);
1398              object_property_set_link(obj, "stack", OBJECT(stack),
1399                                       &error_abort);
1400              if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1401                  return;
1402              }
1403  
1404              /* Populate the XSCOM address space. */
1405              pnv_xscom_add_subregion(chip,
1406                                     pec_nest_base + 0x40 * (stack->stack_no + 1),
1407                                     &stack->nest_regs_mr);
1408              pnv_xscom_add_subregion(chip,
1409                                      pec_pci_base + 0x40 * (stack->stack_no + 1),
1410                                      &stack->pci_regs_mr);
1411              pnv_xscom_add_subregion(chip,
1412                                      pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1413                                      0x40 * stack->stack_no,
1414                                      &stack->phb_regs_mr);
1415          }
1416      }
1417  }
1418  
1419  static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1420  {
1421      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1422      Pnv9Chip *chip9 = PNV9_CHIP(dev);
1423      PnvChip *chip = PNV_CHIP(dev);
1424      Pnv9Psi *psi9 = &chip9->psi;
1425      Error *local_err = NULL;
1426  
1427      /* XSCOM bridge is first */
1428      pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1429      if (local_err) {
1430          error_propagate(errp, local_err);
1431          return;
1432      }
1433      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1434  
1435      pcc->parent_realize(dev, &local_err);
1436      if (local_err) {
1437          error_propagate(errp, local_err);
1438          return;
1439      }
1440  
1441      pnv_chip_quad_realize(chip9, &local_err);
1442      if (local_err) {
1443          error_propagate(errp, local_err);
1444          return;
1445      }
1446  
1447      /* XIVE interrupt controller (POWER9) */
1448      object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1449                              PNV9_XIVE_IC_BASE(chip), &error_fatal);
1450      object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1451                              PNV9_XIVE_VC_BASE(chip), &error_fatal);
1452      object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1453                              PNV9_XIVE_PC_BASE(chip), &error_fatal);
1454      object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1455                              PNV9_XIVE_TM_BASE(chip), &error_fatal);
1456      object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1457                               &error_abort);
1458      if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1459          return;
1460      }
1461      pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1462                              &chip9->xive.xscom_regs);
1463  
1464      /* Processor Service Interface (PSI) Host Bridge */
1465      object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1466                              &error_fatal);
1467      if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1468          return;
1469      }
1470      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1471                              &PNV_PSI(psi9)->xscom_regs);
1472  
1473      /* LPC */
1474      object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1475                               &error_abort);
1476      if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1477          return;
1478      }
1479      memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1480                                  &chip9->lpc.xscom_regs);
1481  
1482      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1483                                              (uint64_t) PNV9_LPCM_BASE(chip));
1484  
1485      /* Create the simplified OCC model */
1486      object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1487                               &error_abort);
1488      if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1489          return;
1490      }
1491      pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1492  
1493      /* OCC SRAM model */
1494      memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1495                                  &chip9->occ.sram_regs);
1496  
1497      /* HOMER */
1498      object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1499                               &error_abort);
1500      if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1501          return;
1502      }
1503      /* Homer Xscom region */
1504      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1505  
1506      /* Homer mmio region */
1507      memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1508                                  &chip9->homer.regs);
1509  
1510      /* PHBs */
1511      pnv_chip_power9_phb_realize(chip, &local_err);
1512      if (local_err) {
1513          error_propagate(errp, local_err);
1514          return;
1515      }
1516  }
1517  
1518  static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1519  {
1520      addr &= (PNV9_XSCOM_SIZE - 1);
1521      return addr >> 3;
1522  }
1523  
1524  static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1525  {
1526      DeviceClass *dc = DEVICE_CLASS(klass);
1527      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1528  
1529      k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1530      k->cores_mask = POWER9_CORE_MASK;
1531      k->core_pir = pnv_chip_core_pir_p9;
1532      k->intc_create = pnv_chip_power9_intc_create;
1533      k->intc_reset = pnv_chip_power9_intc_reset;
1534      k->intc_destroy = pnv_chip_power9_intc_destroy;
1535      k->intc_print_info = pnv_chip_power9_intc_print_info;
1536      k->isa_create = pnv_chip_power9_isa_create;
1537      k->dt_populate = pnv_chip_power9_dt_populate;
1538      k->pic_print_info = pnv_chip_power9_pic_print_info;
1539      k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1540      k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1541      dc->desc = "PowerNV Chip POWER9";
1542      k->num_phbs = 6;
1543  
1544      device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1545                                      &k->parent_realize);
1546  }
1547  
1548  static void pnv_chip_power10_instance_init(Object *obj)
1549  {
1550      Pnv10Chip *chip10 = PNV10_CHIP(obj);
1551  
1552      object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1553      object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1554  }
1555  
1556  static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1557  {
1558      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1559      PnvChip *chip = PNV_CHIP(dev);
1560      Pnv10Chip *chip10 = PNV10_CHIP(dev);
1561      Error *local_err = NULL;
1562  
1563      /* XSCOM bridge is first */
1564      pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1565      if (local_err) {
1566          error_propagate(errp, local_err);
1567          return;
1568      }
1569      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1570  
1571      pcc->parent_realize(dev, &local_err);
1572      if (local_err) {
1573          error_propagate(errp, local_err);
1574          return;
1575      }
1576  
1577      /* Processor Service Interface (PSI) Host Bridge */
1578      object_property_set_int(OBJECT(&chip10->psi), "bar",
1579                              PNV10_PSIHB_BASE(chip), &error_fatal);
1580      if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1581          return;
1582      }
1583      pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1584                              &PNV_PSI(&chip10->psi)->xscom_regs);
1585  
1586      /* LPC */
1587      object_property_set_link(OBJECT(&chip10->lpc), "psi",
1588                               OBJECT(&chip10->psi), &error_abort);
1589      if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1590          return;
1591      }
1592      memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1593                                  &chip10->lpc.xscom_regs);
1594  
1595      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1596                                              (uint64_t) PNV10_LPCM_BASE(chip));
1597  }
1598  
1599  static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1600  {
1601      addr &= (PNV10_XSCOM_SIZE - 1);
1602      return addr >> 3;
1603  }
1604  
1605  static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1606  {
1607      DeviceClass *dc = DEVICE_CLASS(klass);
1608      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1609  
1610      k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1611      k->cores_mask = POWER10_CORE_MASK;
1612      k->core_pir = pnv_chip_core_pir_p10;
1613      k->intc_create = pnv_chip_power10_intc_create;
1614      k->intc_reset = pnv_chip_power10_intc_reset;
1615      k->intc_destroy = pnv_chip_power10_intc_destroy;
1616      k->intc_print_info = pnv_chip_power10_intc_print_info;
1617      k->isa_create = pnv_chip_power10_isa_create;
1618      k->dt_populate = pnv_chip_power10_dt_populate;
1619      k->pic_print_info = pnv_chip_power10_pic_print_info;
1620      k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1621      k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1622      dc->desc = "PowerNV Chip POWER10";
1623  
1624      device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1625                                      &k->parent_realize);
1626  }
1627  
1628  static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1629  {
1630      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1631      int cores_max;
1632  
1633      /*
1634       * No custom mask for this chip, let's use the default one from *
1635       * the chip class
1636       */
1637      if (!chip->cores_mask) {
1638          chip->cores_mask = pcc->cores_mask;
1639      }
1640  
1641      /* filter alien core ids ! some are reserved */
1642      if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1643          error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1644                     chip->cores_mask);
1645          return;
1646      }
1647      chip->cores_mask &= pcc->cores_mask;
1648  
1649      /* now that we have a sane layout, let check the number of cores */
1650      cores_max = ctpop64(chip->cores_mask);
1651      if (chip->nr_cores > cores_max) {
1652          error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1653                     cores_max);
1654          return;
1655      }
1656  }
1657  
1658  static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1659  {
1660      Error *error = NULL;
1661      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1662      const char *typename = pnv_chip_core_typename(chip);
1663      int i, core_hwid;
1664      PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1665  
1666      if (!object_class_by_name(typename)) {
1667          error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1668          return;
1669      }
1670  
1671      /* Cores */
1672      pnv_chip_core_sanitize(chip, &error);
1673      if (error) {
1674          error_propagate(errp, error);
1675          return;
1676      }
1677  
1678      chip->cores = g_new0(PnvCore *, chip->nr_cores);
1679  
1680      for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1681               && (i < chip->nr_cores); core_hwid++) {
1682          char core_name[32];
1683          PnvCore *pnv_core;
1684          uint64_t xscom_core_base;
1685  
1686          if (!(chip->cores_mask & (1ull << core_hwid))) {
1687              continue;
1688          }
1689  
1690          pnv_core = PNV_CORE(object_new(typename));
1691  
1692          snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1693          object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1694          chip->cores[i] = pnv_core;
1695          object_property_set_int(OBJECT(pnv_core), "nr-threads",
1696                                  chip->nr_threads, &error_fatal);
1697          object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1698                                  core_hwid, &error_fatal);
1699          object_property_set_int(OBJECT(pnv_core), "pir",
1700                                  pcc->core_pir(chip, core_hwid), &error_fatal);
1701          object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1702                                  &error_fatal);
1703          object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1704                                   &error_abort);
1705          qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1706  
1707          /* Each core has an XSCOM MMIO region */
1708          xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1709  
1710          pnv_xscom_add_subregion(chip, xscom_core_base,
1711                                  &pnv_core->xscom_regs);
1712          i++;
1713      }
1714  }
1715  
1716  static void pnv_chip_realize(DeviceState *dev, Error **errp)
1717  {
1718      PnvChip *chip = PNV_CHIP(dev);
1719      Error *error = NULL;
1720  
1721      /* Cores */
1722      pnv_chip_core_realize(chip, &error);
1723      if (error) {
1724          error_propagate(errp, error);
1725          return;
1726      }
1727  }
1728  
1729  static Property pnv_chip_properties[] = {
1730      DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1731      DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1732      DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1733      DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1734      DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1735      DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1736      DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1737      DEFINE_PROP_END_OF_LIST(),
1738  };
1739  
1740  static void pnv_chip_class_init(ObjectClass *klass, void *data)
1741  {
1742      DeviceClass *dc = DEVICE_CLASS(klass);
1743  
1744      set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1745      dc->realize = pnv_chip_realize;
1746      device_class_set_props(dc, pnv_chip_properties);
1747      dc->desc = "PowerNV Chip";
1748  }
1749  
1750  PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1751  {
1752      int i, j;
1753  
1754      for (i = 0; i < chip->nr_cores; i++) {
1755          PnvCore *pc = chip->cores[i];
1756          CPUCore *cc = CPU_CORE(pc);
1757  
1758          for (j = 0; j < cc->nr_threads; j++) {
1759              if (ppc_cpu_pir(pc->threads[j]) == pir) {
1760                  return pc->threads[j];
1761              }
1762          }
1763      }
1764      return NULL;
1765  }
1766  
1767  static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1768  {
1769      PnvMachineState *pnv = PNV_MACHINE(xi);
1770      int i, j;
1771  
1772      for (i = 0; i < pnv->num_chips; i++) {
1773          PnvChip *chip = pnv->chips[i];
1774          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1775  
1776          if (ics_valid_irq(&chip8->psi.ics, irq)) {
1777              return &chip8->psi.ics;
1778          }
1779          for (j = 0; j < chip->num_phbs; j++) {
1780              if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1781                  return &chip8->phbs[j].lsis;
1782              }
1783              if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1784                  return ICS(&chip8->phbs[j].msis);
1785              }
1786          }
1787      }
1788      return NULL;
1789  }
1790  
1791  static void pnv_ics_resend(XICSFabric *xi)
1792  {
1793      PnvMachineState *pnv = PNV_MACHINE(xi);
1794      int i, j;
1795  
1796      for (i = 0; i < pnv->num_chips; i++) {
1797          PnvChip *chip = pnv->chips[i];
1798          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1799  
1800          ics_resend(&chip8->psi.ics);
1801          for (j = 0; j < chip->num_phbs; j++) {
1802              ics_resend(&chip8->phbs[j].lsis);
1803              ics_resend(ICS(&chip8->phbs[j].msis));
1804          }
1805      }
1806  }
1807  
1808  static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1809  {
1810      PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1811  
1812      return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1813  }
1814  
1815  static void pnv_pic_print_info(InterruptStatsProvider *obj,
1816                                 Monitor *mon)
1817  {
1818      PnvMachineState *pnv = PNV_MACHINE(obj);
1819      int i;
1820      CPUState *cs;
1821  
1822      CPU_FOREACH(cs) {
1823          PowerPCCPU *cpu = POWERPC_CPU(cs);
1824  
1825          /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1826          PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1827                                                             mon);
1828      }
1829  
1830      for (i = 0; i < pnv->num_chips; i++) {
1831          PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1832      }
1833  }
1834  
1835  static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1836                           uint8_t nvt_blk, uint32_t nvt_idx,
1837                           bool cam_ignore, uint8_t priority,
1838                           uint32_t logic_serv,
1839                           XiveTCTXMatch *match)
1840  {
1841      PnvMachineState *pnv = PNV_MACHINE(xfb);
1842      int total_count = 0;
1843      int i;
1844  
1845      for (i = 0; i < pnv->num_chips; i++) {
1846          Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1847          XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1848          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1849          int count;
1850  
1851          count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1852                                 priority, logic_serv, match);
1853  
1854          if (count < 0) {
1855              return count;
1856          }
1857  
1858          total_count += count;
1859      }
1860  
1861      return total_count;
1862  }
1863  
1864  static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1865  {
1866      MachineClass *mc = MACHINE_CLASS(oc);
1867      XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1868      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1869      static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1870  
1871      mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1872      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1873  
1874      xic->icp_get = pnv_icp_get;
1875      xic->ics_get = pnv_ics_get;
1876      xic->ics_resend = pnv_ics_resend;
1877  
1878      pmc->compat = compat;
1879      pmc->compat_size = sizeof(compat);
1880  }
1881  
1882  static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1883  {
1884      MachineClass *mc = MACHINE_CLASS(oc);
1885      XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1886      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1887      static const char compat[] = "qemu,powernv9\0ibm,powernv";
1888  
1889      mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1890      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1891      xfc->match_nvt = pnv_match_nvt;
1892  
1893      mc->alias = "powernv";
1894  
1895      pmc->compat = compat;
1896      pmc->compat_size = sizeof(compat);
1897      pmc->dt_power_mgt = pnv_dt_power_mgt;
1898  }
1899  
1900  static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1901  {
1902      MachineClass *mc = MACHINE_CLASS(oc);
1903      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1904      static const char compat[] = "qemu,powernv10\0ibm,powernv";
1905  
1906      mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1907      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1908  
1909      pmc->compat = compat;
1910      pmc->compat_size = sizeof(compat);
1911      pmc->dt_power_mgt = pnv_dt_power_mgt;
1912  }
1913  
1914  static bool pnv_machine_get_hb(Object *obj, Error **errp)
1915  {
1916      PnvMachineState *pnv = PNV_MACHINE(obj);
1917  
1918      return !!pnv->fw_load_addr;
1919  }
1920  
1921  static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1922  {
1923      PnvMachineState *pnv = PNV_MACHINE(obj);
1924  
1925      if (value) {
1926          pnv->fw_load_addr = 0x8000000;
1927      }
1928  }
1929  
1930  static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1931  {
1932      PowerPCCPU *cpu = POWERPC_CPU(cs);
1933      CPUPPCState *env = &cpu->env;
1934  
1935      cpu_synchronize_state(cs);
1936      ppc_cpu_do_system_reset(cs);
1937      if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1938          /*
1939           * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1940           * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1941           * (PPC_BIT(43)).
1942           */
1943          if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1944              warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1945              env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1946          }
1947      } else {
1948          /*
1949           * For non-powersave system resets, SRR1[42:45] are defined to be
1950           * implementation-dependent. The POWER9 User Manual specifies that
1951           * an external (SCOM driven, which may come from a BMC nmi command or
1952           * another CPU requesting a NMI IPI) system reset exception should be
1953           * 0b0010 (PPC_BIT(44)).
1954           */
1955          env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1956      }
1957  }
1958  
1959  static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1960  {
1961      CPUState *cs;
1962  
1963      CPU_FOREACH(cs) {
1964          async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1965      }
1966  }
1967  
1968  static void pnv_machine_class_init(ObjectClass *oc, void *data)
1969  {
1970      MachineClass *mc = MACHINE_CLASS(oc);
1971      InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1972      NMIClass *nc = NMI_CLASS(oc);
1973  
1974      mc->desc = "IBM PowerNV (Non-Virtualized)";
1975      mc->init = pnv_init;
1976      mc->reset = pnv_reset;
1977      mc->max_cpus = MAX_CPUS;
1978      /* Pnv provides a AHCI device for storage */
1979      mc->block_default_type = IF_IDE;
1980      mc->no_parallel = 1;
1981      mc->default_boot_order = NULL;
1982      /*
1983       * RAM defaults to less than 2048 for 32-bit hosts, and large
1984       * enough to fit the maximum initrd size at it's load address
1985       */
1986      mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1987      mc->default_ram_id = "pnv.ram";
1988      ispc->print_info = pnv_pic_print_info;
1989      nc->nmi_monitor_handler = pnv_nmi;
1990  
1991      object_class_property_add_bool(oc, "hb-mode",
1992                                     pnv_machine_get_hb, pnv_machine_set_hb);
1993      object_class_property_set_description(oc, "hb-mode",
1994                                "Use a hostboot like boot loader");
1995  }
1996  
1997  #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1998      {                                             \
1999          .name          = type,                    \
2000          .class_init    = class_initfn,            \
2001          .parent        = TYPE_PNV8_CHIP,          \
2002      }
2003  
2004  #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2005      {                                             \
2006          .name          = type,                    \
2007          .class_init    = class_initfn,            \
2008          .parent        = TYPE_PNV9_CHIP,          \
2009      }
2010  
2011  #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2012      {                                              \
2013          .name          = type,                     \
2014          .class_init    = class_initfn,             \
2015          .parent        = TYPE_PNV10_CHIP,          \
2016      }
2017  
2018  static const TypeInfo types[] = {
2019      {
2020          .name          = MACHINE_TYPE_NAME("powernv10"),
2021          .parent        = TYPE_PNV_MACHINE,
2022          .class_init    = pnv_machine_power10_class_init,
2023      },
2024      {
2025          .name          = MACHINE_TYPE_NAME("powernv9"),
2026          .parent        = TYPE_PNV_MACHINE,
2027          .class_init    = pnv_machine_power9_class_init,
2028          .interfaces = (InterfaceInfo[]) {
2029              { TYPE_XIVE_FABRIC },
2030              { },
2031          },
2032      },
2033      {
2034          .name          = MACHINE_TYPE_NAME("powernv8"),
2035          .parent        = TYPE_PNV_MACHINE,
2036          .class_init    = pnv_machine_power8_class_init,
2037          .interfaces = (InterfaceInfo[]) {
2038              { TYPE_XICS_FABRIC },
2039              { },
2040          },
2041      },
2042      {
2043          .name          = TYPE_PNV_MACHINE,
2044          .parent        = TYPE_MACHINE,
2045          .abstract       = true,
2046          .instance_size = sizeof(PnvMachineState),
2047          .class_init    = pnv_machine_class_init,
2048          .class_size    = sizeof(PnvMachineClass),
2049          .interfaces = (InterfaceInfo[]) {
2050              { TYPE_INTERRUPT_STATS_PROVIDER },
2051              { TYPE_NMI },
2052              { },
2053          },
2054      },
2055      {
2056          .name          = TYPE_PNV_CHIP,
2057          .parent        = TYPE_SYS_BUS_DEVICE,
2058          .class_init    = pnv_chip_class_init,
2059          .instance_size = sizeof(PnvChip),
2060          .class_size    = sizeof(PnvChipClass),
2061          .abstract      = true,
2062      },
2063  
2064      /*
2065       * P10 chip and variants
2066       */
2067      {
2068          .name          = TYPE_PNV10_CHIP,
2069          .parent        = TYPE_PNV_CHIP,
2070          .instance_init = pnv_chip_power10_instance_init,
2071          .instance_size = sizeof(Pnv10Chip),
2072      },
2073      DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2074  
2075      /*
2076       * P9 chip and variants
2077       */
2078      {
2079          .name          = TYPE_PNV9_CHIP,
2080          .parent        = TYPE_PNV_CHIP,
2081          .instance_init = pnv_chip_power9_instance_init,
2082          .instance_size = sizeof(Pnv9Chip),
2083      },
2084      DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2085  
2086      /*
2087       * P8 chip and variants
2088       */
2089      {
2090          .name          = TYPE_PNV8_CHIP,
2091          .parent        = TYPE_PNV_CHIP,
2092          .instance_init = pnv_chip_power8_instance_init,
2093          .instance_size = sizeof(Pnv8Chip),
2094      },
2095      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2096      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2097      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2098                            pnv_chip_power8nvl_class_init),
2099  };
2100  
2101  DEFINE_TYPES(types)
2102