xref: /openbmc/qemu/hw/ppc/pnv.c (revision 5964ed56)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44 
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49 
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54 
55 #include <libfdt.h>
56 
57 #define FDT_MAX_SIZE            (1 * MiB)
58 
59 #define FW_FILE_NAME            "skiboot.lid"
60 #define FW_LOAD_ADDR            0x0
61 #define FW_MAX_SIZE             (4 * MiB)
62 
63 #define KERNEL_LOAD_ADDR        0x20000000
64 #define KERNEL_MAX_SIZE         (256 * MiB)
65 #define INITRD_LOAD_ADDR        0x60000000
66 #define INITRD_MAX_SIZE         (256 * MiB)
67 
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73     const char *core_type = object_class_get_name(object_class_by_name(s));
74     g_free(s);
75     return core_type;
76 }
77 
78 /*
79  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80  *     4 * 4 sockets * 12 cores * 8 threads = 1536
81  * Let's make it 2^11
82  */
83 #define MAX_CPUS                2048
84 
85 /*
86  * Memory nodes are created by hostboot, one for each range of memory
87  * that has a different "affinity". In practice, it means one range
88  * per chip.
89  */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92     char *mem_name;
93     uint64_t mem_reg_property[2];
94     int off;
95 
96     mem_reg_property[0] = cpu_to_be64(start);
97     mem_reg_property[1] = cpu_to_be64(size);
98 
99     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100     off = fdt_add_subnode(fdt, 0, mem_name);
101     g_free(mem_name);
102 
103     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105                        sizeof(mem_reg_property))));
106     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108 
109 static int get_cpus_node(void *fdt)
110 {
111     int cpus_offset = fdt_path_offset(fdt, "/cpus");
112 
113     if (cpus_offset < 0) {
114         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115         if (cpus_offset) {
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118         }
119     }
120     _FDT(cpus_offset);
121     return cpus_offset;
122 }
123 
124 /*
125  * The PowerNV cores (and threads) need to use real HW ids and not an
126  * incremental index like it has been done on other platforms. This HW
127  * id is stored in the CPU PIR, it is used to create cpu nodes in the
128  * device tree, used in XSCOM to address cores and in interrupt
129  * servers.
130  */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133     PowerPCCPU *cpu = pc->threads[0];
134     CPUState *cs = CPU(cpu);
135     DeviceClass *dc = DEVICE_GET_CLASS(cs);
136     int smt_threads = CPU_CORE(pc)->nr_threads;
137     CPUPPCState *env = &cpu->env;
138     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139     uint32_t servers_prop[smt_threads];
140     int i;
141     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142                        0xffffffff, 0xffffffff};
143     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144     uint32_t cpufreq = 1000000000;
145     uint32_t page_sizes_prop[64];
146     size_t page_sizes_prop_size;
147     const uint8_t pa_features[] = { 24, 0,
148                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152     int offset;
153     char *nodename;
154     int cpus_offset = get_cpus_node(fdt);
155 
156     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158     _FDT(offset);
159     g_free(nodename);
160 
161     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169                             env->dcache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173                             env->icache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175                             env->icache_line_size)));
176 
177     if (pcc->l1_dcache_size) {
178         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179                                pcc->l1_dcache_size)));
180     } else {
181         warn_report("Unknown L1 dcache size for cpu");
182     }
183     if (pcc->l1_icache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185                                pcc->l1_icache_size)));
186     } else {
187         warn_report("Unknown L1 icache size for cpu");
188     }
189 
190     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193                            cpu->hash64_opts->slb_size)));
194     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196 
197     if (env->spr_cb[SPR_PURR].oea_read) {
198         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199     }
200 
201     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203                            segs, sizeof(segs))));
204     }
205 
206     /*
207      * Advertise VMX/VSX (vector extensions) if available
208      *   0 / no property == no vector extensions
209      *   1               == VMX / Altivec available
210      *   2               == VSX available
211      */
212     if (env->insns_flags & PPC_ALTIVEC) {
213         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214 
215         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216     }
217 
218     /*
219      * Advertise DFP (Decimal Floating Point) if available
220      *   0 / no property == no DFP
221      *   1               == DFP available
222      */
223     if (env->insns_flags2 & PPC2_DFP) {
224         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225     }
226 
227     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228                                                       sizeof(page_sizes_prop));
229     if (page_sizes_prop_size) {
230         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231                            page_sizes_prop, page_sizes_prop_size)));
232     }
233 
234     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235                        pa_features, sizeof(pa_features))));
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pc->pir + i);
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(servers_prop))));
243 }
244 
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246                        uint32_t nr_threads)
247 {
248     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249     char *name;
250     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251     uint32_t irange[2], i, rsize;
252     uint64_t *reg;
253     int offset;
254 
255     irange[0] = cpu_to_be32(pir);
256     irange[1] = cpu_to_be32(nr_threads);
257 
258     rsize = sizeof(uint64_t) * 2 * nr_threads;
259     reg = g_malloc(rsize);
260     for (i = 0; i < nr_threads; i++) {
261         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262         reg[i * 2 + 1] = cpu_to_be64(0x1000);
263     }
264 
265     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266     offset = fdt_add_subnode(fdt, 0, name);
267     _FDT(offset);
268     g_free(name);
269 
270     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272     _FDT((fdt_setprop_string(fdt, offset, "device_type",
273                               "PowerPC-External-Interrupt-Presentation")));
274     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276                        irange, sizeof(irange))));
277     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279     g_free(reg);
280 }
281 
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0,
288                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
289                  cpu_to_be64(PNV_XSCOM_SIZE),
290                  compat, sizeof(compat));
291 
292     for (i = 0; i < chip->nr_cores; i++) {
293         PnvCore *pnv_core = chip->cores[i];
294 
295         pnv_dt_core(chip, pnv_core, fdt);
296 
297         /* Interrupt Control Presenters (ICP). One per core. */
298         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299     }
300 
301     if (chip->ram_size) {
302         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303     }
304 }
305 
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309     int i;
310 
311     pnv_dt_xscom(chip, fdt, 0,
312                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313                  cpu_to_be64(PNV9_XSCOM_SIZE),
314                  compat, sizeof(compat));
315 
316     for (i = 0; i < chip->nr_cores; i++) {
317         PnvCore *pnv_core = chip->cores[i];
318 
319         pnv_dt_core(chip, pnv_core, fdt);
320     }
321 
322     if (chip->ram_size) {
323         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324     }
325 
326     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328 
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332     int i;
333 
334     pnv_dt_xscom(chip, fdt, 0,
335                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336                  cpu_to_be64(PNV10_XSCOM_SIZE),
337                  compat, sizeof(compat));
338 
339     for (i = 0; i < chip->nr_cores; i++) {
340         PnvCore *pnv_core = chip->cores[i];
341 
342         pnv_dt_core(chip, pnv_core, fdt);
343     }
344 
345     if (chip->ram_size) {
346         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347     }
348 
349     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351 
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354     uint32_t io_base = d->ioport_id;
355     uint32_t io_regs[] = {
356         cpu_to_be32(1),
357         cpu_to_be32(io_base),
358         cpu_to_be32(2)
359     };
360     char *name;
361     int node;
362 
363     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364     node = fdt_add_subnode(fdt, lpc_off, name);
365     _FDT(node);
366     g_free(name);
367 
368     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371 
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374     const char compatible[] = "ns16550\0pnpPNP,501";
375     uint32_t io_base = d->ioport_id;
376     uint32_t io_regs[] = {
377         cpu_to_be32(1),
378         cpu_to_be32(io_base),
379         cpu_to_be32(8)
380     };
381     char *name;
382     int node;
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 
399     /* This is needed by Linux */
400     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402 
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405     const char compatible[] = "bt\0ipmi-bt";
406     uint32_t io_base;
407     uint32_t io_regs[] = {
408         cpu_to_be32(1),
409         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410         cpu_to_be32(3)
411     };
412     uint32_t irq;
413     char *name;
414     int node;
415 
416     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417     io_regs[1] = cpu_to_be32(io_base);
418 
419     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420 
421     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422     node = fdt_add_subnode(fdt, lpc_off, name);
423     _FDT(node);
424     g_free(name);
425 
426     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428                       sizeof(compatible))));
429 
430     /* Mark it as reserved to avoid Linux trying to claim it */
431     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434                            fdt_get_phandle(fdt, lpc_off))));
435 }
436 
437 typedef struct ForeachPopulateArgs {
438     void *fdt;
439     int offset;
440 } ForeachPopulateArgs;
441 
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444     ForeachPopulateArgs *args = opaque;
445     ISADevice *d = ISA_DEVICE(dev);
446 
447     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448         pnv_dt_rtc(d, args->fdt, args->offset);
449     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450         pnv_dt_serial(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453     } else {
454         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455                      d->ioport_id);
456     }
457 
458     return 0;
459 }
460 
461 /*
462  * The default LPC bus of a multichip system is on chip 0. It's
463  * recognized by the firmware (skiboot) using a "primary" property.
464  */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468     ForeachPopulateArgs args = {
469         .fdt = fdt,
470         .offset = isa_offset,
471     };
472     uint32_t phandle;
473 
474     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475 
476     phandle = qemu_fdt_alloc_phandle(fdt);
477     assert(phandle > 0);
478     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479 
480     /*
481      * ISA devices are not necessarily parented to the ISA bus so we
482      * can not use object_child_foreach()
483      */
484     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485                        &args);
486 }
487 
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490     int off;
491 
492     off = fdt_add_subnode(fdt, 0, "ibm,opal");
493     off = fdt_add_subnode(fdt, off, "power-mgt");
494 
495     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497 
498 static void *pnv_dt_create(MachineState *machine)
499 {
500     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501     PnvMachineState *pnv = PNV_MACHINE(machine);
502     void *fdt;
503     char *buf;
504     int off;
505     int i;
506 
507     fdt = g_malloc0(FDT_MAX_SIZE);
508     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509 
510     /* /qemu node */
511     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512 
513     /* Root node */
514     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516     _FDT((fdt_setprop_string(fdt, 0, "model",
517                              "IBM PowerNV (emulated by qemu)")));
518     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519 
520     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
521     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522     if (qemu_uuid_set) {
523         _FDT((fdt_property_string(fdt, "system-id", buf)));
524     }
525     g_free(buf);
526 
527     off = fdt_add_subnode(fdt, 0, "chosen");
528     if (machine->kernel_cmdline) {
529         _FDT((fdt_setprop_string(fdt, off, "bootargs",
530                                  machine->kernel_cmdline)));
531     }
532 
533     if (pnv->initrd_size) {
534         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536 
537         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538                                &start_prop, sizeof(start_prop))));
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540                                &end_prop, sizeof(end_prop))));
541     }
542 
543     /* Populate device tree for each chip */
544     for (i = 0; i < pnv->num_chips; i++) {
545         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546     }
547 
548     /* Populate ISA devices on chip 0 */
549     pnv_dt_isa(pnv, fdt);
550 
551     if (pnv->bmc) {
552         pnv_dt_bmc_sensors(pnv->bmc, fdt);
553     }
554 
555     /* Create an extra node for power management on machines that support it */
556     if (pmc->dt_power_mgt) {
557         pmc->dt_power_mgt(pnv, fdt);
558     }
559 
560     return fdt;
561 }
562 
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566 
567     if (pnv->bmc) {
568         pnv_bmc_powerdown(pnv->bmc);
569     }
570 }
571 
572 static void pnv_reset(MachineState *machine)
573 {
574     void *fdt;
575 
576     qemu_devices_reset();
577 
578     fdt = pnv_dt_create(machine);
579 
580     /* Pack resulting tree */
581     _FDT((fdt_pack(fdt)));
582 
583     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
584     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
585 
586     g_free(fdt);
587 }
588 
589 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
590 {
591     Pnv8Chip *chip8 = PNV8_CHIP(chip);
592     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
593 }
594 
595 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
596 {
597     Pnv8Chip *chip8 = PNV8_CHIP(chip);
598     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
599 }
600 
601 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
602 {
603     Pnv9Chip *chip9 = PNV9_CHIP(chip);
604     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
605 }
606 
607 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
608 {
609     Pnv10Chip *chip10 = PNV10_CHIP(chip);
610     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
611 }
612 
613 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
614 {
615     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
616 }
617 
618 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     int i;
622 
623     ics_pic_print_info(&chip8->psi.ics, mon);
624     for (i = 0; i < chip->num_phbs; i++) {
625         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
626         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
627     }
628 }
629 
630 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
631 {
632     Pnv9Chip *chip9 = PNV9_CHIP(chip);
633     int i, j;
634 
635     pnv_xive_pic_print_info(&chip9->xive, mon);
636     pnv_psi_pic_print_info(&chip9->psi, mon);
637 
638     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
639         PnvPhb4PecState *pec = &chip9->pecs[i];
640         for (j = 0; j < pec->num_stacks; j++) {
641             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
642         }
643     }
644 }
645 
646 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
647                                                 uint32_t core_id)
648 {
649     return PNV_XSCOM_EX_BASE(core_id);
650 }
651 
652 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
653                                                 uint32_t core_id)
654 {
655     return PNV9_XSCOM_EC_BASE(core_id);
656 }
657 
658 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
659                                                  uint32_t core_id)
660 {
661     return PNV10_XSCOM_EC_BASE(core_id);
662 }
663 
664 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
665 {
666     PowerPCCPUClass *ppc_default =
667         POWERPC_CPU_CLASS(object_class_by_name(default_type));
668     PowerPCCPUClass *ppc =
669         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
670 
671     return ppc_default->pvr_match(ppc_default, ppc->pvr);
672 }
673 
674 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
675 {
676     Object *obj;
677 
678     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
679     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
680     object_property_set_int(obj, irq, "irq", &error_fatal);
681     object_property_set_bool(obj, true, "realized", &error_fatal);
682 }
683 
684 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
685 {
686     Pnv10Chip *chip10 = PNV10_CHIP(chip);
687 
688     pnv_psi_pic_print_info(&chip10->psi, mon);
689 }
690 
691 static void pnv_init(MachineState *machine)
692 {
693     PnvMachineState *pnv = PNV_MACHINE(machine);
694     MachineClass *mc = MACHINE_GET_CLASS(machine);
695     char *fw_filename;
696     long fw_size;
697     int i;
698     char *chip_typename;
699     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
700     DeviceState *dev;
701 
702     /* allocate RAM */
703     if (machine->ram_size < (1 * GiB)) {
704         warn_report("skiboot may not work with < 1GB of RAM");
705     }
706     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
707 
708     /*
709      * Create our simple PNOR device
710      */
711     dev = qdev_create(NULL, TYPE_PNV_PNOR);
712     if (pnor) {
713         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
714                             &error_abort);
715     }
716     qdev_init_nofail(dev);
717     pnv->pnor = PNV_PNOR(dev);
718 
719     /* load skiboot firmware  */
720     if (bios_name == NULL) {
721         bios_name = FW_FILE_NAME;
722     }
723 
724     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
725     if (!fw_filename) {
726         error_report("Could not find OPAL firmware '%s'", bios_name);
727         exit(1);
728     }
729 
730     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
731     if (fw_size < 0) {
732         error_report("Could not load OPAL firmware '%s'", fw_filename);
733         exit(1);
734     }
735     g_free(fw_filename);
736 
737     /* load kernel */
738     if (machine->kernel_filename) {
739         long kernel_size;
740 
741         kernel_size = load_image_targphys(machine->kernel_filename,
742                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
743         if (kernel_size < 0) {
744             error_report("Could not load kernel '%s'",
745                          machine->kernel_filename);
746             exit(1);
747         }
748     }
749 
750     /* load initrd */
751     if (machine->initrd_filename) {
752         pnv->initrd_base = INITRD_LOAD_ADDR;
753         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
754                                   pnv->initrd_base, INITRD_MAX_SIZE);
755         if (pnv->initrd_size < 0) {
756             error_report("Could not load initial ram disk '%s'",
757                          machine->initrd_filename);
758             exit(1);
759         }
760     }
761 
762     /* MSIs are supported on this platform */
763     msi_nonbroken = true;
764 
765     /*
766      * Check compatibility of the specified CPU with the machine
767      * default.
768      */
769     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
770         error_report("invalid CPU model '%s' for %s machine",
771                      machine->cpu_type, mc->name);
772         exit(1);
773     }
774 
775     /* Create the processor chips */
776     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
777     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
778                                     i, machine->cpu_type);
779     if (!object_class_by_name(chip_typename)) {
780         error_report("invalid chip model '%.*s' for %s machine",
781                      i, machine->cpu_type, mc->name);
782         exit(1);
783     }
784 
785     pnv->num_chips =
786         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
787     /*
788      * TODO: should we decide on how many chips we can create based
789      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
790      */
791     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
792         error_report("invalid number of chips: '%d'", pnv->num_chips);
793         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
794         exit(1);
795     }
796 
797     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
798     for (i = 0; i < pnv->num_chips; i++) {
799         char chip_name[32];
800         Object *chip = object_new(chip_typename);
801 
802         pnv->chips[i] = PNV_CHIP(chip);
803 
804         /*
805          * TODO: put all the memory in one node on chip 0 until we find a
806          * way to specify different ranges for each chip
807          */
808         if (i == 0) {
809             object_property_set_int(chip, machine->ram_size, "ram-size",
810                                     &error_fatal);
811         }
812 
813         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
814         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
815         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
816                                 &error_fatal);
817         object_property_set_int(chip, machine->smp.cores,
818                                 "nr-cores", &error_fatal);
819         object_property_set_int(chip, machine->smp.threads,
820                                 "nr-threads", &error_fatal);
821         /*
822          * The POWER8 machine use the XICS interrupt interface.
823          * Propagate the XICS fabric to the chip and its controllers.
824          */
825         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
826             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
827         }
828         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
829             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
830                                      &error_abort);
831         }
832         object_property_set_bool(chip, true, "realized", &error_fatal);
833     }
834     g_free(chip_typename);
835 
836     /* Create the machine BMC simulator */
837     pnv->bmc = pnv_bmc_create(pnv->pnor);
838 
839     /* Instantiate ISA bus on chip 0 */
840     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
841 
842     /* Create serial port */
843     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
844 
845     /* Create an RTC ISA device too */
846     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
847 
848     /* Create the IPMI BT device for communication with the BMC */
849     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
850 
851     /*
852      * OpenPOWER systems use a IPMI SEL Event message to notify the
853      * host to powerdown
854      */
855     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
856     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
857 }
858 
859 /*
860  *    0:21  Reserved - Read as zeros
861  *   22:24  Chip ID
862  *   25:28  Core number
863  *   29:31  Thread ID
864  */
865 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
866 {
867     return (chip->chip_id << 7) | (core_id << 3);
868 }
869 
870 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
871                                         Error **errp)
872 {
873     Pnv8Chip *chip8 = PNV8_CHIP(chip);
874     Error *local_err = NULL;
875     Object *obj;
876     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
877 
878     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
879     if (local_err) {
880         error_propagate(errp, local_err);
881         return;
882     }
883 
884     pnv_cpu->intc = obj;
885 }
886 
887 
888 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
889 {
890     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
891 
892     icp_reset(ICP(pnv_cpu->intc));
893 }
894 
895 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
896 {
897     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
898 
899     icp_destroy(ICP(pnv_cpu->intc));
900     pnv_cpu->intc = NULL;
901 }
902 
903 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
904                                             Monitor *mon)
905 {
906     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
907 }
908 
909 /*
910  *    0:48  Reserved - Read as zeroes
911  *   49:52  Node ID
912  *   53:55  Chip ID
913  *   56     Reserved - Read as zero
914  *   57:61  Core number
915  *   62:63  Thread ID
916  *
917  * We only care about the lower bits. uint32_t is fine for the moment.
918  */
919 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
920 {
921     return (chip->chip_id << 8) | (core_id << 2);
922 }
923 
924 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
925 {
926     return (chip->chip_id << 8) | (core_id << 2);
927 }
928 
929 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
930                                         Error **errp)
931 {
932     Pnv9Chip *chip9 = PNV9_CHIP(chip);
933     Error *local_err = NULL;
934     Object *obj;
935     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
936 
937     /*
938      * The core creates its interrupt presenter but the XIVE interrupt
939      * controller object is initialized afterwards. Hopefully, it's
940      * only used at runtime.
941      */
942     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
943                            &local_err);
944     if (local_err) {
945         error_propagate(errp, local_err);
946         return;
947     }
948 
949     pnv_cpu->intc = obj;
950 }
951 
952 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
953 {
954     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
955 
956     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
957 }
958 
959 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
960 {
961     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
962 
963     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
964     pnv_cpu->intc = NULL;
965 }
966 
967 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
968                                             Monitor *mon)
969 {
970     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
971 }
972 
973 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
974                                         Error **errp)
975 {
976     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
977 
978     /* Will be defined when the interrupt controller is */
979     pnv_cpu->intc = NULL;
980 }
981 
982 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
983 {
984     ;
985 }
986 
987 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
988 {
989     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
990 
991     pnv_cpu->intc = NULL;
992 }
993 
994 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
995                                              Monitor *mon)
996 {
997 }
998 
999 /*
1000  * Allowed core identifiers on a POWER8 Processor Chip :
1001  *
1002  * <EX0 reserved>
1003  *  EX1  - Venice only
1004  *  EX2  - Venice only
1005  *  EX3  - Venice only
1006  *  EX4
1007  *  EX5
1008  *  EX6
1009  * <EX7,8 reserved> <reserved>
1010  *  EX9  - Venice only
1011  *  EX10 - Venice only
1012  *  EX11 - Venice only
1013  *  EX12
1014  *  EX13
1015  *  EX14
1016  * <EX15 reserved>
1017  */
1018 #define POWER8E_CORE_MASK  (0x7070ull)
1019 #define POWER8_CORE_MASK   (0x7e7eull)
1020 
1021 /*
1022  * POWER9 has 24 cores, ids starting at 0x0
1023  */
1024 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1025 
1026 
1027 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1028 
1029 static void pnv_chip_power8_instance_init(Object *obj)
1030 {
1031     PnvChip *chip = PNV_CHIP(obj);
1032     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1033     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1034     int i;
1035 
1036     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1037                              (Object **)&chip8->xics,
1038                              object_property_allow_set_link,
1039                              OBJ_PROP_LINK_STRONG,
1040                              &error_abort);
1041 
1042     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1043                             TYPE_PNV8_PSI, &error_abort, NULL);
1044 
1045     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1046                             TYPE_PNV8_LPC, &error_abort, NULL);
1047 
1048     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1049                             TYPE_PNV8_OCC, &error_abort, NULL);
1050 
1051     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1052                             TYPE_PNV8_HOMER, &error_abort, NULL);
1053 
1054     for (i = 0; i < pcc->num_phbs; i++) {
1055         object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1056                                 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1057                                 &error_abort, NULL);
1058     }
1059 
1060     /*
1061      * Number of PHBs is the chip default
1062      */
1063     chip->num_phbs = pcc->num_phbs;
1064 }
1065 
1066 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1067  {
1068     PnvChip *chip = PNV_CHIP(chip8);
1069     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1070     int i, j;
1071     char *name;
1072 
1073     name = g_strdup_printf("icp-%x", chip->chip_id);
1074     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1075     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1076     g_free(name);
1077 
1078     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1079 
1080     /* Map the ICP registers for each thread */
1081     for (i = 0; i < chip->nr_cores; i++) {
1082         PnvCore *pnv_core = chip->cores[i];
1083         int core_hwid = CPU_CORE(pnv_core)->core_id;
1084 
1085         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1086             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1087             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1088 
1089             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1090                                         &icp->mmio);
1091         }
1092     }
1093 }
1094 
1095 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1096 {
1097     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1098     PnvChip *chip = PNV_CHIP(dev);
1099     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1100     Pnv8Psi *psi8 = &chip8->psi;
1101     Error *local_err = NULL;
1102     int i;
1103 
1104     assert(chip8->xics);
1105 
1106     /* XSCOM bridge is first */
1107     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1108     if (local_err) {
1109         error_propagate(errp, local_err);
1110         return;
1111     }
1112     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1113 
1114     pcc->parent_realize(dev, &local_err);
1115     if (local_err) {
1116         error_propagate(errp, local_err);
1117         return;
1118     }
1119 
1120     /* Processor Service Interface (PSI) Host Bridge */
1121     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1122                             "bar", &error_fatal);
1123     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1124                              ICS_PROP_XICS, &error_abort);
1125     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1126     if (local_err) {
1127         error_propagate(errp, local_err);
1128         return;
1129     }
1130     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1131                             &PNV_PSI(psi8)->xscom_regs);
1132 
1133     /* Create LPC controller */
1134     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1135                              &error_abort);
1136     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1137                              &error_fatal);
1138     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1139 
1140     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1141                                             (uint64_t) PNV_XSCOM_BASE(chip),
1142                                             PNV_XSCOM_LPC_BASE);
1143 
1144     /*
1145      * Interrupt Management Area. This is the memory region holding
1146      * all the Interrupt Control Presenter (ICP) registers
1147      */
1148     pnv_chip_icp_realize(chip8, &local_err);
1149     if (local_err) {
1150         error_propagate(errp, local_err);
1151         return;
1152     }
1153 
1154     /* Create the simplified OCC model */
1155     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1156                              &error_abort);
1157     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1158     if (local_err) {
1159         error_propagate(errp, local_err);
1160         return;
1161     }
1162     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1163 
1164     /* OCC SRAM model */
1165     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1166                                 &chip8->occ.sram_regs);
1167 
1168     /* HOMER */
1169     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1170                              &error_abort);
1171     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1172                              &local_err);
1173     if (local_err) {
1174         error_propagate(errp, local_err);
1175         return;
1176     }
1177     /* Homer Xscom region */
1178     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1179 
1180     /* Homer mmio region */
1181     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1182                                 &chip8->homer.regs);
1183 
1184     /* PHB3 controllers */
1185     for (i = 0; i < chip->num_phbs; i++) {
1186         PnvPHB3 *phb = &chip8->phbs[i];
1187         PnvPBCQState *pbcq = &phb->pbcq;
1188 
1189         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1190         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1191                                 &error_fatal);
1192         object_property_set_bool(OBJECT(phb), true, "realized", &local_err);
1193         if (local_err) {
1194             error_propagate(errp, local_err);
1195             return;
1196         }
1197         qdev_set_parent_bus(DEVICE(phb), sysbus_get_default());
1198 
1199         /* Populate the XSCOM address space. */
1200         pnv_xscom_add_subregion(chip,
1201                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1202                                 &pbcq->xscom_nest_regs);
1203         pnv_xscom_add_subregion(chip,
1204                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1205                                 &pbcq->xscom_pci_regs);
1206         pnv_xscom_add_subregion(chip,
1207                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1208                                 &pbcq->xscom_spci_regs);
1209     }
1210 }
1211 
1212 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1213 {
1214     addr &= (PNV_XSCOM_SIZE - 1);
1215     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1216 }
1217 
1218 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1219 {
1220     DeviceClass *dc = DEVICE_CLASS(klass);
1221     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1222 
1223     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1224     k->cores_mask = POWER8E_CORE_MASK;
1225     k->num_phbs = 3;
1226     k->core_pir = pnv_chip_core_pir_p8;
1227     k->intc_create = pnv_chip_power8_intc_create;
1228     k->intc_reset = pnv_chip_power8_intc_reset;
1229     k->intc_destroy = pnv_chip_power8_intc_destroy;
1230     k->intc_print_info = pnv_chip_power8_intc_print_info;
1231     k->isa_create = pnv_chip_power8_isa_create;
1232     k->dt_populate = pnv_chip_power8_dt_populate;
1233     k->pic_print_info = pnv_chip_power8_pic_print_info;
1234     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1235     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1236     dc->desc = "PowerNV Chip POWER8E";
1237 
1238     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1239                                     &k->parent_realize);
1240 }
1241 
1242 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1243 {
1244     DeviceClass *dc = DEVICE_CLASS(klass);
1245     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1246 
1247     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1248     k->cores_mask = POWER8_CORE_MASK;
1249     k->num_phbs = 3;
1250     k->core_pir = pnv_chip_core_pir_p8;
1251     k->intc_create = pnv_chip_power8_intc_create;
1252     k->intc_reset = pnv_chip_power8_intc_reset;
1253     k->intc_destroy = pnv_chip_power8_intc_destroy;
1254     k->intc_print_info = pnv_chip_power8_intc_print_info;
1255     k->isa_create = pnv_chip_power8_isa_create;
1256     k->dt_populate = pnv_chip_power8_dt_populate;
1257     k->pic_print_info = pnv_chip_power8_pic_print_info;
1258     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1259     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1260     dc->desc = "PowerNV Chip POWER8";
1261 
1262     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1263                                     &k->parent_realize);
1264 }
1265 
1266 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1267 {
1268     DeviceClass *dc = DEVICE_CLASS(klass);
1269     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1270 
1271     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1272     k->cores_mask = POWER8_CORE_MASK;
1273     k->num_phbs = 3;
1274     k->core_pir = pnv_chip_core_pir_p8;
1275     k->intc_create = pnv_chip_power8_intc_create;
1276     k->intc_reset = pnv_chip_power8_intc_reset;
1277     k->intc_destroy = pnv_chip_power8_intc_destroy;
1278     k->intc_print_info = pnv_chip_power8_intc_print_info;
1279     k->isa_create = pnv_chip_power8nvl_isa_create;
1280     k->dt_populate = pnv_chip_power8_dt_populate;
1281     k->pic_print_info = pnv_chip_power8_pic_print_info;
1282     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1283     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1284     dc->desc = "PowerNV Chip POWER8NVL";
1285 
1286     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1287                                     &k->parent_realize);
1288 }
1289 
1290 static void pnv_chip_power9_instance_init(Object *obj)
1291 {
1292     PnvChip *chip = PNV_CHIP(obj);
1293     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1294     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1295     int i;
1296 
1297     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1298                             TYPE_PNV_XIVE, &error_abort, NULL);
1299     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1300                               "xive-fabric", &error_abort);
1301 
1302     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1303                             TYPE_PNV9_PSI, &error_abort, NULL);
1304 
1305     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1306                             TYPE_PNV9_LPC, &error_abort, NULL);
1307 
1308     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1309                             TYPE_PNV9_OCC, &error_abort, NULL);
1310 
1311     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1312                             TYPE_PNV9_HOMER, &error_abort, NULL);
1313 
1314     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1315         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1316                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1317                                 &error_abort, NULL);
1318     }
1319 
1320     /*
1321      * Number of PHBs is the chip default
1322      */
1323     chip->num_phbs = pcc->num_phbs;
1324 }
1325 
1326 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1327 {
1328     PnvChip *chip = PNV_CHIP(chip9);
1329     int i;
1330 
1331     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1332     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1333 
1334     for (i = 0; i < chip9->nr_quads; i++) {
1335         char eq_name[32];
1336         PnvQuad *eq = &chip9->quads[i];
1337         PnvCore *pnv_core = chip->cores[i * 4];
1338         int core_id = CPU_CORE(pnv_core)->core_id;
1339 
1340         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1341         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1342                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1343 
1344         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1345         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1346 
1347         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1348                                 &eq->xscom_regs);
1349     }
1350 }
1351 
1352 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1353 {
1354     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1355     Error *local_err = NULL;
1356     int i, j;
1357     int phb_id = 0;
1358 
1359     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1360         PnvPhb4PecState *pec = &chip9->pecs[i];
1361         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1362         uint32_t pec_nest_base;
1363         uint32_t pec_pci_base;
1364 
1365         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1366         /*
1367          * PEC0 -> 1 stack
1368          * PEC1 -> 2 stacks
1369          * PEC2 -> 3 stacks
1370          */
1371         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1372                                 &error_fatal);
1373         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1374                                  &error_fatal);
1375         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1376                                  "system-memory", &error_abort);
1377         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1378         if (local_err) {
1379             error_propagate(errp, local_err);
1380             return;
1381         }
1382 
1383         pec_nest_base = pecc->xscom_nest_base(pec);
1384         pec_pci_base = pecc->xscom_pci_base(pec);
1385 
1386         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1387         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1388 
1389         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1390              j++, phb_id++) {
1391             PnvPhb4PecStack *stack = &pec->stacks[j];
1392             Object *obj = OBJECT(&stack->phb);
1393 
1394             object_property_set_int(obj, phb_id, "index", &error_fatal);
1395             object_property_set_int(obj, chip->chip_id, "chip-id",
1396                                     &error_fatal);
1397             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1398                                     &error_fatal);
1399             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1400                                     &error_fatal);
1401             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1402             object_property_set_bool(obj, true, "realized", &local_err);
1403             if (local_err) {
1404                 error_propagate(errp, local_err);
1405                 return;
1406             }
1407             qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1408 
1409             /* Populate the XSCOM address space. */
1410             pnv_xscom_add_subregion(chip,
1411                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1412                                    &stack->nest_regs_mr);
1413             pnv_xscom_add_subregion(chip,
1414                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1415                                     &stack->pci_regs_mr);
1416             pnv_xscom_add_subregion(chip,
1417                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1418                                     0x40 * stack->stack_no,
1419                                     &stack->phb_regs_mr);
1420         }
1421     }
1422 }
1423 
1424 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1425 {
1426     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1427     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1428     PnvChip *chip = PNV_CHIP(dev);
1429     Pnv9Psi *psi9 = &chip9->psi;
1430     Error *local_err = NULL;
1431 
1432     /* XSCOM bridge is first */
1433     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1434     if (local_err) {
1435         error_propagate(errp, local_err);
1436         return;
1437     }
1438     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1439 
1440     pcc->parent_realize(dev, &local_err);
1441     if (local_err) {
1442         error_propagate(errp, local_err);
1443         return;
1444     }
1445 
1446     pnv_chip_quad_realize(chip9, &local_err);
1447     if (local_err) {
1448         error_propagate(errp, local_err);
1449         return;
1450     }
1451 
1452     /* XIVE interrupt controller (POWER9) */
1453     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1454                             "ic-bar", &error_fatal);
1455     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1456                             "vc-bar", &error_fatal);
1457     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1458                             "pc-bar", &error_fatal);
1459     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1460                             "tm-bar", &error_fatal);
1461     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1462                              &error_abort);
1463     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1464                              &local_err);
1465     if (local_err) {
1466         error_propagate(errp, local_err);
1467         return;
1468     }
1469     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1470                             &chip9->xive.xscom_regs);
1471 
1472     /* Processor Service Interface (PSI) Host Bridge */
1473     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1474                             "bar", &error_fatal);
1475     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1476     if (local_err) {
1477         error_propagate(errp, local_err);
1478         return;
1479     }
1480     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1481                             &PNV_PSI(psi9)->xscom_regs);
1482 
1483     /* LPC */
1484     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1485                              &error_abort);
1486     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1487     if (local_err) {
1488         error_propagate(errp, local_err);
1489         return;
1490     }
1491     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1492                                 &chip9->lpc.xscom_regs);
1493 
1494     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1495                                             (uint64_t) PNV9_LPCM_BASE(chip));
1496 
1497     /* Create the simplified OCC model */
1498     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1499                              &error_abort);
1500     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1501     if (local_err) {
1502         error_propagate(errp, local_err);
1503         return;
1504     }
1505     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1506 
1507     /* OCC SRAM model */
1508     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1509                                 &chip9->occ.sram_regs);
1510 
1511     /* HOMER */
1512     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1513                              &error_abort);
1514     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1515                              &local_err);
1516     if (local_err) {
1517         error_propagate(errp, local_err);
1518         return;
1519     }
1520     /* Homer Xscom region */
1521     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1522 
1523     /* Homer mmio region */
1524     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1525                                 &chip9->homer.regs);
1526 
1527     /* PHBs */
1528     pnv_chip_power9_phb_realize(chip, &local_err);
1529     if (local_err) {
1530         error_propagate(errp, local_err);
1531         return;
1532     }
1533 }
1534 
1535 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1536 {
1537     addr &= (PNV9_XSCOM_SIZE - 1);
1538     return addr >> 3;
1539 }
1540 
1541 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1542 {
1543     DeviceClass *dc = DEVICE_CLASS(klass);
1544     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1545 
1546     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1547     k->cores_mask = POWER9_CORE_MASK;
1548     k->core_pir = pnv_chip_core_pir_p9;
1549     k->intc_create = pnv_chip_power9_intc_create;
1550     k->intc_reset = pnv_chip_power9_intc_reset;
1551     k->intc_destroy = pnv_chip_power9_intc_destroy;
1552     k->intc_print_info = pnv_chip_power9_intc_print_info;
1553     k->isa_create = pnv_chip_power9_isa_create;
1554     k->dt_populate = pnv_chip_power9_dt_populate;
1555     k->pic_print_info = pnv_chip_power9_pic_print_info;
1556     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1557     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1558     dc->desc = "PowerNV Chip POWER9";
1559     k->num_phbs = 6;
1560 
1561     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1562                                     &k->parent_realize);
1563 }
1564 
1565 static void pnv_chip_power10_instance_init(Object *obj)
1566 {
1567     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1568 
1569     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1570                             TYPE_PNV10_PSI, &error_abort, NULL);
1571     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1572                             TYPE_PNV10_LPC, &error_abort, NULL);
1573 }
1574 
1575 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1576 {
1577     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1578     PnvChip *chip = PNV_CHIP(dev);
1579     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1580     Error *local_err = NULL;
1581 
1582     /* XSCOM bridge is first */
1583     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1584     if (local_err) {
1585         error_propagate(errp, local_err);
1586         return;
1587     }
1588     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1589 
1590     pcc->parent_realize(dev, &local_err);
1591     if (local_err) {
1592         error_propagate(errp, local_err);
1593         return;
1594     }
1595 
1596     /* Processor Service Interface (PSI) Host Bridge */
1597     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1598                             "bar", &error_fatal);
1599     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1600                              &local_err);
1601     if (local_err) {
1602         error_propagate(errp, local_err);
1603         return;
1604     }
1605     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1606                             &PNV_PSI(&chip10->psi)->xscom_regs);
1607 
1608     /* LPC */
1609     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1610                              &error_abort);
1611     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1612                              &local_err);
1613     if (local_err) {
1614         error_propagate(errp, local_err);
1615         return;
1616     }
1617     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1618                                 &chip10->lpc.xscom_regs);
1619 
1620     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1621                                             (uint64_t) PNV10_LPCM_BASE(chip));
1622 }
1623 
1624 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1625 {
1626     addr &= (PNV10_XSCOM_SIZE - 1);
1627     return addr >> 3;
1628 }
1629 
1630 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1631 {
1632     DeviceClass *dc = DEVICE_CLASS(klass);
1633     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1634 
1635     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1636     k->cores_mask = POWER10_CORE_MASK;
1637     k->core_pir = pnv_chip_core_pir_p10;
1638     k->intc_create = pnv_chip_power10_intc_create;
1639     k->intc_reset = pnv_chip_power10_intc_reset;
1640     k->intc_destroy = pnv_chip_power10_intc_destroy;
1641     k->intc_print_info = pnv_chip_power10_intc_print_info;
1642     k->isa_create = pnv_chip_power10_isa_create;
1643     k->dt_populate = pnv_chip_power10_dt_populate;
1644     k->pic_print_info = pnv_chip_power10_pic_print_info;
1645     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1646     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1647     dc->desc = "PowerNV Chip POWER10";
1648 
1649     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1650                                     &k->parent_realize);
1651 }
1652 
1653 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1654 {
1655     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1656     int cores_max;
1657 
1658     /*
1659      * No custom mask for this chip, let's use the default one from *
1660      * the chip class
1661      */
1662     if (!chip->cores_mask) {
1663         chip->cores_mask = pcc->cores_mask;
1664     }
1665 
1666     /* filter alien core ids ! some are reserved */
1667     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1668         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1669                    chip->cores_mask);
1670         return;
1671     }
1672     chip->cores_mask &= pcc->cores_mask;
1673 
1674     /* now that we have a sane layout, let check the number of cores */
1675     cores_max = ctpop64(chip->cores_mask);
1676     if (chip->nr_cores > cores_max) {
1677         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1678                    cores_max);
1679         return;
1680     }
1681 }
1682 
1683 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1684 {
1685     Error *error = NULL;
1686     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1687     const char *typename = pnv_chip_core_typename(chip);
1688     int i, core_hwid;
1689     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1690 
1691     if (!object_class_by_name(typename)) {
1692         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1693         return;
1694     }
1695 
1696     /* Cores */
1697     pnv_chip_core_sanitize(chip, &error);
1698     if (error) {
1699         error_propagate(errp, error);
1700         return;
1701     }
1702 
1703     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1704 
1705     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1706              && (i < chip->nr_cores); core_hwid++) {
1707         char core_name[32];
1708         PnvCore *pnv_core;
1709         uint64_t xscom_core_base;
1710 
1711         if (!(chip->cores_mask & (1ull << core_hwid))) {
1712             continue;
1713         }
1714 
1715         pnv_core = PNV_CORE(object_new(typename));
1716 
1717         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1718         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1719                                   &error_abort);
1720         chip->cores[i] = pnv_core;
1721         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1722                                 "nr-threads", &error_fatal);
1723         object_property_set_int(OBJECT(pnv_core), core_hwid,
1724                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1725         object_property_set_int(OBJECT(pnv_core),
1726                                 pcc->core_pir(chip, core_hwid),
1727                                 "pir", &error_fatal);
1728         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1729                                 "hrmor", &error_fatal);
1730         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1731                                  &error_abort);
1732         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1733                                  &error_fatal);
1734 
1735         /* Each core has an XSCOM MMIO region */
1736         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1737 
1738         pnv_xscom_add_subregion(chip, xscom_core_base,
1739                                 &pnv_core->xscom_regs);
1740         i++;
1741     }
1742 }
1743 
1744 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1745 {
1746     PnvChip *chip = PNV_CHIP(dev);
1747     Error *error = NULL;
1748 
1749     /* Cores */
1750     pnv_chip_core_realize(chip, &error);
1751     if (error) {
1752         error_propagate(errp, error);
1753         return;
1754     }
1755 }
1756 
1757 static Property pnv_chip_properties[] = {
1758     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1759     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1760     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1761     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1762     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1763     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1764     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1765     DEFINE_PROP_END_OF_LIST(),
1766 };
1767 
1768 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1769 {
1770     DeviceClass *dc = DEVICE_CLASS(klass);
1771 
1772     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1773     dc->realize = pnv_chip_realize;
1774     device_class_set_props(dc, pnv_chip_properties);
1775     dc->desc = "PowerNV Chip";
1776 }
1777 
1778 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1779 {
1780     int i, j;
1781 
1782     for (i = 0; i < chip->nr_cores; i++) {
1783         PnvCore *pc = chip->cores[i];
1784         CPUCore *cc = CPU_CORE(pc);
1785 
1786         for (j = 0; j < cc->nr_threads; j++) {
1787             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1788                 return pc->threads[j];
1789             }
1790         }
1791     }
1792     return NULL;
1793 }
1794 
1795 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1796 {
1797     PnvMachineState *pnv = PNV_MACHINE(xi);
1798     int i, j;
1799 
1800     for (i = 0; i < pnv->num_chips; i++) {
1801         PnvChip *chip = pnv->chips[i];
1802         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1803 
1804         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1805             return &chip8->psi.ics;
1806         }
1807         for (j = 0; j < chip->num_phbs; j++) {
1808             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1809                 return &chip8->phbs[j].lsis;
1810             }
1811             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1812                 return ICS(&chip8->phbs[j].msis);
1813             }
1814         }
1815     }
1816     return NULL;
1817 }
1818 
1819 static void pnv_ics_resend(XICSFabric *xi)
1820 {
1821     PnvMachineState *pnv = PNV_MACHINE(xi);
1822     int i, j;
1823 
1824     for (i = 0; i < pnv->num_chips; i++) {
1825         PnvChip *chip = pnv->chips[i];
1826         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1827 
1828         ics_resend(&chip8->psi.ics);
1829         for (j = 0; j < chip->num_phbs; j++) {
1830             ics_resend(&chip8->phbs[j].lsis);
1831             ics_resend(ICS(&chip8->phbs[j].msis));
1832         }
1833     }
1834 }
1835 
1836 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1837 {
1838     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1839 
1840     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1841 }
1842 
1843 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1844                                Monitor *mon)
1845 {
1846     PnvMachineState *pnv = PNV_MACHINE(obj);
1847     int i;
1848     CPUState *cs;
1849 
1850     CPU_FOREACH(cs) {
1851         PowerPCCPU *cpu = POWERPC_CPU(cs);
1852 
1853         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1854         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1855                                                            mon);
1856     }
1857 
1858     for (i = 0; i < pnv->num_chips; i++) {
1859         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1860     }
1861 }
1862 
1863 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1864                          uint8_t nvt_blk, uint32_t nvt_idx,
1865                          bool cam_ignore, uint8_t priority,
1866                          uint32_t logic_serv,
1867                          XiveTCTXMatch *match)
1868 {
1869     PnvMachineState *pnv = PNV_MACHINE(xfb);
1870     int total_count = 0;
1871     int i;
1872 
1873     for (i = 0; i < pnv->num_chips; i++) {
1874         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1875         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1876         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1877         int count;
1878 
1879         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1880                                priority, logic_serv, match);
1881 
1882         if (count < 0) {
1883             return count;
1884         }
1885 
1886         total_count += count;
1887     }
1888 
1889     return total_count;
1890 }
1891 
1892 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1893 {
1894     MachineClass *mc = MACHINE_CLASS(oc);
1895     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1896     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1897     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1898 
1899     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1900     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1901 
1902     xic->icp_get = pnv_icp_get;
1903     xic->ics_get = pnv_ics_get;
1904     xic->ics_resend = pnv_ics_resend;
1905 
1906     pmc->compat = compat;
1907     pmc->compat_size = sizeof(compat);
1908 }
1909 
1910 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1911 {
1912     MachineClass *mc = MACHINE_CLASS(oc);
1913     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1914     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1915     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1916 
1917     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1918     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1919     xfc->match_nvt = pnv_match_nvt;
1920 
1921     mc->alias = "powernv";
1922 
1923     pmc->compat = compat;
1924     pmc->compat_size = sizeof(compat);
1925     pmc->dt_power_mgt = pnv_dt_power_mgt;
1926 }
1927 
1928 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1929 {
1930     MachineClass *mc = MACHINE_CLASS(oc);
1931     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1932     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1933 
1934     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1935     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1936 
1937     pmc->compat = compat;
1938     pmc->compat_size = sizeof(compat);
1939     pmc->dt_power_mgt = pnv_dt_power_mgt;
1940 }
1941 
1942 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1943 {
1944     PnvMachineState *pnv = PNV_MACHINE(obj);
1945 
1946     return !!pnv->fw_load_addr;
1947 }
1948 
1949 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1950 {
1951     PnvMachineState *pnv = PNV_MACHINE(obj);
1952 
1953     if (value) {
1954         pnv->fw_load_addr = 0x8000000;
1955     }
1956 }
1957 
1958 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1959 {
1960     MachineClass *mc = MACHINE_CLASS(oc);
1961     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1962 
1963     mc->desc = "IBM PowerNV (Non-Virtualized)";
1964     mc->init = pnv_init;
1965     mc->reset = pnv_reset;
1966     mc->max_cpus = MAX_CPUS;
1967     /* Pnv provides a AHCI device for storage */
1968     mc->block_default_type = IF_IDE;
1969     mc->no_parallel = 1;
1970     mc->default_boot_order = NULL;
1971     /*
1972      * RAM defaults to less than 2048 for 32-bit hosts, and large
1973      * enough to fit the maximum initrd size at it's load address
1974      */
1975     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1976     mc->default_ram_id = "pnv.ram";
1977     ispc->print_info = pnv_pic_print_info;
1978 
1979     object_class_property_add_bool(oc, "hb-mode",
1980                                    pnv_machine_get_hb, pnv_machine_set_hb,
1981                                    &error_abort);
1982     object_class_property_set_description(oc, "hb-mode",
1983                               "Use a hostboot like boot loader",
1984                               NULL);
1985 }
1986 
1987 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1988     {                                             \
1989         .name          = type,                    \
1990         .class_init    = class_initfn,            \
1991         .parent        = TYPE_PNV8_CHIP,          \
1992     }
1993 
1994 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1995     {                                             \
1996         .name          = type,                    \
1997         .class_init    = class_initfn,            \
1998         .parent        = TYPE_PNV9_CHIP,          \
1999     }
2000 
2001 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2002     {                                              \
2003         .name          = type,                     \
2004         .class_init    = class_initfn,             \
2005         .parent        = TYPE_PNV10_CHIP,          \
2006     }
2007 
2008 static const TypeInfo types[] = {
2009     {
2010         .name          = MACHINE_TYPE_NAME("powernv10"),
2011         .parent        = TYPE_PNV_MACHINE,
2012         .class_init    = pnv_machine_power10_class_init,
2013     },
2014     {
2015         .name          = MACHINE_TYPE_NAME("powernv9"),
2016         .parent        = TYPE_PNV_MACHINE,
2017         .class_init    = pnv_machine_power9_class_init,
2018         .interfaces = (InterfaceInfo[]) {
2019             { TYPE_XIVE_FABRIC },
2020             { },
2021         },
2022     },
2023     {
2024         .name          = MACHINE_TYPE_NAME("powernv8"),
2025         .parent        = TYPE_PNV_MACHINE,
2026         .class_init    = pnv_machine_power8_class_init,
2027         .interfaces = (InterfaceInfo[]) {
2028             { TYPE_XICS_FABRIC },
2029             { },
2030         },
2031     },
2032     {
2033         .name          = TYPE_PNV_MACHINE,
2034         .parent        = TYPE_MACHINE,
2035         .abstract       = true,
2036         .instance_size = sizeof(PnvMachineState),
2037         .class_init    = pnv_machine_class_init,
2038         .class_size    = sizeof(PnvMachineClass),
2039         .interfaces = (InterfaceInfo[]) {
2040             { TYPE_INTERRUPT_STATS_PROVIDER },
2041             { },
2042         },
2043     },
2044     {
2045         .name          = TYPE_PNV_CHIP,
2046         .parent        = TYPE_SYS_BUS_DEVICE,
2047         .class_init    = pnv_chip_class_init,
2048         .instance_size = sizeof(PnvChip),
2049         .class_size    = sizeof(PnvChipClass),
2050         .abstract      = true,
2051     },
2052 
2053     /*
2054      * P10 chip and variants
2055      */
2056     {
2057         .name          = TYPE_PNV10_CHIP,
2058         .parent        = TYPE_PNV_CHIP,
2059         .instance_init = pnv_chip_power10_instance_init,
2060         .instance_size = sizeof(Pnv10Chip),
2061     },
2062     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2063 
2064     /*
2065      * P9 chip and variants
2066      */
2067     {
2068         .name          = TYPE_PNV9_CHIP,
2069         .parent        = TYPE_PNV_CHIP,
2070         .instance_init = pnv_chip_power9_instance_init,
2071         .instance_size = sizeof(Pnv9Chip),
2072     },
2073     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2074 
2075     /*
2076      * P8 chip and variants
2077      */
2078     {
2079         .name          = TYPE_PNV8_CHIP,
2080         .parent        = TYPE_PNV_CHIP,
2081         .instance_init = pnv_chip_power8_instance_init,
2082         .instance_size = sizeof(Pnv8Chip),
2083     },
2084     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2085     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2086     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2087                           pnv_chip_power8nvl_class_init),
2088 };
2089 
2090 DEFINE_TYPES(types)
2091