xref: /openbmc/qemu/hw/ppc/pnv.c (revision 5242494c056f19be05335e8a190e7a40f72e6a22)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "qapi/type-helpers.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci-host/pnv_phb.h"
48 #include "hw/pci-host/pnv_phb3.h"
49 #include "hw/pci-host/pnv_phb4.h"
50 
51 #include "hw/ppc/xics.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/ppc/pnv_chip.h"
54 #include "hw/ppc/pnv_xscom.h"
55 #include "hw/ppc/pnv_pnor.h"
56 
57 #include "hw/isa/isa.h"
58 #include "hw/char/serial.h"
59 #include "hw/rtc/mc146818rtc.h"
60 
61 #include <libfdt.h>
62 
63 #define FDT_MAX_SIZE            (1 * MiB)
64 
65 #define FW_FILE_NAME            "skiboot.lid"
66 #define FW_LOAD_ADDR            0x0
67 #define FW_MAX_SIZE             (16 * MiB)
68 
69 #define KERNEL_LOAD_ADDR        0x20000000
70 #define KERNEL_MAX_SIZE         (128 * MiB)
71 #define INITRD_LOAD_ADDR        0x28000000
72 #define INITRD_MAX_SIZE         (128 * MiB)
73 
74 static const char *pnv_chip_core_typename(const PnvChip *o)
75 {
76     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
77     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
78     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
79     const char *core_type = object_class_get_name(object_class_by_name(s));
80     g_free(s);
81     return core_type;
82 }
83 
84 /*
85  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
86  *     4 * 4 sockets * 12 cores * 8 threads = 1536
87  * Let's make it 2^11
88  */
89 #define MAX_CPUS                2048
90 
91 /*
92  * Memory nodes are created by hostboot, one for each range of memory
93  * that has a different "affinity". In practice, it means one range
94  * per chip.
95  */
96 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 {
98     char *mem_name;
99     uint64_t mem_reg_property[2];
100     int off;
101 
102     mem_reg_property[0] = cpu_to_be64(start);
103     mem_reg_property[1] = cpu_to_be64(size);
104 
105     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
106     off = fdt_add_subnode(fdt, 0, mem_name);
107     g_free(mem_name);
108 
109     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
110     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
111                        sizeof(mem_reg_property))));
112     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
113 }
114 
115 static int get_cpus_node(void *fdt)
116 {
117     int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 
119     if (cpus_offset < 0) {
120         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
121         if (cpus_offset) {
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
123             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
124         }
125     }
126     _FDT(cpus_offset);
127     return cpus_offset;
128 }
129 
130 /*
131  * The PowerNV cores (and threads) need to use real HW ids and not an
132  * incremental index like it has been done on other platforms. This HW
133  * id is stored in the CPU PIR, it is used to create cpu nodes in the
134  * device tree, used in XSCOM to address cores and in interrupt
135  * servers.
136  */
137 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 {
139     PowerPCCPU *cpu = pc->threads[0];
140     CPUState *cs = CPU(cpu);
141     DeviceClass *dc = DEVICE_GET_CLASS(cs);
142     int smt_threads = CPU_CORE(pc)->nr_threads;
143     CPUPPCState *env = &cpu->env;
144     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
145     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
146     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
147     int i;
148     uint32_t pir;
149     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
150                        0xffffffff, 0xffffffff};
151     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
152     uint32_t cpufreq = 1000000000;
153     uint32_t page_sizes_prop[64];
154     size_t page_sizes_prop_size;
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 
246     return offset;
247 }
248 
249 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
250                        uint32_t nr_threads)
251 {
252     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
253     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
254     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
255     char *name;
256     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
257     uint32_t irange[2], i, rsize;
258     uint64_t *reg;
259     int offset;
260 
261     irange[0] = cpu_to_be32(pir);
262     irange[1] = cpu_to_be32(nr_threads);
263 
264     rsize = sizeof(uint64_t) * 2 * nr_threads;
265     reg = g_malloc(rsize);
266     for (i = 0; i < nr_threads; i++) {
267         /* We know P8 PIR is linear with thread id */
268         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
269         reg[i * 2 + 1] = cpu_to_be64(0x1000);
270     }
271 
272     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
273     offset = fdt_add_subnode(fdt, 0, name);
274     _FDT(offset);
275     g_free(name);
276 
277     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
278     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
279     _FDT((fdt_setprop_string(fdt, offset, "device_type",
280                               "PowerPC-External-Interrupt-Presentation")));
281     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
282     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
283                        irange, sizeof(irange))));
284     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
285     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
286     g_free(reg);
287 }
288 
289 /*
290  * Adds a PnvPHB to the chip on P8.
291  * Implemented here, like for defaults PHBs
292  */
293 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
294 {
295     Pnv8Chip *chip8 = PNV8_CHIP(chip);
296 
297     phb->chip = chip;
298 
299     chip8->phbs[chip8->num_phbs] = phb;
300     chip8->num_phbs++;
301     return chip;
302 }
303 
304 /*
305  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
306  * HTM is always enabled because TCG does implement HTM, it's just a
307  * degenerate implementation.
308  */
309 static const uint8_t pa_features_207[] = { 24, 0,
310                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
311                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
312                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
313                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
314 
315 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
316 {
317     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
318     int i;
319 
320     pnv_dt_xscom(chip, fdt, 0,
321                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
322                  cpu_to_be64(PNV_XSCOM_SIZE),
323                  compat, sizeof(compat));
324 
325     for (i = 0; i < chip->nr_cores; i++) {
326         PnvCore *pnv_core = chip->cores[i];
327         int offset;
328 
329         offset = pnv_dt_core(chip, pnv_core, fdt);
330 
331         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
332                            pa_features_207, sizeof(pa_features_207))));
333 
334         /* Interrupt Control Presenters (ICP). One per core. */
335         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
336     }
337 
338     if (chip->ram_size) {
339         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
340     }
341 }
342 
343 /*
344  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
345  */
346 static const uint8_t pa_features_300[] = { 66, 0,
347     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
348     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
349     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
350     /* 6: DS207 */
351     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
352     /* 16: Vector */
353     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
354     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
356     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
358     /* 32: LE atomic, 34: EBB + ext EBB */
359     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
360     /* 40: Radix MMU */
361     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
362     /* 42: PM, 44: PC RA, 46: SC vec'd */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
364     /* 48: SIMD, 50: QP BFP, 52: String */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
366     /* 54: DecFP, 56: DecI, 58: SHA */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
368     /* 60: NM atomic, 62: RNG */
369     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
370 };
371 
372 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
373 {
374     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
375     int i;
376 
377     pnv_dt_xscom(chip, fdt, 0,
378                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
379                  cpu_to_be64(PNV9_XSCOM_SIZE),
380                  compat, sizeof(compat));
381 
382     for (i = 0; i < chip->nr_cores; i++) {
383         PnvCore *pnv_core = chip->cores[i];
384         int offset;
385 
386         offset = pnv_dt_core(chip, pnv_core, fdt);
387 
388         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
389                            pa_features_300, sizeof(pa_features_300))));
390     }
391 
392     if (chip->ram_size) {
393         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
394     }
395 
396     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
397 }
398 
399 /*
400  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
401  * always disables copy/paste.
402  */
403 static const uint8_t pa_features_31[] = { 74, 0,
404     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
405     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
406     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
407     /* 6: DS207 */
408     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
409     /* 16: Vector */
410     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
411     /* 18: Vec. Scalar, 20: Vec. XOR */
412     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
413     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
414     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
415     /* 32: LE atomic, 34: EBB + ext EBB */
416     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
417     /* 40: Radix MMU */
418     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
419     /* 42: PM, 44: PC RA, 46: SC vec'd */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
421     /* 48: SIMD, 50: QP BFP, 52: String */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
423     /* 54: DecFP, 56: DecI, 58: SHA */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
425     /* 60: NM atomic, 62: RNG */
426     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
427     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
428     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
429     /* 72: [P]HASHST/[P]HASHCHK */
430     0x80, 0x00,                         /* 72 - 73 */
431 };
432 
433 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
434 {
435     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
436     int i;
437 
438     pnv_dt_xscom(chip, fdt, 0,
439                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
440                  cpu_to_be64(PNV10_XSCOM_SIZE),
441                  compat, sizeof(compat));
442 
443     for (i = 0; i < chip->nr_cores; i++) {
444         PnvCore *pnv_core = chip->cores[i];
445         int offset;
446 
447         offset = pnv_dt_core(chip, pnv_core, fdt);
448 
449         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
450                            pa_features_31, sizeof(pa_features_31))));
451     }
452 
453     if (chip->ram_size) {
454         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
455     }
456 
457     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
458 }
459 
460 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
461 {
462     uint32_t io_base = d->ioport_id;
463     uint32_t io_regs[] = {
464         cpu_to_be32(1),
465         cpu_to_be32(io_base),
466         cpu_to_be32(2)
467     };
468     char *name;
469     int node;
470 
471     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
472     node = fdt_add_subnode(fdt, lpc_off, name);
473     _FDT(node);
474     g_free(name);
475 
476     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
477     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
478 }
479 
480 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
481 {
482     const char compatible[] = "ns16550\0pnpPNP,501";
483     uint32_t io_base = d->ioport_id;
484     uint32_t io_regs[] = {
485         cpu_to_be32(1),
486         cpu_to_be32(io_base),
487         cpu_to_be32(8)
488     };
489     uint32_t irq;
490     char *name;
491     int node;
492 
493     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
505     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 
510     /* This is needed by Linux */
511     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
512 }
513 
514 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
515 {
516     const char compatible[] = "bt\0ipmi-bt";
517     uint32_t io_base;
518     uint32_t io_regs[] = {
519         cpu_to_be32(1),
520         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
521         cpu_to_be32(3)
522     };
523     uint32_t irq;
524     char *name;
525     int node;
526 
527     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
528     io_regs[1] = cpu_to_be32(io_base);
529 
530     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
531 
532     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
533     node = fdt_add_subnode(fdt, lpc_off, name);
534     _FDT(node);
535     g_free(name);
536 
537     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
538     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
539                       sizeof(compatible))));
540 
541     /* Mark it as reserved to avoid Linux trying to claim it */
542     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
543     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
544     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
545                            fdt_get_phandle(fdt, lpc_off))));
546 }
547 
548 typedef struct ForeachPopulateArgs {
549     void *fdt;
550     int offset;
551 } ForeachPopulateArgs;
552 
553 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
554 {
555     ForeachPopulateArgs *args = opaque;
556     ISADevice *d = ISA_DEVICE(dev);
557 
558     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
559         pnv_dt_rtc(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
561         pnv_dt_serial(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
563         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
564     } else {
565         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
566                      d->ioport_id);
567     }
568 
569     return 0;
570 }
571 
572 /*
573  * The default LPC bus of a multichip system is on chip 0. It's
574  * recognized by the firmware (skiboot) using a "primary" property.
575  */
576 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
577 {
578     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
579     ForeachPopulateArgs args = {
580         .fdt = fdt,
581         .offset = isa_offset,
582     };
583     uint32_t phandle;
584 
585     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
586 
587     phandle = qemu_fdt_alloc_phandle(fdt);
588     assert(phandle > 0);
589     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
590 
591     /*
592      * ISA devices are not necessarily parented to the ISA bus so we
593      * can not use object_child_foreach()
594      */
595     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
596                        &args);
597 }
598 
599 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
600 {
601     int off;
602 
603     off = fdt_add_subnode(fdt, 0, "ibm,opal");
604     off = fdt_add_subnode(fdt, off, "power-mgt");
605 
606     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
607 }
608 
609 static void *pnv_dt_create(MachineState *machine)
610 {
611     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
612     PnvMachineState *pnv = PNV_MACHINE(machine);
613     void *fdt;
614     char *buf;
615     int off;
616     int i;
617 
618     fdt = g_malloc0(FDT_MAX_SIZE);
619     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
620 
621     /* /qemu node */
622     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
623 
624     /* Root node */
625     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
626     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
627     _FDT((fdt_setprop_string(fdt, 0, "model",
628                              "IBM PowerNV (emulated by qemu)")));
629     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
630 
631     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
632     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
633     if (qemu_uuid_set) {
634         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
635     }
636     g_free(buf);
637 
638     off = fdt_add_subnode(fdt, 0, "chosen");
639     if (machine->kernel_cmdline) {
640         _FDT((fdt_setprop_string(fdt, off, "bootargs",
641                                  machine->kernel_cmdline)));
642     }
643 
644     if (pnv->initrd_size) {
645         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
646         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
647 
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
649                                &start_prop, sizeof(start_prop))));
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
651                                &end_prop, sizeof(end_prop))));
652     }
653 
654     /* Populate device tree for each chip */
655     for (i = 0; i < pnv->num_chips; i++) {
656         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
657     }
658 
659     /* Populate ISA devices on chip 0 */
660     pnv_dt_isa(pnv, fdt);
661 
662     if (pnv->bmc) {
663         pnv_dt_bmc_sensors(pnv->bmc, fdt);
664     }
665 
666     /* Create an extra node for power management on machines that support it */
667     if (pmc->dt_power_mgt) {
668         pmc->dt_power_mgt(pnv, fdt);
669     }
670 
671     return fdt;
672 }
673 
674 static void pnv_powerdown_notify(Notifier *n, void *opaque)
675 {
676     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
677 
678     if (pnv->bmc) {
679         pnv_bmc_powerdown(pnv->bmc);
680     }
681 }
682 
683 static void pnv_reset(MachineState *machine, ShutdownCause reason)
684 {
685     PnvMachineState *pnv = PNV_MACHINE(machine);
686     IPMIBmc *bmc;
687     void *fdt;
688 
689     qemu_devices_reset(reason);
690 
691     /*
692      * The machine should provide by default an internal BMC simulator.
693      * If not, try to use the BMC device that was provided on the command
694      * line.
695      */
696     bmc = pnv_bmc_find(&error_fatal);
697     if (!pnv->bmc) {
698         if (!bmc) {
699             if (!qtest_enabled()) {
700                 warn_report("machine has no BMC device. Use '-device "
701                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
702                             "to define one");
703             }
704         } else {
705             pnv_bmc_set_pnor(bmc, pnv->pnor);
706             pnv->bmc = bmc;
707         }
708     }
709 
710     fdt = pnv_dt_create(machine);
711 
712     /* Pack resulting tree */
713     _FDT((fdt_pack(fdt)));
714 
715     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
716     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
717 
718     /*
719      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
720      * the existing machine->fdt to avoid leaking it during
721      * a reset.
722      */
723     g_free(machine->fdt);
724     machine->fdt = fdt;
725 }
726 
727 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
728 {
729     Pnv8Chip *chip8 = PNV8_CHIP(chip);
730     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
731 
732     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
733     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
734 }
735 
736 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
737 {
738     Pnv8Chip *chip8 = PNV8_CHIP(chip);
739     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
740 
741     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
749 
750     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
751     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
752 }
753 
754 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
755 {
756     Pnv10Chip *chip10 = PNV10_CHIP(chip);
757     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
758 
759     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
760     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
761 }
762 
763 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
764 {
765     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
766 }
767 
768 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
769 {
770     Pnv8Chip *chip8 = PNV8_CHIP(chip);
771     int i;
772 
773     ics_pic_print_info(&chip8->psi.ics, mon);
774 
775     for (i = 0; i < chip8->num_phbs; i++) {
776         PnvPHB *phb = chip8->phbs[i];
777         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
778         g_autoptr(GString) buf = g_string_new("");
779         g_autoptr(HumanReadableText) info = NULL;
780 
781         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
782         info = human_readable_text_from_str(buf);
783         monitor_puts(mon, info->human_readable_text);
784 
785         ics_pic_print_info(&phb3->lsis, mon);
786     }
787 }
788 
789 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
790 {
791     Monitor *mon = opaque;
792     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
793 
794     if (!phb) {
795         return 0;
796     }
797 
798     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
799 
800     return 0;
801 }
802 
803 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
804 {
805     Pnv9Chip *chip9 = PNV9_CHIP(chip);
806 
807     pnv_xive_pic_print_info(&chip9->xive, mon);
808     pnv_psi_pic_print_info(&chip9->psi, mon);
809 
810     object_child_foreach_recursive(OBJECT(chip),
811                          pnv_chip_power9_pic_print_info_child, mon);
812 }
813 
814 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
815                                                 uint32_t core_id)
816 {
817     return PNV_XSCOM_EX_BASE(core_id);
818 }
819 
820 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
821                                                 uint32_t core_id)
822 {
823     return PNV9_XSCOM_EC_BASE(core_id);
824 }
825 
826 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
827                                                  uint32_t core_id)
828 {
829     return PNV10_XSCOM_EC_BASE(core_id);
830 }
831 
832 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
833 {
834     PowerPCCPUClass *ppc_default =
835         POWERPC_CPU_CLASS(object_class_by_name(default_type));
836     PowerPCCPUClass *ppc =
837         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
838 
839     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
840 }
841 
842 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
843 {
844     ISADevice *dev = isa_new("isa-ipmi-bt");
845 
846     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
847     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
848     isa_realize_and_unref(dev, bus, &error_fatal);
849 }
850 
851 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
852 {
853     Pnv10Chip *chip10 = PNV10_CHIP(chip);
854 
855     pnv_xive2_pic_print_info(&chip10->xive, mon);
856     pnv_psi_pic_print_info(&chip10->psi, mon);
857 
858     object_child_foreach_recursive(OBJECT(chip),
859                          pnv_chip_power9_pic_print_info_child, mon);
860 }
861 
862 /* Always give the first 1GB to chip 0 else we won't boot */
863 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
864 {
865     MachineState *machine = MACHINE(pnv);
866     uint64_t ram_per_chip;
867 
868     assert(machine->ram_size >= 1 * GiB);
869 
870     ram_per_chip = machine->ram_size / pnv->num_chips;
871     if (ram_per_chip >= 1 * GiB) {
872         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
873     }
874 
875     assert(pnv->num_chips > 1);
876 
877     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
878     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
879 }
880 
881 static void pnv_init(MachineState *machine)
882 {
883     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
884     PnvMachineState *pnv = PNV_MACHINE(machine);
885     MachineClass *mc = MACHINE_GET_CLASS(machine);
886     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
887     char *fw_filename;
888     long fw_size;
889     uint64_t chip_ram_start = 0;
890     int i;
891     char *chip_typename;
892     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
893     DeviceState *dev;
894 
895     if (kvm_enabled()) {
896         error_report("machine %s does not support the KVM accelerator",
897                      mc->name);
898         exit(EXIT_FAILURE);
899     }
900 
901     /* allocate RAM */
902     if (machine->ram_size < mc->default_ram_size) {
903         char *sz = size_to_str(mc->default_ram_size);
904         error_report("Invalid RAM size, should be bigger than %s", sz);
905         g_free(sz);
906         exit(EXIT_FAILURE);
907     }
908     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
909 
910     /*
911      * Create our simple PNOR device
912      */
913     dev = qdev_new(TYPE_PNV_PNOR);
914     if (pnor) {
915         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
916     }
917     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
918     pnv->pnor = PNV_PNOR(dev);
919 
920     /* load skiboot firmware  */
921     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
922     if (!fw_filename) {
923         error_report("Could not find OPAL firmware '%s'", bios_name);
924         exit(1);
925     }
926 
927     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
928     if (fw_size < 0) {
929         error_report("Could not load OPAL firmware '%s'", fw_filename);
930         exit(1);
931     }
932     g_free(fw_filename);
933 
934     /* load kernel */
935     if (machine->kernel_filename) {
936         long kernel_size;
937 
938         kernel_size = load_image_targphys(machine->kernel_filename,
939                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
940         if (kernel_size < 0) {
941             error_report("Could not load kernel '%s'",
942                          machine->kernel_filename);
943             exit(1);
944         }
945     }
946 
947     /* load initrd */
948     if (machine->initrd_filename) {
949         pnv->initrd_base = INITRD_LOAD_ADDR;
950         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
951                                   pnv->initrd_base, INITRD_MAX_SIZE);
952         if (pnv->initrd_size < 0) {
953             error_report("Could not load initial ram disk '%s'",
954                          machine->initrd_filename);
955             exit(1);
956         }
957     }
958 
959     /* MSIs are supported on this platform */
960     msi_nonbroken = true;
961 
962     /*
963      * Check compatibility of the specified CPU with the machine
964      * default.
965      */
966     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
967         error_report("invalid CPU model '%s' for %s machine",
968                      machine->cpu_type, mc->name);
969         exit(1);
970     }
971 
972     /* Create the processor chips */
973     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
974     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
975                                     i, machine->cpu_type);
976     if (!object_class_by_name(chip_typename)) {
977         error_report("invalid chip model '%.*s' for %s machine",
978                      i, machine->cpu_type, mc->name);
979         exit(1);
980     }
981 
982     pnv->num_chips =
983         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
984 
985     if (machine->smp.threads > 8) {
986         error_report("Cannot support more than 8 threads/core "
987                      "on a powernv machine");
988         exit(1);
989     }
990     if (!is_power_of_2(machine->smp.threads)) {
991         error_report("Cannot support %d threads/core on a powernv"
992                      "machine because it must be a power of 2",
993                      machine->smp.threads);
994         exit(1);
995     }
996     /*
997      * TODO: should we decide on how many chips we can create based
998      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
999      */
1000     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1001         error_report("invalid number of chips: '%d'", pnv->num_chips);
1002         error_printf(
1003             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1004         exit(1);
1005     }
1006 
1007     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1008     for (i = 0; i < pnv->num_chips; i++) {
1009         char chip_name[32];
1010         Object *chip = OBJECT(qdev_new(chip_typename));
1011         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1012 
1013         pnv->chips[i] = PNV_CHIP(chip);
1014 
1015         /* Distribute RAM among the chips  */
1016         object_property_set_int(chip, "ram-start", chip_ram_start,
1017                                 &error_fatal);
1018         object_property_set_int(chip, "ram-size", chip_ram_size,
1019                                 &error_fatal);
1020         chip_ram_start += chip_ram_size;
1021 
1022         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1023         object_property_add_child(OBJECT(pnv), chip_name, chip);
1024         object_property_set_int(chip, "chip-id", i, &error_fatal);
1025         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1026                                 &error_fatal);
1027         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1028                                 &error_fatal);
1029         /*
1030          * The POWER8 machine use the XICS interrupt interface.
1031          * Propagate the XICS fabric to the chip and its controllers.
1032          */
1033         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1034             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1035         }
1036         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1037             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1038                                      &error_abort);
1039         }
1040         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1041     }
1042     g_free(chip_typename);
1043 
1044     /* Instantiate ISA bus on chip 0 */
1045     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1046 
1047     /* Create serial port */
1048     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1049 
1050     /* Create an RTC ISA device too */
1051     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1052 
1053     /*
1054      * Create the machine BMC simulator and the IPMI BT device for
1055      * communication with the BMC
1056      */
1057     if (defaults_enabled()) {
1058         pnv->bmc = pnv_bmc_create(pnv->pnor);
1059         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1060     }
1061 
1062     /*
1063      * The PNOR is mapped on the LPC FW address space by the BMC.
1064      * Since we can not reach the remote BMC machine with LPC memops,
1065      * map it always for now.
1066      */
1067     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1068                                 &pnv->pnor->mmio);
1069 
1070     /*
1071      * OpenPOWER systems use a IPMI SEL Event message to notify the
1072      * host to powerdown
1073      */
1074     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1075     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1076 
1077     /*
1078      * Create/Connect any machine-specific I2C devices
1079      */
1080     if (pmc->i2c_init) {
1081         pmc->i2c_init(pnv);
1082     }
1083 }
1084 
1085 /*
1086  *    0:21  Reserved - Read as zeros
1087  *   22:24  Chip ID
1088  *   25:28  Core number
1089  *   29:31  Thread ID
1090  */
1091 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1092                                 uint32_t thread_id)
1093 {
1094     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1095 }
1096 
1097 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1098                                         Error **errp)
1099 {
1100     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1101     Error *local_err = NULL;
1102     Object *obj;
1103     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1104 
1105     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1106     if (local_err) {
1107         error_propagate(errp, local_err);
1108         return;
1109     }
1110 
1111     pnv_cpu->intc = obj;
1112 }
1113 
1114 
1115 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1116 {
1117     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1118 
1119     icp_reset(ICP(pnv_cpu->intc));
1120 }
1121 
1122 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1123 {
1124     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1125 
1126     icp_destroy(ICP(pnv_cpu->intc));
1127     pnv_cpu->intc = NULL;
1128 }
1129 
1130 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1131                                             Monitor *mon)
1132 {
1133     g_autoptr(GString) buf = g_string_new("");
1134     g_autoptr(HumanReadableText) info = NULL;
1135 
1136     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1137 
1138     info = human_readable_text_from_str(buf);
1139     monitor_puts(mon, info->human_readable_text);
1140 }
1141 
1142 /*
1143  *    0:48  Reserved - Read as zeroes
1144  *   49:52  Node ID
1145  *   53:55  Chip ID
1146  *   56     Reserved - Read as zero
1147  *   57:61  Core number
1148  *   62:63  Thread ID
1149  *
1150  * We only care about the lower bits. uint32_t is fine for the moment.
1151  */
1152 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1153                                 uint32_t thread_id)
1154 {
1155     if (chip->nr_threads == 8) {
1156         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1157                (thread_id >> 1);
1158     } else {
1159         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1160     }
1161 }
1162 
1163 /*
1164  *    0:48  Reserved - Read as zeroes
1165  *   49:52  Node ID
1166  *   53:55  Chip ID
1167  *   56     Reserved - Read as zero
1168  *   57:59  Quad ID
1169  *   60     Core Chiplet Pair ID
1170  *   61:63  Thread/Core Chiplet ID t0-t2
1171  *
1172  * We only care about the lower bits. uint32_t is fine for the moment.
1173  */
1174 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1175                                  uint32_t thread_id)
1176 {
1177     if (chip->nr_threads == 8) {
1178         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1179                ((core_id % 2) << 3) | thread_id;
1180     } else {
1181         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1182     }
1183 }
1184 
1185 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1186                                         Error **errp)
1187 {
1188     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1189     Error *local_err = NULL;
1190     Object *obj;
1191     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1192 
1193     /*
1194      * The core creates its interrupt presenter but the XIVE interrupt
1195      * controller object is initialized afterwards. Hopefully, it's
1196      * only used at runtime.
1197      */
1198     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1199                            &local_err);
1200     if (local_err) {
1201         error_propagate(errp, local_err);
1202         return;
1203     }
1204 
1205     pnv_cpu->intc = obj;
1206 }
1207 
1208 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1209 {
1210     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1211 
1212     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1213 }
1214 
1215 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1216 {
1217     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1218 
1219     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1220     pnv_cpu->intc = NULL;
1221 }
1222 
1223 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1224                                             Monitor *mon)
1225 {
1226     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1227 }
1228 
1229 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1230                                         Error **errp)
1231 {
1232     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1233     Error *local_err = NULL;
1234     Object *obj;
1235     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1236 
1237     /*
1238      * The core creates its interrupt presenter but the XIVE2 interrupt
1239      * controller object is initialized afterwards. Hopefully, it's
1240      * only used at runtime.
1241      */
1242     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1243                            &local_err);
1244     if (local_err) {
1245         error_propagate(errp, local_err);
1246         return;
1247     }
1248 
1249     pnv_cpu->intc = obj;
1250 }
1251 
1252 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1253 {
1254     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1255 
1256     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1257 }
1258 
1259 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1260 {
1261     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1262 
1263     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1264     pnv_cpu->intc = NULL;
1265 }
1266 
1267 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1268                                              Monitor *mon)
1269 {
1270     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1271 }
1272 
1273 /*
1274  * Allowed core identifiers on a POWER8 Processor Chip :
1275  *
1276  * <EX0 reserved>
1277  *  EX1  - Venice only
1278  *  EX2  - Venice only
1279  *  EX3  - Venice only
1280  *  EX4
1281  *  EX5
1282  *  EX6
1283  * <EX7,8 reserved> <reserved>
1284  *  EX9  - Venice only
1285  *  EX10 - Venice only
1286  *  EX11 - Venice only
1287  *  EX12
1288  *  EX13
1289  *  EX14
1290  * <EX15 reserved>
1291  */
1292 #define POWER8E_CORE_MASK  (0x7070ull)
1293 #define POWER8_CORE_MASK   (0x7e7eull)
1294 
1295 /*
1296  * POWER9 has 24 cores, ids starting at 0x0
1297  */
1298 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1299 
1300 
1301 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1302 
1303 static void pnv_chip_power8_instance_init(Object *obj)
1304 {
1305     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1306     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1307     int i;
1308 
1309     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1310                              (Object **)&chip8->xics,
1311                              object_property_allow_set_link,
1312                              OBJ_PROP_LINK_STRONG);
1313 
1314     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1315 
1316     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1317 
1318     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1319 
1320     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1321 
1322     if (defaults_enabled()) {
1323         chip8->num_phbs = pcc->num_phbs;
1324 
1325         for (i = 0; i < chip8->num_phbs; i++) {
1326             Object *phb = object_new(TYPE_PNV_PHB);
1327 
1328             /*
1329              * We need the chip to parent the PHB to allow the DT
1330              * to build correctly (via pnv_xscom_dt()).
1331              *
1332              * TODO: the PHB should be parented by a PEC device that, at
1333              * this moment, is not modelled powernv8/phb3.
1334              */
1335             object_property_add_child(obj, "phb[*]", phb);
1336             chip8->phbs[i] = PNV_PHB(phb);
1337         }
1338     }
1339 
1340 }
1341 
1342 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1343  {
1344     PnvChip *chip = PNV_CHIP(chip8);
1345     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1346     int i, j;
1347     char *name;
1348 
1349     name = g_strdup_printf("icp-%x", chip->chip_id);
1350     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1351     g_free(name);
1352     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1353                                 &chip8->icp_mmio);
1354 
1355     /* Map the ICP registers for each thread */
1356     for (i = 0; i < chip->nr_cores; i++) {
1357         PnvCore *pnv_core = chip->cores[i];
1358         int core_hwid = CPU_CORE(pnv_core)->core_id;
1359 
1360         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1361             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1362             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1363 
1364             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1365                                         &icp->mmio);
1366         }
1367     }
1368 }
1369 
1370 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1371 {
1372     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1373     PnvChip *chip = PNV_CHIP(dev);
1374     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1375     Pnv8Psi *psi8 = &chip8->psi;
1376     Error *local_err = NULL;
1377     int i;
1378 
1379     assert(chip8->xics);
1380 
1381     /* XSCOM bridge is first */
1382     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1383 
1384     pcc->parent_realize(dev, &local_err);
1385     if (local_err) {
1386         error_propagate(errp, local_err);
1387         return;
1388     }
1389 
1390     /* Processor Service Interface (PSI) Host Bridge */
1391     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1392                             &error_fatal);
1393     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1394                              OBJECT(chip8->xics), &error_abort);
1395     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1396         return;
1397     }
1398     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1399                             &PNV_PSI(psi8)->xscom_regs);
1400 
1401     /* Create LPC controller */
1402     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1403     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1404 
1405     chip->fw_mr = &chip8->lpc.isa_fw;
1406     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1407                                             (uint64_t) PNV_XSCOM_BASE(chip),
1408                                             PNV_XSCOM_LPC_BASE);
1409 
1410     /*
1411      * Interrupt Management Area. This is the memory region holding
1412      * all the Interrupt Control Presenter (ICP) registers
1413      */
1414     pnv_chip_icp_realize(chip8, &local_err);
1415     if (local_err) {
1416         error_propagate(errp, local_err);
1417         return;
1418     }
1419 
1420     /* Create the simplified OCC model */
1421     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1422         return;
1423     }
1424     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1425     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1426                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1427 
1428     /* OCC SRAM model */
1429     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1430                                 &chip8->occ.sram_regs);
1431 
1432     /* HOMER */
1433     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1434                              &error_abort);
1435     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1436         return;
1437     }
1438     /* Homer Xscom region */
1439     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1440 
1441     /* Homer mmio region */
1442     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1443                                 &chip8->homer.regs);
1444 
1445     /* PHB controllers */
1446     for (i = 0; i < chip8->num_phbs; i++) {
1447         PnvPHB *phb = chip8->phbs[i];
1448 
1449         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1450         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1451                                 &error_fatal);
1452         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1453                                  &error_fatal);
1454         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1455             return;
1456         }
1457     }
1458 }
1459 
1460 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1461 {
1462     addr &= (PNV_XSCOM_SIZE - 1);
1463     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1464 }
1465 
1466 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1467 {
1468     DeviceClass *dc = DEVICE_CLASS(klass);
1469     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1470 
1471     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1472     k->cores_mask = POWER8E_CORE_MASK;
1473     k->num_phbs = 3;
1474     k->chip_pir = pnv_chip_pir_p8;
1475     k->intc_create = pnv_chip_power8_intc_create;
1476     k->intc_reset = pnv_chip_power8_intc_reset;
1477     k->intc_destroy = pnv_chip_power8_intc_destroy;
1478     k->intc_print_info = pnv_chip_power8_intc_print_info;
1479     k->isa_create = pnv_chip_power8_isa_create;
1480     k->dt_populate = pnv_chip_power8_dt_populate;
1481     k->pic_print_info = pnv_chip_power8_pic_print_info;
1482     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1483     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1484     dc->desc = "PowerNV Chip POWER8E";
1485 
1486     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1487                                     &k->parent_realize);
1488 }
1489 
1490 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1491 {
1492     DeviceClass *dc = DEVICE_CLASS(klass);
1493     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1494 
1495     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1496     k->cores_mask = POWER8_CORE_MASK;
1497     k->num_phbs = 3;
1498     k->chip_pir = pnv_chip_pir_p8;
1499     k->intc_create = pnv_chip_power8_intc_create;
1500     k->intc_reset = pnv_chip_power8_intc_reset;
1501     k->intc_destroy = pnv_chip_power8_intc_destroy;
1502     k->intc_print_info = pnv_chip_power8_intc_print_info;
1503     k->isa_create = pnv_chip_power8_isa_create;
1504     k->dt_populate = pnv_chip_power8_dt_populate;
1505     k->pic_print_info = pnv_chip_power8_pic_print_info;
1506     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1507     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1508     dc->desc = "PowerNV Chip POWER8";
1509 
1510     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1511                                     &k->parent_realize);
1512 }
1513 
1514 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1515 {
1516     DeviceClass *dc = DEVICE_CLASS(klass);
1517     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1518 
1519     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1520     k->cores_mask = POWER8_CORE_MASK;
1521     k->num_phbs = 4;
1522     k->chip_pir = pnv_chip_pir_p8;
1523     k->intc_create = pnv_chip_power8_intc_create;
1524     k->intc_reset = pnv_chip_power8_intc_reset;
1525     k->intc_destroy = pnv_chip_power8_intc_destroy;
1526     k->intc_print_info = pnv_chip_power8_intc_print_info;
1527     k->isa_create = pnv_chip_power8nvl_isa_create;
1528     k->dt_populate = pnv_chip_power8_dt_populate;
1529     k->pic_print_info = pnv_chip_power8_pic_print_info;
1530     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1531     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1532     dc->desc = "PowerNV Chip POWER8NVL";
1533 
1534     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1535                                     &k->parent_realize);
1536 }
1537 
1538 static void pnv_chip_power9_instance_init(Object *obj)
1539 {
1540     PnvChip *chip = PNV_CHIP(obj);
1541     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1542     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1543     int i;
1544 
1545     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1546     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1547                               "xive-fabric");
1548 
1549     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1550 
1551     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1552 
1553     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1554 
1555     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1556 
1557     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1558 
1559     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1560 
1561     /* Number of PECs is the chip default */
1562     chip->num_pecs = pcc->num_pecs;
1563 
1564     for (i = 0; i < chip->num_pecs; i++) {
1565         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1566                                 TYPE_PNV_PHB4_PEC);
1567     }
1568 
1569     for (i = 0; i < pcc->i2c_num_engines; i++) {
1570         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1571     }
1572 }
1573 
1574 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1575                                       PnvCore *pnv_core,
1576                                       const char *type)
1577 {
1578     char eq_name[32];
1579     int core_id = CPU_CORE(pnv_core)->core_id;
1580 
1581     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1582     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1583                                        sizeof(*eq), type,
1584                                        &error_fatal, NULL);
1585 
1586     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1587     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1588 }
1589 
1590 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1591 {
1592     PnvChip *chip = PNV_CHIP(chip9);
1593     int i;
1594 
1595     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1596     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1597 
1598     for (i = 0; i < chip9->nr_quads; i++) {
1599         PnvQuad *eq = &chip9->quads[i];
1600 
1601         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1602                                   PNV_QUAD_TYPE_NAME("power9"));
1603 
1604         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1605                                 &eq->xscom_regs);
1606     }
1607 }
1608 
1609 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1610 {
1611     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1612     int i;
1613 
1614     for (i = 0; i < chip->num_pecs; i++) {
1615         PnvPhb4PecState *pec = &chip9->pecs[i];
1616         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1617         uint32_t pec_nest_base;
1618         uint32_t pec_pci_base;
1619 
1620         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1621         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1622                                 &error_fatal);
1623         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1624                                  &error_fatal);
1625         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1626             return;
1627         }
1628 
1629         pec_nest_base = pecc->xscom_nest_base(pec);
1630         pec_pci_base = pecc->xscom_pci_base(pec);
1631 
1632         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1633         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1634     }
1635 }
1636 
1637 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1638 {
1639     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1640     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1641     PnvChip *chip = PNV_CHIP(dev);
1642     Pnv9Psi *psi9 = &chip9->psi;
1643     Error *local_err = NULL;
1644     int i;
1645 
1646     /* XSCOM bridge is first */
1647     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1648 
1649     pcc->parent_realize(dev, &local_err);
1650     if (local_err) {
1651         error_propagate(errp, local_err);
1652         return;
1653     }
1654 
1655     pnv_chip_quad_realize(chip9, &local_err);
1656     if (local_err) {
1657         error_propagate(errp, local_err);
1658         return;
1659     }
1660 
1661     /* XIVE interrupt controller (POWER9) */
1662     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1663                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1664     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1665                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1666     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1667                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1668     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1669                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1670     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1671                              &error_abort);
1672     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1673         return;
1674     }
1675     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1676                             &chip9->xive.xscom_regs);
1677 
1678     /* Processor Service Interface (PSI) Host Bridge */
1679     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1680                             &error_fatal);
1681     /* This is the only device with 4k ESB pages */
1682     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1683                             &error_fatal);
1684     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1685         return;
1686     }
1687     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1688                             &PNV_PSI(psi9)->xscom_regs);
1689 
1690     /* LPC */
1691     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1692         return;
1693     }
1694     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1695                                 &chip9->lpc.xscom_regs);
1696 
1697     chip->fw_mr = &chip9->lpc.isa_fw;
1698     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1699                                             (uint64_t) PNV9_LPCM_BASE(chip));
1700 
1701     /* ChipTOD */
1702     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1703                              chip->chip_id == 0, &error_abort);
1704     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1705                              chip->chip_id == 1, &error_abort);
1706     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1707                              &error_abort);
1708     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1709         return;
1710     }
1711     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1712                             &chip9->chiptod.xscom_regs);
1713 
1714     /* Create the simplified OCC model */
1715     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1716         return;
1717     }
1718     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1719     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1720                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1721 
1722     /* OCC SRAM model */
1723     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1724                                 &chip9->occ.sram_regs);
1725 
1726     /* SBE */
1727     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1728         return;
1729     }
1730     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1731                             &chip9->sbe.xscom_ctrl_regs);
1732     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1733                             &chip9->sbe.xscom_mbox_regs);
1734     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1735                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1736 
1737     /* HOMER */
1738     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1739                              &error_abort);
1740     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1741         return;
1742     }
1743     /* Homer Xscom region */
1744     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1745 
1746     /* Homer mmio region */
1747     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1748                                 &chip9->homer.regs);
1749 
1750     /* PEC PHBs */
1751     pnv_chip_power9_pec_realize(chip, &local_err);
1752     if (local_err) {
1753         error_propagate(errp, local_err);
1754         return;
1755     }
1756 
1757     /*
1758      * I2C
1759      */
1760     for (i = 0; i < pcc->i2c_num_engines; i++) {
1761         Object *obj =  OBJECT(&chip9->i2c[i]);
1762 
1763         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1764         object_property_set_int(obj, "num-busses",
1765                                 pcc->i2c_ports_per_engine[i],
1766                                 &error_fatal);
1767         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1768         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1769             return;
1770         }
1771         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1772                                 (chip9->i2c[i].engine - 1) *
1773                                         PNV9_XSCOM_I2CM_SIZE,
1774                                 &chip9->i2c[i].xscom_regs);
1775         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1776                               qdev_get_gpio_in(DEVICE(psi9),
1777                                                PSIHB9_IRQ_SBE_I2C));
1778     }
1779 }
1780 
1781 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1782 {
1783     addr &= (PNV9_XSCOM_SIZE - 1);
1784     return addr >> 3;
1785 }
1786 
1787 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1788 {
1789     DeviceClass *dc = DEVICE_CLASS(klass);
1790     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1791     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1792 
1793     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1794     k->cores_mask = POWER9_CORE_MASK;
1795     k->chip_pir = pnv_chip_pir_p9;
1796     k->intc_create = pnv_chip_power9_intc_create;
1797     k->intc_reset = pnv_chip_power9_intc_reset;
1798     k->intc_destroy = pnv_chip_power9_intc_destroy;
1799     k->intc_print_info = pnv_chip_power9_intc_print_info;
1800     k->isa_create = pnv_chip_power9_isa_create;
1801     k->dt_populate = pnv_chip_power9_dt_populate;
1802     k->pic_print_info = pnv_chip_power9_pic_print_info;
1803     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1804     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1805     dc->desc = "PowerNV Chip POWER9";
1806     k->num_pecs = PNV9_CHIP_MAX_PEC;
1807     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1808     k->i2c_ports_per_engine = i2c_ports_per_engine;
1809 
1810     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1811                                     &k->parent_realize);
1812 }
1813 
1814 static void pnv_chip_power10_instance_init(Object *obj)
1815 {
1816     PnvChip *chip = PNV_CHIP(obj);
1817     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1818     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1819     int i;
1820 
1821     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1822     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1823                               "xive-fabric");
1824     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1825     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1826     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1827                             TYPE_PNV10_CHIPTOD);
1828     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1829     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1830     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1831     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1832                             TYPE_PNV_N1_CHIPLET);
1833 
1834     chip->num_pecs = pcc->num_pecs;
1835 
1836     for (i = 0; i < chip->num_pecs; i++) {
1837         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1838                                 TYPE_PNV_PHB5_PEC);
1839     }
1840 
1841     for (i = 0; i < pcc->i2c_num_engines; i++) {
1842         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1843     }
1844 }
1845 
1846 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1847 {
1848     PnvChip *chip = PNV_CHIP(chip10);
1849     int i;
1850 
1851     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1852     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1853 
1854     for (i = 0; i < chip10->nr_quads; i++) {
1855         PnvQuad *eq = &chip10->quads[i];
1856 
1857         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1858                                   PNV_QUAD_TYPE_NAME("power10"));
1859 
1860         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1861                                 &eq->xscom_regs);
1862 
1863         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1864                                 &eq->xscom_qme_regs);
1865     }
1866 }
1867 
1868 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1869 {
1870     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1871     int i;
1872 
1873     for (i = 0; i < chip->num_pecs; i++) {
1874         PnvPhb4PecState *pec = &chip10->pecs[i];
1875         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1876         uint32_t pec_nest_base;
1877         uint32_t pec_pci_base;
1878 
1879         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1880         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1881                                 &error_fatal);
1882         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1883                                  &error_fatal);
1884         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1885             return;
1886         }
1887 
1888         pec_nest_base = pecc->xscom_nest_base(pec);
1889         pec_pci_base = pecc->xscom_pci_base(pec);
1890 
1891         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1892         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1893     }
1894 }
1895 
1896 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1897 {
1898     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1899     PnvChip *chip = PNV_CHIP(dev);
1900     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1901     Error *local_err = NULL;
1902     int i;
1903 
1904     /* XSCOM bridge is first */
1905     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1906 
1907     pcc->parent_realize(dev, &local_err);
1908     if (local_err) {
1909         error_propagate(errp, local_err);
1910         return;
1911     }
1912 
1913     pnv_chip_power10_quad_realize(chip10, &local_err);
1914     if (local_err) {
1915         error_propagate(errp, local_err);
1916         return;
1917     }
1918 
1919     /* XIVE2 interrupt controller (POWER10) */
1920     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1921                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1922     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1923                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1924     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1925                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1926     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1927                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1928     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1929                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1930     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1931                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1932     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1933                              &error_abort);
1934     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1935         return;
1936     }
1937     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1938                             &chip10->xive.xscom_regs);
1939 
1940     /* Processor Service Interface (PSI) Host Bridge */
1941     object_property_set_int(OBJECT(&chip10->psi), "bar",
1942                             PNV10_PSIHB_BASE(chip), &error_fatal);
1943     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1944     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1945                             &error_fatal);
1946     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1947         return;
1948     }
1949     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1950                             &PNV_PSI(&chip10->psi)->xscom_regs);
1951 
1952     /* LPC */
1953     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1954         return;
1955     }
1956     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1957                                 &chip10->lpc.xscom_regs);
1958 
1959     chip->fw_mr = &chip10->lpc.isa_fw;
1960     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1961                                             (uint64_t) PNV10_LPCM_BASE(chip));
1962 
1963     /* ChipTOD */
1964     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1965                              chip->chip_id == 0, &error_abort);
1966     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1967                              chip->chip_id == 1, &error_abort);
1968     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1969                              &error_abort);
1970     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1971         return;
1972     }
1973     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1974                             &chip10->chiptod.xscom_regs);
1975 
1976     /* Create the simplified OCC model */
1977     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1978         return;
1979     }
1980     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1981                             &chip10->occ.xscom_regs);
1982     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1983                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1984 
1985     /* OCC SRAM model */
1986     memory_region_add_subregion(get_system_memory(),
1987                                 PNV10_OCC_SENSOR_BASE(chip),
1988                                 &chip10->occ.sram_regs);
1989 
1990     /* SBE */
1991     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1992         return;
1993     }
1994     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1995                             &chip10->sbe.xscom_ctrl_regs);
1996     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1997                             &chip10->sbe.xscom_mbox_regs);
1998     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1999                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2000 
2001     /* HOMER */
2002     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2003                              &error_abort);
2004     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2005         return;
2006     }
2007     /* Homer Xscom region */
2008     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2009                             &chip10->homer.pba_regs);
2010 
2011     /* Homer mmio region */
2012     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2013                                 &chip10->homer.regs);
2014 
2015     /* N1 chiplet */
2016     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2017         return;
2018     }
2019     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2020              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2021 
2022     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2023                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2024 
2025     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2026                            &chip10->n1_chiplet.xscom_pb_es_mr);
2027 
2028     /* PHBs */
2029     pnv_chip_power10_phb_realize(chip, &local_err);
2030     if (local_err) {
2031         error_propagate(errp, local_err);
2032         return;
2033     }
2034 
2035 
2036     /*
2037      * I2C
2038      */
2039     for (i = 0; i < pcc->i2c_num_engines; i++) {
2040         Object *obj =  OBJECT(&chip10->i2c[i]);
2041 
2042         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2043         object_property_set_int(obj, "num-busses",
2044                                 pcc->i2c_ports_per_engine[i],
2045                                 &error_fatal);
2046         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2047         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2048             return;
2049         }
2050         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2051                                 (chip10->i2c[i].engine - 1) *
2052                                         PNV10_XSCOM_I2CM_SIZE,
2053                                 &chip10->i2c[i].xscom_regs);
2054         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2055                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2056                                                PSIHB9_IRQ_SBE_I2C));
2057     }
2058 
2059 }
2060 
2061 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2062 {
2063     int i;
2064     for (i = 0; i < pnv->num_chips; i++) {
2065         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2066 
2067         /*
2068          * Add a PCA9552 I2C device for PCIe hotplug control
2069          * to engine 2, bus 1, address 0x63
2070          */
2071         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2072                                                 "pca9552", 0x63);
2073 
2074         /*
2075          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2076          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2077          * after hypervisor code sets a SLOTx_EN pin high.
2078          */
2079         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2080         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2081         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2082         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2083         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2084 
2085         /*
2086          * Add a PCA9554 I2C device for cable card presence detection
2087          * to engine 2, bus 1, address 0x25
2088          */
2089         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2090     }
2091 }
2092 
2093 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2094 {
2095     addr &= (PNV10_XSCOM_SIZE - 1);
2096     return addr >> 3;
2097 }
2098 
2099 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2100 {
2101     DeviceClass *dc = DEVICE_CLASS(klass);
2102     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2103     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2104 
2105     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2106     k->cores_mask = POWER10_CORE_MASK;
2107     k->chip_pir = pnv_chip_pir_p10;
2108     k->intc_create = pnv_chip_power10_intc_create;
2109     k->intc_reset = pnv_chip_power10_intc_reset;
2110     k->intc_destroy = pnv_chip_power10_intc_destroy;
2111     k->intc_print_info = pnv_chip_power10_intc_print_info;
2112     k->isa_create = pnv_chip_power10_isa_create;
2113     k->dt_populate = pnv_chip_power10_dt_populate;
2114     k->pic_print_info = pnv_chip_power10_pic_print_info;
2115     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2116     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2117     dc->desc = "PowerNV Chip POWER10";
2118     k->num_pecs = PNV10_CHIP_MAX_PEC;
2119     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2120     k->i2c_ports_per_engine = i2c_ports_per_engine;
2121 
2122     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2123                                     &k->parent_realize);
2124 }
2125 
2126 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2127 {
2128     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2129     int cores_max;
2130 
2131     /*
2132      * No custom mask for this chip, let's use the default one from *
2133      * the chip class
2134      */
2135     if (!chip->cores_mask) {
2136         chip->cores_mask = pcc->cores_mask;
2137     }
2138 
2139     /* filter alien core ids ! some are reserved */
2140     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2141         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2142                    chip->cores_mask);
2143         return;
2144     }
2145     chip->cores_mask &= pcc->cores_mask;
2146 
2147     /* now that we have a sane layout, let check the number of cores */
2148     cores_max = ctpop64(chip->cores_mask);
2149     if (chip->nr_cores > cores_max) {
2150         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2151                    cores_max);
2152         return;
2153     }
2154 }
2155 
2156 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2157 {
2158     Error *error = NULL;
2159     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2160     const char *typename = pnv_chip_core_typename(chip);
2161     int i, core_hwid;
2162     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2163 
2164     if (!object_class_by_name(typename)) {
2165         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2166         return;
2167     }
2168 
2169     /* Cores */
2170     pnv_chip_core_sanitize(chip, &error);
2171     if (error) {
2172         error_propagate(errp, error);
2173         return;
2174     }
2175 
2176     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2177 
2178     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2179              && (i < chip->nr_cores); core_hwid++) {
2180         char core_name[32];
2181         PnvCore *pnv_core;
2182         uint64_t xscom_core_base;
2183 
2184         if (!(chip->cores_mask & (1ull << core_hwid))) {
2185             continue;
2186         }
2187 
2188         pnv_core = PNV_CORE(object_new(typename));
2189 
2190         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2191         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2192         chip->cores[i] = pnv_core;
2193         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2194                                 chip->nr_threads, &error_fatal);
2195         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2196                                 core_hwid, &error_fatal);
2197         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2198                                 &error_fatal);
2199         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2200                                 &error_fatal);
2201         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2202                                  &error_abort);
2203         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2204 
2205         /* Each core has an XSCOM MMIO region */
2206         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2207 
2208         pnv_xscom_add_subregion(chip, xscom_core_base,
2209                                 &pnv_core->xscom_regs);
2210         i++;
2211     }
2212 }
2213 
2214 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2215 {
2216     PnvChip *chip = PNV_CHIP(dev);
2217     Error *error = NULL;
2218 
2219     /* Cores */
2220     pnv_chip_core_realize(chip, &error);
2221     if (error) {
2222         error_propagate(errp, error);
2223         return;
2224     }
2225 }
2226 
2227 static Property pnv_chip_properties[] = {
2228     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2229     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2230     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2231     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2232     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2233     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2234     DEFINE_PROP_END_OF_LIST(),
2235 };
2236 
2237 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2238 {
2239     DeviceClass *dc = DEVICE_CLASS(klass);
2240 
2241     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2242     dc->realize = pnv_chip_realize;
2243     device_class_set_props(dc, pnv_chip_properties);
2244     dc->desc = "PowerNV Chip";
2245 }
2246 
2247 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2248 {
2249     int i;
2250 
2251     for (i = 0; i < chip->nr_cores; i++) {
2252         PnvCore *pc = chip->cores[i];
2253         CPUCore *cc = CPU_CORE(pc);
2254 
2255         if (cc->core_id == core_id) {
2256             return pc;
2257         }
2258     }
2259     return NULL;
2260 }
2261 
2262 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2263 {
2264     int i, j;
2265 
2266     for (i = 0; i < chip->nr_cores; i++) {
2267         PnvCore *pc = chip->cores[i];
2268         CPUCore *cc = CPU_CORE(pc);
2269 
2270         for (j = 0; j < cc->nr_threads; j++) {
2271             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2272                 return pc->threads[j];
2273             }
2274         }
2275     }
2276     return NULL;
2277 }
2278 
2279 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2280 {
2281     PnvMachineState *pnv = PNV_MACHINE(xi);
2282     int i, j;
2283 
2284     for (i = 0; i < pnv->num_chips; i++) {
2285         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2286 
2287         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2288             return &chip8->psi.ics;
2289         }
2290 
2291         for (j = 0; j < chip8->num_phbs; j++) {
2292             PnvPHB *phb = chip8->phbs[j];
2293             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2294 
2295             if (ics_valid_irq(&phb3->lsis, irq)) {
2296                 return &phb3->lsis;
2297             }
2298 
2299             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2300                 return ICS(&phb3->msis);
2301             }
2302         }
2303     }
2304     return NULL;
2305 }
2306 
2307 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2308 {
2309     int i;
2310 
2311     for (i = 0; i < pnv->num_chips; i++) {
2312         PnvChip *chip = pnv->chips[i];
2313         if (chip->chip_id == chip_id) {
2314             return chip;
2315         }
2316     }
2317     return NULL;
2318 }
2319 
2320 static void pnv_ics_resend(XICSFabric *xi)
2321 {
2322     PnvMachineState *pnv = PNV_MACHINE(xi);
2323     int i, j;
2324 
2325     for (i = 0; i < pnv->num_chips; i++) {
2326         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2327 
2328         ics_resend(&chip8->psi.ics);
2329 
2330         for (j = 0; j < chip8->num_phbs; j++) {
2331             PnvPHB *phb = chip8->phbs[j];
2332             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2333 
2334             ics_resend(&phb3->lsis);
2335             ics_resend(ICS(&phb3->msis));
2336         }
2337     }
2338 }
2339 
2340 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2341 {
2342     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2343 
2344     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2345 }
2346 
2347 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2348                                Monitor *mon)
2349 {
2350     PnvMachineState *pnv = PNV_MACHINE(obj);
2351     int i;
2352     CPUState *cs;
2353 
2354     CPU_FOREACH(cs) {
2355         PowerPCCPU *cpu = POWERPC_CPU(cs);
2356 
2357         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2358         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2359                                                            mon);
2360     }
2361 
2362     for (i = 0; i < pnv->num_chips; i++) {
2363         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2364     }
2365 }
2366 
2367 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2368                          uint8_t nvt_blk, uint32_t nvt_idx,
2369                          bool cam_ignore, uint8_t priority,
2370                          uint32_t logic_serv,
2371                          XiveTCTXMatch *match)
2372 {
2373     PnvMachineState *pnv = PNV_MACHINE(xfb);
2374     int total_count = 0;
2375     int i;
2376 
2377     for (i = 0; i < pnv->num_chips; i++) {
2378         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2379         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2380         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2381         int count;
2382 
2383         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2384                                priority, logic_serv, match);
2385 
2386         if (count < 0) {
2387             return count;
2388         }
2389 
2390         total_count += count;
2391     }
2392 
2393     return total_count;
2394 }
2395 
2396 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2397                                 uint8_t nvt_blk, uint32_t nvt_idx,
2398                                 bool cam_ignore, uint8_t priority,
2399                                 uint32_t logic_serv,
2400                                 XiveTCTXMatch *match)
2401 {
2402     PnvMachineState *pnv = PNV_MACHINE(xfb);
2403     int total_count = 0;
2404     int i;
2405 
2406     for (i = 0; i < pnv->num_chips; i++) {
2407         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2408         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2409         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2410         int count;
2411 
2412         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2413                                priority, logic_serv, match);
2414 
2415         if (count < 0) {
2416             return count;
2417         }
2418 
2419         total_count += count;
2420     }
2421 
2422     return total_count;
2423 }
2424 
2425 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2426 {
2427     MachineClass *mc = MACHINE_CLASS(oc);
2428     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2429     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2430     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2431 
2432     static GlobalProperty phb_compat[] = {
2433         { TYPE_PNV_PHB, "version", "3" },
2434         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2435     };
2436 
2437     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2438     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2439     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2440 
2441     xic->icp_get = pnv_icp_get;
2442     xic->ics_get = pnv_ics_get;
2443     xic->ics_resend = pnv_ics_resend;
2444 
2445     pmc->compat = compat;
2446     pmc->compat_size = sizeof(compat);
2447 
2448     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2449 }
2450 
2451 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2452 {
2453     MachineClass *mc = MACHINE_CLASS(oc);
2454     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2455     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2456     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2457 
2458     static GlobalProperty phb_compat[] = {
2459         { TYPE_PNV_PHB, "version", "4" },
2460         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2461     };
2462 
2463     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2464     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2465     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2466 
2467     xfc->match_nvt = pnv_match_nvt;
2468 
2469     pmc->compat = compat;
2470     pmc->compat_size = sizeof(compat);
2471     pmc->dt_power_mgt = pnv_dt_power_mgt;
2472 
2473     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2474 }
2475 
2476 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2477 {
2478     MachineClass *mc = MACHINE_CLASS(oc);
2479     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2480     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2481     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2482 
2483     static GlobalProperty phb_compat[] = {
2484         { TYPE_PNV_PHB, "version", "5" },
2485         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2486     };
2487 
2488     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2489     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2490 
2491     mc->alias = "powernv";
2492 
2493     pmc->compat = compat;
2494     pmc->compat_size = sizeof(compat);
2495     pmc->dt_power_mgt = pnv_dt_power_mgt;
2496 
2497     xfc->match_nvt = pnv10_xive_match_nvt;
2498 
2499     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2500 }
2501 
2502 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2503 {
2504     MachineClass *mc = MACHINE_CLASS(oc);
2505 
2506     pnv_machine_p10_common_class_init(oc, data);
2507     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2508 }
2509 
2510 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2511 {
2512     MachineClass *mc = MACHINE_CLASS(oc);
2513     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2514 
2515     pnv_machine_p10_common_class_init(oc, data);
2516     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2517     pmc->i2c_init = pnv_rainier_i2c_init;
2518 }
2519 
2520 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2521 {
2522     PnvMachineState *pnv = PNV_MACHINE(obj);
2523 
2524     return !!pnv->fw_load_addr;
2525 }
2526 
2527 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2528 {
2529     PnvMachineState *pnv = PNV_MACHINE(obj);
2530 
2531     if (value) {
2532         pnv->fw_load_addr = 0x8000000;
2533     }
2534 }
2535 
2536 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2537 {
2538     CPUPPCState *env = cpu_env(cs);
2539 
2540     cpu_synchronize_state(cs);
2541     ppc_cpu_do_system_reset(cs);
2542     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2543         /*
2544          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2545          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2546          * (PPC_BIT(43)).
2547          */
2548         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2549             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2550             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2551         }
2552     } else {
2553         /*
2554          * For non-powersave system resets, SRR1[42:45] are defined to be
2555          * implementation-dependent. The POWER9 User Manual specifies that
2556          * an external (SCOM driven, which may come from a BMC nmi command or
2557          * another CPU requesting a NMI IPI) system reset exception should be
2558          * 0b0010 (PPC_BIT(44)).
2559          */
2560         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2561     }
2562 }
2563 
2564 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2565 {
2566     CPUState *cs;
2567 
2568     CPU_FOREACH(cs) {
2569         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2570     }
2571 }
2572 
2573 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2574 {
2575     MachineClass *mc = MACHINE_CLASS(oc);
2576     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2577     NMIClass *nc = NMI_CLASS(oc);
2578 
2579     mc->desc = "IBM PowerNV (Non-Virtualized)";
2580     mc->init = pnv_init;
2581     mc->reset = pnv_reset;
2582     mc->max_cpus = MAX_CPUS;
2583     /* Pnv provides a AHCI device for storage */
2584     mc->block_default_type = IF_IDE;
2585     mc->no_parallel = 1;
2586     mc->default_boot_order = NULL;
2587     /*
2588      * RAM defaults to less than 2048 for 32-bit hosts, and large
2589      * enough to fit the maximum initrd size at it's load address
2590      */
2591     mc->default_ram_size = 1 * GiB;
2592     mc->default_ram_id = "pnv.ram";
2593     ispc->print_info = pnv_pic_print_info;
2594     nc->nmi_monitor_handler = pnv_nmi;
2595 
2596     object_class_property_add_bool(oc, "hb-mode",
2597                                    pnv_machine_get_hb, pnv_machine_set_hb);
2598     object_class_property_set_description(oc, "hb-mode",
2599                               "Use a hostboot like boot loader");
2600 }
2601 
2602 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2603     {                                             \
2604         .name          = type,                    \
2605         .class_init    = class_initfn,            \
2606         .parent        = TYPE_PNV8_CHIP,          \
2607     }
2608 
2609 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2610     {                                             \
2611         .name          = type,                    \
2612         .class_init    = class_initfn,            \
2613         .parent        = TYPE_PNV9_CHIP,          \
2614     }
2615 
2616 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2617     {                                              \
2618         .name          = type,                     \
2619         .class_init    = class_initfn,             \
2620         .parent        = TYPE_PNV10_CHIP,          \
2621     }
2622 
2623 static const TypeInfo types[] = {
2624     {
2625         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2626         .parent        = MACHINE_TYPE_NAME("powernv10"),
2627         .class_init    = pnv_machine_p10_rainier_class_init,
2628     },
2629     {
2630         .name          = MACHINE_TYPE_NAME("powernv10"),
2631         .parent        = TYPE_PNV_MACHINE,
2632         .class_init    = pnv_machine_power10_class_init,
2633         .interfaces = (InterfaceInfo[]) {
2634             { TYPE_XIVE_FABRIC },
2635             { },
2636         },
2637     },
2638     {
2639         .name          = MACHINE_TYPE_NAME("powernv9"),
2640         .parent        = TYPE_PNV_MACHINE,
2641         .class_init    = pnv_machine_power9_class_init,
2642         .interfaces = (InterfaceInfo[]) {
2643             { TYPE_XIVE_FABRIC },
2644             { },
2645         },
2646     },
2647     {
2648         .name          = MACHINE_TYPE_NAME("powernv8"),
2649         .parent        = TYPE_PNV_MACHINE,
2650         .class_init    = pnv_machine_power8_class_init,
2651         .interfaces = (InterfaceInfo[]) {
2652             { TYPE_XICS_FABRIC },
2653             { },
2654         },
2655     },
2656     {
2657         .name          = TYPE_PNV_MACHINE,
2658         .parent        = TYPE_MACHINE,
2659         .abstract       = true,
2660         .instance_size = sizeof(PnvMachineState),
2661         .class_init    = pnv_machine_class_init,
2662         .class_size    = sizeof(PnvMachineClass),
2663         .interfaces = (InterfaceInfo[]) {
2664             { TYPE_INTERRUPT_STATS_PROVIDER },
2665             { TYPE_NMI },
2666             { },
2667         },
2668     },
2669     {
2670         .name          = TYPE_PNV_CHIP,
2671         .parent        = TYPE_SYS_BUS_DEVICE,
2672         .class_init    = pnv_chip_class_init,
2673         .instance_size = sizeof(PnvChip),
2674         .class_size    = sizeof(PnvChipClass),
2675         .abstract      = true,
2676     },
2677 
2678     /*
2679      * P10 chip and variants
2680      */
2681     {
2682         .name          = TYPE_PNV10_CHIP,
2683         .parent        = TYPE_PNV_CHIP,
2684         .instance_init = pnv_chip_power10_instance_init,
2685         .instance_size = sizeof(Pnv10Chip),
2686     },
2687     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2688 
2689     /*
2690      * P9 chip and variants
2691      */
2692     {
2693         .name          = TYPE_PNV9_CHIP,
2694         .parent        = TYPE_PNV_CHIP,
2695         .instance_init = pnv_chip_power9_instance_init,
2696         .instance_size = sizeof(Pnv9Chip),
2697     },
2698     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2699 
2700     /*
2701      * P8 chip and variants
2702      */
2703     {
2704         .name          = TYPE_PNV8_CHIP,
2705         .parent        = TYPE_PNV_CHIP,
2706         .instance_init = pnv_chip_power8_instance_init,
2707         .instance_size = sizeof(Pnv8Chip),
2708     },
2709     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2710     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2711     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2712                           pnv_chip_power8nvl_class_init),
2713 };
2714 
2715 DEFINE_TYPES(types)
2716