1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/datadir.h" 22 #include "qemu/units.h" 23 #include "qemu/cutils.h" 24 #include "qapi/error.h" 25 #include "sysemu/qtest.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/numa.h" 28 #include "sysemu/reset.h" 29 #include "sysemu/runstate.h" 30 #include "sysemu/cpus.h" 31 #include "sysemu/device_tree.h" 32 #include "sysemu/hw_accel.h" 33 #include "target/ppc/cpu.h" 34 #include "hw/ppc/fdt.h" 35 #include "hw/ppc/ppc.h" 36 #include "hw/ppc/pnv.h" 37 #include "hw/ppc/pnv_core.h" 38 #include "hw/loader.h" 39 #include "hw/nmi.h" 40 #include "qapi/visitor.h" 41 #include "monitor/monitor.h" 42 #include "hw/intc/intc.h" 43 #include "hw/ipmi/ipmi.h" 44 #include "target/ppc/mmu-hash64.h" 45 #include "hw/pci/msi.h" 46 #include "hw/pci-host/pnv_phb.h" 47 48 #include "hw/ppc/xics.h" 49 #include "hw/qdev-properties.h" 50 #include "hw/ppc/pnv_xscom.h" 51 #include "hw/ppc/pnv_pnor.h" 52 53 #include "hw/isa/isa.h" 54 #include "hw/char/serial.h" 55 #include "hw/rtc/mc146818rtc.h" 56 57 #include <libfdt.h> 58 59 #define FDT_MAX_SIZE (1 * MiB) 60 61 #define FW_FILE_NAME "skiboot.lid" 62 #define FW_LOAD_ADDR 0x0 63 #define FW_MAX_SIZE (16 * MiB) 64 65 #define KERNEL_LOAD_ADDR 0x20000000 66 #define KERNEL_MAX_SIZE (128 * MiB) 67 #define INITRD_LOAD_ADDR 0x28000000 68 #define INITRD_MAX_SIZE (128 * MiB) 69 70 static const char *pnv_chip_core_typename(const PnvChip *o) 71 { 72 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 73 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 74 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 75 const char *core_type = object_class_get_name(object_class_by_name(s)); 76 g_free(s); 77 return core_type; 78 } 79 80 /* 81 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 82 * 4 * 4 sockets * 12 cores * 8 threads = 1536 83 * Let's make it 2^11 84 */ 85 #define MAX_CPUS 2048 86 87 /* 88 * Memory nodes are created by hostboot, one for each range of memory 89 * that has a different "affinity". In practice, it means one range 90 * per chip. 91 */ 92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 93 { 94 char *mem_name; 95 uint64_t mem_reg_property[2]; 96 int off; 97 98 mem_reg_property[0] = cpu_to_be64(start); 99 mem_reg_property[1] = cpu_to_be64(size); 100 101 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 102 off = fdt_add_subnode(fdt, 0, mem_name); 103 g_free(mem_name); 104 105 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 106 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 107 sizeof(mem_reg_property)))); 108 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 109 } 110 111 static int get_cpus_node(void *fdt) 112 { 113 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 114 115 if (cpus_offset < 0) { 116 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 117 if (cpus_offset) { 118 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 119 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 120 } 121 } 122 _FDT(cpus_offset); 123 return cpus_offset; 124 } 125 126 /* 127 * The PowerNV cores (and threads) need to use real HW ids and not an 128 * incremental index like it has been done on other platforms. This HW 129 * id is stored in the CPU PIR, it is used to create cpu nodes in the 130 * device tree, used in XSCOM to address cores and in interrupt 131 * servers. 132 */ 133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 134 { 135 PowerPCCPU *cpu = pc->threads[0]; 136 CPUState *cs = CPU(cpu); 137 DeviceClass *dc = DEVICE_GET_CLASS(cs); 138 int smt_threads = CPU_CORE(pc)->nr_threads; 139 CPUPPCState *env = &cpu->env; 140 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 141 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 142 int i; 143 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 144 0xffffffff, 0xffffffff}; 145 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 146 uint32_t cpufreq = 1000000000; 147 uint32_t page_sizes_prop[64]; 148 size_t page_sizes_prop_size; 149 const uint8_t pa_features[] = { 24, 0, 150 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 151 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 152 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 153 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 154 int offset; 155 char *nodename; 156 int cpus_offset = get_cpus_node(fdt); 157 158 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 159 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 160 _FDT(offset); 161 g_free(nodename); 162 163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 164 165 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 167 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 168 169 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 171 env->dcache_line_size))); 172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 173 env->dcache_line_size))); 174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 175 env->icache_line_size))); 176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 177 env->icache_line_size))); 178 179 if (pcc->l1_dcache_size) { 180 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 181 pcc->l1_dcache_size))); 182 } else { 183 warn_report("Unknown L1 dcache size for cpu"); 184 } 185 if (pcc->l1_icache_size) { 186 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 187 pcc->l1_icache_size))); 188 } else { 189 warn_report("Unknown L1 icache size for cpu"); 190 } 191 192 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 193 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 194 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", 195 cpu->hash64_opts->slb_size))); 196 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 197 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 198 199 if (ppc_has_spr(cpu, SPR_PURR)) { 200 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 201 } 202 203 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 204 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 205 segs, sizeof(segs)))); 206 } 207 208 /* 209 * Advertise VMX/VSX (vector extensions) if available 210 * 0 / no property == no vector extensions 211 * 1 == VMX / Altivec available 212 * 2 == VSX available 213 */ 214 if (env->insns_flags & PPC_ALTIVEC) { 215 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 216 217 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 218 } 219 220 /* 221 * Advertise DFP (Decimal Floating Point) if available 222 * 0 / no property == no DFP 223 * 1 == DFP available 224 */ 225 if (env->insns_flags2 & PPC2_DFP) { 226 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 227 } 228 229 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 230 sizeof(page_sizes_prop)); 231 if (page_sizes_prop_size) { 232 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 233 page_sizes_prop, page_sizes_prop_size))); 234 } 235 236 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 237 pa_features, sizeof(pa_features)))); 238 239 /* Build interrupt servers properties */ 240 for (i = 0; i < smt_threads; i++) { 241 servers_prop[i] = cpu_to_be32(pc->pir + i); 242 } 243 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 244 servers_prop, sizeof(*servers_prop) * smt_threads))); 245 } 246 247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 248 uint32_t nr_threads) 249 { 250 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 251 char *name; 252 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 253 uint32_t irange[2], i, rsize; 254 uint64_t *reg; 255 int offset; 256 257 irange[0] = cpu_to_be32(pir); 258 irange[1] = cpu_to_be32(nr_threads); 259 260 rsize = sizeof(uint64_t) * 2 * nr_threads; 261 reg = g_malloc(rsize); 262 for (i = 0; i < nr_threads; i++) { 263 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 264 reg[i * 2 + 1] = cpu_to_be64(0x1000); 265 } 266 267 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 268 offset = fdt_add_subnode(fdt, 0, name); 269 _FDT(offset); 270 g_free(name); 271 272 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 273 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 274 _FDT((fdt_setprop_string(fdt, offset, "device_type", 275 "PowerPC-External-Interrupt-Presentation"))); 276 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 277 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 278 irange, sizeof(irange)))); 279 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 280 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 281 g_free(reg); 282 } 283 284 static PnvPhb4PecState *pnv_phb4_get_pec(PnvChip *chip, PnvPHB4 *phb, 285 Error **errp) 286 { 287 PnvPHB *phb_base = phb->phb_base; 288 PnvPhb4PecState *pecs = NULL; 289 int chip_id = phb->chip_id; 290 int index = phb->phb_id; 291 int i, j; 292 293 if (phb_base->version == 4) { 294 Pnv9Chip *chip9 = PNV9_CHIP(chip); 295 296 pecs = chip9->pecs; 297 } else if (phb_base->version == 5) { 298 Pnv10Chip *chip10 = PNV10_CHIP(chip); 299 300 pecs = chip10->pecs; 301 } else { 302 g_assert_not_reached(); 303 } 304 305 for (i = 0; i < chip->num_pecs; i++) { 306 /* 307 * For each PEC, check the amount of phbs it supports 308 * and see if the given phb4 index matches an index. 309 */ 310 PnvPhb4PecState *pec = &pecs[i]; 311 312 for (j = 0; j < pec->num_phbs; j++) { 313 if (index == pnv_phb4_pec_get_phb_id(pec, j)) { 314 return pec; 315 } 316 } 317 } 318 error_setg(errp, 319 "pnv-phb4 chip-id %d index %d didn't match any existing PEC", 320 chip_id, index); 321 322 return NULL; 323 } 324 325 /* 326 * Adds a PnvPHB to the chip. Returns the parent obj of the 327 * PHB which varies with each version (phb version 3 is parented 328 * by the chip, version 4 and 5 are parented by the PEC 329 * device). 330 * 331 * TODO: for version 3 we're still parenting the PHB with the 332 * chip. We should parent with a (so far not implemented) 333 * PHB3 PEC device. 334 */ 335 Object *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb, Error **errp) 336 { 337 if (phb->version == 3) { 338 Pnv8Chip *chip8 = PNV8_CHIP(chip); 339 340 phb->chip = chip; 341 342 chip8->phbs[chip8->num_phbs] = phb; 343 chip8->num_phbs++; 344 345 return OBJECT(chip); 346 } 347 348 phb->pec = pnv_phb4_get_pec(chip, PNV_PHB4(phb->backend), errp); 349 350 return OBJECT(phb->pec); 351 } 352 353 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 354 { 355 static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; 356 int i; 357 358 pnv_dt_xscom(chip, fdt, 0, 359 cpu_to_be64(PNV_XSCOM_BASE(chip)), 360 cpu_to_be64(PNV_XSCOM_SIZE), 361 compat, sizeof(compat)); 362 363 for (i = 0; i < chip->nr_cores; i++) { 364 PnvCore *pnv_core = chip->cores[i]; 365 366 pnv_dt_core(chip, pnv_core, fdt); 367 368 /* Interrupt Control Presenters (ICP). One per core. */ 369 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 370 } 371 372 if (chip->ram_size) { 373 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 374 } 375 } 376 377 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 378 { 379 static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; 380 int i; 381 382 pnv_dt_xscom(chip, fdt, 0, 383 cpu_to_be64(PNV9_XSCOM_BASE(chip)), 384 cpu_to_be64(PNV9_XSCOM_SIZE), 385 compat, sizeof(compat)); 386 387 for (i = 0; i < chip->nr_cores; i++) { 388 PnvCore *pnv_core = chip->cores[i]; 389 390 pnv_dt_core(chip, pnv_core, fdt); 391 } 392 393 if (chip->ram_size) { 394 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 395 } 396 397 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); 398 } 399 400 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) 401 { 402 static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; 403 int i; 404 405 pnv_dt_xscom(chip, fdt, 0, 406 cpu_to_be64(PNV10_XSCOM_BASE(chip)), 407 cpu_to_be64(PNV10_XSCOM_SIZE), 408 compat, sizeof(compat)); 409 410 for (i = 0; i < chip->nr_cores; i++) { 411 PnvCore *pnv_core = chip->cores[i]; 412 413 pnv_dt_core(chip, pnv_core, fdt); 414 } 415 416 if (chip->ram_size) { 417 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 418 } 419 420 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); 421 } 422 423 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 424 { 425 uint32_t io_base = d->ioport_id; 426 uint32_t io_regs[] = { 427 cpu_to_be32(1), 428 cpu_to_be32(io_base), 429 cpu_to_be32(2) 430 }; 431 char *name; 432 int node; 433 434 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 435 node = fdt_add_subnode(fdt, lpc_off, name); 436 _FDT(node); 437 g_free(name); 438 439 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 440 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 441 } 442 443 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 444 { 445 const char compatible[] = "ns16550\0pnpPNP,501"; 446 uint32_t io_base = d->ioport_id; 447 uint32_t io_regs[] = { 448 cpu_to_be32(1), 449 cpu_to_be32(io_base), 450 cpu_to_be32(8) 451 }; 452 uint32_t irq; 453 char *name; 454 int node; 455 456 irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal); 457 458 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 459 node = fdt_add_subnode(fdt, lpc_off, name); 460 _FDT(node); 461 g_free(name); 462 463 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 464 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 465 sizeof(compatible)))); 466 467 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 468 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 469 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 470 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 471 fdt_get_phandle(fdt, lpc_off)))); 472 473 /* This is needed by Linux */ 474 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 475 } 476 477 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 478 { 479 const char compatible[] = "bt\0ipmi-bt"; 480 uint32_t io_base; 481 uint32_t io_regs[] = { 482 cpu_to_be32(1), 483 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 484 cpu_to_be32(3) 485 }; 486 uint32_t irq; 487 char *name; 488 int node; 489 490 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 491 io_regs[1] = cpu_to_be32(io_base); 492 493 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 494 495 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 496 node = fdt_add_subnode(fdt, lpc_off, name); 497 _FDT(node); 498 g_free(name); 499 500 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 501 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 502 sizeof(compatible)))); 503 504 /* Mark it as reserved to avoid Linux trying to claim it */ 505 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 506 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 507 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 508 fdt_get_phandle(fdt, lpc_off)))); 509 } 510 511 typedef struct ForeachPopulateArgs { 512 void *fdt; 513 int offset; 514 } ForeachPopulateArgs; 515 516 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 517 { 518 ForeachPopulateArgs *args = opaque; 519 ISADevice *d = ISA_DEVICE(dev); 520 521 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 522 pnv_dt_rtc(d, args->fdt, args->offset); 523 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 524 pnv_dt_serial(d, args->fdt, args->offset); 525 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 526 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 527 } else { 528 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 529 d->ioport_id); 530 } 531 532 return 0; 533 } 534 535 /* 536 * The default LPC bus of a multichip system is on chip 0. It's 537 * recognized by the firmware (skiboot) using a "primary" property. 538 */ 539 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 540 { 541 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 542 ForeachPopulateArgs args = { 543 .fdt = fdt, 544 .offset = isa_offset, 545 }; 546 uint32_t phandle; 547 548 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 549 550 phandle = qemu_fdt_alloc_phandle(fdt); 551 assert(phandle > 0); 552 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); 553 554 /* 555 * ISA devices are not necessarily parented to the ISA bus so we 556 * can not use object_child_foreach() 557 */ 558 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 559 &args); 560 } 561 562 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) 563 { 564 int off; 565 566 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 567 off = fdt_add_subnode(fdt, off, "power-mgt"); 568 569 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 570 } 571 572 static void *pnv_dt_create(MachineState *machine) 573 { 574 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 575 PnvMachineState *pnv = PNV_MACHINE(machine); 576 void *fdt; 577 char *buf; 578 int off; 579 int i; 580 581 fdt = g_malloc0(FDT_MAX_SIZE); 582 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 583 584 /* /qemu node */ 585 _FDT((fdt_add_subnode(fdt, 0, "qemu"))); 586 587 /* Root node */ 588 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 589 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 590 _FDT((fdt_setprop_string(fdt, 0, "model", 591 "IBM PowerNV (emulated by qemu)"))); 592 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); 593 594 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 595 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 596 if (qemu_uuid_set) { 597 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf))); 598 } 599 g_free(buf); 600 601 off = fdt_add_subnode(fdt, 0, "chosen"); 602 if (machine->kernel_cmdline) { 603 _FDT((fdt_setprop_string(fdt, off, "bootargs", 604 machine->kernel_cmdline))); 605 } 606 607 if (pnv->initrd_size) { 608 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 609 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 610 611 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 612 &start_prop, sizeof(start_prop)))); 613 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 614 &end_prop, sizeof(end_prop)))); 615 } 616 617 /* Populate device tree for each chip */ 618 for (i = 0; i < pnv->num_chips; i++) { 619 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 620 } 621 622 /* Populate ISA devices on chip 0 */ 623 pnv_dt_isa(pnv, fdt); 624 625 if (pnv->bmc) { 626 pnv_dt_bmc_sensors(pnv->bmc, fdt); 627 } 628 629 /* Create an extra node for power management on machines that support it */ 630 if (pmc->dt_power_mgt) { 631 pmc->dt_power_mgt(pnv, fdt); 632 } 633 634 return fdt; 635 } 636 637 static void pnv_powerdown_notify(Notifier *n, void *opaque) 638 { 639 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); 640 641 if (pnv->bmc) { 642 pnv_bmc_powerdown(pnv->bmc); 643 } 644 } 645 646 static void pnv_reset(MachineState *machine) 647 { 648 PnvMachineState *pnv = PNV_MACHINE(machine); 649 IPMIBmc *bmc; 650 void *fdt; 651 652 qemu_devices_reset(); 653 654 /* 655 * The machine should provide by default an internal BMC simulator. 656 * If not, try to use the BMC device that was provided on the command 657 * line. 658 */ 659 bmc = pnv_bmc_find(&error_fatal); 660 if (!pnv->bmc) { 661 if (!bmc) { 662 if (!qtest_enabled()) { 663 warn_report("machine has no BMC device. Use '-device " 664 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' " 665 "to define one"); 666 } 667 } else { 668 pnv_bmc_set_pnor(bmc, pnv->pnor); 669 pnv->bmc = bmc; 670 } 671 } 672 673 fdt = pnv_dt_create(machine); 674 675 /* Pack resulting tree */ 676 _FDT((fdt_pack(fdt))); 677 678 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 679 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 680 681 g_free(fdt); 682 } 683 684 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 685 { 686 Pnv8Chip *chip8 = PNV8_CHIP(chip); 687 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL); 688 689 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq); 690 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 691 } 692 693 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 694 { 695 Pnv8Chip *chip8 = PNV8_CHIP(chip); 696 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C); 697 698 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq); 699 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 700 } 701 702 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 703 { 704 Pnv9Chip *chip9 = PNV9_CHIP(chip); 705 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC); 706 707 qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq); 708 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 709 } 710 711 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) 712 { 713 Pnv10Chip *chip10 = PNV10_CHIP(chip); 714 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC); 715 716 qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq); 717 return pnv_lpc_isa_create(&chip10->lpc, false, errp); 718 } 719 720 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 721 { 722 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 723 } 724 725 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 726 { 727 Pnv8Chip *chip8 = PNV8_CHIP(chip); 728 int i; 729 730 ics_pic_print_info(&chip8->psi.ics, mon); 731 732 for (i = 0; i < chip8->num_phbs; i++) { 733 PnvPHB *phb = chip8->phbs[i]; 734 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 735 736 pnv_phb3_msi_pic_print_info(&phb3->msis, mon); 737 ics_pic_print_info(&phb3->lsis, mon); 738 } 739 } 740 741 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque) 742 { 743 Monitor *mon = opaque; 744 PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB); 745 746 if (!phb) { 747 return 0; 748 } 749 750 pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon); 751 752 return 0; 753 } 754 755 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 756 { 757 Pnv9Chip *chip9 = PNV9_CHIP(chip); 758 759 pnv_xive_pic_print_info(&chip9->xive, mon); 760 pnv_psi_pic_print_info(&chip9->psi, mon); 761 762 object_child_foreach_recursive(OBJECT(chip), 763 pnv_chip_power9_pic_print_info_child, mon); 764 } 765 766 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, 767 uint32_t core_id) 768 { 769 return PNV_XSCOM_EX_BASE(core_id); 770 } 771 772 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, 773 uint32_t core_id) 774 { 775 return PNV9_XSCOM_EC_BASE(core_id); 776 } 777 778 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, 779 uint32_t core_id) 780 { 781 return PNV10_XSCOM_EC_BASE(core_id); 782 } 783 784 static bool pnv_match_cpu(const char *default_type, const char *cpu_type) 785 { 786 PowerPCCPUClass *ppc_default = 787 POWERPC_CPU_CLASS(object_class_by_name(default_type)); 788 PowerPCCPUClass *ppc = 789 POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); 790 791 return ppc_default->pvr_match(ppc_default, ppc->pvr, false); 792 } 793 794 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) 795 { 796 ISADevice *dev = isa_new("isa-ipmi-bt"); 797 798 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal); 799 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal); 800 isa_realize_and_unref(dev, bus, &error_fatal); 801 } 802 803 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon) 804 { 805 Pnv10Chip *chip10 = PNV10_CHIP(chip); 806 807 pnv_xive2_pic_print_info(&chip10->xive, mon); 808 pnv_psi_pic_print_info(&chip10->psi, mon); 809 810 object_child_foreach_recursive(OBJECT(chip), 811 pnv_chip_power9_pic_print_info_child, mon); 812 } 813 814 /* Always give the first 1GB to chip 0 else we won't boot */ 815 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id) 816 { 817 MachineState *machine = MACHINE(pnv); 818 uint64_t ram_per_chip; 819 820 assert(machine->ram_size >= 1 * GiB); 821 822 ram_per_chip = machine->ram_size / pnv->num_chips; 823 if (ram_per_chip >= 1 * GiB) { 824 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 825 } 826 827 assert(pnv->num_chips > 1); 828 829 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1); 830 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 831 } 832 833 static void pnv_init(MachineState *machine) 834 { 835 const char *bios_name = machine->firmware ?: FW_FILE_NAME; 836 PnvMachineState *pnv = PNV_MACHINE(machine); 837 MachineClass *mc = MACHINE_GET_CLASS(machine); 838 char *fw_filename; 839 long fw_size; 840 uint64_t chip_ram_start = 0; 841 int i; 842 char *chip_typename; 843 DriveInfo *pnor = drive_get(IF_MTD, 0, 0); 844 DeviceState *dev; 845 846 if (kvm_enabled()) { 847 error_report("The powernv machine does not work with KVM acceleration"); 848 exit(EXIT_FAILURE); 849 } 850 851 /* allocate RAM */ 852 if (machine->ram_size < mc->default_ram_size) { 853 char *sz = size_to_str(mc->default_ram_size); 854 error_report("Invalid RAM size, should be bigger than %s", sz); 855 g_free(sz); 856 exit(EXIT_FAILURE); 857 } 858 memory_region_add_subregion(get_system_memory(), 0, machine->ram); 859 860 /* 861 * Create our simple PNOR device 862 */ 863 dev = qdev_new(TYPE_PNV_PNOR); 864 if (pnor) { 865 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor)); 866 } 867 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 868 pnv->pnor = PNV_PNOR(dev); 869 870 /* load skiboot firmware */ 871 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 872 if (!fw_filename) { 873 error_report("Could not find OPAL firmware '%s'", bios_name); 874 exit(1); 875 } 876 877 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE); 878 if (fw_size < 0) { 879 error_report("Could not load OPAL firmware '%s'", fw_filename); 880 exit(1); 881 } 882 g_free(fw_filename); 883 884 /* load kernel */ 885 if (machine->kernel_filename) { 886 long kernel_size; 887 888 kernel_size = load_image_targphys(machine->kernel_filename, 889 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 890 if (kernel_size < 0) { 891 error_report("Could not load kernel '%s'", 892 machine->kernel_filename); 893 exit(1); 894 } 895 } 896 897 /* load initrd */ 898 if (machine->initrd_filename) { 899 pnv->initrd_base = INITRD_LOAD_ADDR; 900 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 901 pnv->initrd_base, INITRD_MAX_SIZE); 902 if (pnv->initrd_size < 0) { 903 error_report("Could not load initial ram disk '%s'", 904 machine->initrd_filename); 905 exit(1); 906 } 907 } 908 909 /* MSIs are supported on this platform */ 910 msi_nonbroken = true; 911 912 /* 913 * Check compatibility of the specified CPU with the machine 914 * default. 915 */ 916 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { 917 error_report("invalid CPU model '%s' for %s machine", 918 machine->cpu_type, mc->name); 919 exit(1); 920 } 921 922 /* Create the processor chips */ 923 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 924 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 925 i, machine->cpu_type); 926 if (!object_class_by_name(chip_typename)) { 927 error_report("invalid chip model '%.*s' for %s machine", 928 i, machine->cpu_type, mc->name); 929 exit(1); 930 } 931 932 pnv->num_chips = 933 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); 934 /* 935 * TODO: should we decide on how many chips we can create based 936 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 937 */ 938 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) { 939 error_report("invalid number of chips: '%d'", pnv->num_chips); 940 error_printf( 941 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n"); 942 exit(1); 943 } 944 945 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 946 for (i = 0; i < pnv->num_chips; i++) { 947 char chip_name[32]; 948 Object *chip = OBJECT(qdev_new(chip_typename)); 949 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i); 950 951 pnv->chips[i] = PNV_CHIP(chip); 952 953 /* Distribute RAM among the chips */ 954 object_property_set_int(chip, "ram-start", chip_ram_start, 955 &error_fatal); 956 object_property_set_int(chip, "ram-size", chip_ram_size, 957 &error_fatal); 958 chip_ram_start += chip_ram_size; 959 960 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i); 961 object_property_add_child(OBJECT(pnv), chip_name, chip); 962 object_property_set_int(chip, "chip-id", i, &error_fatal); 963 object_property_set_int(chip, "nr-cores", machine->smp.cores, 964 &error_fatal); 965 object_property_set_int(chip, "nr-threads", machine->smp.threads, 966 &error_fatal); 967 /* 968 * The POWER8 machine use the XICS interrupt interface. 969 * Propagate the XICS fabric to the chip and its controllers. 970 */ 971 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { 972 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort); 973 } 974 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { 975 object_property_set_link(chip, "xive-fabric", OBJECT(pnv), 976 &error_abort); 977 } 978 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal); 979 } 980 g_free(chip_typename); 981 982 /* Instantiate ISA bus on chip 0 */ 983 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 984 985 /* Create serial port */ 986 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 987 988 /* Create an RTC ISA device too */ 989 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 990 991 /* 992 * Create the machine BMC simulator and the IPMI BT device for 993 * communication with the BMC 994 */ 995 if (defaults_enabled()) { 996 pnv->bmc = pnv_bmc_create(pnv->pnor); 997 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); 998 } 999 1000 /* 1001 * The PNOR is mapped on the LPC FW address space by the BMC. 1002 * Since we can not reach the remote BMC machine with LPC memops, 1003 * map it always for now. 1004 */ 1005 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET, 1006 &pnv->pnor->mmio); 1007 1008 /* 1009 * OpenPOWER systems use a IPMI SEL Event message to notify the 1010 * host to powerdown 1011 */ 1012 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 1013 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 1014 } 1015 1016 /* 1017 * 0:21 Reserved - Read as zeros 1018 * 22:24 Chip ID 1019 * 25:28 Core number 1020 * 29:31 Thread ID 1021 */ 1022 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 1023 { 1024 return (chip->chip_id << 7) | (core_id << 3); 1025 } 1026 1027 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1028 Error **errp) 1029 { 1030 Pnv8Chip *chip8 = PNV8_CHIP(chip); 1031 Error *local_err = NULL; 1032 Object *obj; 1033 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1034 1035 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); 1036 if (local_err) { 1037 error_propagate(errp, local_err); 1038 return; 1039 } 1040 1041 pnv_cpu->intc = obj; 1042 } 1043 1044 1045 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1046 { 1047 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1048 1049 icp_reset(ICP(pnv_cpu->intc)); 1050 } 1051 1052 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1053 { 1054 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1055 1056 icp_destroy(ICP(pnv_cpu->intc)); 1057 pnv_cpu->intc = NULL; 1058 } 1059 1060 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1061 Monitor *mon) 1062 { 1063 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 1064 } 1065 1066 /* 1067 * 0:48 Reserved - Read as zeroes 1068 * 49:52 Node ID 1069 * 53:55 Chip ID 1070 * 56 Reserved - Read as zero 1071 * 57:61 Core number 1072 * 62:63 Thread ID 1073 * 1074 * We only care about the lower bits. uint32_t is fine for the moment. 1075 */ 1076 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 1077 { 1078 return (chip->chip_id << 8) | (core_id << 2); 1079 } 1080 1081 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id) 1082 { 1083 return (chip->chip_id << 8) | (core_id << 2); 1084 } 1085 1086 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1087 Error **errp) 1088 { 1089 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1090 Error *local_err = NULL; 1091 Object *obj; 1092 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1093 1094 /* 1095 * The core creates its interrupt presenter but the XIVE interrupt 1096 * controller object is initialized afterwards. Hopefully, it's 1097 * only used at runtime. 1098 */ 1099 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive), 1100 &local_err); 1101 if (local_err) { 1102 error_propagate(errp, local_err); 1103 return; 1104 } 1105 1106 pnv_cpu->intc = obj; 1107 } 1108 1109 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1110 { 1111 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1112 1113 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1114 } 1115 1116 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1117 { 1118 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1119 1120 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1121 pnv_cpu->intc = NULL; 1122 } 1123 1124 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1125 Monitor *mon) 1126 { 1127 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1128 } 1129 1130 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1131 Error **errp) 1132 { 1133 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1134 Error *local_err = NULL; 1135 Object *obj; 1136 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1137 1138 /* 1139 * The core creates its interrupt presenter but the XIVE2 interrupt 1140 * controller object is initialized afterwards. Hopefully, it's 1141 * only used at runtime. 1142 */ 1143 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive), 1144 &local_err); 1145 if (local_err) { 1146 error_propagate(errp, local_err); 1147 return; 1148 } 1149 1150 pnv_cpu->intc = obj; 1151 } 1152 1153 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1154 { 1155 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1156 1157 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1158 } 1159 1160 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1161 { 1162 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1163 1164 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1165 pnv_cpu->intc = NULL; 1166 } 1167 1168 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1169 Monitor *mon) 1170 { 1171 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1172 } 1173 1174 /* 1175 * Allowed core identifiers on a POWER8 Processor Chip : 1176 * 1177 * <EX0 reserved> 1178 * EX1 - Venice only 1179 * EX2 - Venice only 1180 * EX3 - Venice only 1181 * EX4 1182 * EX5 1183 * EX6 1184 * <EX7,8 reserved> <reserved> 1185 * EX9 - Venice only 1186 * EX10 - Venice only 1187 * EX11 - Venice only 1188 * EX12 1189 * EX13 1190 * EX14 1191 * <EX15 reserved> 1192 */ 1193 #define POWER8E_CORE_MASK (0x7070ull) 1194 #define POWER8_CORE_MASK (0x7e7eull) 1195 1196 /* 1197 * POWER9 has 24 cores, ids starting at 0x0 1198 */ 1199 #define POWER9_CORE_MASK (0xffffffffffffffull) 1200 1201 1202 #define POWER10_CORE_MASK (0xffffffffffffffull) 1203 1204 static void pnv_chip_power8_instance_init(Object *obj) 1205 { 1206 Pnv8Chip *chip8 = PNV8_CHIP(obj); 1207 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1208 int i; 1209 1210 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, 1211 (Object **)&chip8->xics, 1212 object_property_allow_set_link, 1213 OBJ_PROP_LINK_STRONG); 1214 1215 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI); 1216 1217 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC); 1218 1219 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC); 1220 1221 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER); 1222 1223 if (defaults_enabled()) { 1224 chip8->num_phbs = pcc->num_phbs; 1225 1226 for (i = 0; i < chip8->num_phbs; i++) { 1227 Object *phb = object_new(TYPE_PNV_PHB); 1228 1229 /* 1230 * We need the chip to parent the PHB to allow the DT 1231 * to build correctly (via pnv_xscom_dt()). 1232 * 1233 * TODO: the PHB should be parented by a PEC device that, at 1234 * this moment, is not modelled powernv8/phb3. 1235 */ 1236 object_property_add_child(obj, "phb[*]", phb); 1237 chip8->phbs[i] = PNV_PHB(phb); 1238 } 1239 } 1240 1241 } 1242 1243 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 1244 { 1245 PnvChip *chip = PNV_CHIP(chip8); 1246 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1247 int i, j; 1248 char *name; 1249 1250 name = g_strdup_printf("icp-%x", chip->chip_id); 1251 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 1252 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio); 1253 g_free(name); 1254 1255 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 1256 1257 /* Map the ICP registers for each thread */ 1258 for (i = 0; i < chip->nr_cores; i++) { 1259 PnvCore *pnv_core = chip->cores[i]; 1260 int core_hwid = CPU_CORE(pnv_core)->core_id; 1261 1262 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 1263 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 1264 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); 1265 1266 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 1267 &icp->mmio); 1268 } 1269 } 1270 } 1271 1272 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 1273 { 1274 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1275 PnvChip *chip = PNV_CHIP(dev); 1276 Pnv8Chip *chip8 = PNV8_CHIP(dev); 1277 Pnv8Psi *psi8 = &chip8->psi; 1278 Error *local_err = NULL; 1279 int i; 1280 1281 assert(chip8->xics); 1282 1283 /* XSCOM bridge is first */ 1284 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err); 1285 if (local_err) { 1286 error_propagate(errp, local_err); 1287 return; 1288 } 1289 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 1290 1291 pcc->parent_realize(dev, &local_err); 1292 if (local_err) { 1293 error_propagate(errp, local_err); 1294 return; 1295 } 1296 1297 /* Processor Service Interface (PSI) Host Bridge */ 1298 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip), 1299 &error_fatal); 1300 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS, 1301 OBJECT(chip8->xics), &error_abort); 1302 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) { 1303 return; 1304 } 1305 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 1306 &PNV_PSI(psi8)->xscom_regs); 1307 1308 /* Create LPC controller */ 1309 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal); 1310 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 1311 1312 chip->fw_mr = &chip8->lpc.isa_fw; 1313 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 1314 (uint64_t) PNV_XSCOM_BASE(chip), 1315 PNV_XSCOM_LPC_BASE); 1316 1317 /* 1318 * Interrupt Management Area. This is the memory region holding 1319 * all the Interrupt Control Presenter (ICP) registers 1320 */ 1321 pnv_chip_icp_realize(chip8, &local_err); 1322 if (local_err) { 1323 error_propagate(errp, local_err); 1324 return; 1325 } 1326 1327 /* Create the simplified OCC model */ 1328 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) { 1329 return; 1330 } 1331 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 1332 qdev_connect_gpio_out(DEVICE(&chip8->occ), 0, 1333 qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC)); 1334 1335 /* OCC SRAM model */ 1336 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), 1337 &chip8->occ.sram_regs); 1338 1339 /* HOMER */ 1340 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip), 1341 &error_abort); 1342 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) { 1343 return; 1344 } 1345 /* Homer Xscom region */ 1346 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); 1347 1348 /* Homer mmio region */ 1349 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), 1350 &chip8->homer.regs); 1351 1352 /* PHB controllers */ 1353 for (i = 0; i < chip8->num_phbs; i++) { 1354 PnvPHB *phb = chip8->phbs[i]; 1355 1356 object_property_set_int(OBJECT(phb), "index", i, &error_fatal); 1357 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id, 1358 &error_fatal); 1359 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip), 1360 &error_fatal); 1361 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) { 1362 return; 1363 } 1364 } 1365 } 1366 1367 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) 1368 { 1369 addr &= (PNV_XSCOM_SIZE - 1); 1370 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); 1371 } 1372 1373 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 1374 { 1375 DeviceClass *dc = DEVICE_CLASS(klass); 1376 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1377 1378 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 1379 k->cores_mask = POWER8E_CORE_MASK; 1380 k->num_phbs = 3; 1381 k->core_pir = pnv_chip_core_pir_p8; 1382 k->intc_create = pnv_chip_power8_intc_create; 1383 k->intc_reset = pnv_chip_power8_intc_reset; 1384 k->intc_destroy = pnv_chip_power8_intc_destroy; 1385 k->intc_print_info = pnv_chip_power8_intc_print_info; 1386 k->isa_create = pnv_chip_power8_isa_create; 1387 k->dt_populate = pnv_chip_power8_dt_populate; 1388 k->pic_print_info = pnv_chip_power8_pic_print_info; 1389 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1390 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1391 dc->desc = "PowerNV Chip POWER8E"; 1392 1393 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1394 &k->parent_realize); 1395 } 1396 1397 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 1398 { 1399 DeviceClass *dc = DEVICE_CLASS(klass); 1400 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1401 1402 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 1403 k->cores_mask = POWER8_CORE_MASK; 1404 k->num_phbs = 3; 1405 k->core_pir = pnv_chip_core_pir_p8; 1406 k->intc_create = pnv_chip_power8_intc_create; 1407 k->intc_reset = pnv_chip_power8_intc_reset; 1408 k->intc_destroy = pnv_chip_power8_intc_destroy; 1409 k->intc_print_info = pnv_chip_power8_intc_print_info; 1410 k->isa_create = pnv_chip_power8_isa_create; 1411 k->dt_populate = pnv_chip_power8_dt_populate; 1412 k->pic_print_info = pnv_chip_power8_pic_print_info; 1413 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1414 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1415 dc->desc = "PowerNV Chip POWER8"; 1416 1417 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1418 &k->parent_realize); 1419 } 1420 1421 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 1422 { 1423 DeviceClass *dc = DEVICE_CLASS(klass); 1424 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1425 1426 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 1427 k->cores_mask = POWER8_CORE_MASK; 1428 k->num_phbs = 4; 1429 k->core_pir = pnv_chip_core_pir_p8; 1430 k->intc_create = pnv_chip_power8_intc_create; 1431 k->intc_reset = pnv_chip_power8_intc_reset; 1432 k->intc_destroy = pnv_chip_power8_intc_destroy; 1433 k->intc_print_info = pnv_chip_power8_intc_print_info; 1434 k->isa_create = pnv_chip_power8nvl_isa_create; 1435 k->dt_populate = pnv_chip_power8_dt_populate; 1436 k->pic_print_info = pnv_chip_power8_pic_print_info; 1437 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1438 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1439 dc->desc = "PowerNV Chip POWER8NVL"; 1440 1441 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1442 &k->parent_realize); 1443 } 1444 1445 static void pnv_chip_power9_instance_init(Object *obj) 1446 { 1447 PnvChip *chip = PNV_CHIP(obj); 1448 Pnv9Chip *chip9 = PNV9_CHIP(obj); 1449 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1450 int i; 1451 1452 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE); 1453 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), 1454 "xive-fabric"); 1455 1456 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI); 1457 1458 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC); 1459 1460 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC); 1461 1462 object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE); 1463 1464 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER); 1465 1466 /* Number of PECs is the chip default */ 1467 chip->num_pecs = pcc->num_pecs; 1468 1469 for (i = 0; i < chip->num_pecs; i++) { 1470 object_initialize_child(obj, "pec[*]", &chip9->pecs[i], 1471 TYPE_PNV_PHB4_PEC); 1472 } 1473 } 1474 1475 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq, 1476 PnvCore *pnv_core) 1477 { 1478 char eq_name[32]; 1479 int core_id = CPU_CORE(pnv_core)->core_id; 1480 1481 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1482 object_initialize_child_with_props(OBJECT(chip), eq_name, eq, 1483 sizeof(*eq), TYPE_PNV_QUAD, 1484 &error_fatal, NULL); 1485 1486 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal); 1487 qdev_realize(DEVICE(eq), NULL, &error_fatal); 1488 } 1489 1490 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 1491 { 1492 PnvChip *chip = PNV_CHIP(chip9); 1493 int i; 1494 1495 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1496 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1497 1498 for (i = 0; i < chip9->nr_quads; i++) { 1499 PnvQuad *eq = &chip9->quads[i]; 1500 1501 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]); 1502 1503 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id), 1504 &eq->xscom_regs); 1505 } 1506 } 1507 1508 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp) 1509 { 1510 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1511 int i; 1512 1513 for (i = 0; i < chip->num_pecs; i++) { 1514 PnvPhb4PecState *pec = &chip9->pecs[i]; 1515 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1516 uint32_t pec_nest_base; 1517 uint32_t pec_pci_base; 1518 1519 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1520 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1521 &error_fatal); 1522 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1523 &error_fatal); 1524 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1525 return; 1526 } 1527 1528 pec_nest_base = pecc->xscom_nest_base(pec); 1529 pec_pci_base = pecc->xscom_pci_base(pec); 1530 1531 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1532 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1533 } 1534 } 1535 1536 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1537 { 1538 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1539 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1540 PnvChip *chip = PNV_CHIP(dev); 1541 Pnv9Psi *psi9 = &chip9->psi; 1542 Error *local_err = NULL; 1543 1544 /* XSCOM bridge is first */ 1545 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err); 1546 if (local_err) { 1547 error_propagate(errp, local_err); 1548 return; 1549 } 1550 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip)); 1551 1552 pcc->parent_realize(dev, &local_err); 1553 if (local_err) { 1554 error_propagate(errp, local_err); 1555 return; 1556 } 1557 1558 pnv_chip_quad_realize(chip9, &local_err); 1559 if (local_err) { 1560 error_propagate(errp, local_err); 1561 return; 1562 } 1563 1564 /* XIVE interrupt controller (POWER9) */ 1565 object_property_set_int(OBJECT(&chip9->xive), "ic-bar", 1566 PNV9_XIVE_IC_BASE(chip), &error_fatal); 1567 object_property_set_int(OBJECT(&chip9->xive), "vc-bar", 1568 PNV9_XIVE_VC_BASE(chip), &error_fatal); 1569 object_property_set_int(OBJECT(&chip9->xive), "pc-bar", 1570 PNV9_XIVE_PC_BASE(chip), &error_fatal); 1571 object_property_set_int(OBJECT(&chip9->xive), "tm-bar", 1572 PNV9_XIVE_TM_BASE(chip), &error_fatal); 1573 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip), 1574 &error_abort); 1575 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) { 1576 return; 1577 } 1578 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1579 &chip9->xive.xscom_regs); 1580 1581 /* Processor Service Interface (PSI) Host Bridge */ 1582 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip), 1583 &error_fatal); 1584 /* This is the only device with 4k ESB pages */ 1585 object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K, 1586 &error_fatal); 1587 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) { 1588 return; 1589 } 1590 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1591 &PNV_PSI(psi9)->xscom_regs); 1592 1593 /* LPC */ 1594 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) { 1595 return; 1596 } 1597 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1598 &chip9->lpc.xscom_regs); 1599 1600 chip->fw_mr = &chip9->lpc.isa_fw; 1601 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1602 (uint64_t) PNV9_LPCM_BASE(chip)); 1603 1604 /* Create the simplified OCC model */ 1605 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) { 1606 return; 1607 } 1608 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1609 qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in( 1610 DEVICE(&chip9->psi), PSIHB9_IRQ_OCC)); 1611 1612 /* OCC SRAM model */ 1613 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), 1614 &chip9->occ.sram_regs); 1615 1616 /* SBE */ 1617 if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) { 1618 return; 1619 } 1620 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE, 1621 &chip9->sbe.xscom_ctrl_regs); 1622 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE, 1623 &chip9->sbe.xscom_mbox_regs); 1624 qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in( 1625 DEVICE(&chip9->psi), PSIHB9_IRQ_PSU)); 1626 1627 /* HOMER */ 1628 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip), 1629 &error_abort); 1630 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) { 1631 return; 1632 } 1633 /* Homer Xscom region */ 1634 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); 1635 1636 /* Homer mmio region */ 1637 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), 1638 &chip9->homer.regs); 1639 1640 /* PEC PHBs */ 1641 pnv_chip_power9_pec_realize(chip, &local_err); 1642 if (local_err) { 1643 error_propagate(errp, local_err); 1644 return; 1645 } 1646 } 1647 1648 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) 1649 { 1650 addr &= (PNV9_XSCOM_SIZE - 1); 1651 return addr >> 3; 1652 } 1653 1654 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1655 { 1656 DeviceClass *dc = DEVICE_CLASS(klass); 1657 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1658 1659 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1660 k->cores_mask = POWER9_CORE_MASK; 1661 k->core_pir = pnv_chip_core_pir_p9; 1662 k->intc_create = pnv_chip_power9_intc_create; 1663 k->intc_reset = pnv_chip_power9_intc_reset; 1664 k->intc_destroy = pnv_chip_power9_intc_destroy; 1665 k->intc_print_info = pnv_chip_power9_intc_print_info; 1666 k->isa_create = pnv_chip_power9_isa_create; 1667 k->dt_populate = pnv_chip_power9_dt_populate; 1668 k->pic_print_info = pnv_chip_power9_pic_print_info; 1669 k->xscom_core_base = pnv_chip_power9_xscom_core_base; 1670 k->xscom_pcba = pnv_chip_power9_xscom_pcba; 1671 dc->desc = "PowerNV Chip POWER9"; 1672 k->num_pecs = PNV9_CHIP_MAX_PEC; 1673 1674 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1675 &k->parent_realize); 1676 } 1677 1678 static void pnv_chip_power10_instance_init(Object *obj) 1679 { 1680 PnvChip *chip = PNV_CHIP(obj); 1681 Pnv10Chip *chip10 = PNV10_CHIP(obj); 1682 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1683 int i; 1684 1685 object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2); 1686 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive), 1687 "xive-fabric"); 1688 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI); 1689 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC); 1690 object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC); 1691 object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE); 1692 object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER); 1693 1694 chip->num_pecs = pcc->num_pecs; 1695 1696 for (i = 0; i < chip->num_pecs; i++) { 1697 object_initialize_child(obj, "pec[*]", &chip10->pecs[i], 1698 TYPE_PNV_PHB5_PEC); 1699 } 1700 } 1701 1702 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp) 1703 { 1704 PnvChip *chip = PNV_CHIP(chip10); 1705 int i; 1706 1707 chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1708 chip10->quads = g_new0(PnvQuad, chip10->nr_quads); 1709 1710 for (i = 0; i < chip10->nr_quads; i++) { 1711 PnvQuad *eq = &chip10->quads[i]; 1712 1713 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4]); 1714 1715 pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id), 1716 &eq->xscom_regs); 1717 } 1718 } 1719 1720 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp) 1721 { 1722 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1723 int i; 1724 1725 for (i = 0; i < chip->num_pecs; i++) { 1726 PnvPhb4PecState *pec = &chip10->pecs[i]; 1727 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1728 uint32_t pec_nest_base; 1729 uint32_t pec_pci_base; 1730 1731 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1732 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1733 &error_fatal); 1734 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1735 &error_fatal); 1736 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1737 return; 1738 } 1739 1740 pec_nest_base = pecc->xscom_nest_base(pec); 1741 pec_pci_base = pecc->xscom_pci_base(pec); 1742 1743 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1744 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1745 } 1746 } 1747 1748 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) 1749 { 1750 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1751 PnvChip *chip = PNV_CHIP(dev); 1752 Pnv10Chip *chip10 = PNV10_CHIP(dev); 1753 Error *local_err = NULL; 1754 1755 /* XSCOM bridge is first */ 1756 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err); 1757 if (local_err) { 1758 error_propagate(errp, local_err); 1759 return; 1760 } 1761 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip)); 1762 1763 pcc->parent_realize(dev, &local_err); 1764 if (local_err) { 1765 error_propagate(errp, local_err); 1766 return; 1767 } 1768 1769 pnv_chip_power10_quad_realize(chip10, &local_err); 1770 if (local_err) { 1771 error_propagate(errp, local_err); 1772 return; 1773 } 1774 1775 /* XIVE2 interrupt controller (POWER10) */ 1776 object_property_set_int(OBJECT(&chip10->xive), "ic-bar", 1777 PNV10_XIVE2_IC_BASE(chip), &error_fatal); 1778 object_property_set_int(OBJECT(&chip10->xive), "esb-bar", 1779 PNV10_XIVE2_ESB_BASE(chip), &error_fatal); 1780 object_property_set_int(OBJECT(&chip10->xive), "end-bar", 1781 PNV10_XIVE2_END_BASE(chip), &error_fatal); 1782 object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar", 1783 PNV10_XIVE2_NVPG_BASE(chip), &error_fatal); 1784 object_property_set_int(OBJECT(&chip10->xive), "nvc-bar", 1785 PNV10_XIVE2_NVC_BASE(chip), &error_fatal); 1786 object_property_set_int(OBJECT(&chip10->xive), "tm-bar", 1787 PNV10_XIVE2_TM_BASE(chip), &error_fatal); 1788 object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip), 1789 &error_abort); 1790 if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) { 1791 return; 1792 } 1793 pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE, 1794 &chip10->xive.xscom_regs); 1795 1796 /* Processor Service Interface (PSI) Host Bridge */ 1797 object_property_set_int(OBJECT(&chip10->psi), "bar", 1798 PNV10_PSIHB_BASE(chip), &error_fatal); 1799 /* PSI can now be configured to use 64k ESB pages on POWER10 */ 1800 object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K, 1801 &error_fatal); 1802 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) { 1803 return; 1804 } 1805 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, 1806 &PNV_PSI(&chip10->psi)->xscom_regs); 1807 1808 /* LPC */ 1809 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) { 1810 return; 1811 } 1812 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), 1813 &chip10->lpc.xscom_regs); 1814 1815 chip->fw_mr = &chip10->lpc.isa_fw; 1816 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1817 (uint64_t) PNV10_LPCM_BASE(chip)); 1818 1819 /* Create the simplified OCC model */ 1820 if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) { 1821 return; 1822 } 1823 pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE, 1824 &chip10->occ.xscom_regs); 1825 qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in( 1826 DEVICE(&chip10->psi), PSIHB9_IRQ_OCC)); 1827 1828 /* OCC SRAM model */ 1829 memory_region_add_subregion(get_system_memory(), 1830 PNV10_OCC_SENSOR_BASE(chip), 1831 &chip10->occ.sram_regs); 1832 1833 /* SBE */ 1834 if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) { 1835 return; 1836 } 1837 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE, 1838 &chip10->sbe.xscom_ctrl_regs); 1839 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE, 1840 &chip10->sbe.xscom_mbox_regs); 1841 qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in( 1842 DEVICE(&chip10->psi), PSIHB9_IRQ_PSU)); 1843 1844 /* HOMER */ 1845 object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip), 1846 &error_abort); 1847 if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) { 1848 return; 1849 } 1850 /* Homer Xscom region */ 1851 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE, 1852 &chip10->homer.pba_regs); 1853 1854 /* Homer mmio region */ 1855 memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip), 1856 &chip10->homer.regs); 1857 1858 /* PHBs */ 1859 pnv_chip_power10_phb_realize(chip, &local_err); 1860 if (local_err) { 1861 error_propagate(errp, local_err); 1862 return; 1863 } 1864 } 1865 1866 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) 1867 { 1868 addr &= (PNV10_XSCOM_SIZE - 1); 1869 return addr >> 3; 1870 } 1871 1872 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) 1873 { 1874 DeviceClass *dc = DEVICE_CLASS(klass); 1875 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1876 1877 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */ 1878 k->cores_mask = POWER10_CORE_MASK; 1879 k->core_pir = pnv_chip_core_pir_p10; 1880 k->intc_create = pnv_chip_power10_intc_create; 1881 k->intc_reset = pnv_chip_power10_intc_reset; 1882 k->intc_destroy = pnv_chip_power10_intc_destroy; 1883 k->intc_print_info = pnv_chip_power10_intc_print_info; 1884 k->isa_create = pnv_chip_power10_isa_create; 1885 k->dt_populate = pnv_chip_power10_dt_populate; 1886 k->pic_print_info = pnv_chip_power10_pic_print_info; 1887 k->xscom_core_base = pnv_chip_power10_xscom_core_base; 1888 k->xscom_pcba = pnv_chip_power10_xscom_pcba; 1889 dc->desc = "PowerNV Chip POWER10"; 1890 k->num_pecs = PNV10_CHIP_MAX_PEC; 1891 1892 device_class_set_parent_realize(dc, pnv_chip_power10_realize, 1893 &k->parent_realize); 1894 } 1895 1896 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1897 { 1898 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1899 int cores_max; 1900 1901 /* 1902 * No custom mask for this chip, let's use the default one from * 1903 * the chip class 1904 */ 1905 if (!chip->cores_mask) { 1906 chip->cores_mask = pcc->cores_mask; 1907 } 1908 1909 /* filter alien core ids ! some are reserved */ 1910 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1911 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1912 chip->cores_mask); 1913 return; 1914 } 1915 chip->cores_mask &= pcc->cores_mask; 1916 1917 /* now that we have a sane layout, let check the number of cores */ 1918 cores_max = ctpop64(chip->cores_mask); 1919 if (chip->nr_cores > cores_max) { 1920 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1921 cores_max); 1922 return; 1923 } 1924 } 1925 1926 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1927 { 1928 Error *error = NULL; 1929 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1930 const char *typename = pnv_chip_core_typename(chip); 1931 int i, core_hwid; 1932 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 1933 1934 if (!object_class_by_name(typename)) { 1935 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1936 return; 1937 } 1938 1939 /* Cores */ 1940 pnv_chip_core_sanitize(chip, &error); 1941 if (error) { 1942 error_propagate(errp, error); 1943 return; 1944 } 1945 1946 chip->cores = g_new0(PnvCore *, chip->nr_cores); 1947 1948 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1949 && (i < chip->nr_cores); core_hwid++) { 1950 char core_name[32]; 1951 PnvCore *pnv_core; 1952 uint64_t xscom_core_base; 1953 1954 if (!(chip->cores_mask & (1ull << core_hwid))) { 1955 continue; 1956 } 1957 1958 pnv_core = PNV_CORE(object_new(typename)); 1959 1960 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1961 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core)); 1962 chip->cores[i] = pnv_core; 1963 object_property_set_int(OBJECT(pnv_core), "nr-threads", 1964 chip->nr_threads, &error_fatal); 1965 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID, 1966 core_hwid, &error_fatal); 1967 object_property_set_int(OBJECT(pnv_core), "pir", 1968 pcc->core_pir(chip, core_hwid), &error_fatal); 1969 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr, 1970 &error_fatal); 1971 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip), 1972 &error_abort); 1973 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal); 1974 1975 /* Each core has an XSCOM MMIO region */ 1976 xscom_core_base = pcc->xscom_core_base(chip, core_hwid); 1977 1978 pnv_xscom_add_subregion(chip, xscom_core_base, 1979 &pnv_core->xscom_regs); 1980 i++; 1981 } 1982 } 1983 1984 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1985 { 1986 PnvChip *chip = PNV_CHIP(dev); 1987 Error *error = NULL; 1988 1989 /* Cores */ 1990 pnv_chip_core_realize(chip, &error); 1991 if (error) { 1992 error_propagate(errp, error); 1993 return; 1994 } 1995 } 1996 1997 static Property pnv_chip_properties[] = { 1998 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1999 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 2000 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 2001 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 2002 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 2003 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), 2004 DEFINE_PROP_END_OF_LIST(), 2005 }; 2006 2007 static void pnv_chip_class_init(ObjectClass *klass, void *data) 2008 { 2009 DeviceClass *dc = DEVICE_CLASS(klass); 2010 2011 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 2012 dc->realize = pnv_chip_realize; 2013 device_class_set_props(dc, pnv_chip_properties); 2014 dc->desc = "PowerNV Chip"; 2015 } 2016 2017 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) 2018 { 2019 int i, j; 2020 2021 for (i = 0; i < chip->nr_cores; i++) { 2022 PnvCore *pc = chip->cores[i]; 2023 CPUCore *cc = CPU_CORE(pc); 2024 2025 for (j = 0; j < cc->nr_threads; j++) { 2026 if (ppc_cpu_pir(pc->threads[j]) == pir) { 2027 return pc->threads[j]; 2028 } 2029 } 2030 } 2031 return NULL; 2032 } 2033 2034 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 2035 { 2036 PnvMachineState *pnv = PNV_MACHINE(xi); 2037 int i, j; 2038 2039 for (i = 0; i < pnv->num_chips; i++) { 2040 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 2041 2042 if (ics_valid_irq(&chip8->psi.ics, irq)) { 2043 return &chip8->psi.ics; 2044 } 2045 2046 for (j = 0; j < chip8->num_phbs; j++) { 2047 PnvPHB *phb = chip8->phbs[j]; 2048 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2049 2050 if (ics_valid_irq(&phb3->lsis, irq)) { 2051 return &phb3->lsis; 2052 } 2053 2054 if (ics_valid_irq(ICS(&phb3->msis), irq)) { 2055 return ICS(&phb3->msis); 2056 } 2057 } 2058 } 2059 return NULL; 2060 } 2061 2062 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id) 2063 { 2064 int i; 2065 2066 for (i = 0; i < pnv->num_chips; i++) { 2067 PnvChip *chip = pnv->chips[i]; 2068 if (chip->chip_id == chip_id) { 2069 return chip; 2070 } 2071 } 2072 return NULL; 2073 } 2074 2075 static void pnv_ics_resend(XICSFabric *xi) 2076 { 2077 PnvMachineState *pnv = PNV_MACHINE(xi); 2078 int i, j; 2079 2080 for (i = 0; i < pnv->num_chips; i++) { 2081 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 2082 2083 ics_resend(&chip8->psi.ics); 2084 2085 for (j = 0; j < chip8->num_phbs; j++) { 2086 PnvPHB *phb = chip8->phbs[j]; 2087 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2088 2089 ics_resend(&phb3->lsis); 2090 ics_resend(ICS(&phb3->msis)); 2091 } 2092 } 2093 } 2094 2095 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 2096 { 2097 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 2098 2099 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 2100 } 2101 2102 static void pnv_pic_print_info(InterruptStatsProvider *obj, 2103 Monitor *mon) 2104 { 2105 PnvMachineState *pnv = PNV_MACHINE(obj); 2106 int i; 2107 CPUState *cs; 2108 2109 CPU_FOREACH(cs) { 2110 PowerPCCPU *cpu = POWERPC_CPU(cs); 2111 2112 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */ 2113 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu, 2114 mon); 2115 } 2116 2117 for (i = 0; i < pnv->num_chips; i++) { 2118 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 2119 } 2120 } 2121 2122 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, 2123 uint8_t nvt_blk, uint32_t nvt_idx, 2124 bool cam_ignore, uint8_t priority, 2125 uint32_t logic_serv, 2126 XiveTCTXMatch *match) 2127 { 2128 PnvMachineState *pnv = PNV_MACHINE(xfb); 2129 int total_count = 0; 2130 int i; 2131 2132 for (i = 0; i < pnv->num_chips; i++) { 2133 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 2134 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); 2135 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2136 int count; 2137 2138 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2139 priority, logic_serv, match); 2140 2141 if (count < 0) { 2142 return count; 2143 } 2144 2145 total_count += count; 2146 } 2147 2148 return total_count; 2149 } 2150 2151 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format, 2152 uint8_t nvt_blk, uint32_t nvt_idx, 2153 bool cam_ignore, uint8_t priority, 2154 uint32_t logic_serv, 2155 XiveTCTXMatch *match) 2156 { 2157 PnvMachineState *pnv = PNV_MACHINE(xfb); 2158 int total_count = 0; 2159 int i; 2160 2161 for (i = 0; i < pnv->num_chips; i++) { 2162 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 2163 XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive); 2164 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2165 int count; 2166 2167 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2168 priority, logic_serv, match); 2169 2170 if (count < 0) { 2171 return count; 2172 } 2173 2174 total_count += count; 2175 } 2176 2177 return total_count; 2178 } 2179 2180 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) 2181 { 2182 MachineClass *mc = MACHINE_CLASS(oc); 2183 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 2184 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2185 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 2186 2187 static GlobalProperty phb_compat[] = { 2188 { TYPE_PNV_PHB, "version", "3" }, 2189 { TYPE_PNV_PHB_ROOT_PORT, "version", "3" }, 2190 }; 2191 2192 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; 2193 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 2194 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2195 2196 xic->icp_get = pnv_icp_get; 2197 xic->ics_get = pnv_ics_get; 2198 xic->ics_resend = pnv_ics_resend; 2199 2200 pmc->compat = compat; 2201 pmc->compat_size = sizeof(compat); 2202 2203 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2204 } 2205 2206 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) 2207 { 2208 MachineClass *mc = MACHINE_CLASS(oc); 2209 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2210 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2211 static const char compat[] = "qemu,powernv9\0ibm,powernv"; 2212 2213 static GlobalProperty phb_compat[] = { 2214 { TYPE_PNV_PHB, "version", "4" }, 2215 { TYPE_PNV_PHB_ROOT_PORT, "version", "4" }, 2216 }; 2217 2218 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; 2219 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 2220 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2221 2222 xfc->match_nvt = pnv_match_nvt; 2223 2224 mc->alias = "powernv"; 2225 2226 pmc->compat = compat; 2227 pmc->compat_size = sizeof(compat); 2228 pmc->dt_power_mgt = pnv_dt_power_mgt; 2229 2230 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2231 } 2232 2233 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) 2234 { 2235 MachineClass *mc = MACHINE_CLASS(oc); 2236 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2237 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2238 static const char compat[] = "qemu,powernv10\0ibm,powernv"; 2239 2240 static GlobalProperty phb_compat[] = { 2241 { TYPE_PNV_PHB, "version", "5" }, 2242 { TYPE_PNV_PHB_ROOT_PORT, "version", "5" }, 2243 }; 2244 2245 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; 2246 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 2247 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2248 2249 pmc->compat = compat; 2250 pmc->compat_size = sizeof(compat); 2251 pmc->dt_power_mgt = pnv_dt_power_mgt; 2252 2253 xfc->match_nvt = pnv10_xive_match_nvt; 2254 2255 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2256 } 2257 2258 static bool pnv_machine_get_hb(Object *obj, Error **errp) 2259 { 2260 PnvMachineState *pnv = PNV_MACHINE(obj); 2261 2262 return !!pnv->fw_load_addr; 2263 } 2264 2265 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp) 2266 { 2267 PnvMachineState *pnv = PNV_MACHINE(obj); 2268 2269 if (value) { 2270 pnv->fw_load_addr = 0x8000000; 2271 } 2272 } 2273 2274 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg) 2275 { 2276 PowerPCCPU *cpu = POWERPC_CPU(cs); 2277 CPUPPCState *env = &cpu->env; 2278 2279 cpu_synchronize_state(cs); 2280 ppc_cpu_do_system_reset(cs); 2281 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) { 2282 /* 2283 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the 2284 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100 2285 * (PPC_BIT(43)). 2286 */ 2287 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) { 2288 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason"); 2289 env->spr[SPR_SRR1] |= SRR1_WAKERESET; 2290 } 2291 } else { 2292 /* 2293 * For non-powersave system resets, SRR1[42:45] are defined to be 2294 * implementation-dependent. The POWER9 User Manual specifies that 2295 * an external (SCOM driven, which may come from a BMC nmi command or 2296 * another CPU requesting a NMI IPI) system reset exception should be 2297 * 0b0010 (PPC_BIT(44)). 2298 */ 2299 env->spr[SPR_SRR1] |= SRR1_WAKESCOM; 2300 } 2301 } 2302 2303 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp) 2304 { 2305 CPUState *cs; 2306 2307 CPU_FOREACH(cs) { 2308 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL); 2309 } 2310 } 2311 2312 static void pnv_machine_class_init(ObjectClass *oc, void *data) 2313 { 2314 MachineClass *mc = MACHINE_CLASS(oc); 2315 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 2316 NMIClass *nc = NMI_CLASS(oc); 2317 2318 mc->desc = "IBM PowerNV (Non-Virtualized)"; 2319 mc->init = pnv_init; 2320 mc->reset = pnv_reset; 2321 mc->max_cpus = MAX_CPUS; 2322 /* Pnv provides a AHCI device for storage */ 2323 mc->block_default_type = IF_IDE; 2324 mc->no_parallel = 1; 2325 mc->default_boot_order = NULL; 2326 /* 2327 * RAM defaults to less than 2048 for 32-bit hosts, and large 2328 * enough to fit the maximum initrd size at it's load address 2329 */ 2330 mc->default_ram_size = 1 * GiB; 2331 mc->default_ram_id = "pnv.ram"; 2332 ispc->print_info = pnv_pic_print_info; 2333 nc->nmi_monitor_handler = pnv_nmi; 2334 2335 object_class_property_add_bool(oc, "hb-mode", 2336 pnv_machine_get_hb, pnv_machine_set_hb); 2337 object_class_property_set_description(oc, "hb-mode", 2338 "Use a hostboot like boot loader"); 2339 } 2340 2341 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 2342 { \ 2343 .name = type, \ 2344 .class_init = class_initfn, \ 2345 .parent = TYPE_PNV8_CHIP, \ 2346 } 2347 2348 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 2349 { \ 2350 .name = type, \ 2351 .class_init = class_initfn, \ 2352 .parent = TYPE_PNV9_CHIP, \ 2353 } 2354 2355 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ 2356 { \ 2357 .name = type, \ 2358 .class_init = class_initfn, \ 2359 .parent = TYPE_PNV10_CHIP, \ 2360 } 2361 2362 static const TypeInfo types[] = { 2363 { 2364 .name = MACHINE_TYPE_NAME("powernv10"), 2365 .parent = TYPE_PNV_MACHINE, 2366 .class_init = pnv_machine_power10_class_init, 2367 .interfaces = (InterfaceInfo[]) { 2368 { TYPE_XIVE_FABRIC }, 2369 { }, 2370 }, 2371 }, 2372 { 2373 .name = MACHINE_TYPE_NAME("powernv9"), 2374 .parent = TYPE_PNV_MACHINE, 2375 .class_init = pnv_machine_power9_class_init, 2376 .interfaces = (InterfaceInfo[]) { 2377 { TYPE_XIVE_FABRIC }, 2378 { }, 2379 }, 2380 }, 2381 { 2382 .name = MACHINE_TYPE_NAME("powernv8"), 2383 .parent = TYPE_PNV_MACHINE, 2384 .class_init = pnv_machine_power8_class_init, 2385 .interfaces = (InterfaceInfo[]) { 2386 { TYPE_XICS_FABRIC }, 2387 { }, 2388 }, 2389 }, 2390 { 2391 .name = TYPE_PNV_MACHINE, 2392 .parent = TYPE_MACHINE, 2393 .abstract = true, 2394 .instance_size = sizeof(PnvMachineState), 2395 .class_init = pnv_machine_class_init, 2396 .class_size = sizeof(PnvMachineClass), 2397 .interfaces = (InterfaceInfo[]) { 2398 { TYPE_INTERRUPT_STATS_PROVIDER }, 2399 { TYPE_NMI }, 2400 { }, 2401 }, 2402 }, 2403 { 2404 .name = TYPE_PNV_CHIP, 2405 .parent = TYPE_SYS_BUS_DEVICE, 2406 .class_init = pnv_chip_class_init, 2407 .instance_size = sizeof(PnvChip), 2408 .class_size = sizeof(PnvChipClass), 2409 .abstract = true, 2410 }, 2411 2412 /* 2413 * P10 chip and variants 2414 */ 2415 { 2416 .name = TYPE_PNV10_CHIP, 2417 .parent = TYPE_PNV_CHIP, 2418 .instance_init = pnv_chip_power10_instance_init, 2419 .instance_size = sizeof(Pnv10Chip), 2420 }, 2421 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), 2422 2423 /* 2424 * P9 chip and variants 2425 */ 2426 { 2427 .name = TYPE_PNV9_CHIP, 2428 .parent = TYPE_PNV_CHIP, 2429 .instance_init = pnv_chip_power9_instance_init, 2430 .instance_size = sizeof(Pnv9Chip), 2431 }, 2432 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 2433 2434 /* 2435 * P8 chip and variants 2436 */ 2437 { 2438 .name = TYPE_PNV8_CHIP, 2439 .parent = TYPE_PNV_CHIP, 2440 .instance_init = pnv_chip_power8_instance_init, 2441 .instance_size = sizeof(Pnv8Chip), 2442 }, 2443 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 2444 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 2445 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 2446 pnv_chip_power8nvl_class_init), 2447 }; 2448 2449 DEFINE_TYPES(types) 2450