xref: /openbmc/qemu/hw/ppc/pnv.c (revision 4f9924c4d4cf9c039e247c5cdbbf71bce4e573c3)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 #include "hw/pci/msi.h"
44 
45 #include "hw/ppc/xics.h"
46 #include "hw/qdev-properties.h"
47 #include "hw/ppc/pnv_xscom.h"
48 #include "hw/ppc/pnv_pnor.h"
49 
50 #include "hw/isa/isa.h"
51 #include "hw/boards.h"
52 #include "hw/char/serial.h"
53 #include "hw/rtc/mc146818rtc.h"
54 
55 #include <libfdt.h>
56 
57 #define FDT_MAX_SIZE            (1 * MiB)
58 
59 #define FW_FILE_NAME            "skiboot.lid"
60 #define FW_LOAD_ADDR            0x0
61 #define FW_MAX_SIZE             (4 * MiB)
62 
63 #define KERNEL_LOAD_ADDR        0x20000000
64 #define KERNEL_MAX_SIZE         (256 * MiB)
65 #define INITRD_LOAD_ADDR        0x60000000
66 #define INITRD_MAX_SIZE         (256 * MiB)
67 
68 static const char *pnv_chip_core_typename(const PnvChip *o)
69 {
70     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
71     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
72     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
73     const char *core_type = object_class_get_name(object_class_by_name(s));
74     g_free(s);
75     return core_type;
76 }
77 
78 /*
79  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
80  *     4 * 4 sockets * 12 cores * 8 threads = 1536
81  * Let's make it 2^11
82  */
83 #define MAX_CPUS                2048
84 
85 /*
86  * Memory nodes are created by hostboot, one for each range of memory
87  * that has a different "affinity". In practice, it means one range
88  * per chip.
89  */
90 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
91 {
92     char *mem_name;
93     uint64_t mem_reg_property[2];
94     int off;
95 
96     mem_reg_property[0] = cpu_to_be64(start);
97     mem_reg_property[1] = cpu_to_be64(size);
98 
99     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
100     off = fdt_add_subnode(fdt, 0, mem_name);
101     g_free(mem_name);
102 
103     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
104     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
105                        sizeof(mem_reg_property))));
106     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
107 }
108 
109 static int get_cpus_node(void *fdt)
110 {
111     int cpus_offset = fdt_path_offset(fdt, "/cpus");
112 
113     if (cpus_offset < 0) {
114         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
115         if (cpus_offset) {
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
117             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
118         }
119     }
120     _FDT(cpus_offset);
121     return cpus_offset;
122 }
123 
124 /*
125  * The PowerNV cores (and threads) need to use real HW ids and not an
126  * incremental index like it has been done on other platforms. This HW
127  * id is stored in the CPU PIR, it is used to create cpu nodes in the
128  * device tree, used in XSCOM to address cores and in interrupt
129  * servers.
130  */
131 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
132 {
133     PowerPCCPU *cpu = pc->threads[0];
134     CPUState *cs = CPU(cpu);
135     DeviceClass *dc = DEVICE_GET_CLASS(cs);
136     int smt_threads = CPU_CORE(pc)->nr_threads;
137     CPUPPCState *env = &cpu->env;
138     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
139     uint32_t servers_prop[smt_threads];
140     int i;
141     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
142                        0xffffffff, 0xffffffff};
143     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
144     uint32_t cpufreq = 1000000000;
145     uint32_t page_sizes_prop[64];
146     size_t page_sizes_prop_size;
147     const uint8_t pa_features[] = { 24, 0,
148                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
149                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
150                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
151                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
152     int offset;
153     char *nodename;
154     int cpus_offset = get_cpus_node(fdt);
155 
156     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
157     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
158     _FDT(offset);
159     g_free(nodename);
160 
161     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
165     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
166 
167     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
168     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
169                             env->dcache_line_size)));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
173                             env->icache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
175                             env->icache_line_size)));
176 
177     if (pcc->l1_dcache_size) {
178         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
179                                pcc->l1_dcache_size)));
180     } else {
181         warn_report("Unknown L1 dcache size for cpu");
182     }
183     if (pcc->l1_icache_size) {
184         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
185                                pcc->l1_icache_size)));
186     } else {
187         warn_report("Unknown L1 icache size for cpu");
188     }
189 
190     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
192     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
193                            cpu->hash64_opts->slb_size)));
194     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
195     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
196 
197     if (env->spr_cb[SPR_PURR].oea_read) {
198         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
199     }
200 
201     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
202         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
203                            segs, sizeof(segs))));
204     }
205 
206     /*
207      * Advertise VMX/VSX (vector extensions) if available
208      *   0 / no property == no vector extensions
209      *   1               == VMX / Altivec available
210      *   2               == VSX available
211      */
212     if (env->insns_flags & PPC_ALTIVEC) {
213         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
214 
215         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
216     }
217 
218     /*
219      * Advertise DFP (Decimal Floating Point) if available
220      *   0 / no property == no DFP
221      *   1               == DFP available
222      */
223     if (env->insns_flags2 & PPC2_DFP) {
224         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
225     }
226 
227     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
228                                                       sizeof(page_sizes_prop));
229     if (page_sizes_prop_size) {
230         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
231                            page_sizes_prop, page_sizes_prop_size)));
232     }
233 
234     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
235                        pa_features, sizeof(pa_features))));
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pc->pir + i);
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(servers_prop))));
243 }
244 
245 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
246                        uint32_t nr_threads)
247 {
248     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
249     char *name;
250     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
251     uint32_t irange[2], i, rsize;
252     uint64_t *reg;
253     int offset;
254 
255     irange[0] = cpu_to_be32(pir);
256     irange[1] = cpu_to_be32(nr_threads);
257 
258     rsize = sizeof(uint64_t) * 2 * nr_threads;
259     reg = g_malloc(rsize);
260     for (i = 0; i < nr_threads; i++) {
261         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
262         reg[i * 2 + 1] = cpu_to_be64(0x1000);
263     }
264 
265     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
266     offset = fdt_add_subnode(fdt, 0, name);
267     _FDT(offset);
268     g_free(name);
269 
270     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
271     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
272     _FDT((fdt_setprop_string(fdt, offset, "device_type",
273                               "PowerPC-External-Interrupt-Presentation")));
274     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
275     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
276                        irange, sizeof(irange))));
277     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
278     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
279     g_free(reg);
280 }
281 
282 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
283 {
284     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0,
288                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
289                  cpu_to_be64(PNV_XSCOM_SIZE),
290                  compat, sizeof(compat));
291 
292     for (i = 0; i < chip->nr_cores; i++) {
293         PnvCore *pnv_core = chip->cores[i];
294 
295         pnv_dt_core(chip, pnv_core, fdt);
296 
297         /* Interrupt Control Presenters (ICP). One per core. */
298         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
299     }
300 
301     if (chip->ram_size) {
302         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
303     }
304 }
305 
306 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
307 {
308     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
309     int i;
310 
311     pnv_dt_xscom(chip, fdt, 0,
312                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
313                  cpu_to_be64(PNV9_XSCOM_SIZE),
314                  compat, sizeof(compat));
315 
316     for (i = 0; i < chip->nr_cores; i++) {
317         PnvCore *pnv_core = chip->cores[i];
318 
319         pnv_dt_core(chip, pnv_core, fdt);
320     }
321 
322     if (chip->ram_size) {
323         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
324     }
325 
326     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
327 }
328 
329 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
330 {
331     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
332     int i;
333 
334     pnv_dt_xscom(chip, fdt, 0,
335                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
336                  cpu_to_be64(PNV10_XSCOM_SIZE),
337                  compat, sizeof(compat));
338 
339     for (i = 0; i < chip->nr_cores; i++) {
340         PnvCore *pnv_core = chip->cores[i];
341 
342         pnv_dt_core(chip, pnv_core, fdt);
343     }
344 
345     if (chip->ram_size) {
346         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
347     }
348 
349     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
350 }
351 
352 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
353 {
354     uint32_t io_base = d->ioport_id;
355     uint32_t io_regs[] = {
356         cpu_to_be32(1),
357         cpu_to_be32(io_base),
358         cpu_to_be32(2)
359     };
360     char *name;
361     int node;
362 
363     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
364     node = fdt_add_subnode(fdt, lpc_off, name);
365     _FDT(node);
366     g_free(name);
367 
368     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
369     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
370 }
371 
372 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
373 {
374     const char compatible[] = "ns16550\0pnpPNP,501";
375     uint32_t io_base = d->ioport_id;
376     uint32_t io_regs[] = {
377         cpu_to_be32(1),
378         cpu_to_be32(io_base),
379         cpu_to_be32(8)
380     };
381     char *name;
382     int node;
383 
384     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
385     node = fdt_add_subnode(fdt, lpc_off, name);
386     _FDT(node);
387     g_free(name);
388 
389     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
390     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
391                       sizeof(compatible))));
392 
393     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
394     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
396     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
397                            fdt_get_phandle(fdt, lpc_off))));
398 
399     /* This is needed by Linux */
400     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
401 }
402 
403 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
404 {
405     const char compatible[] = "bt\0ipmi-bt";
406     uint32_t io_base;
407     uint32_t io_regs[] = {
408         cpu_to_be32(1),
409         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
410         cpu_to_be32(3)
411     };
412     uint32_t irq;
413     char *name;
414     int node;
415 
416     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
417     io_regs[1] = cpu_to_be32(io_base);
418 
419     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
420 
421     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
422     node = fdt_add_subnode(fdt, lpc_off, name);
423     _FDT(node);
424     g_free(name);
425 
426     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
427     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
428                       sizeof(compatible))));
429 
430     /* Mark it as reserved to avoid Linux trying to claim it */
431     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
433     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
434                            fdt_get_phandle(fdt, lpc_off))));
435 }
436 
437 typedef struct ForeachPopulateArgs {
438     void *fdt;
439     int offset;
440 } ForeachPopulateArgs;
441 
442 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
443 {
444     ForeachPopulateArgs *args = opaque;
445     ISADevice *d = ISA_DEVICE(dev);
446 
447     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
448         pnv_dt_rtc(d, args->fdt, args->offset);
449     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
450         pnv_dt_serial(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
452         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
453     } else {
454         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
455                      d->ioport_id);
456     }
457 
458     return 0;
459 }
460 
461 /*
462  * The default LPC bus of a multichip system is on chip 0. It's
463  * recognized by the firmware (skiboot) using a "primary" property.
464  */
465 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
466 {
467     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
468     ForeachPopulateArgs args = {
469         .fdt = fdt,
470         .offset = isa_offset,
471     };
472     uint32_t phandle;
473 
474     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
475 
476     phandle = qemu_fdt_alloc_phandle(fdt);
477     assert(phandle > 0);
478     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
479 
480     /*
481      * ISA devices are not necessarily parented to the ISA bus so we
482      * can not use object_child_foreach()
483      */
484     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
485                        &args);
486 }
487 
488 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
489 {
490     int off;
491 
492     off = fdt_add_subnode(fdt, 0, "ibm,opal");
493     off = fdt_add_subnode(fdt, off, "power-mgt");
494 
495     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
496 }
497 
498 static void *pnv_dt_create(MachineState *machine)
499 {
500     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
501     PnvMachineState *pnv = PNV_MACHINE(machine);
502     void *fdt;
503     char *buf;
504     int off;
505     int i;
506 
507     fdt = g_malloc0(FDT_MAX_SIZE);
508     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
509 
510     /* /qemu node */
511     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
512 
513     /* Root node */
514     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
515     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
516     _FDT((fdt_setprop_string(fdt, 0, "model",
517                              "IBM PowerNV (emulated by qemu)")));
518     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
519 
520     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
521     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
522     if (qemu_uuid_set) {
523         _FDT((fdt_property_string(fdt, "system-id", buf)));
524     }
525     g_free(buf);
526 
527     off = fdt_add_subnode(fdt, 0, "chosen");
528     if (machine->kernel_cmdline) {
529         _FDT((fdt_setprop_string(fdt, off, "bootargs",
530                                  machine->kernel_cmdline)));
531     }
532 
533     if (pnv->initrd_size) {
534         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
535         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
536 
537         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
538                                &start_prop, sizeof(start_prop))));
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
540                                &end_prop, sizeof(end_prop))));
541     }
542 
543     /* Populate device tree for each chip */
544     for (i = 0; i < pnv->num_chips; i++) {
545         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
546     }
547 
548     /* Populate ISA devices on chip 0 */
549     pnv_dt_isa(pnv, fdt);
550 
551     if (pnv->bmc) {
552         pnv_dt_bmc_sensors(pnv->bmc, fdt);
553     }
554 
555     /* Create an extra node for power management on machines that support it */
556     if (pmc->dt_power_mgt) {
557         pmc->dt_power_mgt(pnv, fdt);
558     }
559 
560     return fdt;
561 }
562 
563 static void pnv_powerdown_notify(Notifier *n, void *opaque)
564 {
565     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
566 
567     if (pnv->bmc) {
568         pnv_bmc_powerdown(pnv->bmc);
569     }
570 }
571 
572 static void pnv_reset(MachineState *machine)
573 {
574     void *fdt;
575 
576     qemu_devices_reset();
577 
578     fdt = pnv_dt_create(machine);
579 
580     /* Pack resulting tree */
581     _FDT((fdt_pack(fdt)));
582 
583     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
584     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
585 }
586 
587 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
588 {
589     Pnv8Chip *chip8 = PNV8_CHIP(chip);
590     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
591 }
592 
593 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
594 {
595     Pnv8Chip *chip8 = PNV8_CHIP(chip);
596     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
597 }
598 
599 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
600 {
601     Pnv9Chip *chip9 = PNV9_CHIP(chip);
602     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
603 }
604 
605 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
606 {
607     Pnv10Chip *chip10 = PNV10_CHIP(chip);
608     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
609 }
610 
611 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
612 {
613     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
614 }
615 
616 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
617 {
618     Pnv8Chip *chip8 = PNV8_CHIP(chip);
619 
620     ics_pic_print_info(&chip8->psi.ics, mon);
621 }
622 
623 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
624 {
625     Pnv9Chip *chip9 = PNV9_CHIP(chip);
626     int i, j;
627 
628     pnv_xive_pic_print_info(&chip9->xive, mon);
629     pnv_psi_pic_print_info(&chip9->psi, mon);
630 
631     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
632         PnvPhb4PecState *pec = &chip9->pecs[i];
633         for (j = 0; j < pec->num_stacks; j++) {
634             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
635         }
636     }
637 }
638 
639 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
640                                                 uint32_t core_id)
641 {
642     return PNV_XSCOM_EX_BASE(core_id);
643 }
644 
645 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
646                                                 uint32_t core_id)
647 {
648     return PNV9_XSCOM_EC_BASE(core_id);
649 }
650 
651 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
652                                                  uint32_t core_id)
653 {
654     return PNV10_XSCOM_EC_BASE(core_id);
655 }
656 
657 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
658 {
659     PowerPCCPUClass *ppc_default =
660         POWERPC_CPU_CLASS(object_class_by_name(default_type));
661     PowerPCCPUClass *ppc =
662         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
663 
664     return ppc_default->pvr_match(ppc_default, ppc->pvr);
665 }
666 
667 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
668 {
669     Object *obj;
670 
671     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
672     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
673     object_property_set_int(obj, irq, "irq", &error_fatal);
674     object_property_set_bool(obj, true, "realized", &error_fatal);
675 }
676 
677 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
678 {
679     Pnv10Chip *chip10 = PNV10_CHIP(chip);
680 
681     pnv_psi_pic_print_info(&chip10->psi, mon);
682 }
683 
684 static void pnv_init(MachineState *machine)
685 {
686     PnvMachineState *pnv = PNV_MACHINE(machine);
687     MachineClass *mc = MACHINE_GET_CLASS(machine);
688     MemoryRegion *ram;
689     char *fw_filename;
690     long fw_size;
691     int i;
692     char *chip_typename;
693     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
694     DeviceState *dev;
695 
696     /* allocate RAM */
697     if (machine->ram_size < (1 * GiB)) {
698         warn_report("skiboot may not work with < 1GB of RAM");
699     }
700 
701     ram = g_new(MemoryRegion, 1);
702     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
703                                          machine->ram_size);
704     memory_region_add_subregion(get_system_memory(), 0, ram);
705 
706     /*
707      * Create our simple PNOR device
708      */
709     dev = qdev_create(NULL, TYPE_PNV_PNOR);
710     if (pnor) {
711         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
712                             &error_abort);
713     }
714     qdev_init_nofail(dev);
715     pnv->pnor = PNV_PNOR(dev);
716 
717     /* load skiboot firmware  */
718     if (bios_name == NULL) {
719         bios_name = FW_FILE_NAME;
720     }
721 
722     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
723     if (!fw_filename) {
724         error_report("Could not find OPAL firmware '%s'", bios_name);
725         exit(1);
726     }
727 
728     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
729     if (fw_size < 0) {
730         error_report("Could not load OPAL firmware '%s'", fw_filename);
731         exit(1);
732     }
733     g_free(fw_filename);
734 
735     /* load kernel */
736     if (machine->kernel_filename) {
737         long kernel_size;
738 
739         kernel_size = load_image_targphys(machine->kernel_filename,
740                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
741         if (kernel_size < 0) {
742             error_report("Could not load kernel '%s'",
743                          machine->kernel_filename);
744             exit(1);
745         }
746     }
747 
748     /* load initrd */
749     if (machine->initrd_filename) {
750         pnv->initrd_base = INITRD_LOAD_ADDR;
751         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
752                                   pnv->initrd_base, INITRD_MAX_SIZE);
753         if (pnv->initrd_size < 0) {
754             error_report("Could not load initial ram disk '%s'",
755                          machine->initrd_filename);
756             exit(1);
757         }
758     }
759 
760     /* MSIs are supported on this platform */
761     msi_nonbroken = true;
762 
763     /*
764      * Check compatibility of the specified CPU with the machine
765      * default.
766      */
767     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
768         error_report("invalid CPU model '%s' for %s machine",
769                      machine->cpu_type, mc->name);
770         exit(1);
771     }
772 
773     /* Create the processor chips */
774     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
775     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
776                                     i, machine->cpu_type);
777     if (!object_class_by_name(chip_typename)) {
778         error_report("invalid chip model '%.*s' for %s machine",
779                      i, machine->cpu_type, mc->name);
780         exit(1);
781     }
782 
783     pnv->num_chips =
784         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
785     /*
786      * TODO: should we decide on how many chips we can create based
787      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
788      */
789     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
790         error_report("invalid number of chips: '%d'", pnv->num_chips);
791         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
792         exit(1);
793     }
794 
795     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
796     for (i = 0; i < pnv->num_chips; i++) {
797         char chip_name[32];
798         Object *chip = object_new(chip_typename);
799 
800         pnv->chips[i] = PNV_CHIP(chip);
801 
802         /*
803          * TODO: put all the memory in one node on chip 0 until we find a
804          * way to specify different ranges for each chip
805          */
806         if (i == 0) {
807             object_property_set_int(chip, machine->ram_size, "ram-size",
808                                     &error_fatal);
809         }
810 
811         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
812         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
813         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
814                                 &error_fatal);
815         object_property_set_int(chip, machine->smp.cores,
816                                 "nr-cores", &error_fatal);
817         object_property_set_int(chip, machine->smp.threads,
818                                 "nr-threads", &error_fatal);
819         /*
820          * The POWER8 machine use the XICS interrupt interface.
821          * Propagate the XICS fabric to the chip and its controllers.
822          */
823         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
824             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
825         }
826         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
827             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
828                                      &error_abort);
829         }
830         object_property_set_bool(chip, true, "realized", &error_fatal);
831     }
832     g_free(chip_typename);
833 
834     /* Create the machine BMC simulator */
835     pnv->bmc = pnv_bmc_create(pnv->pnor);
836 
837     /* Instantiate ISA bus on chip 0 */
838     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
839 
840     /* Create serial port */
841     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
842 
843     /* Create an RTC ISA device too */
844     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
845 
846     /* Create the IPMI BT device for communication with the BMC */
847     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
848 
849     /*
850      * OpenPOWER systems use a IPMI SEL Event message to notify the
851      * host to powerdown
852      */
853     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
854     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
855 }
856 
857 /*
858  *    0:21  Reserved - Read as zeros
859  *   22:24  Chip ID
860  *   25:28  Core number
861  *   29:31  Thread ID
862  */
863 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
864 {
865     return (chip->chip_id << 7) | (core_id << 3);
866 }
867 
868 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
869                                         Error **errp)
870 {
871     Pnv8Chip *chip8 = PNV8_CHIP(chip);
872     Error *local_err = NULL;
873     Object *obj;
874     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
875 
876     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
877     if (local_err) {
878         error_propagate(errp, local_err);
879         return;
880     }
881 
882     pnv_cpu->intc = obj;
883 }
884 
885 
886 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
887 {
888     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
889 
890     icp_reset(ICP(pnv_cpu->intc));
891 }
892 
893 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
894 {
895     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
896 
897     icp_destroy(ICP(pnv_cpu->intc));
898     pnv_cpu->intc = NULL;
899 }
900 
901 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
902                                             Monitor *mon)
903 {
904     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
905 }
906 
907 /*
908  *    0:48  Reserved - Read as zeroes
909  *   49:52  Node ID
910  *   53:55  Chip ID
911  *   56     Reserved - Read as zero
912  *   57:61  Core number
913  *   62:63  Thread ID
914  *
915  * We only care about the lower bits. uint32_t is fine for the moment.
916  */
917 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
918 {
919     return (chip->chip_id << 8) | (core_id << 2);
920 }
921 
922 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
923 {
924     return (chip->chip_id << 8) | (core_id << 2);
925 }
926 
927 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
928                                         Error **errp)
929 {
930     Pnv9Chip *chip9 = PNV9_CHIP(chip);
931     Error *local_err = NULL;
932     Object *obj;
933     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
934 
935     /*
936      * The core creates its interrupt presenter but the XIVE interrupt
937      * controller object is initialized afterwards. Hopefully, it's
938      * only used at runtime.
939      */
940     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
941                            &local_err);
942     if (local_err) {
943         error_propagate(errp, local_err);
944         return;
945     }
946 
947     pnv_cpu->intc = obj;
948 }
949 
950 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
951 {
952     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
953 
954     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
955 }
956 
957 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
958 {
959     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
960 
961     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
962     pnv_cpu->intc = NULL;
963 }
964 
965 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
966                                             Monitor *mon)
967 {
968     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
969 }
970 
971 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
972                                         Error **errp)
973 {
974     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
975 
976     /* Will be defined when the interrupt controller is */
977     pnv_cpu->intc = NULL;
978 }
979 
980 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
981 {
982     ;
983 }
984 
985 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
986 {
987     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
988 
989     pnv_cpu->intc = NULL;
990 }
991 
992 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
993                                              Monitor *mon)
994 {
995 }
996 
997 /*
998  * Allowed core identifiers on a POWER8 Processor Chip :
999  *
1000  * <EX0 reserved>
1001  *  EX1  - Venice only
1002  *  EX2  - Venice only
1003  *  EX3  - Venice only
1004  *  EX4
1005  *  EX5
1006  *  EX6
1007  * <EX7,8 reserved> <reserved>
1008  *  EX9  - Venice only
1009  *  EX10 - Venice only
1010  *  EX11 - Venice only
1011  *  EX12
1012  *  EX13
1013  *  EX14
1014  * <EX15 reserved>
1015  */
1016 #define POWER8E_CORE_MASK  (0x7070ull)
1017 #define POWER8_CORE_MASK   (0x7e7eull)
1018 
1019 /*
1020  * POWER9 has 24 cores, ids starting at 0x0
1021  */
1022 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1023 
1024 
1025 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1026 
1027 static void pnv_chip_power8_instance_init(Object *obj)
1028 {
1029     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1030 
1031     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1032                              (Object **)&chip8->xics,
1033                              object_property_allow_set_link,
1034                              OBJ_PROP_LINK_STRONG,
1035                              &error_abort);
1036 
1037     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1038                             TYPE_PNV8_PSI, &error_abort, NULL);
1039 
1040     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1041                             TYPE_PNV8_LPC, &error_abort, NULL);
1042 
1043     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1044                             TYPE_PNV8_OCC, &error_abort, NULL);
1045 
1046     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1047                             TYPE_PNV8_HOMER, &error_abort, NULL);
1048 }
1049 
1050 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1051  {
1052     PnvChip *chip = PNV_CHIP(chip8);
1053     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1054     int i, j;
1055     char *name;
1056 
1057     name = g_strdup_printf("icp-%x", chip->chip_id);
1058     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1059     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1060     g_free(name);
1061 
1062     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1063 
1064     /* Map the ICP registers for each thread */
1065     for (i = 0; i < chip->nr_cores; i++) {
1066         PnvCore *pnv_core = chip->cores[i];
1067         int core_hwid = CPU_CORE(pnv_core)->core_id;
1068 
1069         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1070             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1071             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1072 
1073             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1074                                         &icp->mmio);
1075         }
1076     }
1077 }
1078 
1079 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1080 {
1081     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1082     PnvChip *chip = PNV_CHIP(dev);
1083     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1084     Pnv8Psi *psi8 = &chip8->psi;
1085     Error *local_err = NULL;
1086 
1087     assert(chip8->xics);
1088 
1089     /* XSCOM bridge is first */
1090     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1091     if (local_err) {
1092         error_propagate(errp, local_err);
1093         return;
1094     }
1095     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1096 
1097     pcc->parent_realize(dev, &local_err);
1098     if (local_err) {
1099         error_propagate(errp, local_err);
1100         return;
1101     }
1102 
1103     /* Processor Service Interface (PSI) Host Bridge */
1104     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1105                             "bar", &error_fatal);
1106     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1107                              ICS_PROP_XICS, &error_abort);
1108     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1109     if (local_err) {
1110         error_propagate(errp, local_err);
1111         return;
1112     }
1113     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1114                             &PNV_PSI(psi8)->xscom_regs);
1115 
1116     /* Create LPC controller */
1117     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1118                              &error_abort);
1119     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1120                              &error_fatal);
1121     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1122 
1123     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1124                                             (uint64_t) PNV_XSCOM_BASE(chip),
1125                                             PNV_XSCOM_LPC_BASE);
1126 
1127     /*
1128      * Interrupt Management Area. This is the memory region holding
1129      * all the Interrupt Control Presenter (ICP) registers
1130      */
1131     pnv_chip_icp_realize(chip8, &local_err);
1132     if (local_err) {
1133         error_propagate(errp, local_err);
1134         return;
1135     }
1136 
1137     /* Create the simplified OCC model */
1138     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1139                              &error_abort);
1140     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1141     if (local_err) {
1142         error_propagate(errp, local_err);
1143         return;
1144     }
1145     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1146 
1147     /* OCC SRAM model */
1148     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1149                                 &chip8->occ.sram_regs);
1150 
1151     /* HOMER */
1152     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1153                              &error_abort);
1154     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1155                              &local_err);
1156     if (local_err) {
1157         error_propagate(errp, local_err);
1158         return;
1159     }
1160     /* Homer Xscom region */
1161     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1162 
1163     /* Homer mmio region */
1164     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1165                                 &chip8->homer.regs);
1166 }
1167 
1168 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1169 {
1170     addr &= (PNV_XSCOM_SIZE - 1);
1171     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1172 }
1173 
1174 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1175 {
1176     DeviceClass *dc = DEVICE_CLASS(klass);
1177     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1178 
1179     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1180     k->cores_mask = POWER8E_CORE_MASK;
1181     k->core_pir = pnv_chip_core_pir_p8;
1182     k->intc_create = pnv_chip_power8_intc_create;
1183     k->intc_reset = pnv_chip_power8_intc_reset;
1184     k->intc_destroy = pnv_chip_power8_intc_destroy;
1185     k->intc_print_info = pnv_chip_power8_intc_print_info;
1186     k->isa_create = pnv_chip_power8_isa_create;
1187     k->dt_populate = pnv_chip_power8_dt_populate;
1188     k->pic_print_info = pnv_chip_power8_pic_print_info;
1189     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1190     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1191     dc->desc = "PowerNV Chip POWER8E";
1192 
1193     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1194                                     &k->parent_realize);
1195 }
1196 
1197 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1198 {
1199     DeviceClass *dc = DEVICE_CLASS(klass);
1200     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1201 
1202     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1203     k->cores_mask = POWER8_CORE_MASK;
1204     k->core_pir = pnv_chip_core_pir_p8;
1205     k->intc_create = pnv_chip_power8_intc_create;
1206     k->intc_reset = pnv_chip_power8_intc_reset;
1207     k->intc_destroy = pnv_chip_power8_intc_destroy;
1208     k->intc_print_info = pnv_chip_power8_intc_print_info;
1209     k->isa_create = pnv_chip_power8_isa_create;
1210     k->dt_populate = pnv_chip_power8_dt_populate;
1211     k->pic_print_info = pnv_chip_power8_pic_print_info;
1212     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1213     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1214     dc->desc = "PowerNV Chip POWER8";
1215 
1216     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1217                                     &k->parent_realize);
1218 }
1219 
1220 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1221 {
1222     DeviceClass *dc = DEVICE_CLASS(klass);
1223     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1224 
1225     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1226     k->cores_mask = POWER8_CORE_MASK;
1227     k->core_pir = pnv_chip_core_pir_p8;
1228     k->intc_create = pnv_chip_power8_intc_create;
1229     k->intc_reset = pnv_chip_power8_intc_reset;
1230     k->intc_destroy = pnv_chip_power8_intc_destroy;
1231     k->intc_print_info = pnv_chip_power8_intc_print_info;
1232     k->isa_create = pnv_chip_power8nvl_isa_create;
1233     k->dt_populate = pnv_chip_power8_dt_populate;
1234     k->pic_print_info = pnv_chip_power8_pic_print_info;
1235     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1236     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1237     dc->desc = "PowerNV Chip POWER8NVL";
1238 
1239     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1240                                     &k->parent_realize);
1241 }
1242 
1243 static void pnv_chip_power9_instance_init(Object *obj)
1244 {
1245     PnvChip *chip = PNV_CHIP(obj);
1246     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1247     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1248     int i;
1249 
1250     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1251                             TYPE_PNV_XIVE, &error_abort, NULL);
1252     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1253                               "xive-fabric", &error_abort);
1254 
1255     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1256                             TYPE_PNV9_PSI, &error_abort, NULL);
1257 
1258     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1259                             TYPE_PNV9_LPC, &error_abort, NULL);
1260 
1261     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1262                             TYPE_PNV9_OCC, &error_abort, NULL);
1263 
1264     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1265                             TYPE_PNV9_HOMER, &error_abort, NULL);
1266 
1267     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1268         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1269                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1270                                 &error_abort, NULL);
1271     }
1272 
1273     /*
1274      * Number of PHBs is the chip default
1275      */
1276     chip->num_phbs = pcc->num_phbs;
1277 }
1278 
1279 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1280 {
1281     PnvChip *chip = PNV_CHIP(chip9);
1282     int i;
1283 
1284     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1285     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1286 
1287     for (i = 0; i < chip9->nr_quads; i++) {
1288         char eq_name[32];
1289         PnvQuad *eq = &chip9->quads[i];
1290         PnvCore *pnv_core = chip->cores[i * 4];
1291         int core_id = CPU_CORE(pnv_core)->core_id;
1292 
1293         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1294         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1295                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1296 
1297         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1298         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1299 
1300         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1301                                 &eq->xscom_regs);
1302     }
1303 }
1304 
1305 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1306 {
1307     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1308     Error *local_err = NULL;
1309     int i, j;
1310     int phb_id = 0;
1311 
1312     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1313         PnvPhb4PecState *pec = &chip9->pecs[i];
1314         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1315         uint32_t pec_nest_base;
1316         uint32_t pec_pci_base;
1317 
1318         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1319         /*
1320          * PEC0 -> 1 stack
1321          * PEC1 -> 2 stacks
1322          * PEC2 -> 3 stacks
1323          */
1324         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1325                                 &error_fatal);
1326         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1327                                  &error_fatal);
1328         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1329                                  "system-memory", &error_abort);
1330         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1331         if (local_err) {
1332             error_propagate(errp, local_err);
1333             return;
1334         }
1335 
1336         pec_nest_base = pecc->xscom_nest_base(pec);
1337         pec_pci_base = pecc->xscom_pci_base(pec);
1338 
1339         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1340         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1341 
1342         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1343              j++, phb_id++) {
1344             PnvPhb4PecStack *stack = &pec->stacks[j];
1345             Object *obj = OBJECT(&stack->phb);
1346 
1347             object_property_set_int(obj, phb_id, "index", &error_fatal);
1348             object_property_set_int(obj, chip->chip_id, "chip-id",
1349                                     &error_fatal);
1350             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1351                                     &error_fatal);
1352             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1353                                     &error_fatal);
1354             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1355             object_property_set_bool(obj, true, "realized", &local_err);
1356             if (local_err) {
1357                 error_propagate(errp, local_err);
1358                 return;
1359             }
1360             qdev_set_parent_bus(DEVICE(obj), sysbus_get_default());
1361 
1362             /* Populate the XSCOM address space. */
1363             pnv_xscom_add_subregion(chip,
1364                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1365                                    &stack->nest_regs_mr);
1366             pnv_xscom_add_subregion(chip,
1367                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1368                                     &stack->pci_regs_mr);
1369             pnv_xscom_add_subregion(chip,
1370                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1371                                     0x40 * stack->stack_no,
1372                                     &stack->phb_regs_mr);
1373         }
1374     }
1375 }
1376 
1377 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1378 {
1379     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1380     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1381     PnvChip *chip = PNV_CHIP(dev);
1382     Pnv9Psi *psi9 = &chip9->psi;
1383     Error *local_err = NULL;
1384 
1385     /* XSCOM bridge is first */
1386     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1387     if (local_err) {
1388         error_propagate(errp, local_err);
1389         return;
1390     }
1391     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1392 
1393     pcc->parent_realize(dev, &local_err);
1394     if (local_err) {
1395         error_propagate(errp, local_err);
1396         return;
1397     }
1398 
1399     pnv_chip_quad_realize(chip9, &local_err);
1400     if (local_err) {
1401         error_propagate(errp, local_err);
1402         return;
1403     }
1404 
1405     /* XIVE interrupt controller (POWER9) */
1406     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1407                             "ic-bar", &error_fatal);
1408     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1409                             "vc-bar", &error_fatal);
1410     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1411                             "pc-bar", &error_fatal);
1412     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1413                             "tm-bar", &error_fatal);
1414     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1415                              &error_abort);
1416     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1417                              &local_err);
1418     if (local_err) {
1419         error_propagate(errp, local_err);
1420         return;
1421     }
1422     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1423                             &chip9->xive.xscom_regs);
1424 
1425     /* Processor Service Interface (PSI) Host Bridge */
1426     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1427                             "bar", &error_fatal);
1428     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1429     if (local_err) {
1430         error_propagate(errp, local_err);
1431         return;
1432     }
1433     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1434                             &PNV_PSI(psi9)->xscom_regs);
1435 
1436     /* LPC */
1437     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1438                              &error_abort);
1439     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1440     if (local_err) {
1441         error_propagate(errp, local_err);
1442         return;
1443     }
1444     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1445                                 &chip9->lpc.xscom_regs);
1446 
1447     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1448                                             (uint64_t) PNV9_LPCM_BASE(chip));
1449 
1450     /* Create the simplified OCC model */
1451     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1452                              &error_abort);
1453     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1454     if (local_err) {
1455         error_propagate(errp, local_err);
1456         return;
1457     }
1458     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1459 
1460     /* OCC SRAM model */
1461     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1462                                 &chip9->occ.sram_regs);
1463 
1464     /* HOMER */
1465     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1466                              &error_abort);
1467     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1468                              &local_err);
1469     if (local_err) {
1470         error_propagate(errp, local_err);
1471         return;
1472     }
1473     /* Homer Xscom region */
1474     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1475 
1476     /* Homer mmio region */
1477     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1478                                 &chip9->homer.regs);
1479 
1480     /* PHBs */
1481     pnv_chip_power9_phb_realize(chip, &local_err);
1482     if (local_err) {
1483         error_propagate(errp, local_err);
1484         return;
1485     }
1486 }
1487 
1488 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1489 {
1490     addr &= (PNV9_XSCOM_SIZE - 1);
1491     return addr >> 3;
1492 }
1493 
1494 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1495 {
1496     DeviceClass *dc = DEVICE_CLASS(klass);
1497     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1498 
1499     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1500     k->cores_mask = POWER9_CORE_MASK;
1501     k->core_pir = pnv_chip_core_pir_p9;
1502     k->intc_create = pnv_chip_power9_intc_create;
1503     k->intc_reset = pnv_chip_power9_intc_reset;
1504     k->intc_destroy = pnv_chip_power9_intc_destroy;
1505     k->intc_print_info = pnv_chip_power9_intc_print_info;
1506     k->isa_create = pnv_chip_power9_isa_create;
1507     k->dt_populate = pnv_chip_power9_dt_populate;
1508     k->pic_print_info = pnv_chip_power9_pic_print_info;
1509     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1510     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1511     dc->desc = "PowerNV Chip POWER9";
1512     k->num_phbs = 6;
1513 
1514     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1515                                     &k->parent_realize);
1516 }
1517 
1518 static void pnv_chip_power10_instance_init(Object *obj)
1519 {
1520     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1521 
1522     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1523                             TYPE_PNV10_PSI, &error_abort, NULL);
1524     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1525                             TYPE_PNV10_LPC, &error_abort, NULL);
1526 }
1527 
1528 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1529 {
1530     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1531     PnvChip *chip = PNV_CHIP(dev);
1532     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1533     Error *local_err = NULL;
1534 
1535     /* XSCOM bridge is first */
1536     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1537     if (local_err) {
1538         error_propagate(errp, local_err);
1539         return;
1540     }
1541     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1542 
1543     pcc->parent_realize(dev, &local_err);
1544     if (local_err) {
1545         error_propagate(errp, local_err);
1546         return;
1547     }
1548 
1549     /* Processor Service Interface (PSI) Host Bridge */
1550     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1551                             "bar", &error_fatal);
1552     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1553                              &local_err);
1554     if (local_err) {
1555         error_propagate(errp, local_err);
1556         return;
1557     }
1558     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1559                             &PNV_PSI(&chip10->psi)->xscom_regs);
1560 
1561     /* LPC */
1562     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1563                              &error_abort);
1564     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1565                              &local_err);
1566     if (local_err) {
1567         error_propagate(errp, local_err);
1568         return;
1569     }
1570     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1571                                 &chip10->lpc.xscom_regs);
1572 
1573     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1574                                             (uint64_t) PNV10_LPCM_BASE(chip));
1575 }
1576 
1577 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1578 {
1579     addr &= (PNV10_XSCOM_SIZE - 1);
1580     return addr >> 3;
1581 }
1582 
1583 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1584 {
1585     DeviceClass *dc = DEVICE_CLASS(klass);
1586     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1587 
1588     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1589     k->cores_mask = POWER10_CORE_MASK;
1590     k->core_pir = pnv_chip_core_pir_p10;
1591     k->intc_create = pnv_chip_power10_intc_create;
1592     k->intc_reset = pnv_chip_power10_intc_reset;
1593     k->intc_destroy = pnv_chip_power10_intc_destroy;
1594     k->intc_print_info = pnv_chip_power10_intc_print_info;
1595     k->isa_create = pnv_chip_power10_isa_create;
1596     k->dt_populate = pnv_chip_power10_dt_populate;
1597     k->pic_print_info = pnv_chip_power10_pic_print_info;
1598     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1599     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1600     dc->desc = "PowerNV Chip POWER10";
1601 
1602     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1603                                     &k->parent_realize);
1604 }
1605 
1606 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1607 {
1608     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1609     int cores_max;
1610 
1611     /*
1612      * No custom mask for this chip, let's use the default one from *
1613      * the chip class
1614      */
1615     if (!chip->cores_mask) {
1616         chip->cores_mask = pcc->cores_mask;
1617     }
1618 
1619     /* filter alien core ids ! some are reserved */
1620     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1621         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1622                    chip->cores_mask);
1623         return;
1624     }
1625     chip->cores_mask &= pcc->cores_mask;
1626 
1627     /* now that we have a sane layout, let check the number of cores */
1628     cores_max = ctpop64(chip->cores_mask);
1629     if (chip->nr_cores > cores_max) {
1630         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1631                    cores_max);
1632         return;
1633     }
1634 }
1635 
1636 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1637 {
1638     Error *error = NULL;
1639     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1640     const char *typename = pnv_chip_core_typename(chip);
1641     int i, core_hwid;
1642     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1643 
1644     if (!object_class_by_name(typename)) {
1645         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1646         return;
1647     }
1648 
1649     /* Cores */
1650     pnv_chip_core_sanitize(chip, &error);
1651     if (error) {
1652         error_propagate(errp, error);
1653         return;
1654     }
1655 
1656     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1657 
1658     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1659              && (i < chip->nr_cores); core_hwid++) {
1660         char core_name[32];
1661         PnvCore *pnv_core;
1662         uint64_t xscom_core_base;
1663 
1664         if (!(chip->cores_mask & (1ull << core_hwid))) {
1665             continue;
1666         }
1667 
1668         pnv_core = PNV_CORE(object_new(typename));
1669 
1670         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1671         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1672                                   &error_abort);
1673         chip->cores[i] = pnv_core;
1674         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1675                                 "nr-threads", &error_fatal);
1676         object_property_set_int(OBJECT(pnv_core), core_hwid,
1677                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1678         object_property_set_int(OBJECT(pnv_core),
1679                                 pcc->core_pir(chip, core_hwid),
1680                                 "pir", &error_fatal);
1681         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1682                                 "hrmor", &error_fatal);
1683         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1684                                  &error_abort);
1685         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1686                                  &error_fatal);
1687 
1688         /* Each core has an XSCOM MMIO region */
1689         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1690 
1691         pnv_xscom_add_subregion(chip, xscom_core_base,
1692                                 &pnv_core->xscom_regs);
1693         i++;
1694     }
1695 }
1696 
1697 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1698 {
1699     PnvChip *chip = PNV_CHIP(dev);
1700     Error *error = NULL;
1701 
1702     /* Cores */
1703     pnv_chip_core_realize(chip, &error);
1704     if (error) {
1705         error_propagate(errp, error);
1706         return;
1707     }
1708 }
1709 
1710 static Property pnv_chip_properties[] = {
1711     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1712     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1713     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1714     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1715     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1716     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1717     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1718     DEFINE_PROP_END_OF_LIST(),
1719 };
1720 
1721 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1722 {
1723     DeviceClass *dc = DEVICE_CLASS(klass);
1724 
1725     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1726     dc->realize = pnv_chip_realize;
1727     device_class_set_props(dc, pnv_chip_properties);
1728     dc->desc = "PowerNV Chip";
1729 }
1730 
1731 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1732 {
1733     int i, j;
1734 
1735     for (i = 0; i < chip->nr_cores; i++) {
1736         PnvCore *pc = chip->cores[i];
1737         CPUCore *cc = CPU_CORE(pc);
1738 
1739         for (j = 0; j < cc->nr_threads; j++) {
1740             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1741                 return pc->threads[j];
1742             }
1743         }
1744     }
1745     return NULL;
1746 }
1747 
1748 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1749 {
1750     PnvMachineState *pnv = PNV_MACHINE(xi);
1751     int i;
1752 
1753     for (i = 0; i < pnv->num_chips; i++) {
1754         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1755 
1756         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1757             return &chip8->psi.ics;
1758         }
1759     }
1760     return NULL;
1761 }
1762 
1763 static void pnv_ics_resend(XICSFabric *xi)
1764 {
1765     PnvMachineState *pnv = PNV_MACHINE(xi);
1766     int i;
1767 
1768     for (i = 0; i < pnv->num_chips; i++) {
1769         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1770         ics_resend(&chip8->psi.ics);
1771     }
1772 }
1773 
1774 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1775 {
1776     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1777 
1778     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1779 }
1780 
1781 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1782                                Monitor *mon)
1783 {
1784     PnvMachineState *pnv = PNV_MACHINE(obj);
1785     int i;
1786     CPUState *cs;
1787 
1788     CPU_FOREACH(cs) {
1789         PowerPCCPU *cpu = POWERPC_CPU(cs);
1790 
1791         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1792         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1793                                                            mon);
1794     }
1795 
1796     for (i = 0; i < pnv->num_chips; i++) {
1797         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1798     }
1799 }
1800 
1801 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1802                          uint8_t nvt_blk, uint32_t nvt_idx,
1803                          bool cam_ignore, uint8_t priority,
1804                          uint32_t logic_serv,
1805                          XiveTCTXMatch *match)
1806 {
1807     PnvMachineState *pnv = PNV_MACHINE(xfb);
1808     int total_count = 0;
1809     int i;
1810 
1811     for (i = 0; i < pnv->num_chips; i++) {
1812         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1813         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1814         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1815         int count;
1816 
1817         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1818                                priority, logic_serv, match);
1819 
1820         if (count < 0) {
1821             return count;
1822         }
1823 
1824         total_count += count;
1825     }
1826 
1827     return total_count;
1828 }
1829 
1830 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1831 {
1832     MachineClass *mc = MACHINE_CLASS(oc);
1833     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1834     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1835     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1836 
1837     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1838     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1839 
1840     xic->icp_get = pnv_icp_get;
1841     xic->ics_get = pnv_ics_get;
1842     xic->ics_resend = pnv_ics_resend;
1843 
1844     pmc->compat = compat;
1845     pmc->compat_size = sizeof(compat);
1846 }
1847 
1848 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1849 {
1850     MachineClass *mc = MACHINE_CLASS(oc);
1851     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1852     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1853     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1854 
1855     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1856     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1857     xfc->match_nvt = pnv_match_nvt;
1858 
1859     mc->alias = "powernv";
1860 
1861     pmc->compat = compat;
1862     pmc->compat_size = sizeof(compat);
1863     pmc->dt_power_mgt = pnv_dt_power_mgt;
1864 }
1865 
1866 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1867 {
1868     MachineClass *mc = MACHINE_CLASS(oc);
1869     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1870     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1871 
1872     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1873     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1874 
1875     pmc->compat = compat;
1876     pmc->compat_size = sizeof(compat);
1877     pmc->dt_power_mgt = pnv_dt_power_mgt;
1878 }
1879 
1880 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1881 {
1882     PnvMachineState *pnv = PNV_MACHINE(obj);
1883 
1884     return !!pnv->fw_load_addr;
1885 }
1886 
1887 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1888 {
1889     PnvMachineState *pnv = PNV_MACHINE(obj);
1890 
1891     if (value) {
1892         pnv->fw_load_addr = 0x8000000;
1893     }
1894 }
1895 
1896 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1897 {
1898     MachineClass *mc = MACHINE_CLASS(oc);
1899     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1900 
1901     mc->desc = "IBM PowerNV (Non-Virtualized)";
1902     mc->init = pnv_init;
1903     mc->reset = pnv_reset;
1904     mc->max_cpus = MAX_CPUS;
1905     /* Pnv provides a AHCI device for storage */
1906     mc->block_default_type = IF_IDE;
1907     mc->no_parallel = 1;
1908     mc->default_boot_order = NULL;
1909     /*
1910      * RAM defaults to less than 2048 for 32-bit hosts, and large
1911      * enough to fit the maximum initrd size at it's load address
1912      */
1913     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1914     ispc->print_info = pnv_pic_print_info;
1915 
1916     object_class_property_add_bool(oc, "hb-mode",
1917                                    pnv_machine_get_hb, pnv_machine_set_hb,
1918                                    &error_abort);
1919     object_class_property_set_description(oc, "hb-mode",
1920                               "Use a hostboot like boot loader",
1921                               NULL);
1922 }
1923 
1924 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1925     {                                             \
1926         .name          = type,                    \
1927         .class_init    = class_initfn,            \
1928         .parent        = TYPE_PNV8_CHIP,          \
1929     }
1930 
1931 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1932     {                                             \
1933         .name          = type,                    \
1934         .class_init    = class_initfn,            \
1935         .parent        = TYPE_PNV9_CHIP,          \
1936     }
1937 
1938 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
1939     {                                              \
1940         .name          = type,                     \
1941         .class_init    = class_initfn,             \
1942         .parent        = TYPE_PNV10_CHIP,          \
1943     }
1944 
1945 static const TypeInfo types[] = {
1946     {
1947         .name          = MACHINE_TYPE_NAME("powernv10"),
1948         .parent        = TYPE_PNV_MACHINE,
1949         .class_init    = pnv_machine_power10_class_init,
1950     },
1951     {
1952         .name          = MACHINE_TYPE_NAME("powernv9"),
1953         .parent        = TYPE_PNV_MACHINE,
1954         .class_init    = pnv_machine_power9_class_init,
1955         .interfaces = (InterfaceInfo[]) {
1956             { TYPE_XIVE_FABRIC },
1957             { },
1958         },
1959     },
1960     {
1961         .name          = MACHINE_TYPE_NAME("powernv8"),
1962         .parent        = TYPE_PNV_MACHINE,
1963         .class_init    = pnv_machine_power8_class_init,
1964         .interfaces = (InterfaceInfo[]) {
1965             { TYPE_XICS_FABRIC },
1966             { },
1967         },
1968     },
1969     {
1970         .name          = TYPE_PNV_MACHINE,
1971         .parent        = TYPE_MACHINE,
1972         .abstract       = true,
1973         .instance_size = sizeof(PnvMachineState),
1974         .class_init    = pnv_machine_class_init,
1975         .class_size    = sizeof(PnvMachineClass),
1976         .interfaces = (InterfaceInfo[]) {
1977             { TYPE_INTERRUPT_STATS_PROVIDER },
1978             { },
1979         },
1980     },
1981     {
1982         .name          = TYPE_PNV_CHIP,
1983         .parent        = TYPE_SYS_BUS_DEVICE,
1984         .class_init    = pnv_chip_class_init,
1985         .instance_size = sizeof(PnvChip),
1986         .class_size    = sizeof(PnvChipClass),
1987         .abstract      = true,
1988     },
1989 
1990     /*
1991      * P10 chip and variants
1992      */
1993     {
1994         .name          = TYPE_PNV10_CHIP,
1995         .parent        = TYPE_PNV_CHIP,
1996         .instance_init = pnv_chip_power10_instance_init,
1997         .instance_size = sizeof(Pnv10Chip),
1998     },
1999     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2000 
2001     /*
2002      * P9 chip and variants
2003      */
2004     {
2005         .name          = TYPE_PNV9_CHIP,
2006         .parent        = TYPE_PNV_CHIP,
2007         .instance_init = pnv_chip_power9_instance_init,
2008         .instance_size = sizeof(Pnv9Chip),
2009     },
2010     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2011 
2012     /*
2013      * P8 chip and variants
2014      */
2015     {
2016         .name          = TYPE_PNV8_CHIP,
2017         .parent        = TYPE_PNV_CHIP,
2018         .instance_init = pnv_chip_power8_instance_init,
2019         .instance_size = sizeof(Pnv8Chip),
2020     },
2021     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2022     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2023     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2024                           pnv_chip_power8nvl_class_init),
2025 };
2026 
2027 DEFINE_TYPES(types)
2028