xref: /openbmc/qemu/hw/ppc/pnv.c (revision 4f8f199fa569492bb07efee02489f521629d275d)
1  /*
2   * QEMU PowerPC PowerNV machine model
3   *
4   * Copyright (c) 2016, IBM Corporation.
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "qemu/datadir.h"
22  #include "qemu/units.h"
23  #include "qemu/cutils.h"
24  #include "qapi/error.h"
25  #include "sysemu/qtest.h"
26  #include "sysemu/sysemu.h"
27  #include "sysemu/numa.h"
28  #include "sysemu/reset.h"
29  #include "sysemu/runstate.h"
30  #include "sysemu/cpus.h"
31  #include "sysemu/device_tree.h"
32  #include "sysemu/hw_accel.h"
33  #include "target/ppc/cpu.h"
34  #include "hw/ppc/fdt.h"
35  #include "hw/ppc/ppc.h"
36  #include "hw/ppc/pnv.h"
37  #include "hw/ppc/pnv_core.h"
38  #include "hw/loader.h"
39  #include "hw/nmi.h"
40  #include "qapi/visitor.h"
41  #include "monitor/monitor.h"
42  #include "hw/intc/intc.h"
43  #include "hw/ipmi/ipmi.h"
44  #include "target/ppc/mmu-hash64.h"
45  #include "hw/pci/msi.h"
46  #include "hw/pci-host/pnv_phb.h"
47  #include "hw/pci-host/pnv_phb3.h"
48  #include "hw/pci-host/pnv_phb4.h"
49  
50  #include "hw/ppc/xics.h"
51  #include "hw/qdev-properties.h"
52  #include "hw/ppc/pnv_chip.h"
53  #include "hw/ppc/pnv_xscom.h"
54  #include "hw/ppc/pnv_pnor.h"
55  
56  #include "hw/isa/isa.h"
57  #include "hw/char/serial.h"
58  #include "hw/rtc/mc146818rtc.h"
59  
60  #include <libfdt.h>
61  
62  #define FDT_MAX_SIZE            (1 * MiB)
63  
64  #define FW_FILE_NAME            "skiboot.lid"
65  #define FW_LOAD_ADDR            0x0
66  #define FW_MAX_SIZE             (16 * MiB)
67  
68  #define KERNEL_LOAD_ADDR        0x20000000
69  #define KERNEL_MAX_SIZE         (128 * MiB)
70  #define INITRD_LOAD_ADDR        0x28000000
71  #define INITRD_MAX_SIZE         (128 * MiB)
72  
73  static const char *pnv_chip_core_typename(const PnvChip *o)
74  {
75      const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76      int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77      char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78      const char *core_type = object_class_get_name(object_class_by_name(s));
79      g_free(s);
80      return core_type;
81  }
82  
83  /*
84   * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85   *     4 * 4 sockets * 12 cores * 8 threads = 1536
86   * Let's make it 2^11
87   */
88  #define MAX_CPUS                2048
89  
90  /*
91   * Memory nodes are created by hostboot, one for each range of memory
92   * that has a different "affinity". In practice, it means one range
93   * per chip.
94   */
95  static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96  {
97      char *mem_name;
98      uint64_t mem_reg_property[2];
99      int off;
100  
101      mem_reg_property[0] = cpu_to_be64(start);
102      mem_reg_property[1] = cpu_to_be64(size);
103  
104      mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105      off = fdt_add_subnode(fdt, 0, mem_name);
106      g_free(mem_name);
107  
108      _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109      _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110                         sizeof(mem_reg_property))));
111      _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112  }
113  
114  static int get_cpus_node(void *fdt)
115  {
116      int cpus_offset = fdt_path_offset(fdt, "/cpus");
117  
118      if (cpus_offset < 0) {
119          cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120          if (cpus_offset) {
121              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123          }
124      }
125      _FDT(cpus_offset);
126      return cpus_offset;
127  }
128  
129  /*
130   * The PowerNV cores (and threads) need to use real HW ids and not an
131   * incremental index like it has been done on other platforms. This HW
132   * id is stored in the CPU PIR, it is used to create cpu nodes in the
133   * device tree, used in XSCOM to address cores and in interrupt
134   * servers.
135   */
136  static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137  {
138      PowerPCCPU *cpu = pc->threads[0];
139      CPUState *cs = CPU(cpu);
140      DeviceClass *dc = DEVICE_GET_CLASS(cs);
141      int smt_threads = CPU_CORE(pc)->nr_threads;
142      CPUPPCState *env = &cpu->env;
143      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144      PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
145      g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
146      int i;
147      uint32_t pir;
148      uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
149                         0xffffffff, 0xffffffff};
150      uint32_t tbfreq = PNV_TIMEBASE_FREQ;
151      uint32_t cpufreq = 1000000000;
152      uint32_t page_sizes_prop[64];
153      size_t page_sizes_prop_size;
154      int offset;
155      char *nodename;
156      int cpus_offset = get_cpus_node(fdt);
157  
158      pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
159  
160      nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
161      offset = fdt_add_subnode(fdt, cpus_offset, nodename);
162      _FDT(offset);
163      g_free(nodename);
164  
165      _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
166  
167      _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
168      _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
169      _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
170  
171      _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
172      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
173                              env->dcache_line_size)));
174      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
175                              env->dcache_line_size)));
176      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
177                              env->icache_line_size)));
178      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
179                              env->icache_line_size)));
180  
181      if (pcc->l1_dcache_size) {
182          _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
183                                 pcc->l1_dcache_size)));
184      } else {
185          warn_report("Unknown L1 dcache size for cpu");
186      }
187      if (pcc->l1_icache_size) {
188          _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
189                                 pcc->l1_icache_size)));
190      } else {
191          warn_report("Unknown L1 icache size for cpu");
192      }
193  
194      _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
195      _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
196      _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
197                             cpu->hash64_opts->slb_size)));
198      _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
199      _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
200  
201      if (ppc_has_spr(cpu, SPR_PURR)) {
202          _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
203      }
204  
205      if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
206          _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
207                             segs, sizeof(segs))));
208      }
209  
210      /*
211       * Advertise VMX/VSX (vector extensions) if available
212       *   0 / no property == no vector extensions
213       *   1               == VMX / Altivec available
214       *   2               == VSX available
215       */
216      if (env->insns_flags & PPC_ALTIVEC) {
217          uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
218  
219          _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
220      }
221  
222      /*
223       * Advertise DFP (Decimal Floating Point) if available
224       *   0 / no property == no DFP
225       *   1               == DFP available
226       */
227      if (env->insns_flags2 & PPC2_DFP) {
228          _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
229      }
230  
231      page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
232                                                        sizeof(page_sizes_prop));
233      if (page_sizes_prop_size) {
234          _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
235                             page_sizes_prop, page_sizes_prop_size)));
236      }
237  
238      /* Build interrupt servers properties */
239      for (i = 0; i < smt_threads; i++) {
240          servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
241      }
242      _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243                         servers_prop, sizeof(*servers_prop) * smt_threads)));
244  
245      return offset;
246  }
247  
248  static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
249                         uint32_t nr_threads)
250  {
251      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
252      uint32_t pir = pcc->chip_pir(chip, hwid, 0);
253      uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254      char *name;
255      const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256      uint32_t irange[2], i, rsize;
257      uint64_t *reg;
258      int offset;
259  
260      irange[0] = cpu_to_be32(pir);
261      irange[1] = cpu_to_be32(nr_threads);
262  
263      rsize = sizeof(uint64_t) * 2 * nr_threads;
264      reg = g_malloc(rsize);
265      for (i = 0; i < nr_threads; i++) {
266          /* We know P8 PIR is linear with thread id */
267          reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
268          reg[i * 2 + 1] = cpu_to_be64(0x1000);
269      }
270  
271      name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
272      offset = fdt_add_subnode(fdt, 0, name);
273      _FDT(offset);
274      g_free(name);
275  
276      _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
277      _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
278      _FDT((fdt_setprop_string(fdt, offset, "device_type",
279                                "PowerPC-External-Interrupt-Presentation")));
280      _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
281      _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
282                         irange, sizeof(irange))));
283      _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
284      _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
285      g_free(reg);
286  }
287  
288  /*
289   * Adds a PnvPHB to the chip on P8.
290   * Implemented here, like for defaults PHBs
291   */
292  PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
293  {
294      Pnv8Chip *chip8 = PNV8_CHIP(chip);
295  
296      phb->chip = chip;
297  
298      chip8->phbs[chip8->num_phbs] = phb;
299      chip8->num_phbs++;
300      return chip;
301  }
302  
303  /*
304   * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
305   * HTM is always enabled because TCG does implement HTM, it's just a
306   * degenerate implementation.
307   */
308  static const uint8_t pa_features_207[] = { 24, 0,
309                   0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
310                   0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
311                   0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
312                   0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
313  
314  static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
315  {
316      static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
317      int i;
318  
319      pnv_dt_xscom(chip, fdt, 0,
320                   cpu_to_be64(PNV_XSCOM_BASE(chip)),
321                   cpu_to_be64(PNV_XSCOM_SIZE),
322                   compat, sizeof(compat));
323  
324      for (i = 0; i < chip->nr_cores; i++) {
325          PnvCore *pnv_core = chip->cores[i];
326          int offset;
327  
328          offset = pnv_dt_core(chip, pnv_core, fdt);
329  
330          _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
331                             pa_features_207, sizeof(pa_features_207))));
332  
333          /* Interrupt Control Presenters (ICP). One per core. */
334          pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
335      }
336  
337      if (chip->ram_size) {
338          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
339      }
340  }
341  
342  /*
343   * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
344   */
345  static const uint8_t pa_features_300[] = { 66, 0,
346      /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
347      /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
348      0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
349      /* 6: DS207 */
350      0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
351      /* 16: Vector */
352      0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
353      /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
354      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
355      /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
356      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
357      /* 32: LE atomic, 34: EBB + ext EBB */
358      0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
359      /* 40: Radix MMU */
360      0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
361      /* 42: PM, 44: PC RA, 46: SC vec'd */
362      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
363      /* 48: SIMD, 50: QP BFP, 52: String */
364      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
365      /* 54: DecFP, 56: DecI, 58: SHA */
366      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
367      /* 60: NM atomic, 62: RNG */
368      0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
369  };
370  
371  static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
372  {
373      static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
374      int i;
375  
376      pnv_dt_xscom(chip, fdt, 0,
377                   cpu_to_be64(PNV9_XSCOM_BASE(chip)),
378                   cpu_to_be64(PNV9_XSCOM_SIZE),
379                   compat, sizeof(compat));
380  
381      for (i = 0; i < chip->nr_cores; i++) {
382          PnvCore *pnv_core = chip->cores[i];
383          int offset;
384  
385          offset = pnv_dt_core(chip, pnv_core, fdt);
386  
387          _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
388                             pa_features_300, sizeof(pa_features_300))));
389      }
390  
391      if (chip->ram_size) {
392          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
393      }
394  
395      pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
396  }
397  
398  /*
399   * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
400   * always disables copy/paste.
401   */
402  static const uint8_t pa_features_31[] = { 74, 0,
403      /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
404      /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
405      0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
406      /* 6: DS207 */
407      0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
408      /* 16: Vector */
409      0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
410      /* 18: Vec. Scalar, 20: Vec. XOR */
411      0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
412      /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
413      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
414      /* 32: LE atomic, 34: EBB + ext EBB */
415      0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
416      /* 40: Radix MMU */
417      0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
418      /* 42: PM, 44: PC RA, 46: SC vec'd */
419      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
420      /* 48: SIMD, 50: QP BFP, 52: String */
421      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
422      /* 54: DecFP, 56: DecI, 58: SHA */
423      0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
424      /* 60: NM atomic, 62: RNG */
425      0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
426      /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
427      0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
428      /* 72: [P]HASHST/[P]HASHCHK */
429      0x80, 0x00,                         /* 72 - 73 */
430  };
431  
432  static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
433  {
434      static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
435      int i;
436  
437      pnv_dt_xscom(chip, fdt, 0,
438                   cpu_to_be64(PNV10_XSCOM_BASE(chip)),
439                   cpu_to_be64(PNV10_XSCOM_SIZE),
440                   compat, sizeof(compat));
441  
442      for (i = 0; i < chip->nr_cores; i++) {
443          PnvCore *pnv_core = chip->cores[i];
444          int offset;
445  
446          offset = pnv_dt_core(chip, pnv_core, fdt);
447  
448          _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
449                             pa_features_31, sizeof(pa_features_31))));
450      }
451  
452      if (chip->ram_size) {
453          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
454      }
455  
456      pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
457  }
458  
459  static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
460  {
461      uint32_t io_base = d->ioport_id;
462      uint32_t io_regs[] = {
463          cpu_to_be32(1),
464          cpu_to_be32(io_base),
465          cpu_to_be32(2)
466      };
467      char *name;
468      int node;
469  
470      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
471      node = fdt_add_subnode(fdt, lpc_off, name);
472      _FDT(node);
473      g_free(name);
474  
475      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
476      _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
477  }
478  
479  static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
480  {
481      const char compatible[] = "ns16550\0pnpPNP,501";
482      uint32_t io_base = d->ioport_id;
483      uint32_t io_regs[] = {
484          cpu_to_be32(1),
485          cpu_to_be32(io_base),
486          cpu_to_be32(8)
487      };
488      uint32_t irq;
489      char *name;
490      int node;
491  
492      irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
493  
494      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
495      node = fdt_add_subnode(fdt, lpc_off, name);
496      _FDT(node);
497      g_free(name);
498  
499      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
500      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
501                        sizeof(compatible))));
502  
503      _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
504      _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
505      _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
506      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
507                             fdt_get_phandle(fdt, lpc_off))));
508  
509      /* This is needed by Linux */
510      _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
511  }
512  
513  static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
514  {
515      const char compatible[] = "bt\0ipmi-bt";
516      uint32_t io_base;
517      uint32_t io_regs[] = {
518          cpu_to_be32(1),
519          0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
520          cpu_to_be32(3)
521      };
522      uint32_t irq;
523      char *name;
524      int node;
525  
526      io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
527      io_regs[1] = cpu_to_be32(io_base);
528  
529      irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
530  
531      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
532      node = fdt_add_subnode(fdt, lpc_off, name);
533      _FDT(node);
534      g_free(name);
535  
536      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
537      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
538                        sizeof(compatible))));
539  
540      /* Mark it as reserved to avoid Linux trying to claim it */
541      _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
542      _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
543      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
544                             fdt_get_phandle(fdt, lpc_off))));
545  }
546  
547  typedef struct ForeachPopulateArgs {
548      void *fdt;
549      int offset;
550  } ForeachPopulateArgs;
551  
552  static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
553  {
554      ForeachPopulateArgs *args = opaque;
555      ISADevice *d = ISA_DEVICE(dev);
556  
557      if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
558          pnv_dt_rtc(d, args->fdt, args->offset);
559      } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
560          pnv_dt_serial(d, args->fdt, args->offset);
561      } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
562          pnv_dt_ipmi_bt(d, args->fdt, args->offset);
563      } else {
564          error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
565                       d->ioport_id);
566      }
567  
568      return 0;
569  }
570  
571  /*
572   * The default LPC bus of a multichip system is on chip 0. It's
573   * recognized by the firmware (skiboot) using a "primary" property.
574   */
575  static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
576  {
577      int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
578      ForeachPopulateArgs args = {
579          .fdt = fdt,
580          .offset = isa_offset,
581      };
582      uint32_t phandle;
583  
584      _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
585  
586      phandle = qemu_fdt_alloc_phandle(fdt);
587      assert(phandle > 0);
588      _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
589  
590      /*
591       * ISA devices are not necessarily parented to the ISA bus so we
592       * can not use object_child_foreach()
593       */
594      qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
595                         &args);
596  }
597  
598  static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
599  {
600      int off;
601  
602      off = fdt_add_subnode(fdt, 0, "ibm,opal");
603      off = fdt_add_subnode(fdt, off, "power-mgt");
604  
605      _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
606  }
607  
608  static void *pnv_dt_create(MachineState *machine)
609  {
610      PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
611      PnvMachineState *pnv = PNV_MACHINE(machine);
612      void *fdt;
613      char *buf;
614      int off;
615      int i;
616  
617      fdt = g_malloc0(FDT_MAX_SIZE);
618      _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
619  
620      /* /qemu node */
621      _FDT((fdt_add_subnode(fdt, 0, "qemu")));
622  
623      /* Root node */
624      _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
625      _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
626      _FDT((fdt_setprop_string(fdt, 0, "model",
627                               "IBM PowerNV (emulated by qemu)")));
628      _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
629  
630      buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
631      _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
632      if (qemu_uuid_set) {
633          _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
634      }
635      g_free(buf);
636  
637      off = fdt_add_subnode(fdt, 0, "chosen");
638      if (machine->kernel_cmdline) {
639          _FDT((fdt_setprop_string(fdt, off, "bootargs",
640                                   machine->kernel_cmdline)));
641      }
642  
643      if (pnv->initrd_size) {
644          uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
645          uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
646  
647          _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
648                                 &start_prop, sizeof(start_prop))));
649          _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
650                                 &end_prop, sizeof(end_prop))));
651      }
652  
653      /* Populate device tree for each chip */
654      for (i = 0; i < pnv->num_chips; i++) {
655          PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
656      }
657  
658      /* Populate ISA devices on chip 0 */
659      pnv_dt_isa(pnv, fdt);
660  
661      if (pnv->bmc) {
662          pnv_dt_bmc_sensors(pnv->bmc, fdt);
663      }
664  
665      /* Create an extra node for power management on machines that support it */
666      if (pmc->dt_power_mgt) {
667          pmc->dt_power_mgt(pnv, fdt);
668      }
669  
670      return fdt;
671  }
672  
673  static void pnv_powerdown_notify(Notifier *n, void *opaque)
674  {
675      PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
676  
677      if (pnv->bmc) {
678          pnv_bmc_powerdown(pnv->bmc);
679      }
680  }
681  
682  static void pnv_reset(MachineState *machine, ShutdownCause reason)
683  {
684      PnvMachineState *pnv = PNV_MACHINE(machine);
685      IPMIBmc *bmc;
686      void *fdt;
687  
688      qemu_devices_reset(reason);
689  
690      /*
691       * The machine should provide by default an internal BMC simulator.
692       * If not, try to use the BMC device that was provided on the command
693       * line.
694       */
695      bmc = pnv_bmc_find(&error_fatal);
696      if (!pnv->bmc) {
697          if (!bmc) {
698              if (!qtest_enabled()) {
699                  warn_report("machine has no BMC device. Use '-device "
700                              "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
701                              "to define one");
702              }
703          } else {
704              pnv_bmc_set_pnor(bmc, pnv->pnor);
705              pnv->bmc = bmc;
706          }
707      }
708  
709      fdt = pnv_dt_create(machine);
710  
711      /* Pack resulting tree */
712      _FDT((fdt_pack(fdt)));
713  
714      qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
715      cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
716  
717      /*
718       * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
719       * the existing machine->fdt to avoid leaking it during
720       * a reset.
721       */
722      g_free(machine->fdt);
723      machine->fdt = fdt;
724  }
725  
726  static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
727  {
728      Pnv8Chip *chip8 = PNV8_CHIP(chip);
729      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
730  
731      qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
732      return pnv_lpc_isa_create(&chip8->lpc, true, errp);
733  }
734  
735  static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
736  {
737      Pnv8Chip *chip8 = PNV8_CHIP(chip);
738      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
739  
740      qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
741      return pnv_lpc_isa_create(&chip8->lpc, false, errp);
742  }
743  
744  static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
745  {
746      Pnv9Chip *chip9 = PNV9_CHIP(chip);
747      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
748  
749      qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
750      return pnv_lpc_isa_create(&chip9->lpc, false, errp);
751  }
752  
753  static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
754  {
755      Pnv10Chip *chip10 = PNV10_CHIP(chip);
756      qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
757  
758      qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
759      return pnv_lpc_isa_create(&chip10->lpc, false, errp);
760  }
761  
762  static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
763  {
764      return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
765  }
766  
767  static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
768  {
769      Pnv8Chip *chip8 = PNV8_CHIP(chip);
770      int i;
771  
772      ics_pic_print_info(&chip8->psi.ics, mon);
773  
774      for (i = 0; i < chip8->num_phbs; i++) {
775          PnvPHB *phb = chip8->phbs[i];
776          PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
777  
778          pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
779          ics_pic_print_info(&phb3->lsis, mon);
780      }
781  }
782  
783  static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
784  {
785      Monitor *mon = opaque;
786      PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
787  
788      if (!phb) {
789          return 0;
790      }
791  
792      pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
793  
794      return 0;
795  }
796  
797  static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
798  {
799      Pnv9Chip *chip9 = PNV9_CHIP(chip);
800  
801      pnv_xive_pic_print_info(&chip9->xive, mon);
802      pnv_psi_pic_print_info(&chip9->psi, mon);
803  
804      object_child_foreach_recursive(OBJECT(chip),
805                           pnv_chip_power9_pic_print_info_child, mon);
806  }
807  
808  static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
809                                                  uint32_t core_id)
810  {
811      return PNV_XSCOM_EX_BASE(core_id);
812  }
813  
814  static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
815                                                  uint32_t core_id)
816  {
817      return PNV9_XSCOM_EC_BASE(core_id);
818  }
819  
820  static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
821                                                   uint32_t core_id)
822  {
823      return PNV10_XSCOM_EC_BASE(core_id);
824  }
825  
826  static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
827  {
828      PowerPCCPUClass *ppc_default =
829          POWERPC_CPU_CLASS(object_class_by_name(default_type));
830      PowerPCCPUClass *ppc =
831          POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
832  
833      return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
834  }
835  
836  static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
837  {
838      ISADevice *dev = isa_new("isa-ipmi-bt");
839  
840      object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
841      object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
842      isa_realize_and_unref(dev, bus, &error_fatal);
843  }
844  
845  static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
846  {
847      Pnv10Chip *chip10 = PNV10_CHIP(chip);
848  
849      pnv_xive2_pic_print_info(&chip10->xive, mon);
850      pnv_psi_pic_print_info(&chip10->psi, mon);
851  
852      object_child_foreach_recursive(OBJECT(chip),
853                           pnv_chip_power9_pic_print_info_child, mon);
854  }
855  
856  /* Always give the first 1GB to chip 0 else we won't boot */
857  static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
858  {
859      MachineState *machine = MACHINE(pnv);
860      uint64_t ram_per_chip;
861  
862      assert(machine->ram_size >= 1 * GiB);
863  
864      ram_per_chip = machine->ram_size / pnv->num_chips;
865      if (ram_per_chip >= 1 * GiB) {
866          return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
867      }
868  
869      assert(pnv->num_chips > 1);
870  
871      ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
872      return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
873  }
874  
875  static void pnv_init(MachineState *machine)
876  {
877      const char *bios_name = machine->firmware ?: FW_FILE_NAME;
878      PnvMachineState *pnv = PNV_MACHINE(machine);
879      MachineClass *mc = MACHINE_GET_CLASS(machine);
880      PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
881      char *fw_filename;
882      long fw_size;
883      uint64_t chip_ram_start = 0;
884      int i;
885      char *chip_typename;
886      DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
887      DeviceState *dev;
888  
889      if (kvm_enabled()) {
890          error_report("machine %s does not support the KVM accelerator",
891                       mc->name);
892          exit(EXIT_FAILURE);
893      }
894  
895      /* allocate RAM */
896      if (machine->ram_size < mc->default_ram_size) {
897          char *sz = size_to_str(mc->default_ram_size);
898          error_report("Invalid RAM size, should be bigger than %s", sz);
899          g_free(sz);
900          exit(EXIT_FAILURE);
901      }
902      memory_region_add_subregion(get_system_memory(), 0, machine->ram);
903  
904      /*
905       * Create our simple PNOR device
906       */
907      dev = qdev_new(TYPE_PNV_PNOR);
908      if (pnor) {
909          qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
910      }
911      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
912      pnv->pnor = PNV_PNOR(dev);
913  
914      /* load skiboot firmware  */
915      fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
916      if (!fw_filename) {
917          error_report("Could not find OPAL firmware '%s'", bios_name);
918          exit(1);
919      }
920  
921      fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
922      if (fw_size < 0) {
923          error_report("Could not load OPAL firmware '%s'", fw_filename);
924          exit(1);
925      }
926      g_free(fw_filename);
927  
928      /* load kernel */
929      if (machine->kernel_filename) {
930          long kernel_size;
931  
932          kernel_size = load_image_targphys(machine->kernel_filename,
933                                            KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
934          if (kernel_size < 0) {
935              error_report("Could not load kernel '%s'",
936                           machine->kernel_filename);
937              exit(1);
938          }
939      }
940  
941      /* load initrd */
942      if (machine->initrd_filename) {
943          pnv->initrd_base = INITRD_LOAD_ADDR;
944          pnv->initrd_size = load_image_targphys(machine->initrd_filename,
945                                    pnv->initrd_base, INITRD_MAX_SIZE);
946          if (pnv->initrd_size < 0) {
947              error_report("Could not load initial ram disk '%s'",
948                           machine->initrd_filename);
949              exit(1);
950          }
951      }
952  
953      /* MSIs are supported on this platform */
954      msi_nonbroken = true;
955  
956      /*
957       * Check compatibility of the specified CPU with the machine
958       * default.
959       */
960      if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
961          error_report("invalid CPU model '%s' for %s machine",
962                       machine->cpu_type, mc->name);
963          exit(1);
964      }
965  
966      /* Create the processor chips */
967      i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
968      chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
969                                      i, machine->cpu_type);
970      if (!object_class_by_name(chip_typename)) {
971          error_report("invalid chip model '%.*s' for %s machine",
972                       i, machine->cpu_type, mc->name);
973          exit(1);
974      }
975  
976      pnv->num_chips =
977          machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
978  
979      if (machine->smp.threads > 8) {
980          error_report("Cannot support more than 8 threads/core "
981                       "on a powernv machine");
982          exit(1);
983      }
984      if (!is_power_of_2(machine->smp.threads)) {
985          error_report("Cannot support %d threads/core on a powernv"
986                       "machine because it must be a power of 2",
987                       machine->smp.threads);
988          exit(1);
989      }
990      /*
991       * TODO: should we decide on how many chips we can create based
992       * on #cores and Venice vs. Murano vs. Naples chip type etc...,
993       */
994      if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
995          error_report("invalid number of chips: '%d'", pnv->num_chips);
996          error_printf(
997              "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
998          exit(1);
999      }
1000  
1001      pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1002      for (i = 0; i < pnv->num_chips; i++) {
1003          char chip_name[32];
1004          Object *chip = OBJECT(qdev_new(chip_typename));
1005          uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1006  
1007          pnv->chips[i] = PNV_CHIP(chip);
1008  
1009          /* Distribute RAM among the chips  */
1010          object_property_set_int(chip, "ram-start", chip_ram_start,
1011                                  &error_fatal);
1012          object_property_set_int(chip, "ram-size", chip_ram_size,
1013                                  &error_fatal);
1014          chip_ram_start += chip_ram_size;
1015  
1016          snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1017          object_property_add_child(OBJECT(pnv), chip_name, chip);
1018          object_property_set_int(chip, "chip-id", i, &error_fatal);
1019          object_property_set_int(chip, "nr-cores", machine->smp.cores,
1020                                  &error_fatal);
1021          object_property_set_int(chip, "nr-threads", machine->smp.threads,
1022                                  &error_fatal);
1023          /*
1024           * The POWER8 machine use the XICS interrupt interface.
1025           * Propagate the XICS fabric to the chip and its controllers.
1026           */
1027          if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1028              object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1029          }
1030          if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1031              object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1032                                       &error_abort);
1033          }
1034          sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1035      }
1036      g_free(chip_typename);
1037  
1038      /* Instantiate ISA bus on chip 0 */
1039      pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1040  
1041      /* Create serial port */
1042      serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1043  
1044      /* Create an RTC ISA device too */
1045      mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1046  
1047      /*
1048       * Create the machine BMC simulator and the IPMI BT device for
1049       * communication with the BMC
1050       */
1051      if (defaults_enabled()) {
1052          pnv->bmc = pnv_bmc_create(pnv->pnor);
1053          pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1054      }
1055  
1056      /*
1057       * The PNOR is mapped on the LPC FW address space by the BMC.
1058       * Since we can not reach the remote BMC machine with LPC memops,
1059       * map it always for now.
1060       */
1061      memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1062                                  &pnv->pnor->mmio);
1063  
1064      /*
1065       * OpenPOWER systems use a IPMI SEL Event message to notify the
1066       * host to powerdown
1067       */
1068      pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1069      qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1070  
1071      /*
1072       * Create/Connect any machine-specific I2C devices
1073       */
1074      if (pmc->i2c_init) {
1075          pmc->i2c_init(pnv);
1076      }
1077  }
1078  
1079  /*
1080   *    0:21  Reserved - Read as zeros
1081   *   22:24  Chip ID
1082   *   25:28  Core number
1083   *   29:31  Thread ID
1084   */
1085  static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1086                                  uint32_t thread_id)
1087  {
1088      return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1089  }
1090  
1091  static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1092                                          Error **errp)
1093  {
1094      Pnv8Chip *chip8 = PNV8_CHIP(chip);
1095      Error *local_err = NULL;
1096      Object *obj;
1097      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1098  
1099      obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1100      if (local_err) {
1101          error_propagate(errp, local_err);
1102          return;
1103      }
1104  
1105      pnv_cpu->intc = obj;
1106  }
1107  
1108  
1109  static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1110  {
1111      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1112  
1113      icp_reset(ICP(pnv_cpu->intc));
1114  }
1115  
1116  static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1117  {
1118      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1119  
1120      icp_destroy(ICP(pnv_cpu->intc));
1121      pnv_cpu->intc = NULL;
1122  }
1123  
1124  static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1125                                              Monitor *mon)
1126  {
1127      icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1128  }
1129  
1130  /*
1131   *    0:48  Reserved - Read as zeroes
1132   *   49:52  Node ID
1133   *   53:55  Chip ID
1134   *   56     Reserved - Read as zero
1135   *   57:61  Core number
1136   *   62:63  Thread ID
1137   *
1138   * We only care about the lower bits. uint32_t is fine for the moment.
1139   */
1140  static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1141                                  uint32_t thread_id)
1142  {
1143      if (chip->nr_threads == 8) {
1144          return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1145                 (thread_id >> 1);
1146      } else {
1147          return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1148      }
1149  }
1150  
1151  /*
1152   *    0:48  Reserved - Read as zeroes
1153   *   49:52  Node ID
1154   *   53:55  Chip ID
1155   *   56     Reserved - Read as zero
1156   *   57:59  Quad ID
1157   *   60     Core Chiplet Pair ID
1158   *   61:63  Thread/Core Chiplet ID t0-t2
1159   *
1160   * We only care about the lower bits. uint32_t is fine for the moment.
1161   */
1162  static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1163                                   uint32_t thread_id)
1164  {
1165      if (chip->nr_threads == 8) {
1166          return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1167                 ((core_id % 2) << 3) | thread_id;
1168      } else {
1169          return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1170      }
1171  }
1172  
1173  static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1174                                          Error **errp)
1175  {
1176      Pnv9Chip *chip9 = PNV9_CHIP(chip);
1177      Error *local_err = NULL;
1178      Object *obj;
1179      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1180  
1181      /*
1182       * The core creates its interrupt presenter but the XIVE interrupt
1183       * controller object is initialized afterwards. Hopefully, it's
1184       * only used at runtime.
1185       */
1186      obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1187                             &local_err);
1188      if (local_err) {
1189          error_propagate(errp, local_err);
1190          return;
1191      }
1192  
1193      pnv_cpu->intc = obj;
1194  }
1195  
1196  static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1197  {
1198      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1199  
1200      xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1201  }
1202  
1203  static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1204  {
1205      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1206  
1207      xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1208      pnv_cpu->intc = NULL;
1209  }
1210  
1211  static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1212                                              Monitor *mon)
1213  {
1214      xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1215  }
1216  
1217  static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1218                                          Error **errp)
1219  {
1220      Pnv10Chip *chip10 = PNV10_CHIP(chip);
1221      Error *local_err = NULL;
1222      Object *obj;
1223      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1224  
1225      /*
1226       * The core creates its interrupt presenter but the XIVE2 interrupt
1227       * controller object is initialized afterwards. Hopefully, it's
1228       * only used at runtime.
1229       */
1230      obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1231                             &local_err);
1232      if (local_err) {
1233          error_propagate(errp, local_err);
1234          return;
1235      }
1236  
1237      pnv_cpu->intc = obj;
1238  }
1239  
1240  static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1241  {
1242      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1243  
1244      xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1245  }
1246  
1247  static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1248  {
1249      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1250  
1251      xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1252      pnv_cpu->intc = NULL;
1253  }
1254  
1255  static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1256                                               Monitor *mon)
1257  {
1258      xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1259  }
1260  
1261  /*
1262   * Allowed core identifiers on a POWER8 Processor Chip :
1263   *
1264   * <EX0 reserved>
1265   *  EX1  - Venice only
1266   *  EX2  - Venice only
1267   *  EX3  - Venice only
1268   *  EX4
1269   *  EX5
1270   *  EX6
1271   * <EX7,8 reserved> <reserved>
1272   *  EX9  - Venice only
1273   *  EX10 - Venice only
1274   *  EX11 - Venice only
1275   *  EX12
1276   *  EX13
1277   *  EX14
1278   * <EX15 reserved>
1279   */
1280  #define POWER8E_CORE_MASK  (0x7070ull)
1281  #define POWER8_CORE_MASK   (0x7e7eull)
1282  
1283  /*
1284   * POWER9 has 24 cores, ids starting at 0x0
1285   */
1286  #define POWER9_CORE_MASK   (0xffffffffffffffull)
1287  
1288  
1289  #define POWER10_CORE_MASK  (0xffffffffffffffull)
1290  
1291  static void pnv_chip_power8_instance_init(Object *obj)
1292  {
1293      Pnv8Chip *chip8 = PNV8_CHIP(obj);
1294      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1295      int i;
1296  
1297      object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1298                               (Object **)&chip8->xics,
1299                               object_property_allow_set_link,
1300                               OBJ_PROP_LINK_STRONG);
1301  
1302      object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1303  
1304      object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1305  
1306      object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1307  
1308      object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1309  
1310      if (defaults_enabled()) {
1311          chip8->num_phbs = pcc->num_phbs;
1312  
1313          for (i = 0; i < chip8->num_phbs; i++) {
1314              Object *phb = object_new(TYPE_PNV_PHB);
1315  
1316              /*
1317               * We need the chip to parent the PHB to allow the DT
1318               * to build correctly (via pnv_xscom_dt()).
1319               *
1320               * TODO: the PHB should be parented by a PEC device that, at
1321               * this moment, is not modelled powernv8/phb3.
1322               */
1323              object_property_add_child(obj, "phb[*]", phb);
1324              chip8->phbs[i] = PNV_PHB(phb);
1325          }
1326      }
1327  
1328  }
1329  
1330  static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1331   {
1332      PnvChip *chip = PNV_CHIP(chip8);
1333      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1334      int i, j;
1335      char *name;
1336  
1337      name = g_strdup_printf("icp-%x", chip->chip_id);
1338      memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1339      g_free(name);
1340      memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1341                                  &chip8->icp_mmio);
1342  
1343      /* Map the ICP registers for each thread */
1344      for (i = 0; i < chip->nr_cores; i++) {
1345          PnvCore *pnv_core = chip->cores[i];
1346          int core_hwid = CPU_CORE(pnv_core)->core_id;
1347  
1348          for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1349              uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1350              PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1351  
1352              memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1353                                          &icp->mmio);
1354          }
1355      }
1356  }
1357  
1358  static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1359  {
1360      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1361      PnvChip *chip = PNV_CHIP(dev);
1362      Pnv8Chip *chip8 = PNV8_CHIP(dev);
1363      Pnv8Psi *psi8 = &chip8->psi;
1364      Error *local_err = NULL;
1365      int i;
1366  
1367      assert(chip8->xics);
1368  
1369      /* XSCOM bridge is first */
1370      pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1371  
1372      pcc->parent_realize(dev, &local_err);
1373      if (local_err) {
1374          error_propagate(errp, local_err);
1375          return;
1376      }
1377  
1378      /* Processor Service Interface (PSI) Host Bridge */
1379      object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1380                              &error_fatal);
1381      object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1382                               OBJECT(chip8->xics), &error_abort);
1383      if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1384          return;
1385      }
1386      pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1387                              &PNV_PSI(psi8)->xscom_regs);
1388  
1389      /* Create LPC controller */
1390      qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1391      pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1392  
1393      chip->fw_mr = &chip8->lpc.isa_fw;
1394      chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1395                                              (uint64_t) PNV_XSCOM_BASE(chip),
1396                                              PNV_XSCOM_LPC_BASE);
1397  
1398      /*
1399       * Interrupt Management Area. This is the memory region holding
1400       * all the Interrupt Control Presenter (ICP) registers
1401       */
1402      pnv_chip_icp_realize(chip8, &local_err);
1403      if (local_err) {
1404          error_propagate(errp, local_err);
1405          return;
1406      }
1407  
1408      /* Create the simplified OCC model */
1409      if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1410          return;
1411      }
1412      pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1413      qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1414                            qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1415  
1416      /* OCC SRAM model */
1417      memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1418                                  &chip8->occ.sram_regs);
1419  
1420      /* HOMER */
1421      object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1422                               &error_abort);
1423      if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1424          return;
1425      }
1426      /* Homer Xscom region */
1427      pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1428  
1429      /* Homer mmio region */
1430      memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1431                                  &chip8->homer.regs);
1432  
1433      /* PHB controllers */
1434      for (i = 0; i < chip8->num_phbs; i++) {
1435          PnvPHB *phb = chip8->phbs[i];
1436  
1437          object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1438          object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1439                                  &error_fatal);
1440          object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1441                                   &error_fatal);
1442          if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1443              return;
1444          }
1445      }
1446  }
1447  
1448  static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1449  {
1450      addr &= (PNV_XSCOM_SIZE - 1);
1451      return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1452  }
1453  
1454  static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1455  {
1456      DeviceClass *dc = DEVICE_CLASS(klass);
1457      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1458  
1459      k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1460      k->cores_mask = POWER8E_CORE_MASK;
1461      k->num_phbs = 3;
1462      k->chip_pir = pnv_chip_pir_p8;
1463      k->intc_create = pnv_chip_power8_intc_create;
1464      k->intc_reset = pnv_chip_power8_intc_reset;
1465      k->intc_destroy = pnv_chip_power8_intc_destroy;
1466      k->intc_print_info = pnv_chip_power8_intc_print_info;
1467      k->isa_create = pnv_chip_power8_isa_create;
1468      k->dt_populate = pnv_chip_power8_dt_populate;
1469      k->pic_print_info = pnv_chip_power8_pic_print_info;
1470      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1471      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1472      dc->desc = "PowerNV Chip POWER8E";
1473  
1474      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1475                                      &k->parent_realize);
1476  }
1477  
1478  static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1479  {
1480      DeviceClass *dc = DEVICE_CLASS(klass);
1481      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1482  
1483      k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1484      k->cores_mask = POWER8_CORE_MASK;
1485      k->num_phbs = 3;
1486      k->chip_pir = pnv_chip_pir_p8;
1487      k->intc_create = pnv_chip_power8_intc_create;
1488      k->intc_reset = pnv_chip_power8_intc_reset;
1489      k->intc_destroy = pnv_chip_power8_intc_destroy;
1490      k->intc_print_info = pnv_chip_power8_intc_print_info;
1491      k->isa_create = pnv_chip_power8_isa_create;
1492      k->dt_populate = pnv_chip_power8_dt_populate;
1493      k->pic_print_info = pnv_chip_power8_pic_print_info;
1494      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1495      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1496      dc->desc = "PowerNV Chip POWER8";
1497  
1498      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1499                                      &k->parent_realize);
1500  }
1501  
1502  static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1503  {
1504      DeviceClass *dc = DEVICE_CLASS(klass);
1505      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1506  
1507      k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1508      k->cores_mask = POWER8_CORE_MASK;
1509      k->num_phbs = 4;
1510      k->chip_pir = pnv_chip_pir_p8;
1511      k->intc_create = pnv_chip_power8_intc_create;
1512      k->intc_reset = pnv_chip_power8_intc_reset;
1513      k->intc_destroy = pnv_chip_power8_intc_destroy;
1514      k->intc_print_info = pnv_chip_power8_intc_print_info;
1515      k->isa_create = pnv_chip_power8nvl_isa_create;
1516      k->dt_populate = pnv_chip_power8_dt_populate;
1517      k->pic_print_info = pnv_chip_power8_pic_print_info;
1518      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1519      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1520      dc->desc = "PowerNV Chip POWER8NVL";
1521  
1522      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1523                                      &k->parent_realize);
1524  }
1525  
1526  static void pnv_chip_power9_instance_init(Object *obj)
1527  {
1528      PnvChip *chip = PNV_CHIP(obj);
1529      Pnv9Chip *chip9 = PNV9_CHIP(obj);
1530      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1531      int i;
1532  
1533      object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1534      object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1535                                "xive-fabric");
1536  
1537      object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1538  
1539      object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1540  
1541      object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1542  
1543      object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1544  
1545      object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1546  
1547      object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1548  
1549      /* Number of PECs is the chip default */
1550      chip->num_pecs = pcc->num_pecs;
1551  
1552      for (i = 0; i < chip->num_pecs; i++) {
1553          object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1554                                  TYPE_PNV_PHB4_PEC);
1555      }
1556  
1557      for (i = 0; i < pcc->i2c_num_engines; i++) {
1558          object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1559      }
1560  }
1561  
1562  static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1563                                        PnvCore *pnv_core,
1564                                        const char *type)
1565  {
1566      char eq_name[32];
1567      int core_id = CPU_CORE(pnv_core)->core_id;
1568  
1569      snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1570      object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1571                                         sizeof(*eq), type,
1572                                         &error_fatal, NULL);
1573  
1574      object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1575      qdev_realize(DEVICE(eq), NULL, &error_fatal);
1576  }
1577  
1578  static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1579  {
1580      PnvChip *chip = PNV_CHIP(chip9);
1581      int i;
1582  
1583      chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1584      chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1585  
1586      for (i = 0; i < chip9->nr_quads; i++) {
1587          PnvQuad *eq = &chip9->quads[i];
1588  
1589          pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1590                                    PNV_QUAD_TYPE_NAME("power9"));
1591  
1592          pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1593                                  &eq->xscom_regs);
1594      }
1595  }
1596  
1597  static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1598  {
1599      Pnv9Chip *chip9 = PNV9_CHIP(chip);
1600      int i;
1601  
1602      for (i = 0; i < chip->num_pecs; i++) {
1603          PnvPhb4PecState *pec = &chip9->pecs[i];
1604          PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1605          uint32_t pec_nest_base;
1606          uint32_t pec_pci_base;
1607  
1608          object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1609          object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1610                                  &error_fatal);
1611          object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1612                                   &error_fatal);
1613          if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1614              return;
1615          }
1616  
1617          pec_nest_base = pecc->xscom_nest_base(pec);
1618          pec_pci_base = pecc->xscom_pci_base(pec);
1619  
1620          pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1621          pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1622      }
1623  }
1624  
1625  static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1626  {
1627      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1628      Pnv9Chip *chip9 = PNV9_CHIP(dev);
1629      PnvChip *chip = PNV_CHIP(dev);
1630      Pnv9Psi *psi9 = &chip9->psi;
1631      Error *local_err = NULL;
1632      int i;
1633  
1634      /* XSCOM bridge is first */
1635      pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1636  
1637      pcc->parent_realize(dev, &local_err);
1638      if (local_err) {
1639          error_propagate(errp, local_err);
1640          return;
1641      }
1642  
1643      pnv_chip_quad_realize(chip9, &local_err);
1644      if (local_err) {
1645          error_propagate(errp, local_err);
1646          return;
1647      }
1648  
1649      /* XIVE interrupt controller (POWER9) */
1650      object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1651                              PNV9_XIVE_IC_BASE(chip), &error_fatal);
1652      object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1653                              PNV9_XIVE_VC_BASE(chip), &error_fatal);
1654      object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1655                              PNV9_XIVE_PC_BASE(chip), &error_fatal);
1656      object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1657                              PNV9_XIVE_TM_BASE(chip), &error_fatal);
1658      object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1659                               &error_abort);
1660      if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1661          return;
1662      }
1663      pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1664                              &chip9->xive.xscom_regs);
1665  
1666      /* Processor Service Interface (PSI) Host Bridge */
1667      object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1668                              &error_fatal);
1669      /* This is the only device with 4k ESB pages */
1670      object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1671                              &error_fatal);
1672      if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1673          return;
1674      }
1675      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1676                              &PNV_PSI(psi9)->xscom_regs);
1677  
1678      /* LPC */
1679      if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1680          return;
1681      }
1682      memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1683                                  &chip9->lpc.xscom_regs);
1684  
1685      chip->fw_mr = &chip9->lpc.isa_fw;
1686      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1687                                              (uint64_t) PNV9_LPCM_BASE(chip));
1688  
1689      /* ChipTOD */
1690      object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1691                               chip->chip_id == 0, &error_abort);
1692      object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1693                               chip->chip_id == 1, &error_abort);
1694      object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1695                               &error_abort);
1696      if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1697          return;
1698      }
1699      pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1700                              &chip9->chiptod.xscom_regs);
1701  
1702      /* Create the simplified OCC model */
1703      if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1704          return;
1705      }
1706      pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1707      qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1708                                DEVICE(psi9), PSIHB9_IRQ_OCC));
1709  
1710      /* OCC SRAM model */
1711      memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1712                                  &chip9->occ.sram_regs);
1713  
1714      /* SBE */
1715      if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1716          return;
1717      }
1718      pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1719                              &chip9->sbe.xscom_ctrl_regs);
1720      pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1721                              &chip9->sbe.xscom_mbox_regs);
1722      qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1723                                DEVICE(psi9), PSIHB9_IRQ_PSU));
1724  
1725      /* HOMER */
1726      object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1727                               &error_abort);
1728      if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1729          return;
1730      }
1731      /* Homer Xscom region */
1732      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1733  
1734      /* Homer mmio region */
1735      memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1736                                  &chip9->homer.regs);
1737  
1738      /* PEC PHBs */
1739      pnv_chip_power9_pec_realize(chip, &local_err);
1740      if (local_err) {
1741          error_propagate(errp, local_err);
1742          return;
1743      }
1744  
1745      /*
1746       * I2C
1747       */
1748      for (i = 0; i < pcc->i2c_num_engines; i++) {
1749          Object *obj =  OBJECT(&chip9->i2c[i]);
1750  
1751          object_property_set_int(obj, "engine", i + 1, &error_fatal);
1752          object_property_set_int(obj, "num-busses",
1753                                  pcc->i2c_ports_per_engine[i],
1754                                  &error_fatal);
1755          object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1756          if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1757              return;
1758          }
1759          pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1760                                  (chip9->i2c[i].engine - 1) *
1761                                          PNV9_XSCOM_I2CM_SIZE,
1762                                  &chip9->i2c[i].xscom_regs);
1763          qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1764                                qdev_get_gpio_in(DEVICE(psi9),
1765                                                 PSIHB9_IRQ_SBE_I2C));
1766      }
1767  }
1768  
1769  static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1770  {
1771      addr &= (PNV9_XSCOM_SIZE - 1);
1772      return addr >> 3;
1773  }
1774  
1775  static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1776  {
1777      DeviceClass *dc = DEVICE_CLASS(klass);
1778      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1779      static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1780  
1781      k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1782      k->cores_mask = POWER9_CORE_MASK;
1783      k->chip_pir = pnv_chip_pir_p9;
1784      k->intc_create = pnv_chip_power9_intc_create;
1785      k->intc_reset = pnv_chip_power9_intc_reset;
1786      k->intc_destroy = pnv_chip_power9_intc_destroy;
1787      k->intc_print_info = pnv_chip_power9_intc_print_info;
1788      k->isa_create = pnv_chip_power9_isa_create;
1789      k->dt_populate = pnv_chip_power9_dt_populate;
1790      k->pic_print_info = pnv_chip_power9_pic_print_info;
1791      k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1792      k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1793      dc->desc = "PowerNV Chip POWER9";
1794      k->num_pecs = PNV9_CHIP_MAX_PEC;
1795      k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1796      k->i2c_ports_per_engine = i2c_ports_per_engine;
1797  
1798      device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1799                                      &k->parent_realize);
1800  }
1801  
1802  static void pnv_chip_power10_instance_init(Object *obj)
1803  {
1804      PnvChip *chip = PNV_CHIP(obj);
1805      Pnv10Chip *chip10 = PNV10_CHIP(obj);
1806      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1807      int i;
1808  
1809      object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1810      object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1811                                "xive-fabric");
1812      object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1813      object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1814      object_initialize_child(obj, "chiptod", &chip10->chiptod,
1815                              TYPE_PNV10_CHIPTOD);
1816      object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1817      object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1818      object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1819      object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1820                              TYPE_PNV_N1_CHIPLET);
1821  
1822      chip->num_pecs = pcc->num_pecs;
1823  
1824      for (i = 0; i < chip->num_pecs; i++) {
1825          object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1826                                  TYPE_PNV_PHB5_PEC);
1827      }
1828  
1829      for (i = 0; i < pcc->i2c_num_engines; i++) {
1830          object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1831      }
1832  }
1833  
1834  static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1835  {
1836      PnvChip *chip = PNV_CHIP(chip10);
1837      int i;
1838  
1839      chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1840      chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1841  
1842      for (i = 0; i < chip10->nr_quads; i++) {
1843          PnvQuad *eq = &chip10->quads[i];
1844  
1845          pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1846                                    PNV_QUAD_TYPE_NAME("power10"));
1847  
1848          pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1849                                  &eq->xscom_regs);
1850  
1851          pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1852                                  &eq->xscom_qme_regs);
1853      }
1854  }
1855  
1856  static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1857  {
1858      Pnv10Chip *chip10 = PNV10_CHIP(chip);
1859      int i;
1860  
1861      for (i = 0; i < chip->num_pecs; i++) {
1862          PnvPhb4PecState *pec = &chip10->pecs[i];
1863          PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1864          uint32_t pec_nest_base;
1865          uint32_t pec_pci_base;
1866  
1867          object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1868          object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1869                                  &error_fatal);
1870          object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1871                                   &error_fatal);
1872          if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1873              return;
1874          }
1875  
1876          pec_nest_base = pecc->xscom_nest_base(pec);
1877          pec_pci_base = pecc->xscom_pci_base(pec);
1878  
1879          pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1880          pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1881      }
1882  }
1883  
1884  static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1885  {
1886      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1887      PnvChip *chip = PNV_CHIP(dev);
1888      Pnv10Chip *chip10 = PNV10_CHIP(dev);
1889      Error *local_err = NULL;
1890      int i;
1891  
1892      /* XSCOM bridge is first */
1893      pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1894  
1895      pcc->parent_realize(dev, &local_err);
1896      if (local_err) {
1897          error_propagate(errp, local_err);
1898          return;
1899      }
1900  
1901      pnv_chip_power10_quad_realize(chip10, &local_err);
1902      if (local_err) {
1903          error_propagate(errp, local_err);
1904          return;
1905      }
1906  
1907      /* XIVE2 interrupt controller (POWER10) */
1908      object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1909                              PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1910      object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1911                              PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1912      object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1913                              PNV10_XIVE2_END_BASE(chip), &error_fatal);
1914      object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1915                              PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1916      object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1917                              PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1918      object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1919                              PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1920      object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1921                               &error_abort);
1922      if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1923          return;
1924      }
1925      pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1926                              &chip10->xive.xscom_regs);
1927  
1928      /* Processor Service Interface (PSI) Host Bridge */
1929      object_property_set_int(OBJECT(&chip10->psi), "bar",
1930                              PNV10_PSIHB_BASE(chip), &error_fatal);
1931      /* PSI can now be configured to use 64k ESB pages on POWER10 */
1932      object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1933                              &error_fatal);
1934      if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1935          return;
1936      }
1937      pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1938                              &PNV_PSI(&chip10->psi)->xscom_regs);
1939  
1940      /* LPC */
1941      if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1942          return;
1943      }
1944      memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1945                                  &chip10->lpc.xscom_regs);
1946  
1947      chip->fw_mr = &chip10->lpc.isa_fw;
1948      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1949                                              (uint64_t) PNV10_LPCM_BASE(chip));
1950  
1951      /* ChipTOD */
1952      object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1953                               chip->chip_id == 0, &error_abort);
1954      object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1955                               chip->chip_id == 1, &error_abort);
1956      object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1957                               &error_abort);
1958      if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1959          return;
1960      }
1961      pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1962                              &chip10->chiptod.xscom_regs);
1963  
1964      /* Create the simplified OCC model */
1965      if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1966          return;
1967      }
1968      pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1969                              &chip10->occ.xscom_regs);
1970      qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1971                                DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1972  
1973      /* OCC SRAM model */
1974      memory_region_add_subregion(get_system_memory(),
1975                                  PNV10_OCC_SENSOR_BASE(chip),
1976                                  &chip10->occ.sram_regs);
1977  
1978      /* SBE */
1979      if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1980          return;
1981      }
1982      pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1983                              &chip10->sbe.xscom_ctrl_regs);
1984      pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1985                              &chip10->sbe.xscom_mbox_regs);
1986      qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1987                                DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1988  
1989      /* HOMER */
1990      object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1991                               &error_abort);
1992      if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1993          return;
1994      }
1995      /* Homer Xscom region */
1996      pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1997                              &chip10->homer.pba_regs);
1998  
1999      /* Homer mmio region */
2000      memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2001                                  &chip10->homer.regs);
2002  
2003      /* N1 chiplet */
2004      if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2005          return;
2006      }
2007      pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2008               &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2009  
2010      pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2011                             &chip10->n1_chiplet.xscom_pb_eq_mr);
2012  
2013      pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2014                             &chip10->n1_chiplet.xscom_pb_es_mr);
2015  
2016      /* PHBs */
2017      pnv_chip_power10_phb_realize(chip, &local_err);
2018      if (local_err) {
2019          error_propagate(errp, local_err);
2020          return;
2021      }
2022  
2023  
2024      /*
2025       * I2C
2026       */
2027      for (i = 0; i < pcc->i2c_num_engines; i++) {
2028          Object *obj =  OBJECT(&chip10->i2c[i]);
2029  
2030          object_property_set_int(obj, "engine", i + 1, &error_fatal);
2031          object_property_set_int(obj, "num-busses",
2032                                  pcc->i2c_ports_per_engine[i],
2033                                  &error_fatal);
2034          object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2035          if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2036              return;
2037          }
2038          pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2039                                  (chip10->i2c[i].engine - 1) *
2040                                          PNV10_XSCOM_I2CM_SIZE,
2041                                  &chip10->i2c[i].xscom_regs);
2042          qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2043                                qdev_get_gpio_in(DEVICE(&chip10->psi),
2044                                                 PSIHB9_IRQ_SBE_I2C));
2045      }
2046  
2047  }
2048  
2049  static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2050  {
2051      int i;
2052      for (i = 0; i < pnv->num_chips; i++) {
2053          Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2054  
2055          /*
2056           * Add a PCA9552 I2C device for PCIe hotplug control
2057           * to engine 2, bus 1, address 0x63
2058           */
2059          I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2060                                                  "pca9552", 0x63);
2061  
2062          /*
2063           * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2064           * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2065           * after hypervisor code sets a SLOTx_EN pin high.
2066           */
2067          qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2068          qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2069          qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2070          qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2071          qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2072  
2073          /*
2074           * Add a PCA9554 I2C device for cable card presence detection
2075           * to engine 2, bus 1, address 0x25
2076           */
2077          i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2078      }
2079  }
2080  
2081  static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2082  {
2083      addr &= (PNV10_XSCOM_SIZE - 1);
2084      return addr >> 3;
2085  }
2086  
2087  static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2088  {
2089      DeviceClass *dc = DEVICE_CLASS(klass);
2090      PnvChipClass *k = PNV_CHIP_CLASS(klass);
2091      static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2092  
2093      k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2094      k->cores_mask = POWER10_CORE_MASK;
2095      k->chip_pir = pnv_chip_pir_p10;
2096      k->intc_create = pnv_chip_power10_intc_create;
2097      k->intc_reset = pnv_chip_power10_intc_reset;
2098      k->intc_destroy = pnv_chip_power10_intc_destroy;
2099      k->intc_print_info = pnv_chip_power10_intc_print_info;
2100      k->isa_create = pnv_chip_power10_isa_create;
2101      k->dt_populate = pnv_chip_power10_dt_populate;
2102      k->pic_print_info = pnv_chip_power10_pic_print_info;
2103      k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2104      k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2105      dc->desc = "PowerNV Chip POWER10";
2106      k->num_pecs = PNV10_CHIP_MAX_PEC;
2107      k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2108      k->i2c_ports_per_engine = i2c_ports_per_engine;
2109  
2110      device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2111                                      &k->parent_realize);
2112  }
2113  
2114  static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2115  {
2116      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2117      int cores_max;
2118  
2119      /*
2120       * No custom mask for this chip, let's use the default one from *
2121       * the chip class
2122       */
2123      if (!chip->cores_mask) {
2124          chip->cores_mask = pcc->cores_mask;
2125      }
2126  
2127      /* filter alien core ids ! some are reserved */
2128      if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2129          error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2130                     chip->cores_mask);
2131          return;
2132      }
2133      chip->cores_mask &= pcc->cores_mask;
2134  
2135      /* now that we have a sane layout, let check the number of cores */
2136      cores_max = ctpop64(chip->cores_mask);
2137      if (chip->nr_cores > cores_max) {
2138          error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2139                     cores_max);
2140          return;
2141      }
2142  }
2143  
2144  static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2145  {
2146      Error *error = NULL;
2147      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2148      const char *typename = pnv_chip_core_typename(chip);
2149      int i, core_hwid;
2150      PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2151  
2152      if (!object_class_by_name(typename)) {
2153          error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2154          return;
2155      }
2156  
2157      /* Cores */
2158      pnv_chip_core_sanitize(chip, &error);
2159      if (error) {
2160          error_propagate(errp, error);
2161          return;
2162      }
2163  
2164      chip->cores = g_new0(PnvCore *, chip->nr_cores);
2165  
2166      for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2167               && (i < chip->nr_cores); core_hwid++) {
2168          char core_name[32];
2169          PnvCore *pnv_core;
2170          uint64_t xscom_core_base;
2171  
2172          if (!(chip->cores_mask & (1ull << core_hwid))) {
2173              continue;
2174          }
2175  
2176          pnv_core = PNV_CORE(object_new(typename));
2177  
2178          snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2179          object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2180          chip->cores[i] = pnv_core;
2181          object_property_set_int(OBJECT(pnv_core), "nr-threads",
2182                                  chip->nr_threads, &error_fatal);
2183          object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2184                                  core_hwid, &error_fatal);
2185          object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2186                                  &error_fatal);
2187          object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2188                                  &error_fatal);
2189          object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2190                                   &error_abort);
2191          qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2192  
2193          /* Each core has an XSCOM MMIO region */
2194          xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2195  
2196          pnv_xscom_add_subregion(chip, xscom_core_base,
2197                                  &pnv_core->xscom_regs);
2198          i++;
2199      }
2200  }
2201  
2202  static void pnv_chip_realize(DeviceState *dev, Error **errp)
2203  {
2204      PnvChip *chip = PNV_CHIP(dev);
2205      Error *error = NULL;
2206  
2207      /* Cores */
2208      pnv_chip_core_realize(chip, &error);
2209      if (error) {
2210          error_propagate(errp, error);
2211          return;
2212      }
2213  }
2214  
2215  static Property pnv_chip_properties[] = {
2216      DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2217      DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2218      DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2219      DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2220      DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2221      DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2222      DEFINE_PROP_END_OF_LIST(),
2223  };
2224  
2225  static void pnv_chip_class_init(ObjectClass *klass, void *data)
2226  {
2227      DeviceClass *dc = DEVICE_CLASS(klass);
2228  
2229      set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2230      dc->realize = pnv_chip_realize;
2231      device_class_set_props(dc, pnv_chip_properties);
2232      dc->desc = "PowerNV Chip";
2233  }
2234  
2235  PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2236  {
2237      int i;
2238  
2239      for (i = 0; i < chip->nr_cores; i++) {
2240          PnvCore *pc = chip->cores[i];
2241          CPUCore *cc = CPU_CORE(pc);
2242  
2243          if (cc->core_id == core_id) {
2244              return pc;
2245          }
2246      }
2247      return NULL;
2248  }
2249  
2250  PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2251  {
2252      int i, j;
2253  
2254      for (i = 0; i < chip->nr_cores; i++) {
2255          PnvCore *pc = chip->cores[i];
2256          CPUCore *cc = CPU_CORE(pc);
2257  
2258          for (j = 0; j < cc->nr_threads; j++) {
2259              if (ppc_cpu_pir(pc->threads[j]) == pir) {
2260                  return pc->threads[j];
2261              }
2262          }
2263      }
2264      return NULL;
2265  }
2266  
2267  static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2268  {
2269      PnvMachineState *pnv = PNV_MACHINE(xi);
2270      int i, j;
2271  
2272      for (i = 0; i < pnv->num_chips; i++) {
2273          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2274  
2275          if (ics_valid_irq(&chip8->psi.ics, irq)) {
2276              return &chip8->psi.ics;
2277          }
2278  
2279          for (j = 0; j < chip8->num_phbs; j++) {
2280              PnvPHB *phb = chip8->phbs[j];
2281              PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2282  
2283              if (ics_valid_irq(&phb3->lsis, irq)) {
2284                  return &phb3->lsis;
2285              }
2286  
2287              if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2288                  return ICS(&phb3->msis);
2289              }
2290          }
2291      }
2292      return NULL;
2293  }
2294  
2295  PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2296  {
2297      int i;
2298  
2299      for (i = 0; i < pnv->num_chips; i++) {
2300          PnvChip *chip = pnv->chips[i];
2301          if (chip->chip_id == chip_id) {
2302              return chip;
2303          }
2304      }
2305      return NULL;
2306  }
2307  
2308  static void pnv_ics_resend(XICSFabric *xi)
2309  {
2310      PnvMachineState *pnv = PNV_MACHINE(xi);
2311      int i, j;
2312  
2313      for (i = 0; i < pnv->num_chips; i++) {
2314          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2315  
2316          ics_resend(&chip8->psi.ics);
2317  
2318          for (j = 0; j < chip8->num_phbs; j++) {
2319              PnvPHB *phb = chip8->phbs[j];
2320              PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2321  
2322              ics_resend(&phb3->lsis);
2323              ics_resend(ICS(&phb3->msis));
2324          }
2325      }
2326  }
2327  
2328  static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2329  {
2330      PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2331  
2332      return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2333  }
2334  
2335  static void pnv_pic_print_info(InterruptStatsProvider *obj,
2336                                 Monitor *mon)
2337  {
2338      PnvMachineState *pnv = PNV_MACHINE(obj);
2339      int i;
2340      CPUState *cs;
2341  
2342      CPU_FOREACH(cs) {
2343          PowerPCCPU *cpu = POWERPC_CPU(cs);
2344  
2345          /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2346          PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2347                                                             mon);
2348      }
2349  
2350      for (i = 0; i < pnv->num_chips; i++) {
2351          PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2352      }
2353  }
2354  
2355  static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2356                           uint8_t nvt_blk, uint32_t nvt_idx,
2357                           bool cam_ignore, uint8_t priority,
2358                           uint32_t logic_serv,
2359                           XiveTCTXMatch *match)
2360  {
2361      PnvMachineState *pnv = PNV_MACHINE(xfb);
2362      int total_count = 0;
2363      int i;
2364  
2365      for (i = 0; i < pnv->num_chips; i++) {
2366          Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2367          XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2368          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2369          int count;
2370  
2371          count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2372                                 priority, logic_serv, match);
2373  
2374          if (count < 0) {
2375              return count;
2376          }
2377  
2378          total_count += count;
2379      }
2380  
2381      return total_count;
2382  }
2383  
2384  static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2385                                  uint8_t nvt_blk, uint32_t nvt_idx,
2386                                  bool cam_ignore, uint8_t priority,
2387                                  uint32_t logic_serv,
2388                                  XiveTCTXMatch *match)
2389  {
2390      PnvMachineState *pnv = PNV_MACHINE(xfb);
2391      int total_count = 0;
2392      int i;
2393  
2394      for (i = 0; i < pnv->num_chips; i++) {
2395          Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2396          XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2397          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2398          int count;
2399  
2400          count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2401                                 priority, logic_serv, match);
2402  
2403          if (count < 0) {
2404              return count;
2405          }
2406  
2407          total_count += count;
2408      }
2409  
2410      return total_count;
2411  }
2412  
2413  static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2414  {
2415      MachineClass *mc = MACHINE_CLASS(oc);
2416      XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2417      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2418      static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2419  
2420      static GlobalProperty phb_compat[] = {
2421          { TYPE_PNV_PHB, "version", "3" },
2422          { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2423      };
2424  
2425      mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2426      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2427      compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2428  
2429      xic->icp_get = pnv_icp_get;
2430      xic->ics_get = pnv_ics_get;
2431      xic->ics_resend = pnv_ics_resend;
2432  
2433      pmc->compat = compat;
2434      pmc->compat_size = sizeof(compat);
2435  
2436      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2437  }
2438  
2439  static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2440  {
2441      MachineClass *mc = MACHINE_CLASS(oc);
2442      XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2443      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2444      static const char compat[] = "qemu,powernv9\0ibm,powernv";
2445  
2446      static GlobalProperty phb_compat[] = {
2447          { TYPE_PNV_PHB, "version", "4" },
2448          { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2449      };
2450  
2451      mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2452      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2453      compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2454  
2455      xfc->match_nvt = pnv_match_nvt;
2456  
2457      pmc->compat = compat;
2458      pmc->compat_size = sizeof(compat);
2459      pmc->dt_power_mgt = pnv_dt_power_mgt;
2460  
2461      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2462  }
2463  
2464  static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2465  {
2466      MachineClass *mc = MACHINE_CLASS(oc);
2467      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2468      XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2469      static const char compat[] = "qemu,powernv10\0ibm,powernv";
2470  
2471      static GlobalProperty phb_compat[] = {
2472          { TYPE_PNV_PHB, "version", "5" },
2473          { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2474      };
2475  
2476      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2477      compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2478  
2479      mc->alias = "powernv";
2480  
2481      pmc->compat = compat;
2482      pmc->compat_size = sizeof(compat);
2483      pmc->dt_power_mgt = pnv_dt_power_mgt;
2484  
2485      xfc->match_nvt = pnv10_xive_match_nvt;
2486  
2487      machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2488  }
2489  
2490  static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2491  {
2492      MachineClass *mc = MACHINE_CLASS(oc);
2493  
2494      pnv_machine_p10_common_class_init(oc, data);
2495      mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2496  }
2497  
2498  static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2499  {
2500      MachineClass *mc = MACHINE_CLASS(oc);
2501      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2502  
2503      pnv_machine_p10_common_class_init(oc, data);
2504      mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2505      pmc->i2c_init = pnv_rainier_i2c_init;
2506  }
2507  
2508  static bool pnv_machine_get_hb(Object *obj, Error **errp)
2509  {
2510      PnvMachineState *pnv = PNV_MACHINE(obj);
2511  
2512      return !!pnv->fw_load_addr;
2513  }
2514  
2515  static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2516  {
2517      PnvMachineState *pnv = PNV_MACHINE(obj);
2518  
2519      if (value) {
2520          pnv->fw_load_addr = 0x8000000;
2521      }
2522  }
2523  
2524  static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2525  {
2526      CPUPPCState *env = cpu_env(cs);
2527  
2528      cpu_synchronize_state(cs);
2529      ppc_cpu_do_system_reset(cs);
2530      if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2531          /*
2532           * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2533           * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2534           * (PPC_BIT(43)).
2535           */
2536          if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2537              warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2538              env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2539          }
2540      } else {
2541          /*
2542           * For non-powersave system resets, SRR1[42:45] are defined to be
2543           * implementation-dependent. The POWER9 User Manual specifies that
2544           * an external (SCOM driven, which may come from a BMC nmi command or
2545           * another CPU requesting a NMI IPI) system reset exception should be
2546           * 0b0010 (PPC_BIT(44)).
2547           */
2548          env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2549      }
2550  }
2551  
2552  static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2553  {
2554      CPUState *cs;
2555  
2556      CPU_FOREACH(cs) {
2557          async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2558      }
2559  }
2560  
2561  static void pnv_machine_class_init(ObjectClass *oc, void *data)
2562  {
2563      MachineClass *mc = MACHINE_CLASS(oc);
2564      InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2565      NMIClass *nc = NMI_CLASS(oc);
2566  
2567      mc->desc = "IBM PowerNV (Non-Virtualized)";
2568      mc->init = pnv_init;
2569      mc->reset = pnv_reset;
2570      mc->max_cpus = MAX_CPUS;
2571      /* Pnv provides a AHCI device for storage */
2572      mc->block_default_type = IF_IDE;
2573      mc->no_parallel = 1;
2574      mc->default_boot_order = NULL;
2575      /*
2576       * RAM defaults to less than 2048 for 32-bit hosts, and large
2577       * enough to fit the maximum initrd size at it's load address
2578       */
2579      mc->default_ram_size = 1 * GiB;
2580      mc->default_ram_id = "pnv.ram";
2581      ispc->print_info = pnv_pic_print_info;
2582      nc->nmi_monitor_handler = pnv_nmi;
2583  
2584      object_class_property_add_bool(oc, "hb-mode",
2585                                     pnv_machine_get_hb, pnv_machine_set_hb);
2586      object_class_property_set_description(oc, "hb-mode",
2587                                "Use a hostboot like boot loader");
2588  }
2589  
2590  #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2591      {                                             \
2592          .name          = type,                    \
2593          .class_init    = class_initfn,            \
2594          .parent        = TYPE_PNV8_CHIP,          \
2595      }
2596  
2597  #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2598      {                                             \
2599          .name          = type,                    \
2600          .class_init    = class_initfn,            \
2601          .parent        = TYPE_PNV9_CHIP,          \
2602      }
2603  
2604  #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2605      {                                              \
2606          .name          = type,                     \
2607          .class_init    = class_initfn,             \
2608          .parent        = TYPE_PNV10_CHIP,          \
2609      }
2610  
2611  static const TypeInfo types[] = {
2612      {
2613          .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2614          .parent        = MACHINE_TYPE_NAME("powernv10"),
2615          .class_init    = pnv_machine_p10_rainier_class_init,
2616      },
2617      {
2618          .name          = MACHINE_TYPE_NAME("powernv10"),
2619          .parent        = TYPE_PNV_MACHINE,
2620          .class_init    = pnv_machine_power10_class_init,
2621          .interfaces = (InterfaceInfo[]) {
2622              { TYPE_XIVE_FABRIC },
2623              { },
2624          },
2625      },
2626      {
2627          .name          = MACHINE_TYPE_NAME("powernv9"),
2628          .parent        = TYPE_PNV_MACHINE,
2629          .class_init    = pnv_machine_power9_class_init,
2630          .interfaces = (InterfaceInfo[]) {
2631              { TYPE_XIVE_FABRIC },
2632              { },
2633          },
2634      },
2635      {
2636          .name          = MACHINE_TYPE_NAME("powernv8"),
2637          .parent        = TYPE_PNV_MACHINE,
2638          .class_init    = pnv_machine_power8_class_init,
2639          .interfaces = (InterfaceInfo[]) {
2640              { TYPE_XICS_FABRIC },
2641              { },
2642          },
2643      },
2644      {
2645          .name          = TYPE_PNV_MACHINE,
2646          .parent        = TYPE_MACHINE,
2647          .abstract       = true,
2648          .instance_size = sizeof(PnvMachineState),
2649          .class_init    = pnv_machine_class_init,
2650          .class_size    = sizeof(PnvMachineClass),
2651          .interfaces = (InterfaceInfo[]) {
2652              { TYPE_INTERRUPT_STATS_PROVIDER },
2653              { TYPE_NMI },
2654              { },
2655          },
2656      },
2657      {
2658          .name          = TYPE_PNV_CHIP,
2659          .parent        = TYPE_SYS_BUS_DEVICE,
2660          .class_init    = pnv_chip_class_init,
2661          .instance_size = sizeof(PnvChip),
2662          .class_size    = sizeof(PnvChipClass),
2663          .abstract      = true,
2664      },
2665  
2666      /*
2667       * P10 chip and variants
2668       */
2669      {
2670          .name          = TYPE_PNV10_CHIP,
2671          .parent        = TYPE_PNV_CHIP,
2672          .instance_init = pnv_chip_power10_instance_init,
2673          .instance_size = sizeof(Pnv10Chip),
2674      },
2675      DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2676  
2677      /*
2678       * P9 chip and variants
2679       */
2680      {
2681          .name          = TYPE_PNV9_CHIP,
2682          .parent        = TYPE_PNV_CHIP,
2683          .instance_init = pnv_chip_power9_instance_init,
2684          .instance_size = sizeof(Pnv9Chip),
2685      },
2686      DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2687  
2688      /*
2689       * P8 chip and variants
2690       */
2691      {
2692          .name          = TYPE_PNV8_CHIP,
2693          .parent        = TYPE_PNV_CHIP,
2694          .instance_init = pnv_chip_power8_instance_init,
2695          .instance_size = sizeof(Pnv8Chip),
2696      },
2697      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2698      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2699      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2700                            pnv_chip_power8nvl_class_init),
2701  };
2702  
2703  DEFINE_TYPES(types)
2704