xref: /openbmc/qemu/hw/ppc/pnv.c (revision 4860af2c4fc4632c180ba902758f6a7f66ed9ac1)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define KERNEL_LOAD_ADDR        0x20000000
68 #define KERNEL_MAX_SIZE         (128 * MiB)
69 #define INITRD_LOAD_ADDR        0x28000000
70 #define INITRD_MAX_SIZE         (128 * MiB)
71 
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77     const char *core_type = object_class_get_name(object_class_by_name(s));
78     g_free(s);
79     return core_type;
80 }
81 
82 /*
83  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84  *     4 * 4 sockets * 12 cores * 8 threads = 1536
85  * Let's make it 2^11
86  */
87 #define MAX_CPUS                2048
88 
89 /*
90  * Memory nodes are created by hostboot, one for each range of memory
91  * that has a different "affinity". In practice, it means one range
92  * per chip.
93  */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96     char *mem_name;
97     uint64_t mem_reg_property[2];
98     int off;
99 
100     mem_reg_property[0] = cpu_to_be64(start);
101     mem_reg_property[1] = cpu_to_be64(size);
102 
103     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104     off = fdt_add_subnode(fdt, 0, mem_name);
105     g_free(mem_name);
106 
107     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                        sizeof(mem_reg_property))));
110     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112 
113 static int get_cpus_node(void *fdt)
114 {
115     int cpus_offset = fdt_path_offset(fdt, "/cpus");
116 
117     if (cpus_offset < 0) {
118         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119         if (cpus_offset) {
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122         }
123     }
124     _FDT(cpus_offset);
125     return cpus_offset;
126 }
127 
128 /*
129  * The PowerNV cores (and threads) need to use real HW ids and not an
130  * incremental index like it has been done on other platforms. This HW
131  * id is stored in the CPU PIR, it is used to create cpu nodes in the
132  * device tree, used in XSCOM to address cores and in interrupt
133  * servers.
134  */
135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137     PowerPCCPU *cpu = pc->threads[0];
138     CPUState *cs = CPU(cpu);
139     DeviceClass *dc = DEVICE_GET_CLASS(cs);
140     int smt_threads = CPU_CORE(pc)->nr_threads;
141     CPUPPCState *env = &cpu->env;
142     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t pir;
147     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148                        0xffffffff, 0xffffffff};
149     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150     uint32_t cpufreq = 1000000000;
151     uint32_t page_sizes_prop[64];
152     size_t page_sizes_prop_size;
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (ppc_has_spr(cpu, SPR_PURR)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
240     }
241     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
242                        servers_prop, sizeof(*servers_prop) * smt_threads)));
243 
244     return offset;
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
248                        uint32_t nr_threads)
249 {
250     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
251     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
252     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
253     char *name;
254     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
255     uint32_t irange[2], i, rsize;
256     uint64_t *reg;
257     int offset;
258 
259     irange[0] = cpu_to_be32(pir);
260     irange[1] = cpu_to_be32(nr_threads);
261 
262     rsize = sizeof(uint64_t) * 2 * nr_threads;
263     reg = g_malloc(rsize);
264     for (i = 0; i < nr_threads; i++) {
265         /* We know P8 PIR is linear with thread id */
266         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267         reg[i * 2 + 1] = cpu_to_be64(0x1000);
268     }
269 
270     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271     offset = fdt_add_subnode(fdt, 0, name);
272     _FDT(offset);
273     g_free(name);
274 
275     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277     _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                               "PowerPC-External-Interrupt-Presentation")));
279     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                        irange, sizeof(irange))));
282     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284     g_free(reg);
285 }
286 
287 /*
288  * Adds a PnvPHB to the chip on P8.
289  * Implemented here, like for defaults PHBs
290  */
291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292 {
293     Pnv8Chip *chip8 = PNV8_CHIP(chip);
294 
295     phb->chip = chip;
296 
297     chip8->phbs[chip8->num_phbs] = phb;
298     chip8->num_phbs++;
299     return chip;
300 }
301 
302 /*
303  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
304  * HTM is always enabled because TCG does implement HTM, it's just a
305  * degenerate implementation.
306  */
307 static const uint8_t pa_features_207[] = { 24, 0,
308                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
309                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
310                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
311                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
312 
313 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
314 {
315     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
316     int i;
317 
318     pnv_dt_xscom(chip, fdt, 0,
319                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
320                  cpu_to_be64(PNV_XSCOM_SIZE),
321                  compat, sizeof(compat));
322 
323     for (i = 0; i < chip->nr_cores; i++) {
324         PnvCore *pnv_core = chip->cores[i];
325         int offset;
326 
327         offset = pnv_dt_core(chip, pnv_core, fdt);
328 
329         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
330                            pa_features_207, sizeof(pa_features_207))));
331 
332         /* Interrupt Control Presenters (ICP). One per core. */
333         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
334     }
335 
336     if (chip->ram_size) {
337         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
338     }
339 }
340 
341 /*
342  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
343  */
344 static const uint8_t pa_features_300[] = { 66, 0,
345     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
346     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
347     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
348     /* 6: DS207 */
349     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
350     /* 16: Vector */
351     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
352     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
353     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
354     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
356     /* 32: LE atomic, 34: EBB + ext EBB */
357     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
358     /* 40: Radix MMU */
359     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
360     /* 42: PM, 44: PC RA, 46: SC vec'd */
361     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
362     /* 48: SIMD, 50: QP BFP, 52: String */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
364     /* 54: DecFP, 56: DecI, 58: SHA */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
366     /* 60: NM atomic, 62: RNG */
367     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
368 };
369 
370 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
371 {
372     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
373     int i;
374 
375     pnv_dt_xscom(chip, fdt, 0,
376                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
377                  cpu_to_be64(PNV9_XSCOM_SIZE),
378                  compat, sizeof(compat));
379 
380     for (i = 0; i < chip->nr_cores; i++) {
381         PnvCore *pnv_core = chip->cores[i];
382         int offset;
383 
384         offset = pnv_dt_core(chip, pnv_core, fdt);
385 
386         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
387                            pa_features_300, sizeof(pa_features_300))));
388     }
389 
390     if (chip->ram_size) {
391         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
392     }
393 
394     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
395 }
396 
397 /*
398  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
399  * always disables copy/paste.
400  */
401 static const uint8_t pa_features_31[] = { 74, 0,
402     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
403     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
404     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
405     /* 6: DS207 */
406     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
407     /* 16: Vector */
408     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
409     /* 18: Vec. Scalar, 20: Vec. XOR */
410     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
411     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
412     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
413     /* 32: LE atomic, 34: EBB + ext EBB */
414     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
415     /* 40: Radix MMU */
416     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
417     /* 42: PM, 44: PC RA, 46: SC vec'd */
418     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
419     /* 48: SIMD, 50: QP BFP, 52: String */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
421     /* 54: DecFP, 56: DecI, 58: SHA */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
423     /* 60: NM atomic, 62: RNG */
424     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
425     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
426     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
427     /* 72: [P]HASHST/[P]HASHCHK */
428     0x80, 0x00,                         /* 72 - 73 */
429 };
430 
431 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
432 {
433     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
434     int i;
435 
436     pnv_dt_xscom(chip, fdt, 0,
437                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
438                  cpu_to_be64(PNV10_XSCOM_SIZE),
439                  compat, sizeof(compat));
440 
441     for (i = 0; i < chip->nr_cores; i++) {
442         PnvCore *pnv_core = chip->cores[i];
443         int offset;
444 
445         offset = pnv_dt_core(chip, pnv_core, fdt);
446 
447         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
448                            pa_features_31, sizeof(pa_features_31))));
449     }
450 
451     if (chip->ram_size) {
452         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
453     }
454 
455     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
456 }
457 
458 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
459 {
460     uint32_t io_base = d->ioport_id;
461     uint32_t io_regs[] = {
462         cpu_to_be32(1),
463         cpu_to_be32(io_base),
464         cpu_to_be32(2)
465     };
466     char *name;
467     int node;
468 
469     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
470     node = fdt_add_subnode(fdt, lpc_off, name);
471     _FDT(node);
472     g_free(name);
473 
474     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
475     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
476 }
477 
478 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
479 {
480     const char compatible[] = "ns16550\0pnpPNP,501";
481     uint32_t io_base = d->ioport_id;
482     uint32_t io_regs[] = {
483         cpu_to_be32(1),
484         cpu_to_be32(io_base),
485         cpu_to_be32(8)
486     };
487     uint32_t irq;
488     char *name;
489     int node;
490 
491     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
492 
493     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
494     node = fdt_add_subnode(fdt, lpc_off, name);
495     _FDT(node);
496     g_free(name);
497 
498     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
499     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
500                       sizeof(compatible))));
501 
502     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
503     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
504     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
505     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
506                            fdt_get_phandle(fdt, lpc_off))));
507 
508     /* This is needed by Linux */
509     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
510 }
511 
512 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
513 {
514     const char compatible[] = "bt\0ipmi-bt";
515     uint32_t io_base;
516     uint32_t io_regs[] = {
517         cpu_to_be32(1),
518         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
519         cpu_to_be32(3)
520     };
521     uint32_t irq;
522     char *name;
523     int node;
524 
525     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
526     io_regs[1] = cpu_to_be32(io_base);
527 
528     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
529 
530     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
531     node = fdt_add_subnode(fdt, lpc_off, name);
532     _FDT(node);
533     g_free(name);
534 
535     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
536     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
537                       sizeof(compatible))));
538 
539     /* Mark it as reserved to avoid Linux trying to claim it */
540     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
541     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
542     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
543                            fdt_get_phandle(fdt, lpc_off))));
544 }
545 
546 typedef struct ForeachPopulateArgs {
547     void *fdt;
548     int offset;
549 } ForeachPopulateArgs;
550 
551 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
552 {
553     ForeachPopulateArgs *args = opaque;
554     ISADevice *d = ISA_DEVICE(dev);
555 
556     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
557         pnv_dt_rtc(d, args->fdt, args->offset);
558     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
559         pnv_dt_serial(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
561         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
562     } else {
563         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
564                      d->ioport_id);
565     }
566 
567     return 0;
568 }
569 
570 /*
571  * The default LPC bus of a multichip system is on chip 0. It's
572  * recognized by the firmware (skiboot) using a "primary" property.
573  */
574 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
575 {
576     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
577     ForeachPopulateArgs args = {
578         .fdt = fdt,
579         .offset = isa_offset,
580     };
581     uint32_t phandle;
582 
583     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
584 
585     phandle = qemu_fdt_alloc_phandle(fdt);
586     assert(phandle > 0);
587     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
588 
589     /*
590      * ISA devices are not necessarily parented to the ISA bus so we
591      * can not use object_child_foreach()
592      */
593     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
594                        &args);
595 }
596 
597 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
598 {
599     int off;
600 
601     off = fdt_add_subnode(fdt, 0, "ibm,opal");
602     off = fdt_add_subnode(fdt, off, "power-mgt");
603 
604     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
605 }
606 
607 static void *pnv_dt_create(MachineState *machine)
608 {
609     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
610     PnvMachineState *pnv = PNV_MACHINE(machine);
611     void *fdt;
612     char *buf;
613     int off;
614     int i;
615 
616     fdt = g_malloc0(FDT_MAX_SIZE);
617     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
618 
619     /* /qemu node */
620     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
621 
622     /* Root node */
623     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
624     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
625     _FDT((fdt_setprop_string(fdt, 0, "model",
626                              "IBM PowerNV (emulated by qemu)")));
627     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
628 
629     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
630     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
631     if (qemu_uuid_set) {
632         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
633     }
634     g_free(buf);
635 
636     off = fdt_add_subnode(fdt, 0, "chosen");
637     if (machine->kernel_cmdline) {
638         _FDT((fdt_setprop_string(fdt, off, "bootargs",
639                                  machine->kernel_cmdline)));
640     }
641 
642     if (pnv->initrd_size) {
643         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
644         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
645 
646         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
647                                &start_prop, sizeof(start_prop))));
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
649                                &end_prop, sizeof(end_prop))));
650     }
651 
652     /* Populate device tree for each chip */
653     for (i = 0; i < pnv->num_chips; i++) {
654         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
655     }
656 
657     /* Populate ISA devices on chip 0 */
658     pnv_dt_isa(pnv, fdt);
659 
660     if (pnv->bmc) {
661         pnv_dt_bmc_sensors(pnv->bmc, fdt);
662     }
663 
664     /* Create an extra node for power management on machines that support it */
665     if (pmc->dt_power_mgt) {
666         pmc->dt_power_mgt(pnv, fdt);
667     }
668 
669     return fdt;
670 }
671 
672 static void pnv_powerdown_notify(Notifier *n, void *opaque)
673 {
674     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
675 
676     if (pnv->bmc) {
677         pnv_bmc_powerdown(pnv->bmc);
678     }
679 }
680 
681 static void pnv_reset(MachineState *machine, ShutdownCause reason)
682 {
683     PnvMachineState *pnv = PNV_MACHINE(machine);
684     IPMIBmc *bmc;
685     void *fdt;
686 
687     qemu_devices_reset(reason);
688 
689     /*
690      * The machine should provide by default an internal BMC simulator.
691      * If not, try to use the BMC device that was provided on the command
692      * line.
693      */
694     bmc = pnv_bmc_find(&error_fatal);
695     if (!pnv->bmc) {
696         if (!bmc) {
697             if (!qtest_enabled()) {
698                 warn_report("machine has no BMC device. Use '-device "
699                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
700                             "to define one");
701             }
702         } else {
703             pnv_bmc_set_pnor(bmc, pnv->pnor);
704             pnv->bmc = bmc;
705         }
706     }
707 
708     fdt = pnv_dt_create(machine);
709 
710     /* Pack resulting tree */
711     _FDT((fdt_pack(fdt)));
712 
713     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
714     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
715 
716     /*
717      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
718      * the existing machine->fdt to avoid leaking it during
719      * a reset.
720      */
721     g_free(machine->fdt);
722     machine->fdt = fdt;
723 }
724 
725 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
726 {
727     Pnv8Chip *chip8 = PNV8_CHIP(chip);
728     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
729 
730     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
731     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
732 }
733 
734 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
735 {
736     Pnv8Chip *chip8 = PNV8_CHIP(chip);
737     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
738 
739     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
740     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
741 }
742 
743 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
744 {
745     Pnv9Chip *chip9 = PNV9_CHIP(chip);
746     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
747 
748     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
749     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
750 }
751 
752 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
753 {
754     Pnv10Chip *chip10 = PNV10_CHIP(chip);
755     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
756 
757     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
758     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
759 }
760 
761 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
762 {
763     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
764 }
765 
766 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
767 {
768     Pnv8Chip *chip8 = PNV8_CHIP(chip);
769     int i;
770 
771     ics_pic_print_info(&chip8->psi.ics, buf);
772 
773     for (i = 0; i < chip8->num_phbs; i++) {
774         PnvPHB *phb = chip8->phbs[i];
775         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
776 
777         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
778         ics_pic_print_info(&phb3->lsis, buf);
779     }
780 }
781 
782 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
783 {
784     GString *buf = opaque;
785     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
786 
787     if (!phb) {
788         return 0;
789     }
790 
791     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
792 
793     return 0;
794 }
795 
796 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
797 {
798     Pnv9Chip *chip9 = PNV9_CHIP(chip);
799 
800     pnv_xive_pic_print_info(&chip9->xive, buf);
801     pnv_psi_pic_print_info(&chip9->psi, buf);
802     object_child_foreach_recursive(OBJECT(chip),
803                          pnv_chip_power9_pic_print_info_child, buf);
804 }
805 
806 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
807                                                 uint32_t core_id)
808 {
809     return PNV_XSCOM_EX_BASE(core_id);
810 }
811 
812 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
813                                                 uint32_t core_id)
814 {
815     return PNV9_XSCOM_EC_BASE(core_id);
816 }
817 
818 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
819                                                  uint32_t core_id)
820 {
821     return PNV10_XSCOM_EC_BASE(core_id);
822 }
823 
824 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
825 {
826     PowerPCCPUClass *ppc_default =
827         POWERPC_CPU_CLASS(object_class_by_name(default_type));
828     PowerPCCPUClass *ppc =
829         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
830 
831     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
832 }
833 
834 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
835 {
836     ISADevice *dev = isa_new("isa-ipmi-bt");
837 
838     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
839     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
840     isa_realize_and_unref(dev, bus, &error_fatal);
841 }
842 
843 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
844 {
845     Pnv10Chip *chip10 = PNV10_CHIP(chip);
846 
847     pnv_xive2_pic_print_info(&chip10->xive, buf);
848     pnv_psi_pic_print_info(&chip10->psi, buf);
849     object_child_foreach_recursive(OBJECT(chip),
850                          pnv_chip_power9_pic_print_info_child, buf);
851 }
852 
853 /* Always give the first 1GB to chip 0 else we won't boot */
854 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
855 {
856     MachineState *machine = MACHINE(pnv);
857     uint64_t ram_per_chip;
858 
859     assert(machine->ram_size >= 1 * GiB);
860 
861     ram_per_chip = machine->ram_size / pnv->num_chips;
862     if (ram_per_chip >= 1 * GiB) {
863         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
864     }
865 
866     assert(pnv->num_chips > 1);
867 
868     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
869     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
870 }
871 
872 static void pnv_init(MachineState *machine)
873 {
874     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
875     PnvMachineState *pnv = PNV_MACHINE(machine);
876     MachineClass *mc = MACHINE_GET_CLASS(machine);
877     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
878     char *fw_filename;
879     long fw_size;
880     uint64_t chip_ram_start = 0;
881     int i;
882     char *chip_typename;
883     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
884     DeviceState *dev;
885 
886     if (kvm_enabled()) {
887         error_report("machine %s does not support the KVM accelerator",
888                      mc->name);
889         exit(EXIT_FAILURE);
890     }
891 
892     /* allocate RAM */
893     if (machine->ram_size < mc->default_ram_size) {
894         char *sz = size_to_str(mc->default_ram_size);
895         error_report("Invalid RAM size, should be bigger than %s", sz);
896         g_free(sz);
897         exit(EXIT_FAILURE);
898     }
899     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
900 
901     /*
902      * Create our simple PNOR device
903      */
904     dev = qdev_new(TYPE_PNV_PNOR);
905     if (pnor) {
906         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
907     }
908     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
909     pnv->pnor = PNV_PNOR(dev);
910 
911     /* load skiboot firmware  */
912     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
913     if (!fw_filename) {
914         error_report("Could not find OPAL firmware '%s'", bios_name);
915         exit(1);
916     }
917 
918     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
919     if (fw_size < 0) {
920         error_report("Could not load OPAL firmware '%s'", fw_filename);
921         exit(1);
922     }
923     g_free(fw_filename);
924 
925     /* load kernel */
926     if (machine->kernel_filename) {
927         long kernel_size;
928 
929         kernel_size = load_image_targphys(machine->kernel_filename,
930                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
931         if (kernel_size < 0) {
932             error_report("Could not load kernel '%s'",
933                          machine->kernel_filename);
934             exit(1);
935         }
936     }
937 
938     /* load initrd */
939     if (machine->initrd_filename) {
940         pnv->initrd_base = INITRD_LOAD_ADDR;
941         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
942                                   pnv->initrd_base, INITRD_MAX_SIZE);
943         if (pnv->initrd_size < 0) {
944             error_report("Could not load initial ram disk '%s'",
945                          machine->initrd_filename);
946             exit(1);
947         }
948     }
949 
950     /* MSIs are supported on this platform */
951     msi_nonbroken = true;
952 
953     /*
954      * Check compatibility of the specified CPU with the machine
955      * default.
956      */
957     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
958         error_report("invalid CPU model '%s' for %s machine",
959                      machine->cpu_type, mc->name);
960         exit(1);
961     }
962 
963     /* Create the processor chips */
964     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
965     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
966                                     i, machine->cpu_type);
967     if (!object_class_by_name(chip_typename)) {
968         error_report("invalid chip model '%.*s' for %s machine",
969                      i, machine->cpu_type, mc->name);
970         exit(1);
971     }
972 
973     pnv->num_chips =
974         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
975 
976     if (machine->smp.threads > 8) {
977         error_report("Cannot support more than 8 threads/core "
978                      "on a powernv machine");
979         exit(1);
980     }
981     if (!is_power_of_2(machine->smp.threads)) {
982         error_report("Cannot support %d threads/core on a powernv"
983                      "machine because it must be a power of 2",
984                      machine->smp.threads);
985         exit(1);
986     }
987     /*
988      * TODO: should we decide on how many chips we can create based
989      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
990      */
991     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
992         error_report("invalid number of chips: '%d'", pnv->num_chips);
993         error_printf(
994             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
995         exit(1);
996     }
997 
998     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
999     for (i = 0; i < pnv->num_chips; i++) {
1000         char chip_name[32];
1001         Object *chip = OBJECT(qdev_new(chip_typename));
1002         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1003 
1004         pnv->chips[i] = PNV_CHIP(chip);
1005 
1006         /* Distribute RAM among the chips  */
1007         object_property_set_int(chip, "ram-start", chip_ram_start,
1008                                 &error_fatal);
1009         object_property_set_int(chip, "ram-size", chip_ram_size,
1010                                 &error_fatal);
1011         chip_ram_start += chip_ram_size;
1012 
1013         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1014         object_property_add_child(OBJECT(pnv), chip_name, chip);
1015         object_property_set_int(chip, "chip-id", i, &error_fatal);
1016         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1017                                 &error_fatal);
1018         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1019                                 &error_fatal);
1020         /*
1021          * The POWER8 machine use the XICS interrupt interface.
1022          * Propagate the XICS fabric to the chip and its controllers.
1023          */
1024         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1025             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1026         }
1027         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1028             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1029                                      &error_abort);
1030         }
1031         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1032     }
1033     g_free(chip_typename);
1034 
1035     /* Instantiate ISA bus on chip 0 */
1036     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1037 
1038     /* Create serial port */
1039     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1040 
1041     /* Create an RTC ISA device too */
1042     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1043 
1044     /*
1045      * Create the machine BMC simulator and the IPMI BT device for
1046      * communication with the BMC
1047      */
1048     if (defaults_enabled()) {
1049         pnv->bmc = pnv_bmc_create(pnv->pnor);
1050         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1051     }
1052 
1053     /*
1054      * The PNOR is mapped on the LPC FW address space by the BMC.
1055      * Since we can not reach the remote BMC machine with LPC memops,
1056      * map it always for now.
1057      */
1058     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1059                                 &pnv->pnor->mmio);
1060 
1061     /*
1062      * OpenPOWER systems use a IPMI SEL Event message to notify the
1063      * host to powerdown
1064      */
1065     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1066     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1067 
1068     /*
1069      * Create/Connect any machine-specific I2C devices
1070      */
1071     if (pmc->i2c_init) {
1072         pmc->i2c_init(pnv);
1073     }
1074 }
1075 
1076 /*
1077  *    0:21  Reserved - Read as zeros
1078  *   22:24  Chip ID
1079  *   25:28  Core number
1080  *   29:31  Thread ID
1081  */
1082 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1083                                 uint32_t thread_id)
1084 {
1085     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1086 }
1087 
1088 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1089                                         Error **errp)
1090 {
1091     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1092     Error *local_err = NULL;
1093     Object *obj;
1094     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1095 
1096     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1097     if (local_err) {
1098         error_propagate(errp, local_err);
1099         return;
1100     }
1101 
1102     pnv_cpu->intc = obj;
1103 }
1104 
1105 
1106 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1107 {
1108     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1109 
1110     icp_reset(ICP(pnv_cpu->intc));
1111 }
1112 
1113 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1114 {
1115     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1116 
1117     icp_destroy(ICP(pnv_cpu->intc));
1118     pnv_cpu->intc = NULL;
1119 }
1120 
1121 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1122                                             GString *buf)
1123 {
1124     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1125 }
1126 
1127 /*
1128  *    0:48  Reserved - Read as zeroes
1129  *   49:52  Node ID
1130  *   53:55  Chip ID
1131  *   56     Reserved - Read as zero
1132  *   57:61  Core number
1133  *   62:63  Thread ID
1134  *
1135  * We only care about the lower bits. uint32_t is fine for the moment.
1136  */
1137 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1138                                 uint32_t thread_id)
1139 {
1140     if (chip->nr_threads == 8) {
1141         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1142                (thread_id >> 1);
1143     } else {
1144         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1145     }
1146 }
1147 
1148 /*
1149  *    0:48  Reserved - Read as zeroes
1150  *   49:52  Node ID
1151  *   53:55  Chip ID
1152  *   56     Reserved - Read as zero
1153  *   57:59  Quad ID
1154  *   60     Core Chiplet Pair ID
1155  *   61:63  Thread/Core Chiplet ID t0-t2
1156  *
1157  * We only care about the lower bits. uint32_t is fine for the moment.
1158  */
1159 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1160                                  uint32_t thread_id)
1161 {
1162     if (chip->nr_threads == 8) {
1163         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1164                ((core_id % 2) << 3) | thread_id;
1165     } else {
1166         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1167     }
1168 }
1169 
1170 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1171                                         Error **errp)
1172 {
1173     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1174     Error *local_err = NULL;
1175     Object *obj;
1176     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1177 
1178     /*
1179      * The core creates its interrupt presenter but the XIVE interrupt
1180      * controller object is initialized afterwards. Hopefully, it's
1181      * only used at runtime.
1182      */
1183     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1184                            &local_err);
1185     if (local_err) {
1186         error_propagate(errp, local_err);
1187         return;
1188     }
1189 
1190     pnv_cpu->intc = obj;
1191 }
1192 
1193 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1194 {
1195     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1196 
1197     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1198 }
1199 
1200 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1201 {
1202     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1203 
1204     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1205     pnv_cpu->intc = NULL;
1206 }
1207 
1208 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1209                                             GString *buf)
1210 {
1211     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1212 }
1213 
1214 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1215                                         Error **errp)
1216 {
1217     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1218     Error *local_err = NULL;
1219     Object *obj;
1220     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1221 
1222     /*
1223      * The core creates its interrupt presenter but the XIVE2 interrupt
1224      * controller object is initialized afterwards. Hopefully, it's
1225      * only used at runtime.
1226      */
1227     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1228                            &local_err);
1229     if (local_err) {
1230         error_propagate(errp, local_err);
1231         return;
1232     }
1233 
1234     pnv_cpu->intc = obj;
1235 }
1236 
1237 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1238 {
1239     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1240 
1241     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1242 }
1243 
1244 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1245 {
1246     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1247 
1248     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1249     pnv_cpu->intc = NULL;
1250 }
1251 
1252 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1253                                              GString *buf)
1254 {
1255     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1256 }
1257 
1258 /*
1259  * Allowed core identifiers on a POWER8 Processor Chip :
1260  *
1261  * <EX0 reserved>
1262  *  EX1  - Venice only
1263  *  EX2  - Venice only
1264  *  EX3  - Venice only
1265  *  EX4
1266  *  EX5
1267  *  EX6
1268  * <EX7,8 reserved> <reserved>
1269  *  EX9  - Venice only
1270  *  EX10 - Venice only
1271  *  EX11 - Venice only
1272  *  EX12
1273  *  EX13
1274  *  EX14
1275  * <EX15 reserved>
1276  */
1277 #define POWER8E_CORE_MASK  (0x7070ull)
1278 #define POWER8_CORE_MASK   (0x7e7eull)
1279 
1280 /*
1281  * POWER9 has 24 cores, ids starting at 0x0
1282  */
1283 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1284 
1285 
1286 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1287 
1288 static void pnv_chip_power8_instance_init(Object *obj)
1289 {
1290     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1291     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1292     int i;
1293 
1294     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1295                              (Object **)&chip8->xics,
1296                              object_property_allow_set_link,
1297                              OBJ_PROP_LINK_STRONG);
1298 
1299     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1300 
1301     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1302 
1303     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1304 
1305     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1306 
1307     if (defaults_enabled()) {
1308         chip8->num_phbs = pcc->num_phbs;
1309 
1310         for (i = 0; i < chip8->num_phbs; i++) {
1311             Object *phb = object_new(TYPE_PNV_PHB);
1312 
1313             /*
1314              * We need the chip to parent the PHB to allow the DT
1315              * to build correctly (via pnv_xscom_dt()).
1316              *
1317              * TODO: the PHB should be parented by a PEC device that, at
1318              * this moment, is not modelled powernv8/phb3.
1319              */
1320             object_property_add_child(obj, "phb[*]", phb);
1321             chip8->phbs[i] = PNV_PHB(phb);
1322         }
1323     }
1324 
1325 }
1326 
1327 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1328  {
1329     PnvChip *chip = PNV_CHIP(chip8);
1330     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1331     int i, j;
1332     char *name;
1333 
1334     name = g_strdup_printf("icp-%x", chip->chip_id);
1335     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1336     g_free(name);
1337     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1338                                 &chip8->icp_mmio);
1339 
1340     /* Map the ICP registers for each thread */
1341     for (i = 0; i < chip->nr_cores; i++) {
1342         PnvCore *pnv_core = chip->cores[i];
1343         int core_hwid = CPU_CORE(pnv_core)->core_id;
1344 
1345         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1346             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1347             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1348 
1349             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1350                                         &icp->mmio);
1351         }
1352     }
1353 }
1354 
1355 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1356 {
1357     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1358     PnvChip *chip = PNV_CHIP(dev);
1359     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1360     Pnv8Psi *psi8 = &chip8->psi;
1361     Error *local_err = NULL;
1362     int i;
1363 
1364     assert(chip8->xics);
1365 
1366     /* XSCOM bridge is first */
1367     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1368 
1369     pcc->parent_realize(dev, &local_err);
1370     if (local_err) {
1371         error_propagate(errp, local_err);
1372         return;
1373     }
1374 
1375     /* Processor Service Interface (PSI) Host Bridge */
1376     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1377                             &error_fatal);
1378     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1379                              OBJECT(chip8->xics), &error_abort);
1380     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1381         return;
1382     }
1383     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1384                             &PNV_PSI(psi8)->xscom_regs);
1385 
1386     /* Create LPC controller */
1387     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1388     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1389 
1390     chip->fw_mr = &chip8->lpc.isa_fw;
1391     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1392                                             (uint64_t) PNV_XSCOM_BASE(chip),
1393                                             PNV_XSCOM_LPC_BASE);
1394 
1395     /*
1396      * Interrupt Management Area. This is the memory region holding
1397      * all the Interrupt Control Presenter (ICP) registers
1398      */
1399     pnv_chip_icp_realize(chip8, &local_err);
1400     if (local_err) {
1401         error_propagate(errp, local_err);
1402         return;
1403     }
1404 
1405     /* Create the simplified OCC model */
1406     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1407         return;
1408     }
1409     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1410     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1411                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1412 
1413     /* OCC SRAM model */
1414     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1415                                 &chip8->occ.sram_regs);
1416 
1417     /* HOMER */
1418     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1419                              &error_abort);
1420     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1421         return;
1422     }
1423     /* Homer Xscom region */
1424     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1425 
1426     /* Homer mmio region */
1427     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1428                                 &chip8->homer.regs);
1429 
1430     /* PHB controllers */
1431     for (i = 0; i < chip8->num_phbs; i++) {
1432         PnvPHB *phb = chip8->phbs[i];
1433 
1434         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1435         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1436                                 &error_fatal);
1437         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1438                                  &error_fatal);
1439         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1440             return;
1441         }
1442     }
1443 }
1444 
1445 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1446 {
1447     addr &= (PNV_XSCOM_SIZE - 1);
1448     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1449 }
1450 
1451 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1452 {
1453     DeviceClass *dc = DEVICE_CLASS(klass);
1454     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1455 
1456     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1457     k->cores_mask = POWER8E_CORE_MASK;
1458     k->num_phbs = 3;
1459     k->chip_pir = pnv_chip_pir_p8;
1460     k->intc_create = pnv_chip_power8_intc_create;
1461     k->intc_reset = pnv_chip_power8_intc_reset;
1462     k->intc_destroy = pnv_chip_power8_intc_destroy;
1463     k->intc_print_info = pnv_chip_power8_intc_print_info;
1464     k->isa_create = pnv_chip_power8_isa_create;
1465     k->dt_populate = pnv_chip_power8_dt_populate;
1466     k->pic_print_info = pnv_chip_power8_pic_print_info;
1467     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1468     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1469     dc->desc = "PowerNV Chip POWER8E";
1470 
1471     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1472                                     &k->parent_realize);
1473 }
1474 
1475 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1476 {
1477     DeviceClass *dc = DEVICE_CLASS(klass);
1478     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1479 
1480     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1481     k->cores_mask = POWER8_CORE_MASK;
1482     k->num_phbs = 3;
1483     k->chip_pir = pnv_chip_pir_p8;
1484     k->intc_create = pnv_chip_power8_intc_create;
1485     k->intc_reset = pnv_chip_power8_intc_reset;
1486     k->intc_destroy = pnv_chip_power8_intc_destroy;
1487     k->intc_print_info = pnv_chip_power8_intc_print_info;
1488     k->isa_create = pnv_chip_power8_isa_create;
1489     k->dt_populate = pnv_chip_power8_dt_populate;
1490     k->pic_print_info = pnv_chip_power8_pic_print_info;
1491     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1492     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1493     dc->desc = "PowerNV Chip POWER8";
1494 
1495     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1496                                     &k->parent_realize);
1497 }
1498 
1499 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1500 {
1501     DeviceClass *dc = DEVICE_CLASS(klass);
1502     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1503 
1504     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1505     k->cores_mask = POWER8_CORE_MASK;
1506     k->num_phbs = 4;
1507     k->chip_pir = pnv_chip_pir_p8;
1508     k->intc_create = pnv_chip_power8_intc_create;
1509     k->intc_reset = pnv_chip_power8_intc_reset;
1510     k->intc_destroy = pnv_chip_power8_intc_destroy;
1511     k->intc_print_info = pnv_chip_power8_intc_print_info;
1512     k->isa_create = pnv_chip_power8nvl_isa_create;
1513     k->dt_populate = pnv_chip_power8_dt_populate;
1514     k->pic_print_info = pnv_chip_power8_pic_print_info;
1515     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1516     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1517     dc->desc = "PowerNV Chip POWER8NVL";
1518 
1519     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1520                                     &k->parent_realize);
1521 }
1522 
1523 static void pnv_chip_power9_instance_init(Object *obj)
1524 {
1525     PnvChip *chip = PNV_CHIP(obj);
1526     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1527     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1528     int i;
1529 
1530     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1531     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1532                               "xive-fabric");
1533 
1534     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1535 
1536     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1537 
1538     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1539 
1540     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1541 
1542     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1543 
1544     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1545 
1546     /* Number of PECs is the chip default */
1547     chip->num_pecs = pcc->num_pecs;
1548 
1549     for (i = 0; i < chip->num_pecs; i++) {
1550         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1551                                 TYPE_PNV_PHB4_PEC);
1552     }
1553 
1554     for (i = 0; i < pcc->i2c_num_engines; i++) {
1555         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1556     }
1557 }
1558 
1559 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1560                                       PnvCore *pnv_core,
1561                                       const char *type)
1562 {
1563     char eq_name[32];
1564     int core_id = CPU_CORE(pnv_core)->core_id;
1565 
1566     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1567     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1568                                        sizeof(*eq), type,
1569                                        &error_fatal, NULL);
1570 
1571     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1572     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1573 }
1574 
1575 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1576 {
1577     PnvChip *chip = PNV_CHIP(chip9);
1578     int i;
1579 
1580     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1581     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1582 
1583     for (i = 0; i < chip9->nr_quads; i++) {
1584         PnvQuad *eq = &chip9->quads[i];
1585 
1586         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1587                                   PNV_QUAD_TYPE_NAME("power9"));
1588 
1589         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1590                                 &eq->xscom_regs);
1591     }
1592 }
1593 
1594 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1595 {
1596     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1597     int i;
1598 
1599     for (i = 0; i < chip->num_pecs; i++) {
1600         PnvPhb4PecState *pec = &chip9->pecs[i];
1601         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1602         uint32_t pec_nest_base;
1603         uint32_t pec_pci_base;
1604 
1605         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1606         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1607                                 &error_fatal);
1608         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1609                                  &error_fatal);
1610         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1611             return;
1612         }
1613 
1614         pec_nest_base = pecc->xscom_nest_base(pec);
1615         pec_pci_base = pecc->xscom_pci_base(pec);
1616 
1617         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1618         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1619     }
1620 }
1621 
1622 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1623 {
1624     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1625     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1626     PnvChip *chip = PNV_CHIP(dev);
1627     Pnv9Psi *psi9 = &chip9->psi;
1628     Error *local_err = NULL;
1629     int i;
1630 
1631     /* XSCOM bridge is first */
1632     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1633 
1634     pcc->parent_realize(dev, &local_err);
1635     if (local_err) {
1636         error_propagate(errp, local_err);
1637         return;
1638     }
1639 
1640     pnv_chip_quad_realize(chip9, &local_err);
1641     if (local_err) {
1642         error_propagate(errp, local_err);
1643         return;
1644     }
1645 
1646     /* XIVE interrupt controller (POWER9) */
1647     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1648                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1649     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1650                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1651     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1652                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1653     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1654                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1655     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1656                              &error_abort);
1657     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1658         return;
1659     }
1660     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1661                             &chip9->xive.xscom_regs);
1662 
1663     /* Processor Service Interface (PSI) Host Bridge */
1664     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1665                             &error_fatal);
1666     /* This is the only device with 4k ESB pages */
1667     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1668                             &error_fatal);
1669     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1670         return;
1671     }
1672     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1673                             &PNV_PSI(psi9)->xscom_regs);
1674 
1675     /* LPC */
1676     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1677         return;
1678     }
1679     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1680                                 &chip9->lpc.xscom_regs);
1681 
1682     chip->fw_mr = &chip9->lpc.isa_fw;
1683     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1684                                             (uint64_t) PNV9_LPCM_BASE(chip));
1685 
1686     /* ChipTOD */
1687     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1688                              chip->chip_id == 0, &error_abort);
1689     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1690                              chip->chip_id == 1, &error_abort);
1691     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1692                              &error_abort);
1693     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1694         return;
1695     }
1696     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1697                             &chip9->chiptod.xscom_regs);
1698 
1699     /* Create the simplified OCC model */
1700     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1701         return;
1702     }
1703     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1704     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1705                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1706 
1707     /* OCC SRAM model */
1708     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1709                                 &chip9->occ.sram_regs);
1710 
1711     /* SBE */
1712     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1713         return;
1714     }
1715     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1716                             &chip9->sbe.xscom_ctrl_regs);
1717     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1718                             &chip9->sbe.xscom_mbox_regs);
1719     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1720                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1721 
1722     /* HOMER */
1723     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1724                              &error_abort);
1725     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1726         return;
1727     }
1728     /* Homer Xscom region */
1729     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1730 
1731     /* Homer mmio region */
1732     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1733                                 &chip9->homer.regs);
1734 
1735     /* PEC PHBs */
1736     pnv_chip_power9_pec_realize(chip, &local_err);
1737     if (local_err) {
1738         error_propagate(errp, local_err);
1739         return;
1740     }
1741 
1742     /*
1743      * I2C
1744      */
1745     for (i = 0; i < pcc->i2c_num_engines; i++) {
1746         Object *obj =  OBJECT(&chip9->i2c[i]);
1747 
1748         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1749         object_property_set_int(obj, "num-busses",
1750                                 pcc->i2c_ports_per_engine[i],
1751                                 &error_fatal);
1752         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1753         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1754             return;
1755         }
1756         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1757                                 (chip9->i2c[i].engine - 1) *
1758                                         PNV9_XSCOM_I2CM_SIZE,
1759                                 &chip9->i2c[i].xscom_regs);
1760         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1761                               qdev_get_gpio_in(DEVICE(psi9),
1762                                                PSIHB9_IRQ_SBE_I2C));
1763     }
1764 }
1765 
1766 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1767 {
1768     addr &= (PNV9_XSCOM_SIZE - 1);
1769     return addr >> 3;
1770 }
1771 
1772 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1773 {
1774     DeviceClass *dc = DEVICE_CLASS(klass);
1775     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1776     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1777 
1778     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1779     k->cores_mask = POWER9_CORE_MASK;
1780     k->chip_pir = pnv_chip_pir_p9;
1781     k->intc_create = pnv_chip_power9_intc_create;
1782     k->intc_reset = pnv_chip_power9_intc_reset;
1783     k->intc_destroy = pnv_chip_power9_intc_destroy;
1784     k->intc_print_info = pnv_chip_power9_intc_print_info;
1785     k->isa_create = pnv_chip_power9_isa_create;
1786     k->dt_populate = pnv_chip_power9_dt_populate;
1787     k->pic_print_info = pnv_chip_power9_pic_print_info;
1788     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1789     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1790     dc->desc = "PowerNV Chip POWER9";
1791     k->num_pecs = PNV9_CHIP_MAX_PEC;
1792     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1793     k->i2c_ports_per_engine = i2c_ports_per_engine;
1794 
1795     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1796                                     &k->parent_realize);
1797 }
1798 
1799 static void pnv_chip_power10_instance_init(Object *obj)
1800 {
1801     PnvChip *chip = PNV_CHIP(obj);
1802     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1803     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1804     int i;
1805 
1806     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1807     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1808                               "xive-fabric");
1809     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1810     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1811     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1812                             TYPE_PNV10_CHIPTOD);
1813     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1814     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1815     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1816     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1817                             TYPE_PNV_N1_CHIPLET);
1818 
1819     chip->num_pecs = pcc->num_pecs;
1820 
1821     for (i = 0; i < chip->num_pecs; i++) {
1822         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1823                                 TYPE_PNV_PHB5_PEC);
1824     }
1825 
1826     for (i = 0; i < pcc->i2c_num_engines; i++) {
1827         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1828     }
1829 }
1830 
1831 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1832 {
1833     PnvChip *chip = PNV_CHIP(chip10);
1834     int i;
1835 
1836     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1837     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1838 
1839     for (i = 0; i < chip10->nr_quads; i++) {
1840         PnvQuad *eq = &chip10->quads[i];
1841 
1842         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1843                                   PNV_QUAD_TYPE_NAME("power10"));
1844 
1845         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1846                                 &eq->xscom_regs);
1847 
1848         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1849                                 &eq->xscom_qme_regs);
1850     }
1851 }
1852 
1853 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1854 {
1855     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1856     int i;
1857 
1858     for (i = 0; i < chip->num_pecs; i++) {
1859         PnvPhb4PecState *pec = &chip10->pecs[i];
1860         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1861         uint32_t pec_nest_base;
1862         uint32_t pec_pci_base;
1863 
1864         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1865         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1866                                 &error_fatal);
1867         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1868                                  &error_fatal);
1869         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1870             return;
1871         }
1872 
1873         pec_nest_base = pecc->xscom_nest_base(pec);
1874         pec_pci_base = pecc->xscom_pci_base(pec);
1875 
1876         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1877         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1878     }
1879 }
1880 
1881 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1882 {
1883     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1884     PnvChip *chip = PNV_CHIP(dev);
1885     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1886     Error *local_err = NULL;
1887     int i;
1888 
1889     /* XSCOM bridge is first */
1890     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1891 
1892     pcc->parent_realize(dev, &local_err);
1893     if (local_err) {
1894         error_propagate(errp, local_err);
1895         return;
1896     }
1897 
1898     pnv_chip_power10_quad_realize(chip10, &local_err);
1899     if (local_err) {
1900         error_propagate(errp, local_err);
1901         return;
1902     }
1903 
1904     /* XIVE2 interrupt controller (POWER10) */
1905     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1906                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1907     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1908                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1909     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1910                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1911     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1912                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1913     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1914                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1915     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1916                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1917     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1918                              &error_abort);
1919     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1920         return;
1921     }
1922     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1923                             &chip10->xive.xscom_regs);
1924 
1925     /* Processor Service Interface (PSI) Host Bridge */
1926     object_property_set_int(OBJECT(&chip10->psi), "bar",
1927                             PNV10_PSIHB_BASE(chip), &error_fatal);
1928     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1929     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1930                             &error_fatal);
1931     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1932         return;
1933     }
1934     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1935                             &PNV_PSI(&chip10->psi)->xscom_regs);
1936 
1937     /* LPC */
1938     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1939         return;
1940     }
1941     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1942                                 &chip10->lpc.xscom_regs);
1943 
1944     chip->fw_mr = &chip10->lpc.isa_fw;
1945     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1946                                             (uint64_t) PNV10_LPCM_BASE(chip));
1947 
1948     /* ChipTOD */
1949     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1950                              chip->chip_id == 0, &error_abort);
1951     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1952                              chip->chip_id == 1, &error_abort);
1953     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1954                              &error_abort);
1955     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1956         return;
1957     }
1958     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1959                             &chip10->chiptod.xscom_regs);
1960 
1961     /* Create the simplified OCC model */
1962     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1963         return;
1964     }
1965     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1966                             &chip10->occ.xscom_regs);
1967     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1968                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1969 
1970     /* OCC SRAM model */
1971     memory_region_add_subregion(get_system_memory(),
1972                                 PNV10_OCC_SENSOR_BASE(chip),
1973                                 &chip10->occ.sram_regs);
1974 
1975     /* SBE */
1976     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1977         return;
1978     }
1979     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1980                             &chip10->sbe.xscom_ctrl_regs);
1981     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1982                             &chip10->sbe.xscom_mbox_regs);
1983     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1984                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1985 
1986     /* HOMER */
1987     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1988                              &error_abort);
1989     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1990         return;
1991     }
1992     /* Homer Xscom region */
1993     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1994                             &chip10->homer.pba_regs);
1995 
1996     /* Homer mmio region */
1997     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1998                                 &chip10->homer.regs);
1999 
2000     /* N1 chiplet */
2001     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2002         return;
2003     }
2004     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2005              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2006 
2007     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2008                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2009 
2010     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2011                            &chip10->n1_chiplet.xscom_pb_es_mr);
2012 
2013     /* PHBs */
2014     pnv_chip_power10_phb_realize(chip, &local_err);
2015     if (local_err) {
2016         error_propagate(errp, local_err);
2017         return;
2018     }
2019 
2020 
2021     /*
2022      * I2C
2023      */
2024     for (i = 0; i < pcc->i2c_num_engines; i++) {
2025         Object *obj =  OBJECT(&chip10->i2c[i]);
2026 
2027         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2028         object_property_set_int(obj, "num-busses",
2029                                 pcc->i2c_ports_per_engine[i],
2030                                 &error_fatal);
2031         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2032         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2033             return;
2034         }
2035         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2036                                 (chip10->i2c[i].engine - 1) *
2037                                         PNV10_XSCOM_I2CM_SIZE,
2038                                 &chip10->i2c[i].xscom_regs);
2039         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2040                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2041                                                PSIHB9_IRQ_SBE_I2C));
2042     }
2043 
2044 }
2045 
2046 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2047 {
2048     int i;
2049     for (i = 0; i < pnv->num_chips; i++) {
2050         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2051 
2052         /*
2053          * Add a PCA9552 I2C device for PCIe hotplug control
2054          * to engine 2, bus 1, address 0x63
2055          */
2056         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2057                                                 "pca9552", 0x63);
2058 
2059         /*
2060          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2061          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2062          * after hypervisor code sets a SLOTx_EN pin high.
2063          */
2064         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2065         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2066         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2067         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2068         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2069 
2070         /*
2071          * Add a PCA9554 I2C device for cable card presence detection
2072          * to engine 2, bus 1, address 0x25
2073          */
2074         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2075     }
2076 }
2077 
2078 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2079 {
2080     addr &= (PNV10_XSCOM_SIZE - 1);
2081     return addr >> 3;
2082 }
2083 
2084 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2085 {
2086     DeviceClass *dc = DEVICE_CLASS(klass);
2087     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2088     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2089 
2090     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2091     k->cores_mask = POWER10_CORE_MASK;
2092     k->chip_pir = pnv_chip_pir_p10;
2093     k->intc_create = pnv_chip_power10_intc_create;
2094     k->intc_reset = pnv_chip_power10_intc_reset;
2095     k->intc_destroy = pnv_chip_power10_intc_destroy;
2096     k->intc_print_info = pnv_chip_power10_intc_print_info;
2097     k->isa_create = pnv_chip_power10_isa_create;
2098     k->dt_populate = pnv_chip_power10_dt_populate;
2099     k->pic_print_info = pnv_chip_power10_pic_print_info;
2100     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2101     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2102     dc->desc = "PowerNV Chip POWER10";
2103     k->num_pecs = PNV10_CHIP_MAX_PEC;
2104     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2105     k->i2c_ports_per_engine = i2c_ports_per_engine;
2106 
2107     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2108                                     &k->parent_realize);
2109 }
2110 
2111 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2112 {
2113     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2114     int cores_max;
2115 
2116     /*
2117      * No custom mask for this chip, let's use the default one from *
2118      * the chip class
2119      */
2120     if (!chip->cores_mask) {
2121         chip->cores_mask = pcc->cores_mask;
2122     }
2123 
2124     /* filter alien core ids ! some are reserved */
2125     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2126         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2127                    chip->cores_mask);
2128         return;
2129     }
2130     chip->cores_mask &= pcc->cores_mask;
2131 
2132     /* now that we have a sane layout, let check the number of cores */
2133     cores_max = ctpop64(chip->cores_mask);
2134     if (chip->nr_cores > cores_max) {
2135         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2136                    cores_max);
2137         return;
2138     }
2139 }
2140 
2141 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2142 {
2143     Error *error = NULL;
2144     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2145     const char *typename = pnv_chip_core_typename(chip);
2146     int i, core_hwid;
2147     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2148 
2149     if (!object_class_by_name(typename)) {
2150         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2151         return;
2152     }
2153 
2154     /* Cores */
2155     pnv_chip_core_sanitize(chip, &error);
2156     if (error) {
2157         error_propagate(errp, error);
2158         return;
2159     }
2160 
2161     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2162 
2163     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2164              && (i < chip->nr_cores); core_hwid++) {
2165         char core_name[32];
2166         PnvCore *pnv_core;
2167         uint64_t xscom_core_base;
2168 
2169         if (!(chip->cores_mask & (1ull << core_hwid))) {
2170             continue;
2171         }
2172 
2173         pnv_core = PNV_CORE(object_new(typename));
2174 
2175         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2176         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2177         chip->cores[i] = pnv_core;
2178         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2179                                 chip->nr_threads, &error_fatal);
2180         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2181                                 core_hwid, &error_fatal);
2182         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2183                                 &error_fatal);
2184         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2185                                 &error_fatal);
2186         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2187                                  &error_abort);
2188         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2189 
2190         /* Each core has an XSCOM MMIO region */
2191         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2192 
2193         pnv_xscom_add_subregion(chip, xscom_core_base,
2194                                 &pnv_core->xscom_regs);
2195         i++;
2196     }
2197 }
2198 
2199 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2200 {
2201     PnvChip *chip = PNV_CHIP(dev);
2202     Error *error = NULL;
2203 
2204     /* Cores */
2205     pnv_chip_core_realize(chip, &error);
2206     if (error) {
2207         error_propagate(errp, error);
2208         return;
2209     }
2210 }
2211 
2212 static Property pnv_chip_properties[] = {
2213     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2214     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2215     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2216     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2217     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2218     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2219     DEFINE_PROP_END_OF_LIST(),
2220 };
2221 
2222 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2223 {
2224     DeviceClass *dc = DEVICE_CLASS(klass);
2225 
2226     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2227     dc->realize = pnv_chip_realize;
2228     device_class_set_props(dc, pnv_chip_properties);
2229     dc->desc = "PowerNV Chip";
2230 }
2231 
2232 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2233 {
2234     int i;
2235 
2236     for (i = 0; i < chip->nr_cores; i++) {
2237         PnvCore *pc = chip->cores[i];
2238         CPUCore *cc = CPU_CORE(pc);
2239 
2240         if (cc->core_id == core_id) {
2241             return pc;
2242         }
2243     }
2244     return NULL;
2245 }
2246 
2247 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2248 {
2249     int i, j;
2250 
2251     for (i = 0; i < chip->nr_cores; i++) {
2252         PnvCore *pc = chip->cores[i];
2253         CPUCore *cc = CPU_CORE(pc);
2254 
2255         for (j = 0; j < cc->nr_threads; j++) {
2256             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2257                 return pc->threads[j];
2258             }
2259         }
2260     }
2261     return NULL;
2262 }
2263 
2264 static void pnv_chip_foreach_cpu(PnvChip *chip,
2265                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2266                    void *opaque)
2267 {
2268     int i, j;
2269 
2270     for (i = 0; i < chip->nr_cores; i++) {
2271         PnvCore *pc = chip->cores[i];
2272 
2273         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2274             fn(chip, pc->threads[j], opaque);
2275         }
2276     }
2277 }
2278 
2279 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2280 {
2281     PnvMachineState *pnv = PNV_MACHINE(xi);
2282     int i, j;
2283 
2284     for (i = 0; i < pnv->num_chips; i++) {
2285         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2286 
2287         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2288             return &chip8->psi.ics;
2289         }
2290 
2291         for (j = 0; j < chip8->num_phbs; j++) {
2292             PnvPHB *phb = chip8->phbs[j];
2293             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2294 
2295             if (ics_valid_irq(&phb3->lsis, irq)) {
2296                 return &phb3->lsis;
2297             }
2298 
2299             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2300                 return ICS(&phb3->msis);
2301             }
2302         }
2303     }
2304     return NULL;
2305 }
2306 
2307 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2308 {
2309     int i;
2310 
2311     for (i = 0; i < pnv->num_chips; i++) {
2312         PnvChip *chip = pnv->chips[i];
2313         if (chip->chip_id == chip_id) {
2314             return chip;
2315         }
2316     }
2317     return NULL;
2318 }
2319 
2320 static void pnv_ics_resend(XICSFabric *xi)
2321 {
2322     PnvMachineState *pnv = PNV_MACHINE(xi);
2323     int i, j;
2324 
2325     for (i = 0; i < pnv->num_chips; i++) {
2326         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2327 
2328         ics_resend(&chip8->psi.ics);
2329 
2330         for (j = 0; j < chip8->num_phbs; j++) {
2331             PnvPHB *phb = chip8->phbs[j];
2332             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2333 
2334             ics_resend(&phb3->lsis);
2335             ics_resend(ICS(&phb3->msis));
2336         }
2337     }
2338 }
2339 
2340 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2341 {
2342     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2343 
2344     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2345 }
2346 
2347 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2348                                     void *opaque)
2349 {
2350     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2351 }
2352 
2353 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2354 {
2355     PnvMachineState *pnv = PNV_MACHINE(obj);
2356     int i;
2357 
2358     for (i = 0; i < pnv->num_chips; i++) {
2359         PnvChip *chip = pnv->chips[i];
2360 
2361         /* First CPU presenters */
2362         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2363 
2364         /* Then other devices, PHB, PSI, XIVE */
2365         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2366     }
2367 }
2368 
2369 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2370                          uint8_t nvt_blk, uint32_t nvt_idx,
2371                          bool cam_ignore, uint8_t priority,
2372                          uint32_t logic_serv,
2373                          XiveTCTXMatch *match)
2374 {
2375     PnvMachineState *pnv = PNV_MACHINE(xfb);
2376     int total_count = 0;
2377     int i;
2378 
2379     for (i = 0; i < pnv->num_chips; i++) {
2380         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2381         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2382         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2383         int count;
2384 
2385         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2386                                priority, logic_serv, match);
2387 
2388         if (count < 0) {
2389             return count;
2390         }
2391 
2392         total_count += count;
2393     }
2394 
2395     return total_count;
2396 }
2397 
2398 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2399                                 uint8_t nvt_blk, uint32_t nvt_idx,
2400                                 bool cam_ignore, uint8_t priority,
2401                                 uint32_t logic_serv,
2402                                 XiveTCTXMatch *match)
2403 {
2404     PnvMachineState *pnv = PNV_MACHINE(xfb);
2405     int total_count = 0;
2406     int i;
2407 
2408     for (i = 0; i < pnv->num_chips; i++) {
2409         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2410         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2411         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2412         int count;
2413 
2414         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2415                                priority, logic_serv, match);
2416 
2417         if (count < 0) {
2418             return count;
2419         }
2420 
2421         total_count += count;
2422     }
2423 
2424     return total_count;
2425 }
2426 
2427 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2428 {
2429     MachineClass *mc = MACHINE_CLASS(oc);
2430     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2431     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2432     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2433 
2434     static GlobalProperty phb_compat[] = {
2435         { TYPE_PNV_PHB, "version", "3" },
2436         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2437     };
2438 
2439     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2440     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2441     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2442 
2443     xic->icp_get = pnv_icp_get;
2444     xic->ics_get = pnv_ics_get;
2445     xic->ics_resend = pnv_ics_resend;
2446 
2447     pmc->compat = compat;
2448     pmc->compat_size = sizeof(compat);
2449 
2450     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2451 }
2452 
2453 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2454 {
2455     MachineClass *mc = MACHINE_CLASS(oc);
2456     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2457     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2458     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2459 
2460     static GlobalProperty phb_compat[] = {
2461         { TYPE_PNV_PHB, "version", "4" },
2462         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2463     };
2464 
2465     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2466     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2467     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2468 
2469     xfc->match_nvt = pnv_match_nvt;
2470 
2471     pmc->compat = compat;
2472     pmc->compat_size = sizeof(compat);
2473     pmc->dt_power_mgt = pnv_dt_power_mgt;
2474 
2475     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2476 }
2477 
2478 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2479 {
2480     MachineClass *mc = MACHINE_CLASS(oc);
2481     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2482     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2483     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2484 
2485     static GlobalProperty phb_compat[] = {
2486         { TYPE_PNV_PHB, "version", "5" },
2487         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2488     };
2489 
2490     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2491     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2492 
2493     mc->alias = "powernv";
2494 
2495     pmc->compat = compat;
2496     pmc->compat_size = sizeof(compat);
2497     pmc->dt_power_mgt = pnv_dt_power_mgt;
2498 
2499     xfc->match_nvt = pnv10_xive_match_nvt;
2500 
2501     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2502 }
2503 
2504 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2505 {
2506     MachineClass *mc = MACHINE_CLASS(oc);
2507 
2508     pnv_machine_p10_common_class_init(oc, data);
2509     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2510 }
2511 
2512 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2513 {
2514     MachineClass *mc = MACHINE_CLASS(oc);
2515     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2516 
2517     pnv_machine_p10_common_class_init(oc, data);
2518     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2519     pmc->i2c_init = pnv_rainier_i2c_init;
2520 }
2521 
2522 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2523 {
2524     PnvMachineState *pnv = PNV_MACHINE(obj);
2525 
2526     return !!pnv->fw_load_addr;
2527 }
2528 
2529 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2530 {
2531     PnvMachineState *pnv = PNV_MACHINE(obj);
2532 
2533     if (value) {
2534         pnv->fw_load_addr = 0x8000000;
2535     }
2536 }
2537 
2538 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2539 {
2540     CPUPPCState *env = cpu_env(cs);
2541 
2542     cpu_synchronize_state(cs);
2543     ppc_cpu_do_system_reset(cs);
2544     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2545         /*
2546          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2547          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2548          * (PPC_BIT(43)).
2549          */
2550         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2551             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2552             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2553         }
2554     } else {
2555         /*
2556          * For non-powersave system resets, SRR1[42:45] are defined to be
2557          * implementation-dependent. The POWER9 User Manual specifies that
2558          * an external (SCOM driven, which may come from a BMC nmi command or
2559          * another CPU requesting a NMI IPI) system reset exception should be
2560          * 0b0010 (PPC_BIT(44)).
2561          */
2562         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2563     }
2564 }
2565 
2566 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2567 {
2568     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2569 }
2570 
2571 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2572 {
2573     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2574     int i;
2575 
2576     for (i = 0; i < pnv->num_chips; i++) {
2577         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2578     }
2579 }
2580 
2581 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2582 {
2583     MachineClass *mc = MACHINE_CLASS(oc);
2584     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2585     NMIClass *nc = NMI_CLASS(oc);
2586 
2587     mc->desc = "IBM PowerNV (Non-Virtualized)";
2588     mc->init = pnv_init;
2589     mc->reset = pnv_reset;
2590     mc->max_cpus = MAX_CPUS;
2591     /* Pnv provides a AHCI device for storage */
2592     mc->block_default_type = IF_IDE;
2593     mc->no_parallel = 1;
2594     mc->default_boot_order = NULL;
2595     /*
2596      * RAM defaults to less than 2048 for 32-bit hosts, and large
2597      * enough to fit the maximum initrd size at it's load address
2598      */
2599     mc->default_ram_size = 1 * GiB;
2600     mc->default_ram_id = "pnv.ram";
2601     ispc->print_info = pnv_pic_print_info;
2602     nc->nmi_monitor_handler = pnv_nmi;
2603 
2604     object_class_property_add_bool(oc, "hb-mode",
2605                                    pnv_machine_get_hb, pnv_machine_set_hb);
2606     object_class_property_set_description(oc, "hb-mode",
2607                               "Use a hostboot like boot loader");
2608 }
2609 
2610 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2611     {                                             \
2612         .name          = type,                    \
2613         .class_init    = class_initfn,            \
2614         .parent        = TYPE_PNV8_CHIP,          \
2615     }
2616 
2617 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2618     {                                             \
2619         .name          = type,                    \
2620         .class_init    = class_initfn,            \
2621         .parent        = TYPE_PNV9_CHIP,          \
2622     }
2623 
2624 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2625     {                                              \
2626         .name          = type,                     \
2627         .class_init    = class_initfn,             \
2628         .parent        = TYPE_PNV10_CHIP,          \
2629     }
2630 
2631 static const TypeInfo types[] = {
2632     {
2633         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2634         .parent        = MACHINE_TYPE_NAME("powernv10"),
2635         .class_init    = pnv_machine_p10_rainier_class_init,
2636     },
2637     {
2638         .name          = MACHINE_TYPE_NAME("powernv10"),
2639         .parent        = TYPE_PNV_MACHINE,
2640         .class_init    = pnv_machine_power10_class_init,
2641         .interfaces = (InterfaceInfo[]) {
2642             { TYPE_XIVE_FABRIC },
2643             { },
2644         },
2645     },
2646     {
2647         .name          = MACHINE_TYPE_NAME("powernv9"),
2648         .parent        = TYPE_PNV_MACHINE,
2649         .class_init    = pnv_machine_power9_class_init,
2650         .interfaces = (InterfaceInfo[]) {
2651             { TYPE_XIVE_FABRIC },
2652             { },
2653         },
2654     },
2655     {
2656         .name          = MACHINE_TYPE_NAME("powernv8"),
2657         .parent        = TYPE_PNV_MACHINE,
2658         .class_init    = pnv_machine_power8_class_init,
2659         .interfaces = (InterfaceInfo[]) {
2660             { TYPE_XICS_FABRIC },
2661             { },
2662         },
2663     },
2664     {
2665         .name          = TYPE_PNV_MACHINE,
2666         .parent        = TYPE_MACHINE,
2667         .abstract       = true,
2668         .instance_size = sizeof(PnvMachineState),
2669         .class_init    = pnv_machine_class_init,
2670         .class_size    = sizeof(PnvMachineClass),
2671         .interfaces = (InterfaceInfo[]) {
2672             { TYPE_INTERRUPT_STATS_PROVIDER },
2673             { TYPE_NMI },
2674             { },
2675         },
2676     },
2677     {
2678         .name          = TYPE_PNV_CHIP,
2679         .parent        = TYPE_SYS_BUS_DEVICE,
2680         .class_init    = pnv_chip_class_init,
2681         .instance_size = sizeof(PnvChip),
2682         .class_size    = sizeof(PnvChipClass),
2683         .abstract      = true,
2684     },
2685 
2686     /*
2687      * P10 chip and variants
2688      */
2689     {
2690         .name          = TYPE_PNV10_CHIP,
2691         .parent        = TYPE_PNV_CHIP,
2692         .instance_init = pnv_chip_power10_instance_init,
2693         .instance_size = sizeof(Pnv10Chip),
2694     },
2695     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2696 
2697     /*
2698      * P9 chip and variants
2699      */
2700     {
2701         .name          = TYPE_PNV9_CHIP,
2702         .parent        = TYPE_PNV_CHIP,
2703         .instance_init = pnv_chip_power9_instance_init,
2704         .instance_size = sizeof(Pnv9Chip),
2705     },
2706     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2707 
2708     /*
2709      * P8 chip and variants
2710      */
2711     {
2712         .name          = TYPE_PNV8_CHIP,
2713         .parent        = TYPE_PNV_CHIP,
2714         .instance_init = pnv_chip_power8_instance_init,
2715         .instance_size = sizeof(Pnv8Chip),
2716     },
2717     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2718     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2719     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2720                           pnv_chip_power8nvl_class_init),
2721 };
2722 
2723 DEFINE_TYPES(types)
2724