xref: /openbmc/qemu/hw/ppc/pnv.c (revision 4836b45510aa84da52a29bf5a23794f71a29d98b)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 #include "qapi/error.h"
23 #include "sysemu/sysemu.h"
24 #include "sysemu/numa.h"
25 #include "sysemu/cpus.h"
26 #include "hw/hw.h"
27 #include "target/ppc/cpu.h"
28 #include "qemu/log.h"
29 #include "hw/ppc/fdt.h"
30 #include "hw/ppc/ppc.h"
31 #include "hw/ppc/pnv.h"
32 #include "hw/ppc/pnv_core.h"
33 #include "hw/loader.h"
34 #include "exec/address-spaces.h"
35 #include "qapi/visitor.h"
36 #include "monitor/monitor.h"
37 #include "hw/intc/intc.h"
38 #include "hw/ipmi/ipmi.h"
39 #include "target/ppc/mmu-hash64.h"
40 
41 #include "hw/ppc/xics.h"
42 #include "hw/ppc/pnv_xscom.h"
43 
44 #include "hw/isa/isa.h"
45 #include "hw/char/serial.h"
46 #include "hw/timer/mc146818rtc.h"
47 
48 #include <libfdt.h>
49 
50 #define FDT_MAX_SIZE            (1 * MiB)
51 
52 #define FW_FILE_NAME            "skiboot.lid"
53 #define FW_LOAD_ADDR            0x0
54 #define FW_MAX_SIZE             (4 * MiB)
55 
56 #define KERNEL_LOAD_ADDR        0x20000000
57 #define KERNEL_MAX_SIZE         (256 * MiB)
58 #define INITRD_LOAD_ADDR        0x60000000
59 #define INITRD_MAX_SIZE         (256 * MiB)
60 
61 static const char *pnv_chip_core_typename(const PnvChip *o)
62 {
63     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
64     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
65     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
66     const char *core_type = object_class_get_name(object_class_by_name(s));
67     g_free(s);
68     return core_type;
69 }
70 
71 /*
72  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
73  *     4 * 4 sockets * 12 cores * 8 threads = 1536
74  * Let's make it 2^11
75  */
76 #define MAX_CPUS                2048
77 
78 /*
79  * Memory nodes are created by hostboot, one for each range of memory
80  * that has a different "affinity". In practice, it means one range
81  * per chip.
82  */
83 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
84 {
85     char *mem_name;
86     uint64_t mem_reg_property[2];
87     int off;
88 
89     mem_reg_property[0] = cpu_to_be64(start);
90     mem_reg_property[1] = cpu_to_be64(size);
91 
92     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
93     off = fdt_add_subnode(fdt, 0, mem_name);
94     g_free(mem_name);
95 
96     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
97     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
98                        sizeof(mem_reg_property))));
99     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
100 }
101 
102 static int get_cpus_node(void *fdt)
103 {
104     int cpus_offset = fdt_path_offset(fdt, "/cpus");
105 
106     if (cpus_offset < 0) {
107         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
108         if (cpus_offset) {
109             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
110             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
111         }
112     }
113     _FDT(cpus_offset);
114     return cpus_offset;
115 }
116 
117 /*
118  * The PowerNV cores (and threads) need to use real HW ids and not an
119  * incremental index like it has been done on other platforms. This HW
120  * id is stored in the CPU PIR, it is used to create cpu nodes in the
121  * device tree, used in XSCOM to address cores and in interrupt
122  * servers.
123  */
124 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
125 {
126     PowerPCCPU *cpu = pc->threads[0];
127     CPUState *cs = CPU(cpu);
128     DeviceClass *dc = DEVICE_GET_CLASS(cs);
129     int smt_threads = CPU_CORE(pc)->nr_threads;
130     CPUPPCState *env = &cpu->env;
131     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
132     uint32_t servers_prop[smt_threads];
133     int i;
134     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
135                        0xffffffff, 0xffffffff};
136     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
137     uint32_t cpufreq = 1000000000;
138     uint32_t page_sizes_prop[64];
139     size_t page_sizes_prop_size;
140     const uint8_t pa_features[] = { 24, 0,
141                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
142                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
143                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
144                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
145     int offset;
146     char *nodename;
147     int cpus_offset = get_cpus_node(fdt);
148 
149     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
150     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
151     _FDT(offset);
152     g_free(nodename);
153 
154     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
155 
156     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
157     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
158     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
161     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
162                             env->dcache_line_size)));
163     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
164                             env->dcache_line_size)));
165     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
166                             env->icache_line_size)));
167     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
168                             env->icache_line_size)));
169 
170     if (pcc->l1_dcache_size) {
171         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
172                                pcc->l1_dcache_size)));
173     } else {
174         warn_report("Unknown L1 dcache size for cpu");
175     }
176     if (pcc->l1_icache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
178                                pcc->l1_icache_size)));
179     } else {
180         warn_report("Unknown L1 icache size for cpu");
181     }
182 
183     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
184     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
185     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
186     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
187     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
188 
189     if (env->spr_cb[SPR_PURR].oea_read) {
190         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
191     }
192 
193     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
194         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
195                            segs, sizeof(segs))));
196     }
197 
198     /* Advertise VMX/VSX (vector extensions) if available
199      *   0 / no property == no vector extensions
200      *   1               == VMX / Altivec available
201      *   2               == VSX available */
202     if (env->insns_flags & PPC_ALTIVEC) {
203         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
204 
205         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
206     }
207 
208     /* Advertise DFP (Decimal Floating Point) if available
209      *   0 / no property == no DFP
210      *   1               == DFP available */
211     if (env->insns_flags2 & PPC2_DFP) {
212         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
213     }
214 
215     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
216                                                       sizeof(page_sizes_prop));
217     if (page_sizes_prop_size) {
218         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
219                            page_sizes_prop, page_sizes_prop_size)));
220     }
221 
222     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
223                        pa_features, sizeof(pa_features))));
224 
225     /* Build interrupt servers properties */
226     for (i = 0; i < smt_threads; i++) {
227         servers_prop[i] = cpu_to_be32(pc->pir + i);
228     }
229     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230                        servers_prop, sizeof(servers_prop))));
231 }
232 
233 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
234                        uint32_t nr_threads)
235 {
236     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
237     char *name;
238     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
239     uint32_t irange[2], i, rsize;
240     uint64_t *reg;
241     int offset;
242 
243     irange[0] = cpu_to_be32(pir);
244     irange[1] = cpu_to_be32(nr_threads);
245 
246     rsize = sizeof(uint64_t) * 2 * nr_threads;
247     reg = g_malloc(rsize);
248     for (i = 0; i < nr_threads; i++) {
249         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
250         reg[i * 2 + 1] = cpu_to_be64(0x1000);
251     }
252 
253     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
254     offset = fdt_add_subnode(fdt, 0, name);
255     _FDT(offset);
256     g_free(name);
257 
258     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
259     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
260     _FDT((fdt_setprop_string(fdt, offset, "device_type",
261                               "PowerPC-External-Interrupt-Presentation")));
262     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
263     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
264                        irange, sizeof(irange))));
265     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
266     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
267     g_free(reg);
268 }
269 
270 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
271 {
272     const char *typename = pnv_chip_core_typename(chip);
273     size_t typesize = object_type_get_instance_size(typename);
274     int i;
275 
276     pnv_dt_xscom(chip, fdt, 0);
277 
278     for (i = 0; i < chip->nr_cores; i++) {
279         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
280 
281         pnv_dt_core(chip, pnv_core, fdt);
282 
283         /* Interrupt Control Presenters (ICP). One per core. */
284         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
285     }
286 
287     if (chip->ram_size) {
288         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
289     }
290 }
291 
292 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
293 {
294     const char *typename = pnv_chip_core_typename(chip);
295     size_t typesize = object_type_get_instance_size(typename);
296     int i;
297 
298     pnv_dt_xscom(chip, fdt, 0);
299 
300     for (i = 0; i < chip->nr_cores; i++) {
301         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
302 
303         pnv_dt_core(chip, pnv_core, fdt);
304     }
305 
306     if (chip->ram_size) {
307         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
308     }
309 }
310 
311 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
312 {
313     uint32_t io_base = d->ioport_id;
314     uint32_t io_regs[] = {
315         cpu_to_be32(1),
316         cpu_to_be32(io_base),
317         cpu_to_be32(2)
318     };
319     char *name;
320     int node;
321 
322     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
323     node = fdt_add_subnode(fdt, lpc_off, name);
324     _FDT(node);
325     g_free(name);
326 
327     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
328     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
329 }
330 
331 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
332 {
333     const char compatible[] = "ns16550\0pnpPNP,501";
334     uint32_t io_base = d->ioport_id;
335     uint32_t io_regs[] = {
336         cpu_to_be32(1),
337         cpu_to_be32(io_base),
338         cpu_to_be32(8)
339     };
340     char *name;
341     int node;
342 
343     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
344     node = fdt_add_subnode(fdt, lpc_off, name);
345     _FDT(node);
346     g_free(name);
347 
348     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
349     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
350                       sizeof(compatible))));
351 
352     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
353     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
354     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
355     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
356                            fdt_get_phandle(fdt, lpc_off))));
357 
358     /* This is needed by Linux */
359     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
360 }
361 
362 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
363 {
364     const char compatible[] = "bt\0ipmi-bt";
365     uint32_t io_base;
366     uint32_t io_regs[] = {
367         cpu_to_be32(1),
368         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
369         cpu_to_be32(3)
370     };
371     uint32_t irq;
372     char *name;
373     int node;
374 
375     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
376     io_regs[1] = cpu_to_be32(io_base);
377 
378     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
379 
380     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
381     node = fdt_add_subnode(fdt, lpc_off, name);
382     _FDT(node);
383     g_free(name);
384 
385     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
386     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
387                       sizeof(compatible))));
388 
389     /* Mark it as reserved to avoid Linux trying to claim it */
390     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
391     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
392     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
393                            fdt_get_phandle(fdt, lpc_off))));
394 }
395 
396 typedef struct ForeachPopulateArgs {
397     void *fdt;
398     int offset;
399 } ForeachPopulateArgs;
400 
401 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
402 {
403     ForeachPopulateArgs *args = opaque;
404     ISADevice *d = ISA_DEVICE(dev);
405 
406     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
407         pnv_dt_rtc(d, args->fdt, args->offset);
408     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
409         pnv_dt_serial(d, args->fdt, args->offset);
410     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
411         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
412     } else {
413         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
414                      d->ioport_id);
415     }
416 
417     return 0;
418 }
419 
420 static int pnv_chip_isa_offset(PnvChip *chip, void *fdt)
421 {
422     char *name;
423     int offset;
424 
425     name = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
426                            (uint64_t) PNV_XSCOM_BASE(chip), PNV_XSCOM_LPC_BASE);
427     offset = fdt_path_offset(fdt, name);
428     g_free(name);
429     return offset;
430 }
431 
432 /* The default LPC bus of a multichip system is on chip 0. It's
433  * recognized by the firmware (skiboot) using a "primary" property.
434  */
435 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
436 {
437     int isa_offset = pnv_chip_isa_offset(pnv->chips[0], fdt);
438     ForeachPopulateArgs args = {
439         .fdt = fdt,
440         .offset = isa_offset,
441     };
442 
443     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
444 
445     /* ISA devices are not necessarily parented to the ISA bus so we
446      * can not use object_child_foreach() */
447     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
448                        &args);
449 }
450 
451 static void *pnv_dt_create(MachineState *machine)
452 {
453     const char plat_compat[] = "qemu,powernv\0ibm,powernv";
454     PnvMachineState *pnv = PNV_MACHINE(machine);
455     void *fdt;
456     char *buf;
457     int off;
458     int i;
459 
460     fdt = g_malloc0(FDT_MAX_SIZE);
461     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
462 
463     /* Root node */
464     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
465     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
466     _FDT((fdt_setprop_string(fdt, 0, "model",
467                              "IBM PowerNV (emulated by qemu)")));
468     _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat,
469                       sizeof(plat_compat))));
470 
471     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
472     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
473     if (qemu_uuid_set) {
474         _FDT((fdt_property_string(fdt, "system-id", buf)));
475     }
476     g_free(buf);
477 
478     off = fdt_add_subnode(fdt, 0, "chosen");
479     if (machine->kernel_cmdline) {
480         _FDT((fdt_setprop_string(fdt, off, "bootargs",
481                                  machine->kernel_cmdline)));
482     }
483 
484     if (pnv->initrd_size) {
485         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
486         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
487 
488         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
489                                &start_prop, sizeof(start_prop))));
490         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
491                                &end_prop, sizeof(end_prop))));
492     }
493 
494     /* Populate device tree for each chip */
495     for (i = 0; i < pnv->num_chips; i++) {
496         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
497     }
498 
499     /* Populate ISA devices on chip 0 */
500     pnv_dt_isa(pnv, fdt);
501 
502     if (pnv->bmc) {
503         pnv_dt_bmc_sensors(pnv->bmc, fdt);
504     }
505 
506     return fdt;
507 }
508 
509 static void pnv_powerdown_notify(Notifier *n, void *opaque)
510 {
511     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
512 
513     if (pnv->bmc) {
514         pnv_bmc_powerdown(pnv->bmc);
515     }
516 }
517 
518 static void pnv_reset(void)
519 {
520     MachineState *machine = MACHINE(qdev_get_machine());
521     PnvMachineState *pnv = PNV_MACHINE(machine);
522     void *fdt;
523     Object *obj;
524 
525     qemu_devices_reset();
526 
527     /* OpenPOWER systems have a BMC, which can be defined on the
528      * command line with:
529      *
530      *   -device ipmi-bmc-sim,id=bmc0
531      *
532      * This is the internal simulator but it could also be an external
533      * BMC.
534      */
535     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
536     if (obj) {
537         pnv->bmc = IPMI_BMC(obj);
538     }
539 
540     fdt = pnv_dt_create(machine);
541 
542     /* Pack resulting tree */
543     _FDT((fdt_pack(fdt)));
544 
545     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
546 }
547 
548 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
549 {
550     Pnv8Chip *chip8 = PNV8_CHIP(chip);
551     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
552 }
553 
554 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
555 {
556     Pnv8Chip *chip8 = PNV8_CHIP(chip);
557     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
558 }
559 
560 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
561 {
562     return NULL;
563 }
564 
565 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
566 {
567     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
568 }
569 
570 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
571 {
572     Pnv8Chip *chip8 = PNV8_CHIP(chip);
573 
574     ics_pic_print_info(&chip8->psi.ics, mon);
575 }
576 
577 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
578 {
579     Pnv9Chip *chip9 = PNV9_CHIP(chip);
580 
581     pnv_xive_pic_print_info(&chip9->xive, mon);
582 }
583 
584 static void pnv_init(MachineState *machine)
585 {
586     PnvMachineState *pnv = PNV_MACHINE(machine);
587     MemoryRegion *ram;
588     char *fw_filename;
589     long fw_size;
590     int i;
591     char *chip_typename;
592 
593     /* allocate RAM */
594     if (machine->ram_size < (1 * GiB)) {
595         warn_report("skiboot may not work with < 1GB of RAM");
596     }
597 
598     ram = g_new(MemoryRegion, 1);
599     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
600                                          machine->ram_size);
601     memory_region_add_subregion(get_system_memory(), 0, ram);
602 
603     /* load skiboot firmware  */
604     if (bios_name == NULL) {
605         bios_name = FW_FILE_NAME;
606     }
607 
608     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
609     if (!fw_filename) {
610         error_report("Could not find OPAL firmware '%s'", bios_name);
611         exit(1);
612     }
613 
614     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
615     if (fw_size < 0) {
616         error_report("Could not load OPAL firmware '%s'", fw_filename);
617         exit(1);
618     }
619     g_free(fw_filename);
620 
621     /* load kernel */
622     if (machine->kernel_filename) {
623         long kernel_size;
624 
625         kernel_size = load_image_targphys(machine->kernel_filename,
626                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
627         if (kernel_size < 0) {
628             error_report("Could not load kernel '%s'",
629                          machine->kernel_filename);
630             exit(1);
631         }
632     }
633 
634     /* load initrd */
635     if (machine->initrd_filename) {
636         pnv->initrd_base = INITRD_LOAD_ADDR;
637         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
638                                   pnv->initrd_base, INITRD_MAX_SIZE);
639         if (pnv->initrd_size < 0) {
640             error_report("Could not load initial ram disk '%s'",
641                          machine->initrd_filename);
642             exit(1);
643         }
644     }
645 
646     /* Create the processor chips */
647     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
648     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
649                                     i, machine->cpu_type);
650     if (!object_class_by_name(chip_typename)) {
651         error_report("invalid CPU model '%.*s' for %s machine",
652                      i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name);
653         exit(1);
654     }
655 
656     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
657     for (i = 0; i < pnv->num_chips; i++) {
658         char chip_name[32];
659         Object *chip = object_new(chip_typename);
660 
661         pnv->chips[i] = PNV_CHIP(chip);
662 
663         /* TODO: put all the memory in one node on chip 0 until we find a
664          * way to specify different ranges for each chip
665          */
666         if (i == 0) {
667             object_property_set_int(chip, machine->ram_size, "ram-size",
668                                     &error_fatal);
669         }
670 
671         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
672         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
673         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
674                                 &error_fatal);
675         object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal);
676         object_property_set_bool(chip, true, "realized", &error_fatal);
677     }
678     g_free(chip_typename);
679 
680     /* Instantiate ISA bus on chip 0 */
681     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
682 
683     /* Create serial port */
684     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
685 
686     /* Create an RTC ISA device too */
687     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
688 
689     /* OpenPOWER systems use a IPMI SEL Event message to notify the
690      * host to powerdown */
691     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
692     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
693 }
694 
695 /*
696  *    0:21  Reserved - Read as zeros
697  *   22:24  Chip ID
698  *   25:28  Core number
699  *   29:31  Thread ID
700  */
701 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
702 {
703     return (chip->chip_id << 7) | (core_id << 3);
704 }
705 
706 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
707                                         Error **errp)
708 {
709     Error *local_err = NULL;
710     Object *obj;
711     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
712 
713     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
714                      &local_err);
715     if (local_err) {
716         error_propagate(errp, local_err);
717         return;
718     }
719 
720     pnv_cpu->intc = obj;
721 }
722 
723 /*
724  *    0:48  Reserved - Read as zeroes
725  *   49:52  Node ID
726  *   53:55  Chip ID
727  *   56     Reserved - Read as zero
728  *   57:61  Core number
729  *   62:63  Thread ID
730  *
731  * We only care about the lower bits. uint32_t is fine for the moment.
732  */
733 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
734 {
735     return (chip->chip_id << 8) | (core_id << 2);
736 }
737 
738 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
739                                         Error **errp)
740 {
741     Pnv9Chip *chip9 = PNV9_CHIP(chip);
742     Error *local_err = NULL;
743     Object *obj;
744     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
745 
746     /*
747      * The core creates its interrupt presenter but the XIVE interrupt
748      * controller object is initialized afterwards. Hopefully, it's
749      * only used at runtime.
750      */
751     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), errp);
752     if (local_err) {
753         error_propagate(errp, local_err);
754         return;
755     }
756 
757     pnv_cpu->intc = obj;
758 }
759 
760 /* Allowed core identifiers on a POWER8 Processor Chip :
761  *
762  * <EX0 reserved>
763  *  EX1  - Venice only
764  *  EX2  - Venice only
765  *  EX3  - Venice only
766  *  EX4
767  *  EX5
768  *  EX6
769  * <EX7,8 reserved> <reserved>
770  *  EX9  - Venice only
771  *  EX10 - Venice only
772  *  EX11 - Venice only
773  *  EX12
774  *  EX13
775  *  EX14
776  * <EX15 reserved>
777  */
778 #define POWER8E_CORE_MASK  (0x7070ull)
779 #define POWER8_CORE_MASK   (0x7e7eull)
780 
781 /*
782  * POWER9 has 24 cores, ids starting at 0x0
783  */
784 #define POWER9_CORE_MASK   (0xffffffffffffffull)
785 
786 static void pnv_chip_power8_instance_init(Object *obj)
787 {
788     Pnv8Chip *chip8 = PNV8_CHIP(obj);
789 
790     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
791                             TYPE_PNV_PSI, &error_abort, NULL);
792     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
793                                    OBJECT(qdev_get_machine()), &error_abort);
794 
795     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
796                             TYPE_PNV_LPC, &error_abort, NULL);
797     object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
798                                    OBJECT(&chip8->psi), &error_abort);
799 
800     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
801                             TYPE_PNV_OCC, &error_abort, NULL);
802     object_property_add_const_link(OBJECT(&chip8->occ), "psi",
803                                    OBJECT(&chip8->psi), &error_abort);
804 }
805 
806 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
807  {
808     PnvChip *chip = PNV_CHIP(chip8);
809     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
810     const char *typename = pnv_chip_core_typename(chip);
811     size_t typesize = object_type_get_instance_size(typename);
812     int i, j;
813     char *name;
814     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
815 
816     name = g_strdup_printf("icp-%x", chip->chip_id);
817     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
818     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
819     g_free(name);
820 
821     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
822 
823     /* Map the ICP registers for each thread */
824     for (i = 0; i < chip->nr_cores; i++) {
825         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
826         int core_hwid = CPU_CORE(pnv_core)->core_id;
827 
828         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
829             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
830             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
831 
832             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
833                                         &icp->mmio);
834         }
835     }
836 }
837 
838 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
839 {
840     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
841     PnvChip *chip = PNV_CHIP(dev);
842     Pnv8Chip *chip8 = PNV8_CHIP(dev);
843     Error *local_err = NULL;
844 
845     pcc->parent_realize(dev, &local_err);
846     if (local_err) {
847         error_propagate(errp, local_err);
848         return;
849     }
850 
851     /* Processor Service Interface (PSI) Host Bridge */
852     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
853                             "bar", &error_fatal);
854     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
855     if (local_err) {
856         error_propagate(errp, local_err);
857         return;
858     }
859     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, &chip8->psi.xscom_regs);
860 
861     /* Create LPC controller */
862     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
863                              &error_fatal);
864     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
865 
866     /* Interrupt Management Area. This is the memory region holding
867      * all the Interrupt Control Presenter (ICP) registers */
868     pnv_chip_icp_realize(chip8, &local_err);
869     if (local_err) {
870         error_propagate(errp, local_err);
871         return;
872     }
873 
874     /* Create the simplified OCC model */
875     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
876     if (local_err) {
877         error_propagate(errp, local_err);
878         return;
879     }
880     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
881 }
882 
883 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
884 {
885     DeviceClass *dc = DEVICE_CLASS(klass);
886     PnvChipClass *k = PNV_CHIP_CLASS(klass);
887 
888     k->chip_type = PNV_CHIP_POWER8E;
889     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
890     k->cores_mask = POWER8E_CORE_MASK;
891     k->core_pir = pnv_chip_core_pir_p8;
892     k->intc_create = pnv_chip_power8_intc_create;
893     k->isa_create = pnv_chip_power8_isa_create;
894     k->dt_populate = pnv_chip_power8_dt_populate;
895     k->pic_print_info = pnv_chip_power8_pic_print_info;
896     k->xscom_base = 0x003fc0000000000ull;
897     dc->desc = "PowerNV Chip POWER8E";
898 
899     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
900                                     &k->parent_realize);
901 }
902 
903 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
904 {
905     DeviceClass *dc = DEVICE_CLASS(klass);
906     PnvChipClass *k = PNV_CHIP_CLASS(klass);
907 
908     k->chip_type = PNV_CHIP_POWER8;
909     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
910     k->cores_mask = POWER8_CORE_MASK;
911     k->core_pir = pnv_chip_core_pir_p8;
912     k->intc_create = pnv_chip_power8_intc_create;
913     k->isa_create = pnv_chip_power8_isa_create;
914     k->dt_populate = pnv_chip_power8_dt_populate;
915     k->pic_print_info = pnv_chip_power8_pic_print_info;
916     k->xscom_base = 0x003fc0000000000ull;
917     dc->desc = "PowerNV Chip POWER8";
918 
919     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
920                                     &k->parent_realize);
921 }
922 
923 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
924 {
925     DeviceClass *dc = DEVICE_CLASS(klass);
926     PnvChipClass *k = PNV_CHIP_CLASS(klass);
927 
928     k->chip_type = PNV_CHIP_POWER8NVL;
929     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
930     k->cores_mask = POWER8_CORE_MASK;
931     k->core_pir = pnv_chip_core_pir_p8;
932     k->intc_create = pnv_chip_power8_intc_create;
933     k->isa_create = pnv_chip_power8nvl_isa_create;
934     k->dt_populate = pnv_chip_power8_dt_populate;
935     k->pic_print_info = pnv_chip_power8_pic_print_info;
936     k->xscom_base = 0x003fc0000000000ull;
937     dc->desc = "PowerNV Chip POWER8NVL";
938 
939     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
940                                     &k->parent_realize);
941 }
942 
943 static void pnv_chip_power9_instance_init(Object *obj)
944 {
945     Pnv9Chip *chip9 = PNV9_CHIP(obj);
946 
947     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
948                             TYPE_PNV_XIVE, &error_abort, NULL);
949     object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
950                                    &error_abort);
951 }
952 
953 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
954 {
955     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
956     Pnv9Chip *chip9 = PNV9_CHIP(dev);
957     PnvChip *chip = PNV_CHIP(dev);
958     Error *local_err = NULL;
959 
960     pcc->parent_realize(dev, &local_err);
961     if (local_err) {
962         error_propagate(errp, local_err);
963         return;
964     }
965 
966     /* XIVE interrupt controller (POWER9) */
967     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
968                             "ic-bar", &error_fatal);
969     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
970                             "vc-bar", &error_fatal);
971     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
972                             "pc-bar", &error_fatal);
973     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
974                             "tm-bar", &error_fatal);
975     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
976                              &local_err);
977     if (local_err) {
978         error_propagate(errp, local_err);
979         return;
980     }
981     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
982                             &chip9->xive.xscom_regs);
983 }
984 
985 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
986 {
987     DeviceClass *dc = DEVICE_CLASS(klass);
988     PnvChipClass *k = PNV_CHIP_CLASS(klass);
989 
990     k->chip_type = PNV_CHIP_POWER9;
991     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
992     k->cores_mask = POWER9_CORE_MASK;
993     k->core_pir = pnv_chip_core_pir_p9;
994     k->intc_create = pnv_chip_power9_intc_create;
995     k->isa_create = pnv_chip_power9_isa_create;
996     k->dt_populate = pnv_chip_power9_dt_populate;
997     k->pic_print_info = pnv_chip_power9_pic_print_info;
998     k->xscom_base = 0x00603fc00000000ull;
999     dc->desc = "PowerNV Chip POWER9";
1000 
1001     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1002                                     &k->parent_realize);
1003 }
1004 
1005 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1006 {
1007     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1008     int cores_max;
1009 
1010     /*
1011      * No custom mask for this chip, let's use the default one from *
1012      * the chip class
1013      */
1014     if (!chip->cores_mask) {
1015         chip->cores_mask = pcc->cores_mask;
1016     }
1017 
1018     /* filter alien core ids ! some are reserved */
1019     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1020         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1021                    chip->cores_mask);
1022         return;
1023     }
1024     chip->cores_mask &= pcc->cores_mask;
1025 
1026     /* now that we have a sane layout, let check the number of cores */
1027     cores_max = ctpop64(chip->cores_mask);
1028     if (chip->nr_cores > cores_max) {
1029         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1030                    cores_max);
1031         return;
1032     }
1033 }
1034 
1035 static void pnv_chip_instance_init(Object *obj)
1036 {
1037     PNV_CHIP(obj)->xscom_base = PNV_CHIP_GET_CLASS(obj)->xscom_base;
1038 }
1039 
1040 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1041 {
1042     Error *error = NULL;
1043     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1044     const char *typename = pnv_chip_core_typename(chip);
1045     size_t typesize = object_type_get_instance_size(typename);
1046     int i, core_hwid;
1047 
1048     if (!object_class_by_name(typename)) {
1049         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1050         return;
1051     }
1052 
1053     /* Cores */
1054     pnv_chip_core_sanitize(chip, &error);
1055     if (error) {
1056         error_propagate(errp, error);
1057         return;
1058     }
1059 
1060     chip->cores = g_malloc0(typesize * chip->nr_cores);
1061 
1062     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1063              && (i < chip->nr_cores); core_hwid++) {
1064         char core_name[32];
1065         void *pnv_core = chip->cores + i * typesize;
1066         uint64_t xscom_core_base;
1067 
1068         if (!(chip->cores_mask & (1ull << core_hwid))) {
1069             continue;
1070         }
1071 
1072         object_initialize(pnv_core, typesize, typename);
1073         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1074         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1075                                   &error_fatal);
1076         object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads",
1077                                 &error_fatal);
1078         object_property_set_int(OBJECT(pnv_core), core_hwid,
1079                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1080         object_property_set_int(OBJECT(pnv_core),
1081                                 pcc->core_pir(chip, core_hwid),
1082                                 "pir", &error_fatal);
1083         object_property_add_const_link(OBJECT(pnv_core), "chip",
1084                                        OBJECT(chip), &error_fatal);
1085         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1086                                  &error_fatal);
1087         object_unref(OBJECT(pnv_core));
1088 
1089         /* Each core has an XSCOM MMIO region */
1090         if (!pnv_chip_is_power9(chip)) {
1091             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1092         } else {
1093             xscom_core_base = PNV_XSCOM_P9_EC_BASE(core_hwid);
1094         }
1095 
1096         pnv_xscom_add_subregion(chip, xscom_core_base,
1097                                 &PNV_CORE(pnv_core)->xscom_regs);
1098         i++;
1099     }
1100 }
1101 
1102 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1103 {
1104     PnvChip *chip = PNV_CHIP(dev);
1105     Error *error = NULL;
1106 
1107     /* XSCOM bridge */
1108     pnv_xscom_realize(chip, &error);
1109     if (error) {
1110         error_propagate(errp, error);
1111         return;
1112     }
1113     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1114 
1115     /* Cores */
1116     pnv_chip_core_realize(chip, &error);
1117     if (error) {
1118         error_propagate(errp, error);
1119         return;
1120     }
1121 }
1122 
1123 static Property pnv_chip_properties[] = {
1124     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1125     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1126     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1127     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1128     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1129     DEFINE_PROP_END_OF_LIST(),
1130 };
1131 
1132 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1133 {
1134     DeviceClass *dc = DEVICE_CLASS(klass);
1135 
1136     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1137     dc->realize = pnv_chip_realize;
1138     dc->props = pnv_chip_properties;
1139     dc->desc = "PowerNV Chip";
1140 }
1141 
1142 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1143 {
1144     PnvMachineState *pnv = PNV_MACHINE(xi);
1145     int i;
1146 
1147     for (i = 0; i < pnv->num_chips; i++) {
1148         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1149 
1150         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1151             return &chip8->psi.ics;
1152         }
1153     }
1154     return NULL;
1155 }
1156 
1157 static void pnv_ics_resend(XICSFabric *xi)
1158 {
1159     PnvMachineState *pnv = PNV_MACHINE(xi);
1160     int i;
1161 
1162     for (i = 0; i < pnv->num_chips; i++) {
1163         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1164         ics_resend(&chip8->psi.ics);
1165     }
1166 }
1167 
1168 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1169 {
1170     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1171 
1172     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1173 }
1174 
1175 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1176                                Monitor *mon)
1177 {
1178     PnvMachineState *pnv = PNV_MACHINE(obj);
1179     int i;
1180     CPUState *cs;
1181 
1182     CPU_FOREACH(cs) {
1183         PowerPCCPU *cpu = POWERPC_CPU(cs);
1184 
1185         if (pnv_chip_is_power9(pnv->chips[0])) {
1186             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1187         } else {
1188             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1189         }
1190     }
1191 
1192     for (i = 0; i < pnv->num_chips; i++) {
1193         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1194     }
1195 }
1196 
1197 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1198                               void *opaque, Error **errp)
1199 {
1200     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1201 }
1202 
1203 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1204                               void *opaque, Error **errp)
1205 {
1206     PnvMachineState *pnv = PNV_MACHINE(obj);
1207     uint32_t num_chips;
1208     Error *local_err = NULL;
1209 
1210     visit_type_uint32(v, name, &num_chips, &local_err);
1211     if (local_err) {
1212         error_propagate(errp, local_err);
1213         return;
1214     }
1215 
1216     /*
1217      * TODO: should we decide on how many chips we can create based
1218      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1219      */
1220     if (!is_power_of_2(num_chips) || num_chips > 4) {
1221         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1222         return;
1223     }
1224 
1225     pnv->num_chips = num_chips;
1226 }
1227 
1228 static void pnv_machine_instance_init(Object *obj)
1229 {
1230     PnvMachineState *pnv = PNV_MACHINE(obj);
1231     pnv->num_chips = 1;
1232 }
1233 
1234 static void pnv_machine_class_props_init(ObjectClass *oc)
1235 {
1236     object_class_property_add(oc, "num-chips", "uint32",
1237                               pnv_get_num_chips, pnv_set_num_chips,
1238                               NULL, NULL, NULL);
1239     object_class_property_set_description(oc, "num-chips",
1240                               "Specifies the number of processor chips",
1241                               NULL);
1242 }
1243 
1244 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1245 {
1246     MachineClass *mc = MACHINE_CLASS(oc);
1247     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1248     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1249 
1250     mc->desc = "IBM PowerNV (Non-Virtualized)";
1251     mc->init = pnv_init;
1252     mc->reset = pnv_reset;
1253     mc->max_cpus = MAX_CPUS;
1254     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1255     mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for
1256                                       * storage */
1257     mc->no_parallel = 1;
1258     mc->default_boot_order = NULL;
1259     mc->default_ram_size = 1 * GiB;
1260     xic->icp_get = pnv_icp_get;
1261     xic->ics_get = pnv_ics_get;
1262     xic->ics_resend = pnv_ics_resend;
1263     ispc->print_info = pnv_pic_print_info;
1264 
1265     pnv_machine_class_props_init(oc);
1266 }
1267 
1268 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1269     {                                             \
1270         .name          = type,                    \
1271         .class_init    = class_initfn,            \
1272         .parent        = TYPE_PNV8_CHIP,          \
1273     }
1274 
1275 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1276     {                                             \
1277         .name          = type,                    \
1278         .class_init    = class_initfn,            \
1279         .parent        = TYPE_PNV9_CHIP,          \
1280     }
1281 
1282 static const TypeInfo types[] = {
1283     {
1284         .name          = TYPE_PNV_MACHINE,
1285         .parent        = TYPE_MACHINE,
1286         .instance_size = sizeof(PnvMachineState),
1287         .instance_init = pnv_machine_instance_init,
1288         .class_init    = pnv_machine_class_init,
1289         .interfaces = (InterfaceInfo[]) {
1290             { TYPE_XICS_FABRIC },
1291             { TYPE_INTERRUPT_STATS_PROVIDER },
1292             { },
1293         },
1294     },
1295     {
1296         .name          = TYPE_PNV_CHIP,
1297         .parent        = TYPE_SYS_BUS_DEVICE,
1298         .class_init    = pnv_chip_class_init,
1299         .instance_init = pnv_chip_instance_init,
1300         .instance_size = sizeof(PnvChip),
1301         .class_size    = sizeof(PnvChipClass),
1302         .abstract      = true,
1303     },
1304 
1305     /*
1306      * P9 chip and variants
1307      */
1308     {
1309         .name          = TYPE_PNV9_CHIP,
1310         .parent        = TYPE_PNV_CHIP,
1311         .instance_init = pnv_chip_power9_instance_init,
1312         .instance_size = sizeof(Pnv9Chip),
1313     },
1314     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1315 
1316     /*
1317      * P8 chip and variants
1318      */
1319     {
1320         .name          = TYPE_PNV8_CHIP,
1321         .parent        = TYPE_PNV_CHIP,
1322         .instance_init = pnv_chip_power8_instance_init,
1323         .instance_size = sizeof(Pnv8Chip),
1324     },
1325     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1326     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1327     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1328                           pnv_chip_power8nvl_class_init),
1329 };
1330 
1331 DEFINE_TYPES(types)
1332