xref: /openbmc/qemu/hw/ppc/pnv.c (revision 422fd92e613ab6b5239538bf2dc1202eb9d3f0f5)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             if (!qtest_enabled()) {
591                 warn_report("machine has no BMC device. Use '-device "
592                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593                             "to define one");
594             }
595         } else {
596             pnv_bmc_set_pnor(bmc, pnv->pnor);
597             pnv->bmc = bmc;
598         }
599     }
600 
601     fdt = pnv_dt_create(machine);
602 
603     /* Pack resulting tree */
604     _FDT((fdt_pack(fdt)));
605 
606     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608 
609     g_free(fdt);
610 }
611 
612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613 {
614     Pnv8Chip *chip8 = PNV8_CHIP(chip);
615     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616 }
617 
618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622 }
623 
624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625 {
626     Pnv9Chip *chip9 = PNV9_CHIP(chip);
627     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628 }
629 
630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631 {
632     Pnv10Chip *chip10 = PNV10_CHIP(chip);
633     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634 }
635 
636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637 {
638     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639 }
640 
641 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
642 {
643     Monitor *mon = opaque;
644     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
645 
646     if (phb3) {
647         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
648         ics_pic_print_info(&phb3->lsis, mon);
649     }
650     return 0;
651 }
652 
653 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
654 {
655     Pnv8Chip *chip8 = PNV8_CHIP(chip);
656 
657     ics_pic_print_info(&chip8->psi.ics, mon);
658     object_child_foreach(OBJECT(chip),
659                          pnv_chip_power8_pic_print_info_child, mon);
660 }
661 
662 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
663 {
664     Pnv9Chip *chip9 = PNV9_CHIP(chip);
665     int i, j;
666 
667     pnv_xive_pic_print_info(&chip9->xive, mon);
668     pnv_psi_pic_print_info(&chip9->psi, mon);
669 
670     for (i = 0; i < chip->num_pecs; i++) {
671         PnvPhb4PecState *pec = &chip9->pecs[i];
672         for (j = 0; j < pec->num_stacks; j++) {
673             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
674         }
675     }
676 }
677 
678 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
679                                                 uint32_t core_id)
680 {
681     return PNV_XSCOM_EX_BASE(core_id);
682 }
683 
684 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
685                                                 uint32_t core_id)
686 {
687     return PNV9_XSCOM_EC_BASE(core_id);
688 }
689 
690 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
691                                                  uint32_t core_id)
692 {
693     return PNV10_XSCOM_EC_BASE(core_id);
694 }
695 
696 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
697 {
698     PowerPCCPUClass *ppc_default =
699         POWERPC_CPU_CLASS(object_class_by_name(default_type));
700     PowerPCCPUClass *ppc =
701         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
702 
703     return ppc_default->pvr_match(ppc_default, ppc->pvr);
704 }
705 
706 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
707 {
708     ISADevice *dev = isa_new("isa-ipmi-bt");
709 
710     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
711     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
712     isa_realize_and_unref(dev, bus, &error_fatal);
713 }
714 
715 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
716 {
717     Pnv10Chip *chip10 = PNV10_CHIP(chip);
718 
719     pnv_psi_pic_print_info(&chip10->psi, mon);
720 }
721 
722 /* Always give the first 1GB to chip 0 else we won't boot */
723 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
724 {
725     MachineState *machine = MACHINE(pnv);
726     uint64_t ram_per_chip;
727 
728     assert(machine->ram_size >= 1 * GiB);
729 
730     ram_per_chip = machine->ram_size / pnv->num_chips;
731     if (ram_per_chip >= 1 * GiB) {
732         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
733     }
734 
735     assert(pnv->num_chips > 1);
736 
737     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
738     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
739 }
740 
741 static void pnv_init(MachineState *machine)
742 {
743     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
744     PnvMachineState *pnv = PNV_MACHINE(machine);
745     MachineClass *mc = MACHINE_GET_CLASS(machine);
746     char *fw_filename;
747     long fw_size;
748     uint64_t chip_ram_start = 0;
749     int i;
750     char *chip_typename;
751     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
752     DeviceState *dev;
753 
754     if (kvm_enabled()) {
755         error_report("The powernv machine does not work with KVM acceleration");
756         exit(EXIT_FAILURE);
757     }
758 
759     /* allocate RAM */
760     if (machine->ram_size < mc->default_ram_size) {
761         char *sz = size_to_str(mc->default_ram_size);
762         error_report("Invalid RAM size, should be bigger than %s", sz);
763         g_free(sz);
764         exit(EXIT_FAILURE);
765     }
766     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
767 
768     /*
769      * Create our simple PNOR device
770      */
771     dev = qdev_new(TYPE_PNV_PNOR);
772     if (pnor) {
773         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
774     }
775     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
776     pnv->pnor = PNV_PNOR(dev);
777 
778     /* load skiboot firmware  */
779     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
780     if (!fw_filename) {
781         error_report("Could not find OPAL firmware '%s'", bios_name);
782         exit(1);
783     }
784 
785     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
786     if (fw_size < 0) {
787         error_report("Could not load OPAL firmware '%s'", fw_filename);
788         exit(1);
789     }
790     g_free(fw_filename);
791 
792     /* load kernel */
793     if (machine->kernel_filename) {
794         long kernel_size;
795 
796         kernel_size = load_image_targphys(machine->kernel_filename,
797                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
798         if (kernel_size < 0) {
799             error_report("Could not load kernel '%s'",
800                          machine->kernel_filename);
801             exit(1);
802         }
803     }
804 
805     /* load initrd */
806     if (machine->initrd_filename) {
807         pnv->initrd_base = INITRD_LOAD_ADDR;
808         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
809                                   pnv->initrd_base, INITRD_MAX_SIZE);
810         if (pnv->initrd_size < 0) {
811             error_report("Could not load initial ram disk '%s'",
812                          machine->initrd_filename);
813             exit(1);
814         }
815     }
816 
817     /* MSIs are supported on this platform */
818     msi_nonbroken = true;
819 
820     /*
821      * Check compatibility of the specified CPU with the machine
822      * default.
823      */
824     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
825         error_report("invalid CPU model '%s' for %s machine",
826                      machine->cpu_type, mc->name);
827         exit(1);
828     }
829 
830     /* Create the processor chips */
831     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
832     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
833                                     i, machine->cpu_type);
834     if (!object_class_by_name(chip_typename)) {
835         error_report("invalid chip model '%.*s' for %s machine",
836                      i, machine->cpu_type, mc->name);
837         exit(1);
838     }
839 
840     pnv->num_chips =
841         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
842     /*
843      * TODO: should we decide on how many chips we can create based
844      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
845      */
846     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
847         error_report("invalid number of chips: '%d'", pnv->num_chips);
848         error_printf(
849             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
850         exit(1);
851     }
852 
853     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
854     for (i = 0; i < pnv->num_chips; i++) {
855         char chip_name[32];
856         Object *chip = OBJECT(qdev_new(chip_typename));
857         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
858 
859         pnv->chips[i] = PNV_CHIP(chip);
860 
861         /* Distribute RAM among the chips  */
862         object_property_set_int(chip, "ram-start", chip_ram_start,
863                                 &error_fatal);
864         object_property_set_int(chip, "ram-size", chip_ram_size,
865                                 &error_fatal);
866         chip_ram_start += chip_ram_size;
867 
868         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
869         object_property_add_child(OBJECT(pnv), chip_name, chip);
870         object_property_set_int(chip, "chip-id", i, &error_fatal);
871         object_property_set_int(chip, "nr-cores", machine->smp.cores,
872                                 &error_fatal);
873         object_property_set_int(chip, "nr-threads", machine->smp.threads,
874                                 &error_fatal);
875         /*
876          * The POWER8 machine use the XICS interrupt interface.
877          * Propagate the XICS fabric to the chip and its controllers.
878          */
879         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
880             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
881         }
882         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
883             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
884                                      &error_abort);
885         }
886         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
887     }
888     g_free(chip_typename);
889 
890     /* Instantiate ISA bus on chip 0 */
891     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
892 
893     /* Create serial port */
894     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
895 
896     /* Create an RTC ISA device too */
897     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
898 
899     /*
900      * Create the machine BMC simulator and the IPMI BT device for
901      * communication with the BMC
902      */
903     if (defaults_enabled()) {
904         pnv->bmc = pnv_bmc_create(pnv->pnor);
905         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
906     }
907 
908     /*
909      * The PNOR is mapped on the LPC FW address space by the BMC.
910      * Since we can not reach the remote BMC machine with LPC memops,
911      * map it always for now.
912      */
913     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
914                                 &pnv->pnor->mmio);
915 
916     /*
917      * OpenPOWER systems use a IPMI SEL Event message to notify the
918      * host to powerdown
919      */
920     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
921     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
922 }
923 
924 /*
925  *    0:21  Reserved - Read as zeros
926  *   22:24  Chip ID
927  *   25:28  Core number
928  *   29:31  Thread ID
929  */
930 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
931 {
932     return (chip->chip_id << 7) | (core_id << 3);
933 }
934 
935 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
936                                         Error **errp)
937 {
938     Pnv8Chip *chip8 = PNV8_CHIP(chip);
939     Error *local_err = NULL;
940     Object *obj;
941     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
942 
943     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
944     if (local_err) {
945         error_propagate(errp, local_err);
946         return;
947     }
948 
949     pnv_cpu->intc = obj;
950 }
951 
952 
953 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
954 {
955     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
956 
957     icp_reset(ICP(pnv_cpu->intc));
958 }
959 
960 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
961 {
962     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
963 
964     icp_destroy(ICP(pnv_cpu->intc));
965     pnv_cpu->intc = NULL;
966 }
967 
968 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
969                                             Monitor *mon)
970 {
971     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
972 }
973 
974 /*
975  *    0:48  Reserved - Read as zeroes
976  *   49:52  Node ID
977  *   53:55  Chip ID
978  *   56     Reserved - Read as zero
979  *   57:61  Core number
980  *   62:63  Thread ID
981  *
982  * We only care about the lower bits. uint32_t is fine for the moment.
983  */
984 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
985 {
986     return (chip->chip_id << 8) | (core_id << 2);
987 }
988 
989 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
990 {
991     return (chip->chip_id << 8) | (core_id << 2);
992 }
993 
994 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
995                                         Error **errp)
996 {
997     Pnv9Chip *chip9 = PNV9_CHIP(chip);
998     Error *local_err = NULL;
999     Object *obj;
1000     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1001 
1002     /*
1003      * The core creates its interrupt presenter but the XIVE interrupt
1004      * controller object is initialized afterwards. Hopefully, it's
1005      * only used at runtime.
1006      */
1007     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1008                            &local_err);
1009     if (local_err) {
1010         error_propagate(errp, local_err);
1011         return;
1012     }
1013 
1014     pnv_cpu->intc = obj;
1015 }
1016 
1017 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1018 {
1019     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1020 
1021     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1022 }
1023 
1024 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1025 {
1026     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1027 
1028     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1029     pnv_cpu->intc = NULL;
1030 }
1031 
1032 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1033                                             Monitor *mon)
1034 {
1035     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1036 }
1037 
1038 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1039                                         Error **errp)
1040 {
1041     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1042 
1043     /* Will be defined when the interrupt controller is */
1044     pnv_cpu->intc = NULL;
1045 }
1046 
1047 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1048 {
1049     ;
1050 }
1051 
1052 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1053 {
1054     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1055 
1056     pnv_cpu->intc = NULL;
1057 }
1058 
1059 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1060                                              Monitor *mon)
1061 {
1062 }
1063 
1064 /*
1065  * Allowed core identifiers on a POWER8 Processor Chip :
1066  *
1067  * <EX0 reserved>
1068  *  EX1  - Venice only
1069  *  EX2  - Venice only
1070  *  EX3  - Venice only
1071  *  EX4
1072  *  EX5
1073  *  EX6
1074  * <EX7,8 reserved> <reserved>
1075  *  EX9  - Venice only
1076  *  EX10 - Venice only
1077  *  EX11 - Venice only
1078  *  EX12
1079  *  EX13
1080  *  EX14
1081  * <EX15 reserved>
1082  */
1083 #define POWER8E_CORE_MASK  (0x7070ull)
1084 #define POWER8_CORE_MASK   (0x7e7eull)
1085 
1086 /*
1087  * POWER9 has 24 cores, ids starting at 0x0
1088  */
1089 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1090 
1091 
1092 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1093 
1094 static void pnv_chip_power8_instance_init(Object *obj)
1095 {
1096     PnvChip *chip = PNV_CHIP(obj);
1097     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1098     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1099     int i;
1100 
1101     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1102                              (Object **)&chip8->xics,
1103                              object_property_allow_set_link,
1104                              OBJ_PROP_LINK_STRONG);
1105 
1106     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1107 
1108     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1109 
1110     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1111 
1112     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1113 
1114     for (i = 0; i < pcc->num_phbs; i++) {
1115         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1116     }
1117 
1118     /*
1119      * Number of PHBs is the chip default
1120      */
1121     chip->num_phbs = pcc->num_phbs;
1122 }
1123 
1124 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1125  {
1126     PnvChip *chip = PNV_CHIP(chip8);
1127     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1128     int i, j;
1129     char *name;
1130 
1131     name = g_strdup_printf("icp-%x", chip->chip_id);
1132     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1133     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1134     g_free(name);
1135 
1136     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1137 
1138     /* Map the ICP registers for each thread */
1139     for (i = 0; i < chip->nr_cores; i++) {
1140         PnvCore *pnv_core = chip->cores[i];
1141         int core_hwid = CPU_CORE(pnv_core)->core_id;
1142 
1143         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1144             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1145             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1146 
1147             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1148                                         &icp->mmio);
1149         }
1150     }
1151 }
1152 
1153 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1154 {
1155     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1156     PnvChip *chip = PNV_CHIP(dev);
1157     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1158     Pnv8Psi *psi8 = &chip8->psi;
1159     Error *local_err = NULL;
1160     int i;
1161 
1162     assert(chip8->xics);
1163 
1164     /* XSCOM bridge is first */
1165     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1166     if (local_err) {
1167         error_propagate(errp, local_err);
1168         return;
1169     }
1170     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1171 
1172     pcc->parent_realize(dev, &local_err);
1173     if (local_err) {
1174         error_propagate(errp, local_err);
1175         return;
1176     }
1177 
1178     /* Processor Service Interface (PSI) Host Bridge */
1179     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1180                             &error_fatal);
1181     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1182                              OBJECT(chip8->xics), &error_abort);
1183     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1184         return;
1185     }
1186     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1187                             &PNV_PSI(psi8)->xscom_regs);
1188 
1189     /* Create LPC controller */
1190     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1191                              &error_abort);
1192     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1193     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1194 
1195     chip->fw_mr = &chip8->lpc.isa_fw;
1196     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1197                                             (uint64_t) PNV_XSCOM_BASE(chip),
1198                                             PNV_XSCOM_LPC_BASE);
1199 
1200     /*
1201      * Interrupt Management Area. This is the memory region holding
1202      * all the Interrupt Control Presenter (ICP) registers
1203      */
1204     pnv_chip_icp_realize(chip8, &local_err);
1205     if (local_err) {
1206         error_propagate(errp, local_err);
1207         return;
1208     }
1209 
1210     /* Create the simplified OCC model */
1211     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1212                              &error_abort);
1213     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1214         return;
1215     }
1216     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1217 
1218     /* OCC SRAM model */
1219     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1220                                 &chip8->occ.sram_regs);
1221 
1222     /* HOMER */
1223     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1224                              &error_abort);
1225     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1226         return;
1227     }
1228     /* Homer Xscom region */
1229     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1230 
1231     /* Homer mmio region */
1232     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1233                                 &chip8->homer.regs);
1234 
1235     /* PHB3 controllers */
1236     for (i = 0; i < chip->num_phbs; i++) {
1237         PnvPHB3 *phb = &chip8->phbs[i];
1238 
1239         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1240         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1241                                 &error_fatal);
1242         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1243                                  &error_fatal);
1244         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1245             return;
1246         }
1247     }
1248 }
1249 
1250 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1251 {
1252     addr &= (PNV_XSCOM_SIZE - 1);
1253     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1254 }
1255 
1256 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1257 {
1258     DeviceClass *dc = DEVICE_CLASS(klass);
1259     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1260 
1261     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1262     k->cores_mask = POWER8E_CORE_MASK;
1263     k->num_phbs = 3;
1264     k->core_pir = pnv_chip_core_pir_p8;
1265     k->intc_create = pnv_chip_power8_intc_create;
1266     k->intc_reset = pnv_chip_power8_intc_reset;
1267     k->intc_destroy = pnv_chip_power8_intc_destroy;
1268     k->intc_print_info = pnv_chip_power8_intc_print_info;
1269     k->isa_create = pnv_chip_power8_isa_create;
1270     k->dt_populate = pnv_chip_power8_dt_populate;
1271     k->pic_print_info = pnv_chip_power8_pic_print_info;
1272     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1273     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1274     dc->desc = "PowerNV Chip POWER8E";
1275 
1276     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1277                                     &k->parent_realize);
1278 }
1279 
1280 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1281 {
1282     DeviceClass *dc = DEVICE_CLASS(klass);
1283     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1284 
1285     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1286     k->cores_mask = POWER8_CORE_MASK;
1287     k->num_phbs = 3;
1288     k->core_pir = pnv_chip_core_pir_p8;
1289     k->intc_create = pnv_chip_power8_intc_create;
1290     k->intc_reset = pnv_chip_power8_intc_reset;
1291     k->intc_destroy = pnv_chip_power8_intc_destroy;
1292     k->intc_print_info = pnv_chip_power8_intc_print_info;
1293     k->isa_create = pnv_chip_power8_isa_create;
1294     k->dt_populate = pnv_chip_power8_dt_populate;
1295     k->pic_print_info = pnv_chip_power8_pic_print_info;
1296     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1297     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1298     dc->desc = "PowerNV Chip POWER8";
1299 
1300     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1301                                     &k->parent_realize);
1302 }
1303 
1304 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1305 {
1306     DeviceClass *dc = DEVICE_CLASS(klass);
1307     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1308 
1309     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1310     k->cores_mask = POWER8_CORE_MASK;
1311     k->num_phbs = 3;
1312     k->core_pir = pnv_chip_core_pir_p8;
1313     k->intc_create = pnv_chip_power8_intc_create;
1314     k->intc_reset = pnv_chip_power8_intc_reset;
1315     k->intc_destroy = pnv_chip_power8_intc_destroy;
1316     k->intc_print_info = pnv_chip_power8_intc_print_info;
1317     k->isa_create = pnv_chip_power8nvl_isa_create;
1318     k->dt_populate = pnv_chip_power8_dt_populate;
1319     k->pic_print_info = pnv_chip_power8_pic_print_info;
1320     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1321     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1322     dc->desc = "PowerNV Chip POWER8NVL";
1323 
1324     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1325                                     &k->parent_realize);
1326 }
1327 
1328 static void pnv_chip_power9_instance_init(Object *obj)
1329 {
1330     PnvChip *chip = PNV_CHIP(obj);
1331     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1332     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1333     int i;
1334 
1335     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1336     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1337                               "xive-fabric");
1338 
1339     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1340 
1341     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1342 
1343     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1344 
1345     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1346 
1347     /* Number of PECs is the chip default */
1348     chip->num_pecs = pcc->num_pecs;
1349 
1350     for (i = 0; i < chip->num_pecs; i++) {
1351         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1352                                 TYPE_PNV_PHB4_PEC);
1353     }
1354 }
1355 
1356 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1357 {
1358     PnvChip *chip = PNV_CHIP(chip9);
1359     int i;
1360 
1361     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1362     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1363 
1364     for (i = 0; i < chip9->nr_quads; i++) {
1365         char eq_name[32];
1366         PnvQuad *eq = &chip9->quads[i];
1367         PnvCore *pnv_core = chip->cores[i * 4];
1368         int core_id = CPU_CORE(pnv_core)->core_id;
1369 
1370         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1371         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1372                                            sizeof(*eq), TYPE_PNV_QUAD,
1373                                            &error_fatal, NULL);
1374 
1375         object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1376         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1377 
1378         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1379                                 &eq->xscom_regs);
1380     }
1381 }
1382 
1383 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1384 {
1385     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1386     int i, j;
1387     int phb_id = 0;
1388 
1389     for (i = 0; i < chip->num_pecs; i++) {
1390         PnvPhb4PecState *pec = &chip9->pecs[i];
1391         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1392         uint32_t pec_nest_base;
1393         uint32_t pec_pci_base;
1394 
1395         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1396         /*
1397          * PEC0 -> 1 stack
1398          * PEC1 -> 2 stacks
1399          * PEC2 -> 3 stacks
1400          */
1401         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1402                                 &error_fatal);
1403         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1404                                 &error_fatal);
1405         object_property_set_link(OBJECT(pec), "system-memory",
1406                                  OBJECT(get_system_memory()), &error_abort);
1407         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1408             return;
1409         }
1410 
1411         pec_nest_base = pecc->xscom_nest_base(pec);
1412         pec_pci_base = pecc->xscom_pci_base(pec);
1413 
1414         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1415         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1416 
1417         for (j = 0; j < pec->num_stacks; j++, phb_id++) {
1418             PnvPhb4PecStack *stack = &pec->stacks[j];
1419             Object *obj = OBJECT(&stack->phb);
1420 
1421             object_property_set_int(obj, "index", phb_id, &error_fatal);
1422             object_property_set_int(obj, "chip-id", chip->chip_id,
1423                                     &error_fatal);
1424             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1425                                     &error_fatal);
1426             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1427                                     &error_fatal);
1428             object_property_set_link(obj, "stack", OBJECT(stack),
1429                                      &error_abort);
1430             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1431                 return;
1432             }
1433 
1434             /* Populate the XSCOM address space. */
1435             pnv_xscom_add_subregion(chip,
1436                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1437                                    &stack->nest_regs_mr);
1438             pnv_xscom_add_subregion(chip,
1439                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1440                                     &stack->pci_regs_mr);
1441             pnv_xscom_add_subregion(chip,
1442                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1443                                     0x40 * stack->stack_no,
1444                                     &stack->phb_regs_mr);
1445         }
1446     }
1447 }
1448 
1449 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1450 {
1451     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1452     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1453     PnvChip *chip = PNV_CHIP(dev);
1454     Pnv9Psi *psi9 = &chip9->psi;
1455     Error *local_err = NULL;
1456 
1457     /* XSCOM bridge is first */
1458     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1459     if (local_err) {
1460         error_propagate(errp, local_err);
1461         return;
1462     }
1463     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1464 
1465     pcc->parent_realize(dev, &local_err);
1466     if (local_err) {
1467         error_propagate(errp, local_err);
1468         return;
1469     }
1470 
1471     pnv_chip_quad_realize(chip9, &local_err);
1472     if (local_err) {
1473         error_propagate(errp, local_err);
1474         return;
1475     }
1476 
1477     /* XIVE interrupt controller (POWER9) */
1478     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1479                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1480     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1481                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1482     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1483                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1484     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1485                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1486     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1487                              &error_abort);
1488     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1489         return;
1490     }
1491     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1492                             &chip9->xive.xscom_regs);
1493 
1494     /* Processor Service Interface (PSI) Host Bridge */
1495     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1496                             &error_fatal);
1497     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1498         return;
1499     }
1500     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1501                             &PNV_PSI(psi9)->xscom_regs);
1502 
1503     /* LPC */
1504     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1505                              &error_abort);
1506     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1507         return;
1508     }
1509     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1510                                 &chip9->lpc.xscom_regs);
1511 
1512     chip->fw_mr = &chip9->lpc.isa_fw;
1513     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1514                                             (uint64_t) PNV9_LPCM_BASE(chip));
1515 
1516     /* Create the simplified OCC model */
1517     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1518                              &error_abort);
1519     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1520         return;
1521     }
1522     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1523 
1524     /* OCC SRAM model */
1525     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1526                                 &chip9->occ.sram_regs);
1527 
1528     /* HOMER */
1529     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1530                              &error_abort);
1531     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1532         return;
1533     }
1534     /* Homer Xscom region */
1535     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1536 
1537     /* Homer mmio region */
1538     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1539                                 &chip9->homer.regs);
1540 
1541     /* PHBs */
1542     pnv_chip_power9_phb_realize(chip, &local_err);
1543     if (local_err) {
1544         error_propagate(errp, local_err);
1545         return;
1546     }
1547 }
1548 
1549 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1550 {
1551     addr &= (PNV9_XSCOM_SIZE - 1);
1552     return addr >> 3;
1553 }
1554 
1555 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1556 {
1557     DeviceClass *dc = DEVICE_CLASS(klass);
1558     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1559 
1560     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1561     k->cores_mask = POWER9_CORE_MASK;
1562     k->core_pir = pnv_chip_core_pir_p9;
1563     k->intc_create = pnv_chip_power9_intc_create;
1564     k->intc_reset = pnv_chip_power9_intc_reset;
1565     k->intc_destroy = pnv_chip_power9_intc_destroy;
1566     k->intc_print_info = pnv_chip_power9_intc_print_info;
1567     k->isa_create = pnv_chip_power9_isa_create;
1568     k->dt_populate = pnv_chip_power9_dt_populate;
1569     k->pic_print_info = pnv_chip_power9_pic_print_info;
1570     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1571     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1572     dc->desc = "PowerNV Chip POWER9";
1573     k->num_pecs = PNV9_CHIP_MAX_PEC;
1574 
1575     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1576                                     &k->parent_realize);
1577 }
1578 
1579 static void pnv_chip_power10_instance_init(Object *obj)
1580 {
1581     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1582 
1583     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1584     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1585 }
1586 
1587 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1588 {
1589     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1590     PnvChip *chip = PNV_CHIP(dev);
1591     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1592     Error *local_err = NULL;
1593 
1594     /* XSCOM bridge is first */
1595     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1596     if (local_err) {
1597         error_propagate(errp, local_err);
1598         return;
1599     }
1600     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1601 
1602     pcc->parent_realize(dev, &local_err);
1603     if (local_err) {
1604         error_propagate(errp, local_err);
1605         return;
1606     }
1607 
1608     /* Processor Service Interface (PSI) Host Bridge */
1609     object_property_set_int(OBJECT(&chip10->psi), "bar",
1610                             PNV10_PSIHB_BASE(chip), &error_fatal);
1611     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1612         return;
1613     }
1614     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1615                             &PNV_PSI(&chip10->psi)->xscom_regs);
1616 
1617     /* LPC */
1618     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1619                              OBJECT(&chip10->psi), &error_abort);
1620     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1621         return;
1622     }
1623     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1624                                 &chip10->lpc.xscom_regs);
1625 
1626     chip->fw_mr = &chip10->lpc.isa_fw;
1627     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1628                                             (uint64_t) PNV10_LPCM_BASE(chip));
1629 }
1630 
1631 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1632 {
1633     addr &= (PNV10_XSCOM_SIZE - 1);
1634     return addr >> 3;
1635 }
1636 
1637 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1638 {
1639     DeviceClass *dc = DEVICE_CLASS(klass);
1640     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1641 
1642     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1643     k->cores_mask = POWER10_CORE_MASK;
1644     k->core_pir = pnv_chip_core_pir_p10;
1645     k->intc_create = pnv_chip_power10_intc_create;
1646     k->intc_reset = pnv_chip_power10_intc_reset;
1647     k->intc_destroy = pnv_chip_power10_intc_destroy;
1648     k->intc_print_info = pnv_chip_power10_intc_print_info;
1649     k->isa_create = pnv_chip_power10_isa_create;
1650     k->dt_populate = pnv_chip_power10_dt_populate;
1651     k->pic_print_info = pnv_chip_power10_pic_print_info;
1652     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1653     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1654     dc->desc = "PowerNV Chip POWER10";
1655 
1656     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1657                                     &k->parent_realize);
1658 }
1659 
1660 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1661 {
1662     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1663     int cores_max;
1664 
1665     /*
1666      * No custom mask for this chip, let's use the default one from *
1667      * the chip class
1668      */
1669     if (!chip->cores_mask) {
1670         chip->cores_mask = pcc->cores_mask;
1671     }
1672 
1673     /* filter alien core ids ! some are reserved */
1674     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1675         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1676                    chip->cores_mask);
1677         return;
1678     }
1679     chip->cores_mask &= pcc->cores_mask;
1680 
1681     /* now that we have a sane layout, let check the number of cores */
1682     cores_max = ctpop64(chip->cores_mask);
1683     if (chip->nr_cores > cores_max) {
1684         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1685                    cores_max);
1686         return;
1687     }
1688 }
1689 
1690 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1691 {
1692     Error *error = NULL;
1693     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1694     const char *typename = pnv_chip_core_typename(chip);
1695     int i, core_hwid;
1696     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1697 
1698     if (!object_class_by_name(typename)) {
1699         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1700         return;
1701     }
1702 
1703     /* Cores */
1704     pnv_chip_core_sanitize(chip, &error);
1705     if (error) {
1706         error_propagate(errp, error);
1707         return;
1708     }
1709 
1710     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1711 
1712     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1713              && (i < chip->nr_cores); core_hwid++) {
1714         char core_name[32];
1715         PnvCore *pnv_core;
1716         uint64_t xscom_core_base;
1717 
1718         if (!(chip->cores_mask & (1ull << core_hwid))) {
1719             continue;
1720         }
1721 
1722         pnv_core = PNV_CORE(object_new(typename));
1723 
1724         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1725         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1726         chip->cores[i] = pnv_core;
1727         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1728                                 chip->nr_threads, &error_fatal);
1729         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1730                                 core_hwid, &error_fatal);
1731         object_property_set_int(OBJECT(pnv_core), "pir",
1732                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1733         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1734                                 &error_fatal);
1735         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1736                                  &error_abort);
1737         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1738 
1739         /* Each core has an XSCOM MMIO region */
1740         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1741 
1742         pnv_xscom_add_subregion(chip, xscom_core_base,
1743                                 &pnv_core->xscom_regs);
1744         i++;
1745     }
1746 }
1747 
1748 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1749 {
1750     PnvChip *chip = PNV_CHIP(dev);
1751     Error *error = NULL;
1752 
1753     /* Cores */
1754     pnv_chip_core_realize(chip, &error);
1755     if (error) {
1756         error_propagate(errp, error);
1757         return;
1758     }
1759 }
1760 
1761 static Property pnv_chip_properties[] = {
1762     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1763     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1764     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1765     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1766     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1767     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1768     DEFINE_PROP_END_OF_LIST(),
1769 };
1770 
1771 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1772 {
1773     DeviceClass *dc = DEVICE_CLASS(klass);
1774 
1775     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1776     dc->realize = pnv_chip_realize;
1777     device_class_set_props(dc, pnv_chip_properties);
1778     dc->desc = "PowerNV Chip";
1779 }
1780 
1781 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1782 {
1783     int i, j;
1784 
1785     for (i = 0; i < chip->nr_cores; i++) {
1786         PnvCore *pc = chip->cores[i];
1787         CPUCore *cc = CPU_CORE(pc);
1788 
1789         for (j = 0; j < cc->nr_threads; j++) {
1790             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1791                 return pc->threads[j];
1792             }
1793         }
1794     }
1795     return NULL;
1796 }
1797 
1798 typedef struct ForeachPhb3Args {
1799     int irq;
1800     ICSState *ics;
1801 } ForeachPhb3Args;
1802 
1803 static int pnv_ics_get_child(Object *child, void *opaque)
1804 {
1805     ForeachPhb3Args *args = opaque;
1806     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1807 
1808     if (phb3) {
1809         if (ics_valid_irq(&phb3->lsis, args->irq)) {
1810             args->ics = &phb3->lsis;
1811         }
1812         if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1813             args->ics = ICS(&phb3->msis);
1814         }
1815     }
1816     return args->ics ? 1 : 0;
1817 }
1818 
1819 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1820 {
1821     PnvMachineState *pnv = PNV_MACHINE(xi);
1822     ForeachPhb3Args args = { irq, NULL };
1823     int i;
1824 
1825     for (i = 0; i < pnv->num_chips; i++) {
1826         PnvChip *chip = pnv->chips[i];
1827         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1828 
1829         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1830             return &chip8->psi.ics;
1831         }
1832 
1833         object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1834         if (args.ics) {
1835             return args.ics;
1836         }
1837     }
1838     return NULL;
1839 }
1840 
1841 static int pnv_ics_resend_child(Object *child, void *opaque)
1842 {
1843     PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1844 
1845     if (phb3) {
1846         ics_resend(&phb3->lsis);
1847         ics_resend(ICS(&phb3->msis));
1848     }
1849     return 0;
1850 }
1851 
1852 static void pnv_ics_resend(XICSFabric *xi)
1853 {
1854     PnvMachineState *pnv = PNV_MACHINE(xi);
1855     int i;
1856 
1857     for (i = 0; i < pnv->num_chips; i++) {
1858         PnvChip *chip = pnv->chips[i];
1859         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1860 
1861         ics_resend(&chip8->psi.ics);
1862         object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
1863     }
1864 }
1865 
1866 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1867 {
1868     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1869 
1870     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1871 }
1872 
1873 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1874                                Monitor *mon)
1875 {
1876     PnvMachineState *pnv = PNV_MACHINE(obj);
1877     int i;
1878     CPUState *cs;
1879 
1880     CPU_FOREACH(cs) {
1881         PowerPCCPU *cpu = POWERPC_CPU(cs);
1882 
1883         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1884         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1885                                                            mon);
1886     }
1887 
1888     for (i = 0; i < pnv->num_chips; i++) {
1889         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1890     }
1891 }
1892 
1893 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1894                          uint8_t nvt_blk, uint32_t nvt_idx,
1895                          bool cam_ignore, uint8_t priority,
1896                          uint32_t logic_serv,
1897                          XiveTCTXMatch *match)
1898 {
1899     PnvMachineState *pnv = PNV_MACHINE(xfb);
1900     int total_count = 0;
1901     int i;
1902 
1903     for (i = 0; i < pnv->num_chips; i++) {
1904         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1905         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1906         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1907         int count;
1908 
1909         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1910                                priority, logic_serv, match);
1911 
1912         if (count < 0) {
1913             return count;
1914         }
1915 
1916         total_count += count;
1917     }
1918 
1919     return total_count;
1920 }
1921 
1922 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1923 {
1924     MachineClass *mc = MACHINE_CLASS(oc);
1925     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1926     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1927     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1928 
1929     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1930     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1931 
1932     xic->icp_get = pnv_icp_get;
1933     xic->ics_get = pnv_ics_get;
1934     xic->ics_resend = pnv_ics_resend;
1935 
1936     pmc->compat = compat;
1937     pmc->compat_size = sizeof(compat);
1938 }
1939 
1940 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1941 {
1942     MachineClass *mc = MACHINE_CLASS(oc);
1943     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1944     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1945     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1946 
1947     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1948     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1949     xfc->match_nvt = pnv_match_nvt;
1950 
1951     mc->alias = "powernv";
1952 
1953     pmc->compat = compat;
1954     pmc->compat_size = sizeof(compat);
1955     pmc->dt_power_mgt = pnv_dt_power_mgt;
1956 }
1957 
1958 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1959 {
1960     MachineClass *mc = MACHINE_CLASS(oc);
1961     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1962     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1963 
1964     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1965     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1966 
1967     pmc->compat = compat;
1968     pmc->compat_size = sizeof(compat);
1969     pmc->dt_power_mgt = pnv_dt_power_mgt;
1970 }
1971 
1972 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1973 {
1974     PnvMachineState *pnv = PNV_MACHINE(obj);
1975 
1976     return !!pnv->fw_load_addr;
1977 }
1978 
1979 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1980 {
1981     PnvMachineState *pnv = PNV_MACHINE(obj);
1982 
1983     if (value) {
1984         pnv->fw_load_addr = 0x8000000;
1985     }
1986 }
1987 
1988 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1989 {
1990     PowerPCCPU *cpu = POWERPC_CPU(cs);
1991     CPUPPCState *env = &cpu->env;
1992 
1993     cpu_synchronize_state(cs);
1994     ppc_cpu_do_system_reset(cs);
1995     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1996         /*
1997          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1998          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1999          * (PPC_BIT(43)).
2000          */
2001         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2002             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2003             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2004         }
2005     } else {
2006         /*
2007          * For non-powersave system resets, SRR1[42:45] are defined to be
2008          * implementation-dependent. The POWER9 User Manual specifies that
2009          * an external (SCOM driven, which may come from a BMC nmi command or
2010          * another CPU requesting a NMI IPI) system reset exception should be
2011          * 0b0010 (PPC_BIT(44)).
2012          */
2013         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2014     }
2015 }
2016 
2017 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2018 {
2019     CPUState *cs;
2020 
2021     CPU_FOREACH(cs) {
2022         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2023     }
2024 }
2025 
2026 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2027 {
2028     MachineClass *mc = MACHINE_CLASS(oc);
2029     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2030     NMIClass *nc = NMI_CLASS(oc);
2031 
2032     mc->desc = "IBM PowerNV (Non-Virtualized)";
2033     mc->init = pnv_init;
2034     mc->reset = pnv_reset;
2035     mc->max_cpus = MAX_CPUS;
2036     /* Pnv provides a AHCI device for storage */
2037     mc->block_default_type = IF_IDE;
2038     mc->no_parallel = 1;
2039     mc->default_boot_order = NULL;
2040     /*
2041      * RAM defaults to less than 2048 for 32-bit hosts, and large
2042      * enough to fit the maximum initrd size at it's load address
2043      */
2044     mc->default_ram_size = 1 * GiB;
2045     mc->default_ram_id = "pnv.ram";
2046     ispc->print_info = pnv_pic_print_info;
2047     nc->nmi_monitor_handler = pnv_nmi;
2048 
2049     object_class_property_add_bool(oc, "hb-mode",
2050                                    pnv_machine_get_hb, pnv_machine_set_hb);
2051     object_class_property_set_description(oc, "hb-mode",
2052                               "Use a hostboot like boot loader");
2053 }
2054 
2055 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2056     {                                             \
2057         .name          = type,                    \
2058         .class_init    = class_initfn,            \
2059         .parent        = TYPE_PNV8_CHIP,          \
2060     }
2061 
2062 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2063     {                                             \
2064         .name          = type,                    \
2065         .class_init    = class_initfn,            \
2066         .parent        = TYPE_PNV9_CHIP,          \
2067     }
2068 
2069 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2070     {                                              \
2071         .name          = type,                     \
2072         .class_init    = class_initfn,             \
2073         .parent        = TYPE_PNV10_CHIP,          \
2074     }
2075 
2076 static const TypeInfo types[] = {
2077     {
2078         .name          = MACHINE_TYPE_NAME("powernv10"),
2079         .parent        = TYPE_PNV_MACHINE,
2080         .class_init    = pnv_machine_power10_class_init,
2081     },
2082     {
2083         .name          = MACHINE_TYPE_NAME("powernv9"),
2084         .parent        = TYPE_PNV_MACHINE,
2085         .class_init    = pnv_machine_power9_class_init,
2086         .interfaces = (InterfaceInfo[]) {
2087             { TYPE_XIVE_FABRIC },
2088             { },
2089         },
2090     },
2091     {
2092         .name          = MACHINE_TYPE_NAME("powernv8"),
2093         .parent        = TYPE_PNV_MACHINE,
2094         .class_init    = pnv_machine_power8_class_init,
2095         .interfaces = (InterfaceInfo[]) {
2096             { TYPE_XICS_FABRIC },
2097             { },
2098         },
2099     },
2100     {
2101         .name          = TYPE_PNV_MACHINE,
2102         .parent        = TYPE_MACHINE,
2103         .abstract       = true,
2104         .instance_size = sizeof(PnvMachineState),
2105         .class_init    = pnv_machine_class_init,
2106         .class_size    = sizeof(PnvMachineClass),
2107         .interfaces = (InterfaceInfo[]) {
2108             { TYPE_INTERRUPT_STATS_PROVIDER },
2109             { TYPE_NMI },
2110             { },
2111         },
2112     },
2113     {
2114         .name          = TYPE_PNV_CHIP,
2115         .parent        = TYPE_SYS_BUS_DEVICE,
2116         .class_init    = pnv_chip_class_init,
2117         .instance_size = sizeof(PnvChip),
2118         .class_size    = sizeof(PnvChipClass),
2119         .abstract      = true,
2120     },
2121 
2122     /*
2123      * P10 chip and variants
2124      */
2125     {
2126         .name          = TYPE_PNV10_CHIP,
2127         .parent        = TYPE_PNV_CHIP,
2128         .instance_init = pnv_chip_power10_instance_init,
2129         .instance_size = sizeof(Pnv10Chip),
2130     },
2131     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2132 
2133     /*
2134      * P9 chip and variants
2135      */
2136     {
2137         .name          = TYPE_PNV9_CHIP,
2138         .parent        = TYPE_PNV_CHIP,
2139         .instance_init = pnv_chip_power9_instance_init,
2140         .instance_size = sizeof(Pnv9Chip),
2141     },
2142     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2143 
2144     /*
2145      * P8 chip and variants
2146      */
2147     {
2148         .name          = TYPE_PNV8_CHIP,
2149         .parent        = TYPE_PNV_CHIP,
2150         .instance_init = pnv_chip_power8_instance_init,
2151         .instance_size = sizeof(Pnv8Chip),
2152     },
2153     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2154     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2155     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2156                           pnv_chip_power8nvl_class_init),
2157 };
2158 
2159 DEFINE_TYPES(types)
2160