xref: /openbmc/qemu/hw/ppc/pnv.c (revision 3e8f7158153f035477d975869d22d07da719f0be)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/cutils.h"
25 #include "qapi/error.h"
26 #include "sysemu/qtest.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "sysemu/reset.h"
30 #include "sysemu/runstate.h"
31 #include "sysemu/cpus.h"
32 #include "sysemu/device_tree.h"
33 #include "sysemu/hw_accel.h"
34 #include "target/ppc/cpu.h"
35 #include "hw/ppc/fdt.h"
36 #include "hw/ppc/ppc.h"
37 #include "hw/ppc/pnv.h"
38 #include "hw/ppc/pnv_core.h"
39 #include "hw/loader.h"
40 #include "hw/nmi.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (16 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (128 * MiB)
67 #define INITRD_LOAD_ADDR        0x28000000
68 #define INITRD_MAX_SIZE         (128 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (ppc_has_spr(cpu, SPR_PURR)) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_property_string(fdt, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             if (!qtest_enabled()) {
591                 warn_report("machine has no BMC device. Use '-device "
592                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593                             "to define one");
594             }
595         } else {
596             pnv_bmc_set_pnor(bmc, pnv->pnor);
597             pnv->bmc = bmc;
598         }
599     }
600 
601     fdt = pnv_dt_create(machine);
602 
603     /* Pack resulting tree */
604     _FDT((fdt_pack(fdt)));
605 
606     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608 
609     g_free(fdt);
610 }
611 
612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613 {
614     Pnv8Chip *chip8 = PNV8_CHIP(chip);
615     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616 }
617 
618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619 {
620     Pnv8Chip *chip8 = PNV8_CHIP(chip);
621     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622 }
623 
624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625 {
626     Pnv9Chip *chip9 = PNV9_CHIP(chip);
627     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628 }
629 
630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631 {
632     Pnv10Chip *chip10 = PNV10_CHIP(chip);
633     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634 }
635 
636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637 {
638     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639 }
640 
641 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
642 {
643     Pnv8Chip *chip8 = PNV8_CHIP(chip);
644     int i;
645 
646     ics_pic_print_info(&chip8->psi.ics, mon);
647     for (i = 0; i < chip->num_phbs; i++) {
648         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
649         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
650     }
651 }
652 
653 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
654 {
655     Pnv9Chip *chip9 = PNV9_CHIP(chip);
656     int i, j;
657 
658     pnv_xive_pic_print_info(&chip9->xive, mon);
659     pnv_psi_pic_print_info(&chip9->psi, mon);
660 
661     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
662         PnvPhb4PecState *pec = &chip9->pecs[i];
663         for (j = 0; j < pec->num_stacks; j++) {
664             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
665         }
666     }
667 }
668 
669 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
670                                                 uint32_t core_id)
671 {
672     return PNV_XSCOM_EX_BASE(core_id);
673 }
674 
675 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
676                                                 uint32_t core_id)
677 {
678     return PNV9_XSCOM_EC_BASE(core_id);
679 }
680 
681 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
682                                                  uint32_t core_id)
683 {
684     return PNV10_XSCOM_EC_BASE(core_id);
685 }
686 
687 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
688 {
689     PowerPCCPUClass *ppc_default =
690         POWERPC_CPU_CLASS(object_class_by_name(default_type));
691     PowerPCCPUClass *ppc =
692         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
693 
694     return ppc_default->pvr_match(ppc_default, ppc->pvr);
695 }
696 
697 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
698 {
699     ISADevice *dev = isa_new("isa-ipmi-bt");
700 
701     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
702     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
703     isa_realize_and_unref(dev, bus, &error_fatal);
704 }
705 
706 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
707 {
708     Pnv10Chip *chip10 = PNV10_CHIP(chip);
709 
710     pnv_psi_pic_print_info(&chip10->psi, mon);
711 }
712 
713 /* Always give the first 1GB to chip 0 else we won't boot */
714 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
715 {
716     MachineState *machine = MACHINE(pnv);
717     uint64_t ram_per_chip;
718 
719     assert(machine->ram_size >= 1 * GiB);
720 
721     ram_per_chip = machine->ram_size / pnv->num_chips;
722     if (ram_per_chip >= 1 * GiB) {
723         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
724     }
725 
726     assert(pnv->num_chips > 1);
727 
728     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
729     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
730 }
731 
732 static void pnv_init(MachineState *machine)
733 {
734     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
735     PnvMachineState *pnv = PNV_MACHINE(machine);
736     MachineClass *mc = MACHINE_GET_CLASS(machine);
737     char *fw_filename;
738     long fw_size;
739     uint64_t chip_ram_start = 0;
740     int i;
741     char *chip_typename;
742     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
743     DeviceState *dev;
744 
745     if (kvm_enabled()) {
746         error_report("The powernv machine does not work with KVM acceleration");
747         exit(EXIT_FAILURE);
748     }
749 
750     /* allocate RAM */
751     if (machine->ram_size < mc->default_ram_size) {
752         char *sz = size_to_str(mc->default_ram_size);
753         error_report("Invalid RAM size, should be bigger than %s", sz);
754         g_free(sz);
755         exit(EXIT_FAILURE);
756     }
757     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
758 
759     /*
760      * Create our simple PNOR device
761      */
762     dev = qdev_new(TYPE_PNV_PNOR);
763     if (pnor) {
764         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
765     }
766     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
767     pnv->pnor = PNV_PNOR(dev);
768 
769     /* load skiboot firmware  */
770     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
771     if (!fw_filename) {
772         error_report("Could not find OPAL firmware '%s'", bios_name);
773         exit(1);
774     }
775 
776     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
777     if (fw_size < 0) {
778         error_report("Could not load OPAL firmware '%s'", fw_filename);
779         exit(1);
780     }
781     g_free(fw_filename);
782 
783     /* load kernel */
784     if (machine->kernel_filename) {
785         long kernel_size;
786 
787         kernel_size = load_image_targphys(machine->kernel_filename,
788                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
789         if (kernel_size < 0) {
790             error_report("Could not load kernel '%s'",
791                          machine->kernel_filename);
792             exit(1);
793         }
794     }
795 
796     /* load initrd */
797     if (machine->initrd_filename) {
798         pnv->initrd_base = INITRD_LOAD_ADDR;
799         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
800                                   pnv->initrd_base, INITRD_MAX_SIZE);
801         if (pnv->initrd_size < 0) {
802             error_report("Could not load initial ram disk '%s'",
803                          machine->initrd_filename);
804             exit(1);
805         }
806     }
807 
808     /* MSIs are supported on this platform */
809     msi_nonbroken = true;
810 
811     /*
812      * Check compatibility of the specified CPU with the machine
813      * default.
814      */
815     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
816         error_report("invalid CPU model '%s' for %s machine",
817                      machine->cpu_type, mc->name);
818         exit(1);
819     }
820 
821     /* Create the processor chips */
822     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
823     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
824                                     i, machine->cpu_type);
825     if (!object_class_by_name(chip_typename)) {
826         error_report("invalid chip model '%.*s' for %s machine",
827                      i, machine->cpu_type, mc->name);
828         exit(1);
829     }
830 
831     pnv->num_chips =
832         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
833     /*
834      * TODO: should we decide on how many chips we can create based
835      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
836      */
837     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
838         error_report("invalid number of chips: '%d'", pnv->num_chips);
839         error_printf(
840             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
841         exit(1);
842     }
843 
844     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
845     for (i = 0; i < pnv->num_chips; i++) {
846         char chip_name[32];
847         Object *chip = OBJECT(qdev_new(chip_typename));
848         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
849 
850         pnv->chips[i] = PNV_CHIP(chip);
851 
852         /* Distribute RAM among the chips  */
853         object_property_set_int(chip, "ram-start", chip_ram_start,
854                                 &error_fatal);
855         object_property_set_int(chip, "ram-size", chip_ram_size,
856                                 &error_fatal);
857         chip_ram_start += chip_ram_size;
858 
859         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
860         object_property_add_child(OBJECT(pnv), chip_name, chip);
861         object_property_set_int(chip, "chip-id", i, &error_fatal);
862         object_property_set_int(chip, "nr-cores", machine->smp.cores,
863                                 &error_fatal);
864         object_property_set_int(chip, "nr-threads", machine->smp.threads,
865                                 &error_fatal);
866         /*
867          * The POWER8 machine use the XICS interrupt interface.
868          * Propagate the XICS fabric to the chip and its controllers.
869          */
870         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
871             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
872         }
873         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
874             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
875                                      &error_abort);
876         }
877         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
878     }
879     g_free(chip_typename);
880 
881     /* Instantiate ISA bus on chip 0 */
882     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
883 
884     /* Create serial port */
885     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
886 
887     /* Create an RTC ISA device too */
888     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
889 
890     /*
891      * Create the machine BMC simulator and the IPMI BT device for
892      * communication with the BMC
893      */
894     if (defaults_enabled()) {
895         pnv->bmc = pnv_bmc_create(pnv->pnor);
896         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
897     }
898 
899     /*
900      * The PNOR is mapped on the LPC FW address space by the BMC.
901      * Since we can not reach the remote BMC machine with LPC memops,
902      * map it always for now.
903      */
904     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
905                                 &pnv->pnor->mmio);
906 
907     /*
908      * OpenPOWER systems use a IPMI SEL Event message to notify the
909      * host to powerdown
910      */
911     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
912     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
913 }
914 
915 /*
916  *    0:21  Reserved - Read as zeros
917  *   22:24  Chip ID
918  *   25:28  Core number
919  *   29:31  Thread ID
920  */
921 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
922 {
923     return (chip->chip_id << 7) | (core_id << 3);
924 }
925 
926 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
927                                         Error **errp)
928 {
929     Pnv8Chip *chip8 = PNV8_CHIP(chip);
930     Error *local_err = NULL;
931     Object *obj;
932     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
933 
934     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
935     if (local_err) {
936         error_propagate(errp, local_err);
937         return;
938     }
939 
940     pnv_cpu->intc = obj;
941 }
942 
943 
944 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
945 {
946     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
947 
948     icp_reset(ICP(pnv_cpu->intc));
949 }
950 
951 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
952 {
953     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
954 
955     icp_destroy(ICP(pnv_cpu->intc));
956     pnv_cpu->intc = NULL;
957 }
958 
959 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
960                                             Monitor *mon)
961 {
962     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
963 }
964 
965 /*
966  *    0:48  Reserved - Read as zeroes
967  *   49:52  Node ID
968  *   53:55  Chip ID
969  *   56     Reserved - Read as zero
970  *   57:61  Core number
971  *   62:63  Thread ID
972  *
973  * We only care about the lower bits. uint32_t is fine for the moment.
974  */
975 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
976 {
977     return (chip->chip_id << 8) | (core_id << 2);
978 }
979 
980 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
981 {
982     return (chip->chip_id << 8) | (core_id << 2);
983 }
984 
985 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
986                                         Error **errp)
987 {
988     Pnv9Chip *chip9 = PNV9_CHIP(chip);
989     Error *local_err = NULL;
990     Object *obj;
991     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
992 
993     /*
994      * The core creates its interrupt presenter but the XIVE interrupt
995      * controller object is initialized afterwards. Hopefully, it's
996      * only used at runtime.
997      */
998     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
999                            &local_err);
1000     if (local_err) {
1001         error_propagate(errp, local_err);
1002         return;
1003     }
1004 
1005     pnv_cpu->intc = obj;
1006 }
1007 
1008 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1009 {
1010     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1011 
1012     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1013 }
1014 
1015 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1016 {
1017     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1018 
1019     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1020     pnv_cpu->intc = NULL;
1021 }
1022 
1023 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1024                                             Monitor *mon)
1025 {
1026     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1027 }
1028 
1029 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1030                                         Error **errp)
1031 {
1032     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1033 
1034     /* Will be defined when the interrupt controller is */
1035     pnv_cpu->intc = NULL;
1036 }
1037 
1038 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1039 {
1040     ;
1041 }
1042 
1043 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1044 {
1045     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1046 
1047     pnv_cpu->intc = NULL;
1048 }
1049 
1050 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1051                                              Monitor *mon)
1052 {
1053 }
1054 
1055 /*
1056  * Allowed core identifiers on a POWER8 Processor Chip :
1057  *
1058  * <EX0 reserved>
1059  *  EX1  - Venice only
1060  *  EX2  - Venice only
1061  *  EX3  - Venice only
1062  *  EX4
1063  *  EX5
1064  *  EX6
1065  * <EX7,8 reserved> <reserved>
1066  *  EX9  - Venice only
1067  *  EX10 - Venice only
1068  *  EX11 - Venice only
1069  *  EX12
1070  *  EX13
1071  *  EX14
1072  * <EX15 reserved>
1073  */
1074 #define POWER8E_CORE_MASK  (0x7070ull)
1075 #define POWER8_CORE_MASK   (0x7e7eull)
1076 
1077 /*
1078  * POWER9 has 24 cores, ids starting at 0x0
1079  */
1080 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1081 
1082 
1083 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1084 
1085 static void pnv_chip_power8_instance_init(Object *obj)
1086 {
1087     PnvChip *chip = PNV_CHIP(obj);
1088     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1089     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1090     int i;
1091 
1092     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1093                              (Object **)&chip8->xics,
1094                              object_property_allow_set_link,
1095                              OBJ_PROP_LINK_STRONG);
1096 
1097     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1098 
1099     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1100 
1101     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1102 
1103     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1104 
1105     for (i = 0; i < pcc->num_phbs; i++) {
1106         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1107     }
1108 
1109     /*
1110      * Number of PHBs is the chip default
1111      */
1112     chip->num_phbs = pcc->num_phbs;
1113 }
1114 
1115 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1116  {
1117     PnvChip *chip = PNV_CHIP(chip8);
1118     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1119     int i, j;
1120     char *name;
1121 
1122     name = g_strdup_printf("icp-%x", chip->chip_id);
1123     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1124     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1125     g_free(name);
1126 
1127     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1128 
1129     /* Map the ICP registers for each thread */
1130     for (i = 0; i < chip->nr_cores; i++) {
1131         PnvCore *pnv_core = chip->cores[i];
1132         int core_hwid = CPU_CORE(pnv_core)->core_id;
1133 
1134         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1135             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1136             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1137 
1138             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1139                                         &icp->mmio);
1140         }
1141     }
1142 }
1143 
1144 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1145 {
1146     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1147     PnvChip *chip = PNV_CHIP(dev);
1148     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1149     Pnv8Psi *psi8 = &chip8->psi;
1150     Error *local_err = NULL;
1151     int i;
1152 
1153     assert(chip8->xics);
1154 
1155     /* XSCOM bridge is first */
1156     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1157     if (local_err) {
1158         error_propagate(errp, local_err);
1159         return;
1160     }
1161     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1162 
1163     pcc->parent_realize(dev, &local_err);
1164     if (local_err) {
1165         error_propagate(errp, local_err);
1166         return;
1167     }
1168 
1169     /* Processor Service Interface (PSI) Host Bridge */
1170     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1171                             &error_fatal);
1172     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1173                              OBJECT(chip8->xics), &error_abort);
1174     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1175         return;
1176     }
1177     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1178                             &PNV_PSI(psi8)->xscom_regs);
1179 
1180     /* Create LPC controller */
1181     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1182                              &error_abort);
1183     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1184     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1185 
1186     chip->fw_mr = &chip8->lpc.isa_fw;
1187     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1188                                             (uint64_t) PNV_XSCOM_BASE(chip),
1189                                             PNV_XSCOM_LPC_BASE);
1190 
1191     /*
1192      * Interrupt Management Area. This is the memory region holding
1193      * all the Interrupt Control Presenter (ICP) registers
1194      */
1195     pnv_chip_icp_realize(chip8, &local_err);
1196     if (local_err) {
1197         error_propagate(errp, local_err);
1198         return;
1199     }
1200 
1201     /* Create the simplified OCC model */
1202     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1203                              &error_abort);
1204     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1205         return;
1206     }
1207     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1208 
1209     /* OCC SRAM model */
1210     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1211                                 &chip8->occ.sram_regs);
1212 
1213     /* HOMER */
1214     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1215                              &error_abort);
1216     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1217         return;
1218     }
1219     /* Homer Xscom region */
1220     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1221 
1222     /* Homer mmio region */
1223     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1224                                 &chip8->homer.regs);
1225 
1226     /* PHB3 controllers */
1227     for (i = 0; i < chip->num_phbs; i++) {
1228         PnvPHB3 *phb = &chip8->phbs[i];
1229         PnvPBCQState *pbcq = &phb->pbcq;
1230 
1231         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1232         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1233                                 &error_fatal);
1234         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1235             return;
1236         }
1237 
1238         /* Populate the XSCOM address space. */
1239         pnv_xscom_add_subregion(chip,
1240                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1241                                 &pbcq->xscom_nest_regs);
1242         pnv_xscom_add_subregion(chip,
1243                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1244                                 &pbcq->xscom_pci_regs);
1245         pnv_xscom_add_subregion(chip,
1246                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1247                                 &pbcq->xscom_spci_regs);
1248     }
1249 }
1250 
1251 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1252 {
1253     addr &= (PNV_XSCOM_SIZE - 1);
1254     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1255 }
1256 
1257 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1258 {
1259     DeviceClass *dc = DEVICE_CLASS(klass);
1260     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1261 
1262     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1263     k->cores_mask = POWER8E_CORE_MASK;
1264     k->num_phbs = 3;
1265     k->core_pir = pnv_chip_core_pir_p8;
1266     k->intc_create = pnv_chip_power8_intc_create;
1267     k->intc_reset = pnv_chip_power8_intc_reset;
1268     k->intc_destroy = pnv_chip_power8_intc_destroy;
1269     k->intc_print_info = pnv_chip_power8_intc_print_info;
1270     k->isa_create = pnv_chip_power8_isa_create;
1271     k->dt_populate = pnv_chip_power8_dt_populate;
1272     k->pic_print_info = pnv_chip_power8_pic_print_info;
1273     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1274     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1275     dc->desc = "PowerNV Chip POWER8E";
1276 
1277     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1278                                     &k->parent_realize);
1279 }
1280 
1281 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1282 {
1283     DeviceClass *dc = DEVICE_CLASS(klass);
1284     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1285 
1286     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1287     k->cores_mask = POWER8_CORE_MASK;
1288     k->num_phbs = 3;
1289     k->core_pir = pnv_chip_core_pir_p8;
1290     k->intc_create = pnv_chip_power8_intc_create;
1291     k->intc_reset = pnv_chip_power8_intc_reset;
1292     k->intc_destroy = pnv_chip_power8_intc_destroy;
1293     k->intc_print_info = pnv_chip_power8_intc_print_info;
1294     k->isa_create = pnv_chip_power8_isa_create;
1295     k->dt_populate = pnv_chip_power8_dt_populate;
1296     k->pic_print_info = pnv_chip_power8_pic_print_info;
1297     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1298     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1299     dc->desc = "PowerNV Chip POWER8";
1300 
1301     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1302                                     &k->parent_realize);
1303 }
1304 
1305 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1306 {
1307     DeviceClass *dc = DEVICE_CLASS(klass);
1308     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1309 
1310     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1311     k->cores_mask = POWER8_CORE_MASK;
1312     k->num_phbs = 3;
1313     k->core_pir = pnv_chip_core_pir_p8;
1314     k->intc_create = pnv_chip_power8_intc_create;
1315     k->intc_reset = pnv_chip_power8_intc_reset;
1316     k->intc_destroy = pnv_chip_power8_intc_destroy;
1317     k->intc_print_info = pnv_chip_power8_intc_print_info;
1318     k->isa_create = pnv_chip_power8nvl_isa_create;
1319     k->dt_populate = pnv_chip_power8_dt_populate;
1320     k->pic_print_info = pnv_chip_power8_pic_print_info;
1321     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1322     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1323     dc->desc = "PowerNV Chip POWER8NVL";
1324 
1325     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1326                                     &k->parent_realize);
1327 }
1328 
1329 static void pnv_chip_power9_instance_init(Object *obj)
1330 {
1331     PnvChip *chip = PNV_CHIP(obj);
1332     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1333     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1334     int i;
1335 
1336     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1337     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1338                               "xive-fabric");
1339 
1340     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1341 
1342     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1343 
1344     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1345 
1346     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1347 
1348     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1349         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1350                                 TYPE_PNV_PHB4_PEC);
1351     }
1352 
1353     /*
1354      * Number of PHBs is the chip default
1355      */
1356     chip->num_phbs = pcc->num_phbs;
1357 }
1358 
1359 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1360 {
1361     PnvChip *chip = PNV_CHIP(chip9);
1362     int i;
1363 
1364     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1365     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1366 
1367     for (i = 0; i < chip9->nr_quads; i++) {
1368         char eq_name[32];
1369         PnvQuad *eq = &chip9->quads[i];
1370         PnvCore *pnv_core = chip->cores[i * 4];
1371         int core_id = CPU_CORE(pnv_core)->core_id;
1372 
1373         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1374         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1375                                            sizeof(*eq), TYPE_PNV_QUAD,
1376                                            &error_fatal, NULL);
1377 
1378         object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1379         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1380 
1381         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1382                                 &eq->xscom_regs);
1383     }
1384 }
1385 
1386 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1387 {
1388     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1389     int i, j;
1390     int phb_id = 0;
1391 
1392     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1393         PnvPhb4PecState *pec = &chip9->pecs[i];
1394         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1395         uint32_t pec_nest_base;
1396         uint32_t pec_pci_base;
1397 
1398         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1399         /*
1400          * PEC0 -> 1 stack
1401          * PEC1 -> 2 stacks
1402          * PEC2 -> 3 stacks
1403          */
1404         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1405                                 &error_fatal);
1406         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1407                                 &error_fatal);
1408         object_property_set_link(OBJECT(pec), "system-memory",
1409                                  OBJECT(get_system_memory()), &error_abort);
1410         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1411             return;
1412         }
1413 
1414         pec_nest_base = pecc->xscom_nest_base(pec);
1415         pec_pci_base = pecc->xscom_pci_base(pec);
1416 
1417         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1418         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1419 
1420         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1421              j++, phb_id++) {
1422             PnvPhb4PecStack *stack = &pec->stacks[j];
1423             Object *obj = OBJECT(&stack->phb);
1424 
1425             object_property_set_int(obj, "index", phb_id, &error_fatal);
1426             object_property_set_int(obj, "chip-id", chip->chip_id,
1427                                     &error_fatal);
1428             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1429                                     &error_fatal);
1430             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1431                                     &error_fatal);
1432             object_property_set_link(obj, "stack", OBJECT(stack),
1433                                      &error_abort);
1434             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1435                 return;
1436             }
1437 
1438             /* Populate the XSCOM address space. */
1439             pnv_xscom_add_subregion(chip,
1440                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1441                                    &stack->nest_regs_mr);
1442             pnv_xscom_add_subregion(chip,
1443                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1444                                     &stack->pci_regs_mr);
1445             pnv_xscom_add_subregion(chip,
1446                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1447                                     0x40 * stack->stack_no,
1448                                     &stack->phb_regs_mr);
1449         }
1450     }
1451 }
1452 
1453 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1454 {
1455     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1456     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1457     PnvChip *chip = PNV_CHIP(dev);
1458     Pnv9Psi *psi9 = &chip9->psi;
1459     Error *local_err = NULL;
1460 
1461     /* XSCOM bridge is first */
1462     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1463     if (local_err) {
1464         error_propagate(errp, local_err);
1465         return;
1466     }
1467     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1468 
1469     pcc->parent_realize(dev, &local_err);
1470     if (local_err) {
1471         error_propagate(errp, local_err);
1472         return;
1473     }
1474 
1475     pnv_chip_quad_realize(chip9, &local_err);
1476     if (local_err) {
1477         error_propagate(errp, local_err);
1478         return;
1479     }
1480 
1481     /* XIVE interrupt controller (POWER9) */
1482     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1483                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1484     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1485                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1486     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1487                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1488     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1489                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1490     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1491                              &error_abort);
1492     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1493         return;
1494     }
1495     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1496                             &chip9->xive.xscom_regs);
1497 
1498     /* Processor Service Interface (PSI) Host Bridge */
1499     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1500                             &error_fatal);
1501     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1502         return;
1503     }
1504     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1505                             &PNV_PSI(psi9)->xscom_regs);
1506 
1507     /* LPC */
1508     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1509                              &error_abort);
1510     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1511         return;
1512     }
1513     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1514                                 &chip9->lpc.xscom_regs);
1515 
1516     chip->fw_mr = &chip9->lpc.isa_fw;
1517     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1518                                             (uint64_t) PNV9_LPCM_BASE(chip));
1519 
1520     /* Create the simplified OCC model */
1521     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1522                              &error_abort);
1523     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1524         return;
1525     }
1526     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1527 
1528     /* OCC SRAM model */
1529     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1530                                 &chip9->occ.sram_regs);
1531 
1532     /* HOMER */
1533     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1534                              &error_abort);
1535     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1536         return;
1537     }
1538     /* Homer Xscom region */
1539     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1540 
1541     /* Homer mmio region */
1542     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1543                                 &chip9->homer.regs);
1544 
1545     /* PHBs */
1546     pnv_chip_power9_phb_realize(chip, &local_err);
1547     if (local_err) {
1548         error_propagate(errp, local_err);
1549         return;
1550     }
1551 }
1552 
1553 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1554 {
1555     addr &= (PNV9_XSCOM_SIZE - 1);
1556     return addr >> 3;
1557 }
1558 
1559 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1560 {
1561     DeviceClass *dc = DEVICE_CLASS(klass);
1562     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1563 
1564     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1565     k->cores_mask = POWER9_CORE_MASK;
1566     k->core_pir = pnv_chip_core_pir_p9;
1567     k->intc_create = pnv_chip_power9_intc_create;
1568     k->intc_reset = pnv_chip_power9_intc_reset;
1569     k->intc_destroy = pnv_chip_power9_intc_destroy;
1570     k->intc_print_info = pnv_chip_power9_intc_print_info;
1571     k->isa_create = pnv_chip_power9_isa_create;
1572     k->dt_populate = pnv_chip_power9_dt_populate;
1573     k->pic_print_info = pnv_chip_power9_pic_print_info;
1574     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1575     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1576     dc->desc = "PowerNV Chip POWER9";
1577     k->num_phbs = 6;
1578 
1579     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1580                                     &k->parent_realize);
1581 }
1582 
1583 static void pnv_chip_power10_instance_init(Object *obj)
1584 {
1585     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1586 
1587     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1588     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1589 }
1590 
1591 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1592 {
1593     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1594     PnvChip *chip = PNV_CHIP(dev);
1595     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1596     Error *local_err = NULL;
1597 
1598     /* XSCOM bridge is first */
1599     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1600     if (local_err) {
1601         error_propagate(errp, local_err);
1602         return;
1603     }
1604     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1605 
1606     pcc->parent_realize(dev, &local_err);
1607     if (local_err) {
1608         error_propagate(errp, local_err);
1609         return;
1610     }
1611 
1612     /* Processor Service Interface (PSI) Host Bridge */
1613     object_property_set_int(OBJECT(&chip10->psi), "bar",
1614                             PNV10_PSIHB_BASE(chip), &error_fatal);
1615     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1616         return;
1617     }
1618     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1619                             &PNV_PSI(&chip10->psi)->xscom_regs);
1620 
1621     /* LPC */
1622     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1623                              OBJECT(&chip10->psi), &error_abort);
1624     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1625         return;
1626     }
1627     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1628                                 &chip10->lpc.xscom_regs);
1629 
1630     chip->fw_mr = &chip10->lpc.isa_fw;
1631     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1632                                             (uint64_t) PNV10_LPCM_BASE(chip));
1633 }
1634 
1635 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1636 {
1637     addr &= (PNV10_XSCOM_SIZE - 1);
1638     return addr >> 3;
1639 }
1640 
1641 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1642 {
1643     DeviceClass *dc = DEVICE_CLASS(klass);
1644     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1645 
1646     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1647     k->cores_mask = POWER10_CORE_MASK;
1648     k->core_pir = pnv_chip_core_pir_p10;
1649     k->intc_create = pnv_chip_power10_intc_create;
1650     k->intc_reset = pnv_chip_power10_intc_reset;
1651     k->intc_destroy = pnv_chip_power10_intc_destroy;
1652     k->intc_print_info = pnv_chip_power10_intc_print_info;
1653     k->isa_create = pnv_chip_power10_isa_create;
1654     k->dt_populate = pnv_chip_power10_dt_populate;
1655     k->pic_print_info = pnv_chip_power10_pic_print_info;
1656     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1657     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1658     dc->desc = "PowerNV Chip POWER10";
1659 
1660     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1661                                     &k->parent_realize);
1662 }
1663 
1664 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1665 {
1666     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1667     int cores_max;
1668 
1669     /*
1670      * No custom mask for this chip, let's use the default one from *
1671      * the chip class
1672      */
1673     if (!chip->cores_mask) {
1674         chip->cores_mask = pcc->cores_mask;
1675     }
1676 
1677     /* filter alien core ids ! some are reserved */
1678     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1679         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1680                    chip->cores_mask);
1681         return;
1682     }
1683     chip->cores_mask &= pcc->cores_mask;
1684 
1685     /* now that we have a sane layout, let check the number of cores */
1686     cores_max = ctpop64(chip->cores_mask);
1687     if (chip->nr_cores > cores_max) {
1688         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1689                    cores_max);
1690         return;
1691     }
1692 }
1693 
1694 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1695 {
1696     Error *error = NULL;
1697     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1698     const char *typename = pnv_chip_core_typename(chip);
1699     int i, core_hwid;
1700     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1701 
1702     if (!object_class_by_name(typename)) {
1703         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1704         return;
1705     }
1706 
1707     /* Cores */
1708     pnv_chip_core_sanitize(chip, &error);
1709     if (error) {
1710         error_propagate(errp, error);
1711         return;
1712     }
1713 
1714     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1715 
1716     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1717              && (i < chip->nr_cores); core_hwid++) {
1718         char core_name[32];
1719         PnvCore *pnv_core;
1720         uint64_t xscom_core_base;
1721 
1722         if (!(chip->cores_mask & (1ull << core_hwid))) {
1723             continue;
1724         }
1725 
1726         pnv_core = PNV_CORE(object_new(typename));
1727 
1728         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1729         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1730         chip->cores[i] = pnv_core;
1731         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1732                                 chip->nr_threads, &error_fatal);
1733         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1734                                 core_hwid, &error_fatal);
1735         object_property_set_int(OBJECT(pnv_core), "pir",
1736                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1737         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1738                                 &error_fatal);
1739         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1740                                  &error_abort);
1741         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1742 
1743         /* Each core has an XSCOM MMIO region */
1744         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1745 
1746         pnv_xscom_add_subregion(chip, xscom_core_base,
1747                                 &pnv_core->xscom_regs);
1748         i++;
1749     }
1750 }
1751 
1752 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1753 {
1754     PnvChip *chip = PNV_CHIP(dev);
1755     Error *error = NULL;
1756 
1757     /* Cores */
1758     pnv_chip_core_realize(chip, &error);
1759     if (error) {
1760         error_propagate(errp, error);
1761         return;
1762     }
1763 }
1764 
1765 static Property pnv_chip_properties[] = {
1766     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1767     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1768     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1769     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1770     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1771     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1772     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1773     DEFINE_PROP_END_OF_LIST(),
1774 };
1775 
1776 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1777 {
1778     DeviceClass *dc = DEVICE_CLASS(klass);
1779 
1780     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1781     dc->realize = pnv_chip_realize;
1782     device_class_set_props(dc, pnv_chip_properties);
1783     dc->desc = "PowerNV Chip";
1784 }
1785 
1786 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1787 {
1788     int i, j;
1789 
1790     for (i = 0; i < chip->nr_cores; i++) {
1791         PnvCore *pc = chip->cores[i];
1792         CPUCore *cc = CPU_CORE(pc);
1793 
1794         for (j = 0; j < cc->nr_threads; j++) {
1795             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1796                 return pc->threads[j];
1797             }
1798         }
1799     }
1800     return NULL;
1801 }
1802 
1803 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1804 {
1805     PnvMachineState *pnv = PNV_MACHINE(xi);
1806     int i, j;
1807 
1808     for (i = 0; i < pnv->num_chips; i++) {
1809         PnvChip *chip = pnv->chips[i];
1810         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1811 
1812         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1813             return &chip8->psi.ics;
1814         }
1815         for (j = 0; j < chip->num_phbs; j++) {
1816             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1817                 return &chip8->phbs[j].lsis;
1818             }
1819             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1820                 return ICS(&chip8->phbs[j].msis);
1821             }
1822         }
1823     }
1824     return NULL;
1825 }
1826 
1827 static void pnv_ics_resend(XICSFabric *xi)
1828 {
1829     PnvMachineState *pnv = PNV_MACHINE(xi);
1830     int i, j;
1831 
1832     for (i = 0; i < pnv->num_chips; i++) {
1833         PnvChip *chip = pnv->chips[i];
1834         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1835 
1836         ics_resend(&chip8->psi.ics);
1837         for (j = 0; j < chip->num_phbs; j++) {
1838             ics_resend(&chip8->phbs[j].lsis);
1839             ics_resend(ICS(&chip8->phbs[j].msis));
1840         }
1841     }
1842 }
1843 
1844 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1845 {
1846     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1847 
1848     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1849 }
1850 
1851 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1852                                Monitor *mon)
1853 {
1854     PnvMachineState *pnv = PNV_MACHINE(obj);
1855     int i;
1856     CPUState *cs;
1857 
1858     CPU_FOREACH(cs) {
1859         PowerPCCPU *cpu = POWERPC_CPU(cs);
1860 
1861         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1862         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1863                                                            mon);
1864     }
1865 
1866     for (i = 0; i < pnv->num_chips; i++) {
1867         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1868     }
1869 }
1870 
1871 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1872                          uint8_t nvt_blk, uint32_t nvt_idx,
1873                          bool cam_ignore, uint8_t priority,
1874                          uint32_t logic_serv,
1875                          XiveTCTXMatch *match)
1876 {
1877     PnvMachineState *pnv = PNV_MACHINE(xfb);
1878     int total_count = 0;
1879     int i;
1880 
1881     for (i = 0; i < pnv->num_chips; i++) {
1882         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1883         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1884         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1885         int count;
1886 
1887         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1888                                priority, logic_serv, match);
1889 
1890         if (count < 0) {
1891             return count;
1892         }
1893 
1894         total_count += count;
1895     }
1896 
1897     return total_count;
1898 }
1899 
1900 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1901 {
1902     MachineClass *mc = MACHINE_CLASS(oc);
1903     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1904     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1905     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1906 
1907     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1908     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1909 
1910     xic->icp_get = pnv_icp_get;
1911     xic->ics_get = pnv_ics_get;
1912     xic->ics_resend = pnv_ics_resend;
1913 
1914     pmc->compat = compat;
1915     pmc->compat_size = sizeof(compat);
1916 }
1917 
1918 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1919 {
1920     MachineClass *mc = MACHINE_CLASS(oc);
1921     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1922     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1923     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1924 
1925     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1926     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1927     xfc->match_nvt = pnv_match_nvt;
1928 
1929     mc->alias = "powernv";
1930 
1931     pmc->compat = compat;
1932     pmc->compat_size = sizeof(compat);
1933     pmc->dt_power_mgt = pnv_dt_power_mgt;
1934 }
1935 
1936 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1937 {
1938     MachineClass *mc = MACHINE_CLASS(oc);
1939     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1940     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1941 
1942     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1943     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1944 
1945     pmc->compat = compat;
1946     pmc->compat_size = sizeof(compat);
1947     pmc->dt_power_mgt = pnv_dt_power_mgt;
1948 }
1949 
1950 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1951 {
1952     PnvMachineState *pnv = PNV_MACHINE(obj);
1953 
1954     return !!pnv->fw_load_addr;
1955 }
1956 
1957 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1958 {
1959     PnvMachineState *pnv = PNV_MACHINE(obj);
1960 
1961     if (value) {
1962         pnv->fw_load_addr = 0x8000000;
1963     }
1964 }
1965 
1966 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1967 {
1968     PowerPCCPU *cpu = POWERPC_CPU(cs);
1969     CPUPPCState *env = &cpu->env;
1970 
1971     cpu_synchronize_state(cs);
1972     ppc_cpu_do_system_reset(cs);
1973     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1974         /*
1975          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1976          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1977          * (PPC_BIT(43)).
1978          */
1979         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1980             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1981             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1982         }
1983     } else {
1984         /*
1985          * For non-powersave system resets, SRR1[42:45] are defined to be
1986          * implementation-dependent. The POWER9 User Manual specifies that
1987          * an external (SCOM driven, which may come from a BMC nmi command or
1988          * another CPU requesting a NMI IPI) system reset exception should be
1989          * 0b0010 (PPC_BIT(44)).
1990          */
1991         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1992     }
1993 }
1994 
1995 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1996 {
1997     CPUState *cs;
1998 
1999     CPU_FOREACH(cs) {
2000         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2001     }
2002 }
2003 
2004 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2005 {
2006     MachineClass *mc = MACHINE_CLASS(oc);
2007     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2008     NMIClass *nc = NMI_CLASS(oc);
2009 
2010     mc->desc = "IBM PowerNV (Non-Virtualized)";
2011     mc->init = pnv_init;
2012     mc->reset = pnv_reset;
2013     mc->max_cpus = MAX_CPUS;
2014     /* Pnv provides a AHCI device for storage */
2015     mc->block_default_type = IF_IDE;
2016     mc->no_parallel = 1;
2017     mc->default_boot_order = NULL;
2018     /*
2019      * RAM defaults to less than 2048 for 32-bit hosts, and large
2020      * enough to fit the maximum initrd size at it's load address
2021      */
2022     mc->default_ram_size = 1 * GiB;
2023     mc->default_ram_id = "pnv.ram";
2024     ispc->print_info = pnv_pic_print_info;
2025     nc->nmi_monitor_handler = pnv_nmi;
2026 
2027     object_class_property_add_bool(oc, "hb-mode",
2028                                    pnv_machine_get_hb, pnv_machine_set_hb);
2029     object_class_property_set_description(oc, "hb-mode",
2030                               "Use a hostboot like boot loader");
2031 }
2032 
2033 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2034     {                                             \
2035         .name          = type,                    \
2036         .class_init    = class_initfn,            \
2037         .parent        = TYPE_PNV8_CHIP,          \
2038     }
2039 
2040 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2041     {                                             \
2042         .name          = type,                    \
2043         .class_init    = class_initfn,            \
2044         .parent        = TYPE_PNV9_CHIP,          \
2045     }
2046 
2047 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2048     {                                              \
2049         .name          = type,                     \
2050         .class_init    = class_initfn,             \
2051         .parent        = TYPE_PNV10_CHIP,          \
2052     }
2053 
2054 static const TypeInfo types[] = {
2055     {
2056         .name          = MACHINE_TYPE_NAME("powernv10"),
2057         .parent        = TYPE_PNV_MACHINE,
2058         .class_init    = pnv_machine_power10_class_init,
2059     },
2060     {
2061         .name          = MACHINE_TYPE_NAME("powernv9"),
2062         .parent        = TYPE_PNV_MACHINE,
2063         .class_init    = pnv_machine_power9_class_init,
2064         .interfaces = (InterfaceInfo[]) {
2065             { TYPE_XIVE_FABRIC },
2066             { },
2067         },
2068     },
2069     {
2070         .name          = MACHINE_TYPE_NAME("powernv8"),
2071         .parent        = TYPE_PNV_MACHINE,
2072         .class_init    = pnv_machine_power8_class_init,
2073         .interfaces = (InterfaceInfo[]) {
2074             { TYPE_XICS_FABRIC },
2075             { },
2076         },
2077     },
2078     {
2079         .name          = TYPE_PNV_MACHINE,
2080         .parent        = TYPE_MACHINE,
2081         .abstract       = true,
2082         .instance_size = sizeof(PnvMachineState),
2083         .class_init    = pnv_machine_class_init,
2084         .class_size    = sizeof(PnvMachineClass),
2085         .interfaces = (InterfaceInfo[]) {
2086             { TYPE_INTERRUPT_STATS_PROVIDER },
2087             { TYPE_NMI },
2088             { },
2089         },
2090     },
2091     {
2092         .name          = TYPE_PNV_CHIP,
2093         .parent        = TYPE_SYS_BUS_DEVICE,
2094         .class_init    = pnv_chip_class_init,
2095         .instance_size = sizeof(PnvChip),
2096         .class_size    = sizeof(PnvChipClass),
2097         .abstract      = true,
2098     },
2099 
2100     /*
2101      * P10 chip and variants
2102      */
2103     {
2104         .name          = TYPE_PNV10_CHIP,
2105         .parent        = TYPE_PNV_CHIP,
2106         .instance_init = pnv_chip_power10_instance_init,
2107         .instance_size = sizeof(Pnv10Chip),
2108     },
2109     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2110 
2111     /*
2112      * P9 chip and variants
2113      */
2114     {
2115         .name          = TYPE_PNV9_CHIP,
2116         .parent        = TYPE_PNV_CHIP,
2117         .instance_init = pnv_chip_power9_instance_init,
2118         .instance_size = sizeof(Pnv9Chip),
2119     },
2120     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2121 
2122     /*
2123      * P8 chip and variants
2124      */
2125     {
2126         .name          = TYPE_PNV8_CHIP,
2127         .parent        = TYPE_PNV_CHIP,
2128         .instance_init = pnv_chip_power8_instance_init,
2129         .instance_size = sizeof(Pnv8Chip),
2130     },
2131     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2132     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2133     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2134                           pnv_chip_power8nvl_class_init),
2135 };
2136 
2137 DEFINE_TYPES(types)
2138