xref: /openbmc/qemu/hw/ppc/pnv.c (revision 377ce9cb0f728270d8acbe2c04b68596a5b3be71)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/qtest.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/numa.h"
27 #include "sysemu/reset.h"
28 #include "sysemu/runstate.h"
29 #include "sysemu/cpus.h"
30 #include "sysemu/device_tree.h"
31 #include "sysemu/hw_accel.h"
32 #include "target/ppc/cpu.h"
33 #include "qemu/log.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "exec/address-spaces.h"
41 #include "qapi/visitor.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 
48 #include "hw/ppc/xics.h"
49 #include "hw/qdev-properties.h"
50 #include "hw/ppc/pnv_xscom.h"
51 #include "hw/ppc/pnv_pnor.h"
52 
53 #include "hw/isa/isa.h"
54 #include "hw/boards.h"
55 #include "hw/char/serial.h"
56 #include "hw/rtc/mc146818rtc.h"
57 
58 #include <libfdt.h>
59 
60 #define FDT_MAX_SIZE            (1 * MiB)
61 
62 #define FW_FILE_NAME            "skiboot.lid"
63 #define FW_LOAD_ADDR            0x0
64 #define FW_MAX_SIZE             (16 * MiB)
65 
66 #define KERNEL_LOAD_ADDR        0x20000000
67 #define KERNEL_MAX_SIZE         (256 * MiB)
68 #define INITRD_LOAD_ADDR        0x60000000
69 #define INITRD_MAX_SIZE         (256 * MiB)
70 
71 static const char *pnv_chip_core_typename(const PnvChip *o)
72 {
73     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
74     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
75     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
76     const char *core_type = object_class_get_name(object_class_by_name(s));
77     g_free(s);
78     return core_type;
79 }
80 
81 /*
82  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
83  *     4 * 4 sockets * 12 cores * 8 threads = 1536
84  * Let's make it 2^11
85  */
86 #define MAX_CPUS                2048
87 
88 /*
89  * Memory nodes are created by hostboot, one for each range of memory
90  * that has a different "affinity". In practice, it means one range
91  * per chip.
92  */
93 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
94 {
95     char *mem_name;
96     uint64_t mem_reg_property[2];
97     int off;
98 
99     mem_reg_property[0] = cpu_to_be64(start);
100     mem_reg_property[1] = cpu_to_be64(size);
101 
102     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
103     off = fdt_add_subnode(fdt, 0, mem_name);
104     g_free(mem_name);
105 
106     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
107     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
108                        sizeof(mem_reg_property))));
109     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
110 }
111 
112 static int get_cpus_node(void *fdt)
113 {
114     int cpus_offset = fdt_path_offset(fdt, "/cpus");
115 
116     if (cpus_offset < 0) {
117         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
118         if (cpus_offset) {
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
121         }
122     }
123     _FDT(cpus_offset);
124     return cpus_offset;
125 }
126 
127 /*
128  * The PowerNV cores (and threads) need to use real HW ids and not an
129  * incremental index like it has been done on other platforms. This HW
130  * id is stored in the CPU PIR, it is used to create cpu nodes in the
131  * device tree, used in XSCOM to address cores and in interrupt
132  * servers.
133  */
134 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
135 {
136     PowerPCCPU *cpu = pc->threads[0];
137     CPUState *cs = CPU(cpu);
138     DeviceClass *dc = DEVICE_GET_CLASS(cs);
139     int smt_threads = CPU_CORE(pc)->nr_threads;
140     CPUPPCState *env = &cpu->env;
141     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
142     uint32_t servers_prop[smt_threads];
143     int i;
144     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
145                        0xffffffff, 0xffffffff};
146     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
147     uint32_t cpufreq = 1000000000;
148     uint32_t page_sizes_prop[64];
149     size_t page_sizes_prop_size;
150     const uint8_t pa_features[] = { 24, 0,
151                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
152                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
153                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
154                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (env->spr_cb[SPR_PURR].oea_read) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
238                        pa_features, sizeof(pa_features))));
239 
240     /* Build interrupt servers properties */
241     for (i = 0; i < smt_threads; i++) {
242         servers_prop[i] = cpu_to_be32(pc->pir + i);
243     }
244     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
245                        servers_prop, sizeof(servers_prop))));
246 }
247 
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
249                        uint32_t nr_threads)
250 {
251     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
252     char *name;
253     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
254     uint32_t irange[2], i, rsize;
255     uint64_t *reg;
256     int offset;
257 
258     irange[0] = cpu_to_be32(pir);
259     irange[1] = cpu_to_be32(nr_threads);
260 
261     rsize = sizeof(uint64_t) * 2 * nr_threads;
262     reg = g_malloc(rsize);
263     for (i = 0; i < nr_threads; i++) {
264         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
265         reg[i * 2 + 1] = cpu_to_be64(0x1000);
266     }
267 
268     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
269     offset = fdt_add_subnode(fdt, 0, name);
270     _FDT(offset);
271     g_free(name);
272 
273     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
274     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
275     _FDT((fdt_setprop_string(fdt, offset, "device_type",
276                               "PowerPC-External-Interrupt-Presentation")));
277     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
278     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
279                        irange, sizeof(irange))));
280     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
281     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
282     g_free(reg);
283 }
284 
285 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
286 {
287     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
288     int i;
289 
290     pnv_dt_xscom(chip, fdt, 0,
291                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
292                  cpu_to_be64(PNV_XSCOM_SIZE),
293                  compat, sizeof(compat));
294 
295     for (i = 0; i < chip->nr_cores; i++) {
296         PnvCore *pnv_core = chip->cores[i];
297 
298         pnv_dt_core(chip, pnv_core, fdt);
299 
300         /* Interrupt Control Presenters (ICP). One per core. */
301         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
302     }
303 
304     if (chip->ram_size) {
305         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
306     }
307 }
308 
309 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
310 {
311     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
312     int i;
313 
314     pnv_dt_xscom(chip, fdt, 0,
315                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
316                  cpu_to_be64(PNV9_XSCOM_SIZE),
317                  compat, sizeof(compat));
318 
319     for (i = 0; i < chip->nr_cores; i++) {
320         PnvCore *pnv_core = chip->cores[i];
321 
322         pnv_dt_core(chip, pnv_core, fdt);
323     }
324 
325     if (chip->ram_size) {
326         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
327     }
328 
329     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
330 }
331 
332 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
333 {
334     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
335     int i;
336 
337     pnv_dt_xscom(chip, fdt, 0,
338                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
339                  cpu_to_be64(PNV10_XSCOM_SIZE),
340                  compat, sizeof(compat));
341 
342     for (i = 0; i < chip->nr_cores; i++) {
343         PnvCore *pnv_core = chip->cores[i];
344 
345         pnv_dt_core(chip, pnv_core, fdt);
346     }
347 
348     if (chip->ram_size) {
349         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
350     }
351 
352     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
353 }
354 
355 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
356 {
357     uint32_t io_base = d->ioport_id;
358     uint32_t io_regs[] = {
359         cpu_to_be32(1),
360         cpu_to_be32(io_base),
361         cpu_to_be32(2)
362     };
363     char *name;
364     int node;
365 
366     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
367     node = fdt_add_subnode(fdt, lpc_off, name);
368     _FDT(node);
369     g_free(name);
370 
371     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
372     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
373 }
374 
375 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
376 {
377     const char compatible[] = "ns16550\0pnpPNP,501";
378     uint32_t io_base = d->ioport_id;
379     uint32_t io_regs[] = {
380         cpu_to_be32(1),
381         cpu_to_be32(io_base),
382         cpu_to_be32(8)
383     };
384     char *name;
385     int node;
386 
387     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
388     node = fdt_add_subnode(fdt, lpc_off, name);
389     _FDT(node);
390     g_free(name);
391 
392     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
393     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
394                       sizeof(compatible))));
395 
396     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
397     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
399     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
400                            fdt_get_phandle(fdt, lpc_off))));
401 
402     /* This is needed by Linux */
403     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
404 }
405 
406 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
407 {
408     const char compatible[] = "bt\0ipmi-bt";
409     uint32_t io_base;
410     uint32_t io_regs[] = {
411         cpu_to_be32(1),
412         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
413         cpu_to_be32(3)
414     };
415     uint32_t irq;
416     char *name;
417     int node;
418 
419     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
420     io_regs[1] = cpu_to_be32(io_base);
421 
422     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
423 
424     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
425     node = fdt_add_subnode(fdt, lpc_off, name);
426     _FDT(node);
427     g_free(name);
428 
429     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
430     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
431                       sizeof(compatible))));
432 
433     /* Mark it as reserved to avoid Linux trying to claim it */
434     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
436     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
437                            fdt_get_phandle(fdt, lpc_off))));
438 }
439 
440 typedef struct ForeachPopulateArgs {
441     void *fdt;
442     int offset;
443 } ForeachPopulateArgs;
444 
445 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
446 {
447     ForeachPopulateArgs *args = opaque;
448     ISADevice *d = ISA_DEVICE(dev);
449 
450     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
451         pnv_dt_rtc(d, args->fdt, args->offset);
452     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
453         pnv_dt_serial(d, args->fdt, args->offset);
454     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
455         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
456     } else {
457         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
458                      d->ioport_id);
459     }
460 
461     return 0;
462 }
463 
464 /*
465  * The default LPC bus of a multichip system is on chip 0. It's
466  * recognized by the firmware (skiboot) using a "primary" property.
467  */
468 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
469 {
470     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
471     ForeachPopulateArgs args = {
472         .fdt = fdt,
473         .offset = isa_offset,
474     };
475     uint32_t phandle;
476 
477     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
478 
479     phandle = qemu_fdt_alloc_phandle(fdt);
480     assert(phandle > 0);
481     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
482 
483     /*
484      * ISA devices are not necessarily parented to the ISA bus so we
485      * can not use object_child_foreach()
486      */
487     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
488                        &args);
489 }
490 
491 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
492 {
493     int off;
494 
495     off = fdt_add_subnode(fdt, 0, "ibm,opal");
496     off = fdt_add_subnode(fdt, off, "power-mgt");
497 
498     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
499 }
500 
501 static void *pnv_dt_create(MachineState *machine)
502 {
503     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
504     PnvMachineState *pnv = PNV_MACHINE(machine);
505     void *fdt;
506     char *buf;
507     int off;
508     int i;
509 
510     fdt = g_malloc0(FDT_MAX_SIZE);
511     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
512 
513     /* /qemu node */
514     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
515 
516     /* Root node */
517     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
518     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
519     _FDT((fdt_setprop_string(fdt, 0, "model",
520                              "IBM PowerNV (emulated by qemu)")));
521     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
522 
523     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
524     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
525     if (qemu_uuid_set) {
526         _FDT((fdt_property_string(fdt, "system-id", buf)));
527     }
528     g_free(buf);
529 
530     off = fdt_add_subnode(fdt, 0, "chosen");
531     if (machine->kernel_cmdline) {
532         _FDT((fdt_setprop_string(fdt, off, "bootargs",
533                                  machine->kernel_cmdline)));
534     }
535 
536     if (pnv->initrd_size) {
537         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
538         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
539 
540         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
541                                &start_prop, sizeof(start_prop))));
542         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
543                                &end_prop, sizeof(end_prop))));
544     }
545 
546     /* Populate device tree for each chip */
547     for (i = 0; i < pnv->num_chips; i++) {
548         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
549     }
550 
551     /* Populate ISA devices on chip 0 */
552     pnv_dt_isa(pnv, fdt);
553 
554     if (pnv->bmc) {
555         pnv_dt_bmc_sensors(pnv->bmc, fdt);
556     }
557 
558     /* Create an extra node for power management on machines that support it */
559     if (pmc->dt_power_mgt) {
560         pmc->dt_power_mgt(pnv, fdt);
561     }
562 
563     return fdt;
564 }
565 
566 static void pnv_powerdown_notify(Notifier *n, void *opaque)
567 {
568     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
569 
570     if (pnv->bmc) {
571         pnv_bmc_powerdown(pnv->bmc);
572     }
573 }
574 
575 static void pnv_reset(MachineState *machine)
576 {
577     PnvMachineState *pnv = PNV_MACHINE(machine);
578     IPMIBmc *bmc;
579     void *fdt;
580 
581     qemu_devices_reset();
582 
583     /*
584      * The machine should provide by default an internal BMC simulator.
585      * If not, try to use the BMC device that was provided on the command
586      * line.
587      */
588     bmc = pnv_bmc_find(&error_fatal);
589     if (!pnv->bmc) {
590         if (!bmc) {
591             if (!qtest_enabled()) {
592                 warn_report("machine has no BMC device. Use '-device "
593                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
594                             "to define one");
595             }
596         } else {
597             pnv_bmc_set_pnor(bmc, pnv->pnor);
598             pnv->bmc = bmc;
599         }
600     }
601 
602     fdt = pnv_dt_create(machine);
603 
604     /* Pack resulting tree */
605     _FDT((fdt_pack(fdt)));
606 
607     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
608     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
609 
610     g_free(fdt);
611 }
612 
613 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
614 {
615     Pnv8Chip *chip8 = PNV8_CHIP(chip);
616     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
617 }
618 
619 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
620 {
621     Pnv8Chip *chip8 = PNV8_CHIP(chip);
622     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
623 }
624 
625 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
626 {
627     Pnv9Chip *chip9 = PNV9_CHIP(chip);
628     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
629 }
630 
631 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
632 {
633     Pnv10Chip *chip10 = PNV10_CHIP(chip);
634     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
635 }
636 
637 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
638 {
639     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
640 }
641 
642 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
643 {
644     Pnv8Chip *chip8 = PNV8_CHIP(chip);
645     int i;
646 
647     ics_pic_print_info(&chip8->psi.ics, mon);
648     for (i = 0; i < chip->num_phbs; i++) {
649         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
650         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
651     }
652 }
653 
654 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
655 {
656     Pnv9Chip *chip9 = PNV9_CHIP(chip);
657     int i, j;
658 
659     pnv_xive_pic_print_info(&chip9->xive, mon);
660     pnv_psi_pic_print_info(&chip9->psi, mon);
661 
662     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
663         PnvPhb4PecState *pec = &chip9->pecs[i];
664         for (j = 0; j < pec->num_stacks; j++) {
665             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
666         }
667     }
668 }
669 
670 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
671                                                 uint32_t core_id)
672 {
673     return PNV_XSCOM_EX_BASE(core_id);
674 }
675 
676 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
677                                                 uint32_t core_id)
678 {
679     return PNV9_XSCOM_EC_BASE(core_id);
680 }
681 
682 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
683                                                  uint32_t core_id)
684 {
685     return PNV10_XSCOM_EC_BASE(core_id);
686 }
687 
688 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
689 {
690     PowerPCCPUClass *ppc_default =
691         POWERPC_CPU_CLASS(object_class_by_name(default_type));
692     PowerPCCPUClass *ppc =
693         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
694 
695     return ppc_default->pvr_match(ppc_default, ppc->pvr);
696 }
697 
698 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
699 {
700     ISADevice *dev = isa_new("isa-ipmi-bt");
701 
702     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
703     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
704     isa_realize_and_unref(dev, bus, &error_fatal);
705 }
706 
707 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
708 {
709     Pnv10Chip *chip10 = PNV10_CHIP(chip);
710 
711     pnv_psi_pic_print_info(&chip10->psi, mon);
712 }
713 
714 static void pnv_init(MachineState *machine)
715 {
716     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
717     PnvMachineState *pnv = PNV_MACHINE(machine);
718     MachineClass *mc = MACHINE_GET_CLASS(machine);
719     char *fw_filename;
720     long fw_size;
721     int i;
722     char *chip_typename;
723     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
724     DeviceState *dev;
725 
726     /* allocate RAM */
727     if (machine->ram_size < (1 * GiB)) {
728         warn_report("skiboot may not work with < 1GB of RAM");
729     }
730     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
731 
732     /*
733      * Create our simple PNOR device
734      */
735     dev = qdev_new(TYPE_PNV_PNOR);
736     if (pnor) {
737         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
738     }
739     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
740     pnv->pnor = PNV_PNOR(dev);
741 
742     /* load skiboot firmware  */
743     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
744     if (!fw_filename) {
745         error_report("Could not find OPAL firmware '%s'", bios_name);
746         exit(1);
747     }
748 
749     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
750     if (fw_size < 0) {
751         error_report("Could not load OPAL firmware '%s'", fw_filename);
752         exit(1);
753     }
754     g_free(fw_filename);
755 
756     /* load kernel */
757     if (machine->kernel_filename) {
758         long kernel_size;
759 
760         kernel_size = load_image_targphys(machine->kernel_filename,
761                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
762         if (kernel_size < 0) {
763             error_report("Could not load kernel '%s'",
764                          machine->kernel_filename);
765             exit(1);
766         }
767     }
768 
769     /* load initrd */
770     if (machine->initrd_filename) {
771         pnv->initrd_base = INITRD_LOAD_ADDR;
772         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
773                                   pnv->initrd_base, INITRD_MAX_SIZE);
774         if (pnv->initrd_size < 0) {
775             error_report("Could not load initial ram disk '%s'",
776                          machine->initrd_filename);
777             exit(1);
778         }
779     }
780 
781     /* MSIs are supported on this platform */
782     msi_nonbroken = true;
783 
784     /*
785      * Check compatibility of the specified CPU with the machine
786      * default.
787      */
788     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
789         error_report("invalid CPU model '%s' for %s machine",
790                      machine->cpu_type, mc->name);
791         exit(1);
792     }
793 
794     /* Create the processor chips */
795     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
796     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
797                                     i, machine->cpu_type);
798     if (!object_class_by_name(chip_typename)) {
799         error_report("invalid chip model '%.*s' for %s machine",
800                      i, machine->cpu_type, mc->name);
801         exit(1);
802     }
803 
804     pnv->num_chips =
805         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
806     /*
807      * TODO: should we decide on how many chips we can create based
808      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
809      */
810     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
811         error_report("invalid number of chips: '%d'", pnv->num_chips);
812         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
813         exit(1);
814     }
815 
816     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
817     for (i = 0; i < pnv->num_chips; i++) {
818         char chip_name[32];
819         Object *chip = OBJECT(qdev_new(chip_typename));
820 
821         pnv->chips[i] = PNV_CHIP(chip);
822 
823         /*
824          * TODO: put all the memory in one node on chip 0 until we find a
825          * way to specify different ranges for each chip
826          */
827         if (i == 0) {
828             object_property_set_int(chip, "ram-size", machine->ram_size,
829                                     &error_fatal);
830         }
831 
832         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
833         object_property_add_child(OBJECT(pnv), chip_name, chip);
834         object_property_set_int(chip, "chip-id", PNV_CHIP_HWID(i),
835                                 &error_fatal);
836         object_property_set_int(chip, "nr-cores", machine->smp.cores,
837                                 &error_fatal);
838         object_property_set_int(chip, "nr-threads", machine->smp.threads,
839                                 &error_fatal);
840         /*
841          * The POWER8 machine use the XICS interrupt interface.
842          * Propagate the XICS fabric to the chip and its controllers.
843          */
844         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
845             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
846         }
847         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
848             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
849                                      &error_abort);
850         }
851         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
852     }
853     g_free(chip_typename);
854 
855     /* Instantiate ISA bus on chip 0 */
856     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
857 
858     /* Create serial port */
859     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
860 
861     /* Create an RTC ISA device too */
862     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
863 
864     /*
865      * Create the machine BMC simulator and the IPMI BT device for
866      * communication with the BMC
867      */
868     if (defaults_enabled()) {
869         pnv->bmc = pnv_bmc_create(pnv->pnor);
870         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
871     }
872 
873     /*
874      * OpenPOWER systems use a IPMI SEL Event message to notify the
875      * host to powerdown
876      */
877     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
878     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
879 }
880 
881 /*
882  *    0:21  Reserved - Read as zeros
883  *   22:24  Chip ID
884  *   25:28  Core number
885  *   29:31  Thread ID
886  */
887 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
888 {
889     return (chip->chip_id << 7) | (core_id << 3);
890 }
891 
892 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
893                                         Error **errp)
894 {
895     Pnv8Chip *chip8 = PNV8_CHIP(chip);
896     Error *local_err = NULL;
897     Object *obj;
898     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
899 
900     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
901     if (local_err) {
902         error_propagate(errp, local_err);
903         return;
904     }
905 
906     pnv_cpu->intc = obj;
907 }
908 
909 
910 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
911 {
912     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
913 
914     icp_reset(ICP(pnv_cpu->intc));
915 }
916 
917 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
918 {
919     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
920 
921     icp_destroy(ICP(pnv_cpu->intc));
922     pnv_cpu->intc = NULL;
923 }
924 
925 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
926                                             Monitor *mon)
927 {
928     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
929 }
930 
931 /*
932  *    0:48  Reserved - Read as zeroes
933  *   49:52  Node ID
934  *   53:55  Chip ID
935  *   56     Reserved - Read as zero
936  *   57:61  Core number
937  *   62:63  Thread ID
938  *
939  * We only care about the lower bits. uint32_t is fine for the moment.
940  */
941 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
942 {
943     return (chip->chip_id << 8) | (core_id << 2);
944 }
945 
946 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
947 {
948     return (chip->chip_id << 8) | (core_id << 2);
949 }
950 
951 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
952                                         Error **errp)
953 {
954     Pnv9Chip *chip9 = PNV9_CHIP(chip);
955     Error *local_err = NULL;
956     Object *obj;
957     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
958 
959     /*
960      * The core creates its interrupt presenter but the XIVE interrupt
961      * controller object is initialized afterwards. Hopefully, it's
962      * only used at runtime.
963      */
964     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
965                            &local_err);
966     if (local_err) {
967         error_propagate(errp, local_err);
968         return;
969     }
970 
971     pnv_cpu->intc = obj;
972 }
973 
974 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
975 {
976     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
977 
978     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
979 }
980 
981 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
982 {
983     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
984 
985     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
986     pnv_cpu->intc = NULL;
987 }
988 
989 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
990                                             Monitor *mon)
991 {
992     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
993 }
994 
995 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
996                                         Error **errp)
997 {
998     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
999 
1000     /* Will be defined when the interrupt controller is */
1001     pnv_cpu->intc = NULL;
1002 }
1003 
1004 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1005 {
1006     ;
1007 }
1008 
1009 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1010 {
1011     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1012 
1013     pnv_cpu->intc = NULL;
1014 }
1015 
1016 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1017                                              Monitor *mon)
1018 {
1019 }
1020 
1021 /*
1022  * Allowed core identifiers on a POWER8 Processor Chip :
1023  *
1024  * <EX0 reserved>
1025  *  EX1  - Venice only
1026  *  EX2  - Venice only
1027  *  EX3  - Venice only
1028  *  EX4
1029  *  EX5
1030  *  EX6
1031  * <EX7,8 reserved> <reserved>
1032  *  EX9  - Venice only
1033  *  EX10 - Venice only
1034  *  EX11 - Venice only
1035  *  EX12
1036  *  EX13
1037  *  EX14
1038  * <EX15 reserved>
1039  */
1040 #define POWER8E_CORE_MASK  (0x7070ull)
1041 #define POWER8_CORE_MASK   (0x7e7eull)
1042 
1043 /*
1044  * POWER9 has 24 cores, ids starting at 0x0
1045  */
1046 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1047 
1048 
1049 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1050 
1051 static void pnv_chip_power8_instance_init(Object *obj)
1052 {
1053     PnvChip *chip = PNV_CHIP(obj);
1054     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1055     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1056     int i;
1057 
1058     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1059                              (Object **)&chip8->xics,
1060                              object_property_allow_set_link,
1061                              OBJ_PROP_LINK_STRONG);
1062 
1063     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1064 
1065     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1066 
1067     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1068 
1069     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1070 
1071     for (i = 0; i < pcc->num_phbs; i++) {
1072         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1073     }
1074 
1075     /*
1076      * Number of PHBs is the chip default
1077      */
1078     chip->num_phbs = pcc->num_phbs;
1079 }
1080 
1081 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1082  {
1083     PnvChip *chip = PNV_CHIP(chip8);
1084     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1085     int i, j;
1086     char *name;
1087 
1088     name = g_strdup_printf("icp-%x", chip->chip_id);
1089     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1090     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1091     g_free(name);
1092 
1093     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1094 
1095     /* Map the ICP registers for each thread */
1096     for (i = 0; i < chip->nr_cores; i++) {
1097         PnvCore *pnv_core = chip->cores[i];
1098         int core_hwid = CPU_CORE(pnv_core)->core_id;
1099 
1100         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1101             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1102             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1103 
1104             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1105                                         &icp->mmio);
1106         }
1107     }
1108 }
1109 
1110 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1111 {
1112     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1113     PnvChip *chip = PNV_CHIP(dev);
1114     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1115     Pnv8Psi *psi8 = &chip8->psi;
1116     Error *local_err = NULL;
1117     int i;
1118 
1119     assert(chip8->xics);
1120 
1121     /* XSCOM bridge is first */
1122     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1123     if (local_err) {
1124         error_propagate(errp, local_err);
1125         return;
1126     }
1127     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1128 
1129     pcc->parent_realize(dev, &local_err);
1130     if (local_err) {
1131         error_propagate(errp, local_err);
1132         return;
1133     }
1134 
1135     /* Processor Service Interface (PSI) Host Bridge */
1136     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1137                             &error_fatal);
1138     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1139                              OBJECT(chip8->xics), &error_abort);
1140     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1141         return;
1142     }
1143     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1144                             &PNV_PSI(psi8)->xscom_regs);
1145 
1146     /* Create LPC controller */
1147     object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1148                              &error_abort);
1149     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1150     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1151 
1152     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1153                                             (uint64_t) PNV_XSCOM_BASE(chip),
1154                                             PNV_XSCOM_LPC_BASE);
1155 
1156     /*
1157      * Interrupt Management Area. This is the memory region holding
1158      * all the Interrupt Control Presenter (ICP) registers
1159      */
1160     pnv_chip_icp_realize(chip8, &local_err);
1161     if (local_err) {
1162         error_propagate(errp, local_err);
1163         return;
1164     }
1165 
1166     /* Create the simplified OCC model */
1167     object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1168                              &error_abort);
1169     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1170         return;
1171     }
1172     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1173 
1174     /* OCC SRAM model */
1175     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1176                                 &chip8->occ.sram_regs);
1177 
1178     /* HOMER */
1179     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1180                              &error_abort);
1181     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1182         return;
1183     }
1184     /* Homer Xscom region */
1185     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1186 
1187     /* Homer mmio region */
1188     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1189                                 &chip8->homer.regs);
1190 
1191     /* PHB3 controllers */
1192     for (i = 0; i < chip->num_phbs; i++) {
1193         PnvPHB3 *phb = &chip8->phbs[i];
1194         PnvPBCQState *pbcq = &phb->pbcq;
1195 
1196         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1197         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1198                                 &error_fatal);
1199         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1200             return;
1201         }
1202 
1203         /* Populate the XSCOM address space. */
1204         pnv_xscom_add_subregion(chip,
1205                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1206                                 &pbcq->xscom_nest_regs);
1207         pnv_xscom_add_subregion(chip,
1208                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1209                                 &pbcq->xscom_pci_regs);
1210         pnv_xscom_add_subregion(chip,
1211                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1212                                 &pbcq->xscom_spci_regs);
1213     }
1214 }
1215 
1216 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1217 {
1218     addr &= (PNV_XSCOM_SIZE - 1);
1219     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1220 }
1221 
1222 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1223 {
1224     DeviceClass *dc = DEVICE_CLASS(klass);
1225     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1226 
1227     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1228     k->cores_mask = POWER8E_CORE_MASK;
1229     k->num_phbs = 3;
1230     k->core_pir = pnv_chip_core_pir_p8;
1231     k->intc_create = pnv_chip_power8_intc_create;
1232     k->intc_reset = pnv_chip_power8_intc_reset;
1233     k->intc_destroy = pnv_chip_power8_intc_destroy;
1234     k->intc_print_info = pnv_chip_power8_intc_print_info;
1235     k->isa_create = pnv_chip_power8_isa_create;
1236     k->dt_populate = pnv_chip_power8_dt_populate;
1237     k->pic_print_info = pnv_chip_power8_pic_print_info;
1238     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1239     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1240     dc->desc = "PowerNV Chip POWER8E";
1241 
1242     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1243                                     &k->parent_realize);
1244 }
1245 
1246 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1247 {
1248     DeviceClass *dc = DEVICE_CLASS(klass);
1249     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1250 
1251     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1252     k->cores_mask = POWER8_CORE_MASK;
1253     k->num_phbs = 3;
1254     k->core_pir = pnv_chip_core_pir_p8;
1255     k->intc_create = pnv_chip_power8_intc_create;
1256     k->intc_reset = pnv_chip_power8_intc_reset;
1257     k->intc_destroy = pnv_chip_power8_intc_destroy;
1258     k->intc_print_info = pnv_chip_power8_intc_print_info;
1259     k->isa_create = pnv_chip_power8_isa_create;
1260     k->dt_populate = pnv_chip_power8_dt_populate;
1261     k->pic_print_info = pnv_chip_power8_pic_print_info;
1262     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1263     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1264     dc->desc = "PowerNV Chip POWER8";
1265 
1266     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1267                                     &k->parent_realize);
1268 }
1269 
1270 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1271 {
1272     DeviceClass *dc = DEVICE_CLASS(klass);
1273     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1274 
1275     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1276     k->cores_mask = POWER8_CORE_MASK;
1277     k->num_phbs = 3;
1278     k->core_pir = pnv_chip_core_pir_p8;
1279     k->intc_create = pnv_chip_power8_intc_create;
1280     k->intc_reset = pnv_chip_power8_intc_reset;
1281     k->intc_destroy = pnv_chip_power8_intc_destroy;
1282     k->intc_print_info = pnv_chip_power8_intc_print_info;
1283     k->isa_create = pnv_chip_power8nvl_isa_create;
1284     k->dt_populate = pnv_chip_power8_dt_populate;
1285     k->pic_print_info = pnv_chip_power8_pic_print_info;
1286     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1287     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1288     dc->desc = "PowerNV Chip POWER8NVL";
1289 
1290     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1291                                     &k->parent_realize);
1292 }
1293 
1294 static void pnv_chip_power9_instance_init(Object *obj)
1295 {
1296     PnvChip *chip = PNV_CHIP(obj);
1297     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1298     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1299     int i;
1300 
1301     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1302     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1303                               "xive-fabric");
1304 
1305     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1306 
1307     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1308 
1309     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1310 
1311     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1312 
1313     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1314         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1315                                 TYPE_PNV_PHB4_PEC);
1316     }
1317 
1318     /*
1319      * Number of PHBs is the chip default
1320      */
1321     chip->num_phbs = pcc->num_phbs;
1322 }
1323 
1324 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1325 {
1326     PnvChip *chip = PNV_CHIP(chip9);
1327     int i;
1328 
1329     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1330     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1331 
1332     for (i = 0; i < chip9->nr_quads; i++) {
1333         char eq_name[32];
1334         PnvQuad *eq = &chip9->quads[i];
1335         PnvCore *pnv_core = chip->cores[i * 4];
1336         int core_id = CPU_CORE(pnv_core)->core_id;
1337 
1338         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1339         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1340                                            sizeof(*eq), TYPE_PNV_QUAD,
1341                                            &error_fatal, NULL);
1342 
1343         object_property_set_int(OBJECT(eq), "id", core_id, &error_fatal);
1344         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1345 
1346         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1347                                 &eq->xscom_regs);
1348     }
1349 }
1350 
1351 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1352 {
1353     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1354     int i, j;
1355     int phb_id = 0;
1356 
1357     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1358         PnvPhb4PecState *pec = &chip9->pecs[i];
1359         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1360         uint32_t pec_nest_base;
1361         uint32_t pec_pci_base;
1362 
1363         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1364         /*
1365          * PEC0 -> 1 stack
1366          * PEC1 -> 2 stacks
1367          * PEC2 -> 3 stacks
1368          */
1369         object_property_set_int(OBJECT(pec), "num-stacks", i + 1,
1370                                 &error_fatal);
1371         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1372                                 &error_fatal);
1373         object_property_set_link(OBJECT(pec), "system-memory",
1374                                  OBJECT(get_system_memory()), &error_abort);
1375         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1376             return;
1377         }
1378 
1379         pec_nest_base = pecc->xscom_nest_base(pec);
1380         pec_pci_base = pecc->xscom_pci_base(pec);
1381 
1382         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1383         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1384 
1385         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1386              j++, phb_id++) {
1387             PnvPhb4PecStack *stack = &pec->stacks[j];
1388             Object *obj = OBJECT(&stack->phb);
1389 
1390             object_property_set_int(obj, "index", phb_id, &error_fatal);
1391             object_property_set_int(obj, "chip-id", chip->chip_id,
1392                                     &error_fatal);
1393             object_property_set_int(obj, "version", PNV_PHB4_VERSION,
1394                                     &error_fatal);
1395             object_property_set_int(obj, "device-id", PNV_PHB4_DEVICE_ID,
1396                                     &error_fatal);
1397             object_property_set_link(obj, "stack", OBJECT(stack),
1398                                      &error_abort);
1399             if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
1400                 return;
1401             }
1402 
1403             /* Populate the XSCOM address space. */
1404             pnv_xscom_add_subregion(chip,
1405                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1406                                    &stack->nest_regs_mr);
1407             pnv_xscom_add_subregion(chip,
1408                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1409                                     &stack->pci_regs_mr);
1410             pnv_xscom_add_subregion(chip,
1411                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1412                                     0x40 * stack->stack_no,
1413                                     &stack->phb_regs_mr);
1414         }
1415     }
1416 }
1417 
1418 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1419 {
1420     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1421     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1422     PnvChip *chip = PNV_CHIP(dev);
1423     Pnv9Psi *psi9 = &chip9->psi;
1424     Error *local_err = NULL;
1425 
1426     /* XSCOM bridge is first */
1427     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1428     if (local_err) {
1429         error_propagate(errp, local_err);
1430         return;
1431     }
1432     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1433 
1434     pcc->parent_realize(dev, &local_err);
1435     if (local_err) {
1436         error_propagate(errp, local_err);
1437         return;
1438     }
1439 
1440     pnv_chip_quad_realize(chip9, &local_err);
1441     if (local_err) {
1442         error_propagate(errp, local_err);
1443         return;
1444     }
1445 
1446     /* XIVE interrupt controller (POWER9) */
1447     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1448                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1449     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1450                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1451     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1452                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1453     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1454                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1455     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1456                              &error_abort);
1457     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1458         return;
1459     }
1460     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1461                             &chip9->xive.xscom_regs);
1462 
1463     /* Processor Service Interface (PSI) Host Bridge */
1464     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1465                             &error_fatal);
1466     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1467         return;
1468     }
1469     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1470                             &PNV_PSI(psi9)->xscom_regs);
1471 
1472     /* LPC */
1473     object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1474                              &error_abort);
1475     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1476         return;
1477     }
1478     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1479                                 &chip9->lpc.xscom_regs);
1480 
1481     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1482                                             (uint64_t) PNV9_LPCM_BASE(chip));
1483 
1484     /* Create the simplified OCC model */
1485     object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1486                              &error_abort);
1487     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1488         return;
1489     }
1490     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1491 
1492     /* OCC SRAM model */
1493     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1494                                 &chip9->occ.sram_regs);
1495 
1496     /* HOMER */
1497     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1498                              &error_abort);
1499     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1500         return;
1501     }
1502     /* Homer Xscom region */
1503     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1504 
1505     /* Homer mmio region */
1506     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1507                                 &chip9->homer.regs);
1508 
1509     /* PHBs */
1510     pnv_chip_power9_phb_realize(chip, &local_err);
1511     if (local_err) {
1512         error_propagate(errp, local_err);
1513         return;
1514     }
1515 }
1516 
1517 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1518 {
1519     addr &= (PNV9_XSCOM_SIZE - 1);
1520     return addr >> 3;
1521 }
1522 
1523 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1524 {
1525     DeviceClass *dc = DEVICE_CLASS(klass);
1526     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1527 
1528     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1529     k->cores_mask = POWER9_CORE_MASK;
1530     k->core_pir = pnv_chip_core_pir_p9;
1531     k->intc_create = pnv_chip_power9_intc_create;
1532     k->intc_reset = pnv_chip_power9_intc_reset;
1533     k->intc_destroy = pnv_chip_power9_intc_destroy;
1534     k->intc_print_info = pnv_chip_power9_intc_print_info;
1535     k->isa_create = pnv_chip_power9_isa_create;
1536     k->dt_populate = pnv_chip_power9_dt_populate;
1537     k->pic_print_info = pnv_chip_power9_pic_print_info;
1538     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1539     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1540     dc->desc = "PowerNV Chip POWER9";
1541     k->num_phbs = 6;
1542 
1543     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1544                                     &k->parent_realize);
1545 }
1546 
1547 static void pnv_chip_power10_instance_init(Object *obj)
1548 {
1549     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1550 
1551     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1552     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1553 }
1554 
1555 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1556 {
1557     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1558     PnvChip *chip = PNV_CHIP(dev);
1559     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1560     Error *local_err = NULL;
1561 
1562     /* XSCOM bridge is first */
1563     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1564     if (local_err) {
1565         error_propagate(errp, local_err);
1566         return;
1567     }
1568     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1569 
1570     pcc->parent_realize(dev, &local_err);
1571     if (local_err) {
1572         error_propagate(errp, local_err);
1573         return;
1574     }
1575 
1576     /* Processor Service Interface (PSI) Host Bridge */
1577     object_property_set_int(OBJECT(&chip10->psi), "bar",
1578                             PNV10_PSIHB_BASE(chip), &error_fatal);
1579     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1580         return;
1581     }
1582     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1583                             &PNV_PSI(&chip10->psi)->xscom_regs);
1584 
1585     /* LPC */
1586     object_property_set_link(OBJECT(&chip10->lpc), "psi",
1587                              OBJECT(&chip10->psi), &error_abort);
1588     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1589         return;
1590     }
1591     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1592                                 &chip10->lpc.xscom_regs);
1593 
1594     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1595                                             (uint64_t) PNV10_LPCM_BASE(chip));
1596 }
1597 
1598 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1599 {
1600     addr &= (PNV10_XSCOM_SIZE - 1);
1601     return addr >> 3;
1602 }
1603 
1604 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1605 {
1606     DeviceClass *dc = DEVICE_CLASS(klass);
1607     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1608 
1609     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1610     k->cores_mask = POWER10_CORE_MASK;
1611     k->core_pir = pnv_chip_core_pir_p10;
1612     k->intc_create = pnv_chip_power10_intc_create;
1613     k->intc_reset = pnv_chip_power10_intc_reset;
1614     k->intc_destroy = pnv_chip_power10_intc_destroy;
1615     k->intc_print_info = pnv_chip_power10_intc_print_info;
1616     k->isa_create = pnv_chip_power10_isa_create;
1617     k->dt_populate = pnv_chip_power10_dt_populate;
1618     k->pic_print_info = pnv_chip_power10_pic_print_info;
1619     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1620     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1621     dc->desc = "PowerNV Chip POWER10";
1622 
1623     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1624                                     &k->parent_realize);
1625 }
1626 
1627 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1628 {
1629     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1630     int cores_max;
1631 
1632     /*
1633      * No custom mask for this chip, let's use the default one from *
1634      * the chip class
1635      */
1636     if (!chip->cores_mask) {
1637         chip->cores_mask = pcc->cores_mask;
1638     }
1639 
1640     /* filter alien core ids ! some are reserved */
1641     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1642         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1643                    chip->cores_mask);
1644         return;
1645     }
1646     chip->cores_mask &= pcc->cores_mask;
1647 
1648     /* now that we have a sane layout, let check the number of cores */
1649     cores_max = ctpop64(chip->cores_mask);
1650     if (chip->nr_cores > cores_max) {
1651         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1652                    cores_max);
1653         return;
1654     }
1655 }
1656 
1657 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1658 {
1659     Error *error = NULL;
1660     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1661     const char *typename = pnv_chip_core_typename(chip);
1662     int i, core_hwid;
1663     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1664 
1665     if (!object_class_by_name(typename)) {
1666         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1667         return;
1668     }
1669 
1670     /* Cores */
1671     pnv_chip_core_sanitize(chip, &error);
1672     if (error) {
1673         error_propagate(errp, error);
1674         return;
1675     }
1676 
1677     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1678 
1679     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1680              && (i < chip->nr_cores); core_hwid++) {
1681         char core_name[32];
1682         PnvCore *pnv_core;
1683         uint64_t xscom_core_base;
1684 
1685         if (!(chip->cores_mask & (1ull << core_hwid))) {
1686             continue;
1687         }
1688 
1689         pnv_core = PNV_CORE(object_new(typename));
1690 
1691         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1692         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1693         chip->cores[i] = pnv_core;
1694         object_property_set_int(OBJECT(pnv_core), "nr-threads",
1695                                 chip->nr_threads, &error_fatal);
1696         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1697                                 core_hwid, &error_fatal);
1698         object_property_set_int(OBJECT(pnv_core), "pir",
1699                                 pcc->core_pir(chip, core_hwid), &error_fatal);
1700         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1701                                 &error_fatal);
1702         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1703                                  &error_abort);
1704         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1705 
1706         /* Each core has an XSCOM MMIO region */
1707         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1708 
1709         pnv_xscom_add_subregion(chip, xscom_core_base,
1710                                 &pnv_core->xscom_regs);
1711         i++;
1712     }
1713 }
1714 
1715 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1716 {
1717     PnvChip *chip = PNV_CHIP(dev);
1718     Error *error = NULL;
1719 
1720     /* Cores */
1721     pnv_chip_core_realize(chip, &error);
1722     if (error) {
1723         error_propagate(errp, error);
1724         return;
1725     }
1726 }
1727 
1728 static Property pnv_chip_properties[] = {
1729     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1730     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1731     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1732     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1733     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1734     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1735     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1736     DEFINE_PROP_END_OF_LIST(),
1737 };
1738 
1739 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1740 {
1741     DeviceClass *dc = DEVICE_CLASS(klass);
1742 
1743     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1744     dc->realize = pnv_chip_realize;
1745     device_class_set_props(dc, pnv_chip_properties);
1746     dc->desc = "PowerNV Chip";
1747 }
1748 
1749 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1750 {
1751     int i, j;
1752 
1753     for (i = 0; i < chip->nr_cores; i++) {
1754         PnvCore *pc = chip->cores[i];
1755         CPUCore *cc = CPU_CORE(pc);
1756 
1757         for (j = 0; j < cc->nr_threads; j++) {
1758             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1759                 return pc->threads[j];
1760             }
1761         }
1762     }
1763     return NULL;
1764 }
1765 
1766 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1767 {
1768     PnvMachineState *pnv = PNV_MACHINE(xi);
1769     int i, j;
1770 
1771     for (i = 0; i < pnv->num_chips; i++) {
1772         PnvChip *chip = pnv->chips[i];
1773         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1774 
1775         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1776             return &chip8->psi.ics;
1777         }
1778         for (j = 0; j < chip->num_phbs; j++) {
1779             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1780                 return &chip8->phbs[j].lsis;
1781             }
1782             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1783                 return ICS(&chip8->phbs[j].msis);
1784             }
1785         }
1786     }
1787     return NULL;
1788 }
1789 
1790 static void pnv_ics_resend(XICSFabric *xi)
1791 {
1792     PnvMachineState *pnv = PNV_MACHINE(xi);
1793     int i, j;
1794 
1795     for (i = 0; i < pnv->num_chips; i++) {
1796         PnvChip *chip = pnv->chips[i];
1797         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1798 
1799         ics_resend(&chip8->psi.ics);
1800         for (j = 0; j < chip->num_phbs; j++) {
1801             ics_resend(&chip8->phbs[j].lsis);
1802             ics_resend(ICS(&chip8->phbs[j].msis));
1803         }
1804     }
1805 }
1806 
1807 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1808 {
1809     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1810 
1811     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1812 }
1813 
1814 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1815                                Monitor *mon)
1816 {
1817     PnvMachineState *pnv = PNV_MACHINE(obj);
1818     int i;
1819     CPUState *cs;
1820 
1821     CPU_FOREACH(cs) {
1822         PowerPCCPU *cpu = POWERPC_CPU(cs);
1823 
1824         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1825         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1826                                                            mon);
1827     }
1828 
1829     for (i = 0; i < pnv->num_chips; i++) {
1830         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1831     }
1832 }
1833 
1834 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1835                          uint8_t nvt_blk, uint32_t nvt_idx,
1836                          bool cam_ignore, uint8_t priority,
1837                          uint32_t logic_serv,
1838                          XiveTCTXMatch *match)
1839 {
1840     PnvMachineState *pnv = PNV_MACHINE(xfb);
1841     int total_count = 0;
1842     int i;
1843 
1844     for (i = 0; i < pnv->num_chips; i++) {
1845         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1846         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1847         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1848         int count;
1849 
1850         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1851                                priority, logic_serv, match);
1852 
1853         if (count < 0) {
1854             return count;
1855         }
1856 
1857         total_count += count;
1858     }
1859 
1860     return total_count;
1861 }
1862 
1863 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1864 {
1865     MachineClass *mc = MACHINE_CLASS(oc);
1866     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1867     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1868     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1869 
1870     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1871     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1872 
1873     xic->icp_get = pnv_icp_get;
1874     xic->ics_get = pnv_ics_get;
1875     xic->ics_resend = pnv_ics_resend;
1876 
1877     pmc->compat = compat;
1878     pmc->compat_size = sizeof(compat);
1879 }
1880 
1881 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1882 {
1883     MachineClass *mc = MACHINE_CLASS(oc);
1884     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1885     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1886     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1887 
1888     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1889     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1890     xfc->match_nvt = pnv_match_nvt;
1891 
1892     mc->alias = "powernv";
1893 
1894     pmc->compat = compat;
1895     pmc->compat_size = sizeof(compat);
1896     pmc->dt_power_mgt = pnv_dt_power_mgt;
1897 }
1898 
1899 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1900 {
1901     MachineClass *mc = MACHINE_CLASS(oc);
1902     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1903     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1904 
1905     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1906     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1907 
1908     pmc->compat = compat;
1909     pmc->compat_size = sizeof(compat);
1910     pmc->dt_power_mgt = pnv_dt_power_mgt;
1911 }
1912 
1913 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1914 {
1915     PnvMachineState *pnv = PNV_MACHINE(obj);
1916 
1917     return !!pnv->fw_load_addr;
1918 }
1919 
1920 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1921 {
1922     PnvMachineState *pnv = PNV_MACHINE(obj);
1923 
1924     if (value) {
1925         pnv->fw_load_addr = 0x8000000;
1926     }
1927 }
1928 
1929 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1930 {
1931     PowerPCCPU *cpu = POWERPC_CPU(cs);
1932     CPUPPCState *env = &cpu->env;
1933 
1934     cpu_synchronize_state(cs);
1935     ppc_cpu_do_system_reset(cs);
1936     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1937         /*
1938          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1939          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1940          * (PPC_BIT(43)).
1941          */
1942         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1943             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1944             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1945         }
1946     } else {
1947         /*
1948          * For non-powersave system resets, SRR1[42:45] are defined to be
1949          * implementation-dependent. The POWER9 User Manual specifies that
1950          * an external (SCOM driven, which may come from a BMC nmi command or
1951          * another CPU requesting a NMI IPI) system reset exception should be
1952          * 0b0010 (PPC_BIT(44)).
1953          */
1954         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1955     }
1956 }
1957 
1958 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1959 {
1960     CPUState *cs;
1961 
1962     CPU_FOREACH(cs) {
1963         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1964     }
1965 }
1966 
1967 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1968 {
1969     MachineClass *mc = MACHINE_CLASS(oc);
1970     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1971     NMIClass *nc = NMI_CLASS(oc);
1972 
1973     mc->desc = "IBM PowerNV (Non-Virtualized)";
1974     mc->init = pnv_init;
1975     mc->reset = pnv_reset;
1976     mc->max_cpus = MAX_CPUS;
1977     /* Pnv provides a AHCI device for storage */
1978     mc->block_default_type = IF_IDE;
1979     mc->no_parallel = 1;
1980     mc->default_boot_order = NULL;
1981     /*
1982      * RAM defaults to less than 2048 for 32-bit hosts, and large
1983      * enough to fit the maximum initrd size at it's load address
1984      */
1985     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1986     mc->default_ram_id = "pnv.ram";
1987     ispc->print_info = pnv_pic_print_info;
1988     nc->nmi_monitor_handler = pnv_nmi;
1989 
1990     object_class_property_add_bool(oc, "hb-mode",
1991                                    pnv_machine_get_hb, pnv_machine_set_hb);
1992     object_class_property_set_description(oc, "hb-mode",
1993                               "Use a hostboot like boot loader");
1994 }
1995 
1996 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1997     {                                             \
1998         .name          = type,                    \
1999         .class_init    = class_initfn,            \
2000         .parent        = TYPE_PNV8_CHIP,          \
2001     }
2002 
2003 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2004     {                                             \
2005         .name          = type,                    \
2006         .class_init    = class_initfn,            \
2007         .parent        = TYPE_PNV9_CHIP,          \
2008     }
2009 
2010 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2011     {                                              \
2012         .name          = type,                     \
2013         .class_init    = class_initfn,             \
2014         .parent        = TYPE_PNV10_CHIP,          \
2015     }
2016 
2017 static const TypeInfo types[] = {
2018     {
2019         .name          = MACHINE_TYPE_NAME("powernv10"),
2020         .parent        = TYPE_PNV_MACHINE,
2021         .class_init    = pnv_machine_power10_class_init,
2022     },
2023     {
2024         .name          = MACHINE_TYPE_NAME("powernv9"),
2025         .parent        = TYPE_PNV_MACHINE,
2026         .class_init    = pnv_machine_power9_class_init,
2027         .interfaces = (InterfaceInfo[]) {
2028             { TYPE_XIVE_FABRIC },
2029             { },
2030         },
2031     },
2032     {
2033         .name          = MACHINE_TYPE_NAME("powernv8"),
2034         .parent        = TYPE_PNV_MACHINE,
2035         .class_init    = pnv_machine_power8_class_init,
2036         .interfaces = (InterfaceInfo[]) {
2037             { TYPE_XICS_FABRIC },
2038             { },
2039         },
2040     },
2041     {
2042         .name          = TYPE_PNV_MACHINE,
2043         .parent        = TYPE_MACHINE,
2044         .abstract       = true,
2045         .instance_size = sizeof(PnvMachineState),
2046         .class_init    = pnv_machine_class_init,
2047         .class_size    = sizeof(PnvMachineClass),
2048         .interfaces = (InterfaceInfo[]) {
2049             { TYPE_INTERRUPT_STATS_PROVIDER },
2050             { TYPE_NMI },
2051             { },
2052         },
2053     },
2054     {
2055         .name          = TYPE_PNV_CHIP,
2056         .parent        = TYPE_SYS_BUS_DEVICE,
2057         .class_init    = pnv_chip_class_init,
2058         .instance_size = sizeof(PnvChip),
2059         .class_size    = sizeof(PnvChipClass),
2060         .abstract      = true,
2061     },
2062 
2063     /*
2064      * P10 chip and variants
2065      */
2066     {
2067         .name          = TYPE_PNV10_CHIP,
2068         .parent        = TYPE_PNV_CHIP,
2069         .instance_init = pnv_chip_power10_instance_init,
2070         .instance_size = sizeof(Pnv10Chip),
2071     },
2072     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2073 
2074     /*
2075      * P9 chip and variants
2076      */
2077     {
2078         .name          = TYPE_PNV9_CHIP,
2079         .parent        = TYPE_PNV_CHIP,
2080         .instance_init = pnv_chip_power9_instance_init,
2081         .instance_size = sizeof(Pnv9Chip),
2082     },
2083     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2084 
2085     /*
2086      * P8 chip and variants
2087      */
2088     {
2089         .name          = TYPE_PNV8_CHIP,
2090         .parent        = TYPE_PNV_CHIP,
2091         .instance_init = pnv_chip_power8_instance_init,
2092         .instance_size = sizeof(Pnv8Chip),
2093     },
2094     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2095     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2096     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2097                           pnv_chip_power8nvl_class_init),
2098 };
2099 
2100 DEFINE_TYPES(types)
2101