1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/units.h" 23 #include "qapi/error.h" 24 #include "sysemu/sysemu.h" 25 #include "sysemu/numa.h" 26 #include "sysemu/cpus.h" 27 #include "hw/hw.h" 28 #include "target/ppc/cpu.h" 29 #include "qemu/log.h" 30 #include "hw/ppc/fdt.h" 31 #include "hw/ppc/ppc.h" 32 #include "hw/ppc/pnv.h" 33 #include "hw/ppc/pnv_core.h" 34 #include "hw/loader.h" 35 #include "exec/address-spaces.h" 36 #include "qapi/visitor.h" 37 #include "monitor/monitor.h" 38 #include "hw/intc/intc.h" 39 #include "hw/ipmi/ipmi.h" 40 #include "target/ppc/mmu-hash64.h" 41 42 #include "hw/ppc/xics.h" 43 #include "hw/ppc/pnv_xscom.h" 44 45 #include "hw/isa/isa.h" 46 #include "hw/char/serial.h" 47 #include "hw/timer/mc146818rtc.h" 48 49 #include <libfdt.h> 50 51 #define FDT_MAX_SIZE (1 * MiB) 52 53 #define FW_FILE_NAME "skiboot.lid" 54 #define FW_LOAD_ADDR 0x0 55 #define FW_MAX_SIZE (4 * MiB) 56 57 #define KERNEL_LOAD_ADDR 0x20000000 58 #define KERNEL_MAX_SIZE (256 * MiB) 59 #define INITRD_LOAD_ADDR 0x60000000 60 #define INITRD_MAX_SIZE (256 * MiB) 61 62 static const char *pnv_chip_core_typename(const PnvChip *o) 63 { 64 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 65 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 66 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 67 const char *core_type = object_class_get_name(object_class_by_name(s)); 68 g_free(s); 69 return core_type; 70 } 71 72 /* 73 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 74 * 4 * 4 sockets * 12 cores * 8 threads = 1536 75 * Let's make it 2^11 76 */ 77 #define MAX_CPUS 2048 78 79 /* 80 * Memory nodes are created by hostboot, one for each range of memory 81 * that has a different "affinity". In practice, it means one range 82 * per chip. 83 */ 84 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 85 { 86 char *mem_name; 87 uint64_t mem_reg_property[2]; 88 int off; 89 90 mem_reg_property[0] = cpu_to_be64(start); 91 mem_reg_property[1] = cpu_to_be64(size); 92 93 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 94 off = fdt_add_subnode(fdt, 0, mem_name); 95 g_free(mem_name); 96 97 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 98 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 99 sizeof(mem_reg_property)))); 100 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 101 } 102 103 static int get_cpus_node(void *fdt) 104 { 105 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 106 107 if (cpus_offset < 0) { 108 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 109 if (cpus_offset) { 110 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 111 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 112 } 113 } 114 _FDT(cpus_offset); 115 return cpus_offset; 116 } 117 118 /* 119 * The PowerNV cores (and threads) need to use real HW ids and not an 120 * incremental index like it has been done on other platforms. This HW 121 * id is stored in the CPU PIR, it is used to create cpu nodes in the 122 * device tree, used in XSCOM to address cores and in interrupt 123 * servers. 124 */ 125 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 126 { 127 PowerPCCPU *cpu = pc->threads[0]; 128 CPUState *cs = CPU(cpu); 129 DeviceClass *dc = DEVICE_GET_CLASS(cs); 130 int smt_threads = CPU_CORE(pc)->nr_threads; 131 CPUPPCState *env = &cpu->env; 132 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 133 uint32_t servers_prop[smt_threads]; 134 int i; 135 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 136 0xffffffff, 0xffffffff}; 137 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 138 uint32_t cpufreq = 1000000000; 139 uint32_t page_sizes_prop[64]; 140 size_t page_sizes_prop_size; 141 const uint8_t pa_features[] = { 24, 0, 142 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 143 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 144 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 145 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 146 int offset; 147 char *nodename; 148 int cpus_offset = get_cpus_node(fdt); 149 150 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 151 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 152 _FDT(offset); 153 g_free(nodename); 154 155 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 156 157 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 158 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 159 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 160 161 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 162 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 163 env->dcache_line_size))); 164 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 165 env->dcache_line_size))); 166 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 167 env->icache_line_size))); 168 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 169 env->icache_line_size))); 170 171 if (pcc->l1_dcache_size) { 172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 173 pcc->l1_dcache_size))); 174 } else { 175 warn_report("Unknown L1 dcache size for cpu"); 176 } 177 if (pcc->l1_icache_size) { 178 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 179 pcc->l1_icache_size))); 180 } else { 181 warn_report("Unknown L1 icache size for cpu"); 182 } 183 184 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 185 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 186 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 187 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 188 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 189 190 if (env->spr_cb[SPR_PURR].oea_read) { 191 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 192 } 193 194 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 195 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 196 segs, sizeof(segs)))); 197 } 198 199 /* Advertise VMX/VSX (vector extensions) if available 200 * 0 / no property == no vector extensions 201 * 1 == VMX / Altivec available 202 * 2 == VSX available */ 203 if (env->insns_flags & PPC_ALTIVEC) { 204 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 205 206 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 207 } 208 209 /* Advertise DFP (Decimal Floating Point) if available 210 * 0 / no property == no DFP 211 * 1 == DFP available */ 212 if (env->insns_flags2 & PPC2_DFP) { 213 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 214 } 215 216 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 217 sizeof(page_sizes_prop)); 218 if (page_sizes_prop_size) { 219 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 220 page_sizes_prop, page_sizes_prop_size))); 221 } 222 223 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 224 pa_features, sizeof(pa_features)))); 225 226 /* Build interrupt servers properties */ 227 for (i = 0; i < smt_threads; i++) { 228 servers_prop[i] = cpu_to_be32(pc->pir + i); 229 } 230 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 231 servers_prop, sizeof(servers_prop)))); 232 } 233 234 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 235 uint32_t nr_threads) 236 { 237 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 238 char *name; 239 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 240 uint32_t irange[2], i, rsize; 241 uint64_t *reg; 242 int offset; 243 244 irange[0] = cpu_to_be32(pir); 245 irange[1] = cpu_to_be32(nr_threads); 246 247 rsize = sizeof(uint64_t) * 2 * nr_threads; 248 reg = g_malloc(rsize); 249 for (i = 0; i < nr_threads; i++) { 250 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 251 reg[i * 2 + 1] = cpu_to_be64(0x1000); 252 } 253 254 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 255 offset = fdt_add_subnode(fdt, 0, name); 256 _FDT(offset); 257 g_free(name); 258 259 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 260 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 261 _FDT((fdt_setprop_string(fdt, offset, "device_type", 262 "PowerPC-External-Interrupt-Presentation"))); 263 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 264 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 265 irange, sizeof(irange)))); 266 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 267 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 268 g_free(reg); 269 } 270 271 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 272 { 273 const char *typename = pnv_chip_core_typename(chip); 274 size_t typesize = object_type_get_instance_size(typename); 275 int i; 276 277 pnv_dt_xscom(chip, fdt, 0); 278 279 for (i = 0; i < chip->nr_cores; i++) { 280 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 281 282 pnv_dt_core(chip, pnv_core, fdt); 283 284 /* Interrupt Control Presenters (ICP). One per core. */ 285 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 286 } 287 288 if (chip->ram_size) { 289 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 290 } 291 } 292 293 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 294 { 295 const char *typename = pnv_chip_core_typename(chip); 296 size_t typesize = object_type_get_instance_size(typename); 297 int i; 298 299 pnv_dt_xscom(chip, fdt, 0); 300 301 for (i = 0; i < chip->nr_cores; i++) { 302 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 303 304 pnv_dt_core(chip, pnv_core, fdt); 305 } 306 307 if (chip->ram_size) { 308 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 309 } 310 311 pnv_dt_lpc(chip, fdt, 0); 312 } 313 314 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 315 { 316 uint32_t io_base = d->ioport_id; 317 uint32_t io_regs[] = { 318 cpu_to_be32(1), 319 cpu_to_be32(io_base), 320 cpu_to_be32(2) 321 }; 322 char *name; 323 int node; 324 325 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 326 node = fdt_add_subnode(fdt, lpc_off, name); 327 _FDT(node); 328 g_free(name); 329 330 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 331 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 332 } 333 334 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 335 { 336 const char compatible[] = "ns16550\0pnpPNP,501"; 337 uint32_t io_base = d->ioport_id; 338 uint32_t io_regs[] = { 339 cpu_to_be32(1), 340 cpu_to_be32(io_base), 341 cpu_to_be32(8) 342 }; 343 char *name; 344 int node; 345 346 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 347 node = fdt_add_subnode(fdt, lpc_off, name); 348 _FDT(node); 349 g_free(name); 350 351 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 352 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 353 sizeof(compatible)))); 354 355 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 356 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 357 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); 358 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 359 fdt_get_phandle(fdt, lpc_off)))); 360 361 /* This is needed by Linux */ 362 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 363 } 364 365 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 366 { 367 const char compatible[] = "bt\0ipmi-bt"; 368 uint32_t io_base; 369 uint32_t io_regs[] = { 370 cpu_to_be32(1), 371 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 372 cpu_to_be32(3) 373 }; 374 uint32_t irq; 375 char *name; 376 int node; 377 378 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 379 io_regs[1] = cpu_to_be32(io_base); 380 381 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 382 383 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 384 node = fdt_add_subnode(fdt, lpc_off, name); 385 _FDT(node); 386 g_free(name); 387 388 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 389 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 390 sizeof(compatible)))); 391 392 /* Mark it as reserved to avoid Linux trying to claim it */ 393 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 394 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 395 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 396 fdt_get_phandle(fdt, lpc_off)))); 397 } 398 399 typedef struct ForeachPopulateArgs { 400 void *fdt; 401 int offset; 402 } ForeachPopulateArgs; 403 404 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 405 { 406 ForeachPopulateArgs *args = opaque; 407 ISADevice *d = ISA_DEVICE(dev); 408 409 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 410 pnv_dt_rtc(d, args->fdt, args->offset); 411 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 412 pnv_dt_serial(d, args->fdt, args->offset); 413 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 414 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 415 } else { 416 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 417 d->ioport_id); 418 } 419 420 return 0; 421 } 422 423 /* The default LPC bus of a multichip system is on chip 0. It's 424 * recognized by the firmware (skiboot) using a "primary" property. 425 */ 426 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 427 { 428 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 429 ForeachPopulateArgs args = { 430 .fdt = fdt, 431 .offset = isa_offset, 432 }; 433 434 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 435 436 /* ISA devices are not necessarily parented to the ISA bus so we 437 * can not use object_child_foreach() */ 438 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 439 &args); 440 } 441 442 static void pnv_dt_power_mgt(void *fdt) 443 { 444 int off; 445 446 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 447 off = fdt_add_subnode(fdt, off, "power-mgt"); 448 449 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 450 } 451 452 static void *pnv_dt_create(MachineState *machine) 453 { 454 const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 455 const char plat_compat9[] = "qemu,powernv9\0ibm,powernv"; 456 PnvMachineState *pnv = PNV_MACHINE(machine); 457 void *fdt; 458 char *buf; 459 int off; 460 int i; 461 462 fdt = g_malloc0(FDT_MAX_SIZE); 463 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 464 465 /* Root node */ 466 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 467 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 468 _FDT((fdt_setprop_string(fdt, 0, "model", 469 "IBM PowerNV (emulated by qemu)"))); 470 if (pnv_is_power9(pnv)) { 471 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9, 472 sizeof(plat_compat9)))); 473 } else { 474 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8, 475 sizeof(plat_compat8)))); 476 } 477 478 479 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 480 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 481 if (qemu_uuid_set) { 482 _FDT((fdt_property_string(fdt, "system-id", buf))); 483 } 484 g_free(buf); 485 486 off = fdt_add_subnode(fdt, 0, "chosen"); 487 if (machine->kernel_cmdline) { 488 _FDT((fdt_setprop_string(fdt, off, "bootargs", 489 machine->kernel_cmdline))); 490 } 491 492 if (pnv->initrd_size) { 493 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 494 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 495 496 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 497 &start_prop, sizeof(start_prop)))); 498 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 499 &end_prop, sizeof(end_prop)))); 500 } 501 502 /* Populate device tree for each chip */ 503 for (i = 0; i < pnv->num_chips; i++) { 504 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 505 } 506 507 /* Populate ISA devices on chip 0 */ 508 pnv_dt_isa(pnv, fdt); 509 510 if (pnv->bmc) { 511 pnv_dt_bmc_sensors(pnv->bmc, fdt); 512 } 513 514 /* Create an extra node for power management on Power9 */ 515 if (pnv_is_power9(pnv)) { 516 pnv_dt_power_mgt(fdt); 517 } 518 519 return fdt; 520 } 521 522 static void pnv_powerdown_notify(Notifier *n, void *opaque) 523 { 524 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 525 526 if (pnv->bmc) { 527 pnv_bmc_powerdown(pnv->bmc); 528 } 529 } 530 531 static void pnv_reset(void) 532 { 533 MachineState *machine = MACHINE(qdev_get_machine()); 534 PnvMachineState *pnv = PNV_MACHINE(machine); 535 void *fdt; 536 Object *obj; 537 538 qemu_devices_reset(); 539 540 /* OpenPOWER systems have a BMC, which can be defined on the 541 * command line with: 542 * 543 * -device ipmi-bmc-sim,id=bmc0 544 * 545 * This is the internal simulator but it could also be an external 546 * BMC. 547 */ 548 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL); 549 if (obj) { 550 pnv->bmc = IPMI_BMC(obj); 551 } 552 553 fdt = pnv_dt_create(machine); 554 555 /* Pack resulting tree */ 556 _FDT((fdt_pack(fdt))); 557 558 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 559 } 560 561 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 562 { 563 Pnv8Chip *chip8 = PNV8_CHIP(chip); 564 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 565 } 566 567 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 568 { 569 Pnv8Chip *chip8 = PNV8_CHIP(chip); 570 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 571 } 572 573 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 574 { 575 Pnv9Chip *chip9 = PNV9_CHIP(chip); 576 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 577 } 578 579 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 580 { 581 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 582 } 583 584 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 585 { 586 Pnv8Chip *chip8 = PNV8_CHIP(chip); 587 588 ics_pic_print_info(&chip8->psi.ics, mon); 589 } 590 591 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 592 { 593 Pnv9Chip *chip9 = PNV9_CHIP(chip); 594 595 pnv_xive_pic_print_info(&chip9->xive, mon); 596 pnv_psi_pic_print_info(&chip9->psi, mon); 597 } 598 599 static void pnv_init(MachineState *machine) 600 { 601 PnvMachineState *pnv = PNV_MACHINE(machine); 602 MemoryRegion *ram; 603 char *fw_filename; 604 long fw_size; 605 int i; 606 char *chip_typename; 607 608 /* allocate RAM */ 609 if (machine->ram_size < (1 * GiB)) { 610 warn_report("skiboot may not work with < 1GB of RAM"); 611 } 612 613 ram = g_new(MemoryRegion, 1); 614 memory_region_allocate_system_memory(ram, NULL, "pnv.ram", 615 machine->ram_size); 616 memory_region_add_subregion(get_system_memory(), 0, ram); 617 618 /* load skiboot firmware */ 619 if (bios_name == NULL) { 620 bios_name = FW_FILE_NAME; 621 } 622 623 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 624 if (!fw_filename) { 625 error_report("Could not find OPAL firmware '%s'", bios_name); 626 exit(1); 627 } 628 629 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); 630 if (fw_size < 0) { 631 error_report("Could not load OPAL firmware '%s'", fw_filename); 632 exit(1); 633 } 634 g_free(fw_filename); 635 636 /* load kernel */ 637 if (machine->kernel_filename) { 638 long kernel_size; 639 640 kernel_size = load_image_targphys(machine->kernel_filename, 641 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 642 if (kernel_size < 0) { 643 error_report("Could not load kernel '%s'", 644 machine->kernel_filename); 645 exit(1); 646 } 647 } 648 649 /* load initrd */ 650 if (machine->initrd_filename) { 651 pnv->initrd_base = INITRD_LOAD_ADDR; 652 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 653 pnv->initrd_base, INITRD_MAX_SIZE); 654 if (pnv->initrd_size < 0) { 655 error_report("Could not load initial ram disk '%s'", 656 machine->initrd_filename); 657 exit(1); 658 } 659 } 660 661 /* Create the processor chips */ 662 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 663 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 664 i, machine->cpu_type); 665 if (!object_class_by_name(chip_typename)) { 666 error_report("invalid CPU model '%.*s' for %s machine", 667 i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name); 668 exit(1); 669 } 670 671 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 672 for (i = 0; i < pnv->num_chips; i++) { 673 char chip_name[32]; 674 Object *chip = object_new(chip_typename); 675 676 pnv->chips[i] = PNV_CHIP(chip); 677 678 /* TODO: put all the memory in one node on chip 0 until we find a 679 * way to specify different ranges for each chip 680 */ 681 if (i == 0) { 682 object_property_set_int(chip, machine->ram_size, "ram-size", 683 &error_fatal); 684 } 685 686 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); 687 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); 688 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", 689 &error_fatal); 690 object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal); 691 object_property_set_bool(chip, true, "realized", &error_fatal); 692 } 693 g_free(chip_typename); 694 695 /* Instantiate ISA bus on chip 0 */ 696 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 697 698 /* Create serial port */ 699 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 700 701 /* Create an RTC ISA device too */ 702 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 703 704 /* OpenPOWER systems use a IPMI SEL Event message to notify the 705 * host to powerdown */ 706 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 707 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 708 } 709 710 /* 711 * 0:21 Reserved - Read as zeros 712 * 22:24 Chip ID 713 * 25:28 Core number 714 * 29:31 Thread ID 715 */ 716 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 717 { 718 return (chip->chip_id << 7) | (core_id << 3); 719 } 720 721 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 722 Error **errp) 723 { 724 Error *local_err = NULL; 725 Object *obj; 726 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 727 728 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()), 729 &local_err); 730 if (local_err) { 731 error_propagate(errp, local_err); 732 return; 733 } 734 735 pnv_cpu->intc = obj; 736 } 737 738 /* 739 * 0:48 Reserved - Read as zeroes 740 * 49:52 Node ID 741 * 53:55 Chip ID 742 * 56 Reserved - Read as zero 743 * 57:61 Core number 744 * 62:63 Thread ID 745 * 746 * We only care about the lower bits. uint32_t is fine for the moment. 747 */ 748 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 749 { 750 return (chip->chip_id << 8) | (core_id << 2); 751 } 752 753 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 754 Error **errp) 755 { 756 Pnv9Chip *chip9 = PNV9_CHIP(chip); 757 Error *local_err = NULL; 758 Object *obj; 759 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 760 761 /* 762 * The core creates its interrupt presenter but the XIVE interrupt 763 * controller object is initialized afterwards. Hopefully, it's 764 * only used at runtime. 765 */ 766 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err); 767 if (local_err) { 768 error_propagate(errp, local_err); 769 return; 770 } 771 772 pnv_cpu->intc = obj; 773 } 774 775 /* Allowed core identifiers on a POWER8 Processor Chip : 776 * 777 * <EX0 reserved> 778 * EX1 - Venice only 779 * EX2 - Venice only 780 * EX3 - Venice only 781 * EX4 782 * EX5 783 * EX6 784 * <EX7,8 reserved> <reserved> 785 * EX9 - Venice only 786 * EX10 - Venice only 787 * EX11 - Venice only 788 * EX12 789 * EX13 790 * EX14 791 * <EX15 reserved> 792 */ 793 #define POWER8E_CORE_MASK (0x7070ull) 794 #define POWER8_CORE_MASK (0x7e7eull) 795 796 /* 797 * POWER9 has 24 cores, ids starting at 0x0 798 */ 799 #define POWER9_CORE_MASK (0xffffffffffffffull) 800 801 static void pnv_chip_power8_instance_init(Object *obj) 802 { 803 Pnv8Chip *chip8 = PNV8_CHIP(obj); 804 805 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi), 806 TYPE_PNV8_PSI, &error_abort, NULL); 807 object_property_add_const_link(OBJECT(&chip8->psi), "xics", 808 OBJECT(qdev_get_machine()), &error_abort); 809 810 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc), 811 TYPE_PNV8_LPC, &error_abort, NULL); 812 object_property_add_const_link(OBJECT(&chip8->lpc), "psi", 813 OBJECT(&chip8->psi), &error_abort); 814 815 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ), 816 TYPE_PNV8_OCC, &error_abort, NULL); 817 object_property_add_const_link(OBJECT(&chip8->occ), "psi", 818 OBJECT(&chip8->psi), &error_abort); 819 } 820 821 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 822 { 823 PnvChip *chip = PNV_CHIP(chip8); 824 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 825 const char *typename = pnv_chip_core_typename(chip); 826 size_t typesize = object_type_get_instance_size(typename); 827 int i, j; 828 char *name; 829 XICSFabric *xi = XICS_FABRIC(qdev_get_machine()); 830 831 name = g_strdup_printf("icp-%x", chip->chip_id); 832 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 833 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio); 834 g_free(name); 835 836 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 837 838 /* Map the ICP registers for each thread */ 839 for (i = 0; i < chip->nr_cores; i++) { 840 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 841 int core_hwid = CPU_CORE(pnv_core)->core_id; 842 843 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 844 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 845 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir)); 846 847 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 848 &icp->mmio); 849 } 850 } 851 } 852 853 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 854 { 855 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 856 PnvChip *chip = PNV_CHIP(dev); 857 Pnv8Chip *chip8 = PNV8_CHIP(dev); 858 Pnv8Psi *psi8 = &chip8->psi; 859 Error *local_err = NULL; 860 861 pcc->parent_realize(dev, &local_err); 862 if (local_err) { 863 error_propagate(errp, local_err); 864 return; 865 } 866 867 /* Processor Service Interface (PSI) Host Bridge */ 868 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip), 869 "bar", &error_fatal); 870 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err); 871 if (local_err) { 872 error_propagate(errp, local_err); 873 return; 874 } 875 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 876 &PNV_PSI(psi8)->xscom_regs); 877 878 /* Create LPC controller */ 879 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized", 880 &error_fatal); 881 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 882 883 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 884 (uint64_t) PNV_XSCOM_BASE(chip), 885 PNV_XSCOM_LPC_BASE); 886 887 /* Interrupt Management Area. This is the memory region holding 888 * all the Interrupt Control Presenter (ICP) registers */ 889 pnv_chip_icp_realize(chip8, &local_err); 890 if (local_err) { 891 error_propagate(errp, local_err); 892 return; 893 } 894 895 /* Create the simplified OCC model */ 896 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err); 897 if (local_err) { 898 error_propagate(errp, local_err); 899 return; 900 } 901 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 902 } 903 904 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 905 { 906 DeviceClass *dc = DEVICE_CLASS(klass); 907 PnvChipClass *k = PNV_CHIP_CLASS(klass); 908 909 k->chip_type = PNV_CHIP_POWER8E; 910 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 911 k->cores_mask = POWER8E_CORE_MASK; 912 k->core_pir = pnv_chip_core_pir_p8; 913 k->intc_create = pnv_chip_power8_intc_create; 914 k->isa_create = pnv_chip_power8_isa_create; 915 k->dt_populate = pnv_chip_power8_dt_populate; 916 k->pic_print_info = pnv_chip_power8_pic_print_info; 917 k->xscom_base = 0x003fc0000000000ull; 918 dc->desc = "PowerNV Chip POWER8E"; 919 920 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 921 &k->parent_realize); 922 } 923 924 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 925 { 926 DeviceClass *dc = DEVICE_CLASS(klass); 927 PnvChipClass *k = PNV_CHIP_CLASS(klass); 928 929 k->chip_type = PNV_CHIP_POWER8; 930 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 931 k->cores_mask = POWER8_CORE_MASK; 932 k->core_pir = pnv_chip_core_pir_p8; 933 k->intc_create = pnv_chip_power8_intc_create; 934 k->isa_create = pnv_chip_power8_isa_create; 935 k->dt_populate = pnv_chip_power8_dt_populate; 936 k->pic_print_info = pnv_chip_power8_pic_print_info; 937 k->xscom_base = 0x003fc0000000000ull; 938 dc->desc = "PowerNV Chip POWER8"; 939 940 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 941 &k->parent_realize); 942 } 943 944 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 945 { 946 DeviceClass *dc = DEVICE_CLASS(klass); 947 PnvChipClass *k = PNV_CHIP_CLASS(klass); 948 949 k->chip_type = PNV_CHIP_POWER8NVL; 950 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 951 k->cores_mask = POWER8_CORE_MASK; 952 k->core_pir = pnv_chip_core_pir_p8; 953 k->intc_create = pnv_chip_power8_intc_create; 954 k->isa_create = pnv_chip_power8nvl_isa_create; 955 k->dt_populate = pnv_chip_power8_dt_populate; 956 k->pic_print_info = pnv_chip_power8_pic_print_info; 957 k->xscom_base = 0x003fc0000000000ull; 958 dc->desc = "PowerNV Chip POWER8NVL"; 959 960 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 961 &k->parent_realize); 962 } 963 964 static void pnv_chip_power9_instance_init(Object *obj) 965 { 966 Pnv9Chip *chip9 = PNV9_CHIP(obj); 967 968 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive), 969 TYPE_PNV_XIVE, &error_abort, NULL); 970 object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj, 971 &error_abort); 972 973 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi), 974 TYPE_PNV9_PSI, &error_abort, NULL); 975 object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj, 976 &error_abort); 977 978 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc), 979 TYPE_PNV9_LPC, &error_abort, NULL); 980 object_property_add_const_link(OBJECT(&chip9->lpc), "psi", 981 OBJECT(&chip9->psi), &error_abort); 982 983 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ), 984 TYPE_PNV9_OCC, &error_abort, NULL); 985 object_property_add_const_link(OBJECT(&chip9->occ), "psi", 986 OBJECT(&chip9->psi), &error_abort); 987 } 988 989 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 990 { 991 PnvChip *chip = PNV_CHIP(chip9); 992 const char *typename = pnv_chip_core_typename(chip); 993 size_t typesize = object_type_get_instance_size(typename); 994 int i; 995 996 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 997 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 998 999 for (i = 0; i < chip9->nr_quads; i++) { 1000 char eq_name[32]; 1001 PnvQuad *eq = &chip9->quads[i]; 1002 PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize); 1003 int core_id = CPU_CORE(pnv_core)->core_id; 1004 1005 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1006 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq), 1007 TYPE_PNV_QUAD, &error_fatal, NULL); 1008 1009 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal); 1010 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal); 1011 1012 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id), 1013 &eq->xscom_regs); 1014 } 1015 } 1016 1017 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1018 { 1019 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1020 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1021 PnvChip *chip = PNV_CHIP(dev); 1022 Pnv9Psi *psi9 = &chip9->psi; 1023 Error *local_err = NULL; 1024 1025 pcc->parent_realize(dev, &local_err); 1026 if (local_err) { 1027 error_propagate(errp, local_err); 1028 return; 1029 } 1030 1031 pnv_chip_quad_realize(chip9, &local_err); 1032 if (local_err) { 1033 error_propagate(errp, local_err); 1034 return; 1035 } 1036 1037 /* XIVE interrupt controller (POWER9) */ 1038 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip), 1039 "ic-bar", &error_fatal); 1040 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip), 1041 "vc-bar", &error_fatal); 1042 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip), 1043 "pc-bar", &error_fatal); 1044 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip), 1045 "tm-bar", &error_fatal); 1046 object_property_set_bool(OBJECT(&chip9->xive), true, "realized", 1047 &local_err); 1048 if (local_err) { 1049 error_propagate(errp, local_err); 1050 return; 1051 } 1052 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1053 &chip9->xive.xscom_regs); 1054 1055 /* Processor Service Interface (PSI) Host Bridge */ 1056 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip), 1057 "bar", &error_fatal); 1058 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err); 1059 if (local_err) { 1060 error_propagate(errp, local_err); 1061 return; 1062 } 1063 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1064 &PNV_PSI(psi9)->xscom_regs); 1065 1066 /* LPC */ 1067 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err); 1068 if (local_err) { 1069 error_propagate(errp, local_err); 1070 return; 1071 } 1072 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1073 &chip9->lpc.xscom_regs); 1074 1075 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1076 (uint64_t) PNV9_LPCM_BASE(chip)); 1077 1078 /* Create the simplified OCC model */ 1079 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err); 1080 if (local_err) { 1081 error_propagate(errp, local_err); 1082 return; 1083 } 1084 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1085 } 1086 1087 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1088 { 1089 DeviceClass *dc = DEVICE_CLASS(klass); 1090 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1091 1092 k->chip_type = PNV_CHIP_POWER9; 1093 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1094 k->cores_mask = POWER9_CORE_MASK; 1095 k->core_pir = pnv_chip_core_pir_p9; 1096 k->intc_create = pnv_chip_power9_intc_create; 1097 k->isa_create = pnv_chip_power9_isa_create; 1098 k->dt_populate = pnv_chip_power9_dt_populate; 1099 k->pic_print_info = pnv_chip_power9_pic_print_info; 1100 k->xscom_base = 0x00603fc00000000ull; 1101 dc->desc = "PowerNV Chip POWER9"; 1102 1103 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1104 &k->parent_realize); 1105 } 1106 1107 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1108 { 1109 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1110 int cores_max; 1111 1112 /* 1113 * No custom mask for this chip, let's use the default one from * 1114 * the chip class 1115 */ 1116 if (!chip->cores_mask) { 1117 chip->cores_mask = pcc->cores_mask; 1118 } 1119 1120 /* filter alien core ids ! some are reserved */ 1121 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1122 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1123 chip->cores_mask); 1124 return; 1125 } 1126 chip->cores_mask &= pcc->cores_mask; 1127 1128 /* now that we have a sane layout, let check the number of cores */ 1129 cores_max = ctpop64(chip->cores_mask); 1130 if (chip->nr_cores > cores_max) { 1131 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1132 cores_max); 1133 return; 1134 } 1135 } 1136 1137 static void pnv_chip_instance_init(Object *obj) 1138 { 1139 PNV_CHIP(obj)->xscom_base = PNV_CHIP_GET_CLASS(obj)->xscom_base; 1140 } 1141 1142 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1143 { 1144 Error *error = NULL; 1145 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1146 const char *typename = pnv_chip_core_typename(chip); 1147 size_t typesize = object_type_get_instance_size(typename); 1148 int i, core_hwid; 1149 1150 if (!object_class_by_name(typename)) { 1151 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1152 return; 1153 } 1154 1155 /* Cores */ 1156 pnv_chip_core_sanitize(chip, &error); 1157 if (error) { 1158 error_propagate(errp, error); 1159 return; 1160 } 1161 1162 chip->cores = g_malloc0(typesize * chip->nr_cores); 1163 1164 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1165 && (i < chip->nr_cores); core_hwid++) { 1166 char core_name[32]; 1167 void *pnv_core = chip->cores + i * typesize; 1168 uint64_t xscom_core_base; 1169 1170 if (!(chip->cores_mask & (1ull << core_hwid))) { 1171 continue; 1172 } 1173 1174 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1175 object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize, 1176 typename, &error_fatal, NULL); 1177 object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads", 1178 &error_fatal); 1179 object_property_set_int(OBJECT(pnv_core), core_hwid, 1180 CPU_CORE_PROP_CORE_ID, &error_fatal); 1181 object_property_set_int(OBJECT(pnv_core), 1182 pcc->core_pir(chip, core_hwid), 1183 "pir", &error_fatal); 1184 object_property_add_const_link(OBJECT(pnv_core), "chip", 1185 OBJECT(chip), &error_fatal); 1186 object_property_set_bool(OBJECT(pnv_core), true, "realized", 1187 &error_fatal); 1188 1189 /* Each core has an XSCOM MMIO region */ 1190 if (!pnv_chip_is_power9(chip)) { 1191 xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid); 1192 } else { 1193 xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid); 1194 } 1195 1196 pnv_xscom_add_subregion(chip, xscom_core_base, 1197 &PNV_CORE(pnv_core)->xscom_regs); 1198 i++; 1199 } 1200 } 1201 1202 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1203 { 1204 PnvChip *chip = PNV_CHIP(dev); 1205 Error *error = NULL; 1206 1207 /* XSCOM bridge */ 1208 pnv_xscom_realize(chip, &error); 1209 if (error) { 1210 error_propagate(errp, error); 1211 return; 1212 } 1213 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 1214 1215 /* Cores */ 1216 pnv_chip_core_realize(chip, &error); 1217 if (error) { 1218 error_propagate(errp, error); 1219 return; 1220 } 1221 } 1222 1223 static Property pnv_chip_properties[] = { 1224 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1225 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 1226 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 1227 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 1228 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 1229 DEFINE_PROP_END_OF_LIST(), 1230 }; 1231 1232 static void pnv_chip_class_init(ObjectClass *klass, void *data) 1233 { 1234 DeviceClass *dc = DEVICE_CLASS(klass); 1235 1236 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 1237 dc->realize = pnv_chip_realize; 1238 dc->props = pnv_chip_properties; 1239 dc->desc = "PowerNV Chip"; 1240 } 1241 1242 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 1243 { 1244 PnvMachineState *pnv = PNV_MACHINE(xi); 1245 int i; 1246 1247 for (i = 0; i < pnv->num_chips; i++) { 1248 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1249 1250 if (ics_valid_irq(&chip8->psi.ics, irq)) { 1251 return &chip8->psi.ics; 1252 } 1253 } 1254 return NULL; 1255 } 1256 1257 static void pnv_ics_resend(XICSFabric *xi) 1258 { 1259 PnvMachineState *pnv = PNV_MACHINE(xi); 1260 int i; 1261 1262 for (i = 0; i < pnv->num_chips; i++) { 1263 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1264 ics_resend(&chip8->psi.ics); 1265 } 1266 } 1267 1268 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 1269 { 1270 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 1271 1272 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 1273 } 1274 1275 static void pnv_pic_print_info(InterruptStatsProvider *obj, 1276 Monitor *mon) 1277 { 1278 PnvMachineState *pnv = PNV_MACHINE(obj); 1279 int i; 1280 CPUState *cs; 1281 1282 CPU_FOREACH(cs) { 1283 PowerPCCPU *cpu = POWERPC_CPU(cs); 1284 1285 if (pnv_chip_is_power9(pnv->chips[0])) { 1286 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1287 } else { 1288 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 1289 } 1290 } 1291 1292 for (i = 0; i < pnv->num_chips; i++) { 1293 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 1294 } 1295 } 1296 1297 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name, 1298 void *opaque, Error **errp) 1299 { 1300 visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp); 1301 } 1302 1303 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name, 1304 void *opaque, Error **errp) 1305 { 1306 PnvMachineState *pnv = PNV_MACHINE(obj); 1307 uint32_t num_chips; 1308 Error *local_err = NULL; 1309 1310 visit_type_uint32(v, name, &num_chips, &local_err); 1311 if (local_err) { 1312 error_propagate(errp, local_err); 1313 return; 1314 } 1315 1316 /* 1317 * TODO: should we decide on how many chips we can create based 1318 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 1319 */ 1320 if (!is_power_of_2(num_chips) || num_chips > 4) { 1321 error_setg(errp, "invalid number of chips: '%d'", num_chips); 1322 return; 1323 } 1324 1325 pnv->num_chips = num_chips; 1326 } 1327 1328 static void pnv_machine_instance_init(Object *obj) 1329 { 1330 PnvMachineState *pnv = PNV_MACHINE(obj); 1331 pnv->num_chips = 1; 1332 } 1333 1334 static void pnv_machine_class_props_init(ObjectClass *oc) 1335 { 1336 object_class_property_add(oc, "num-chips", "uint32", 1337 pnv_get_num_chips, pnv_set_num_chips, 1338 NULL, NULL, NULL); 1339 object_class_property_set_description(oc, "num-chips", 1340 "Specifies the number of processor chips", 1341 NULL); 1342 } 1343 1344 static void pnv_machine_class_init(ObjectClass *oc, void *data) 1345 { 1346 MachineClass *mc = MACHINE_CLASS(oc); 1347 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 1348 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 1349 1350 mc->desc = "IBM PowerNV (Non-Virtualized)"; 1351 mc->init = pnv_init; 1352 mc->reset = pnv_reset; 1353 mc->max_cpus = MAX_CPUS; 1354 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 1355 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for 1356 * storage */ 1357 mc->no_parallel = 1; 1358 mc->default_boot_order = NULL; 1359 mc->default_ram_size = 1 * GiB; 1360 xic->icp_get = pnv_icp_get; 1361 xic->ics_get = pnv_ics_get; 1362 xic->ics_resend = pnv_ics_resend; 1363 ispc->print_info = pnv_pic_print_info; 1364 1365 pnv_machine_class_props_init(oc); 1366 } 1367 1368 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 1369 { \ 1370 .name = type, \ 1371 .class_init = class_initfn, \ 1372 .parent = TYPE_PNV8_CHIP, \ 1373 } 1374 1375 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 1376 { \ 1377 .name = type, \ 1378 .class_init = class_initfn, \ 1379 .parent = TYPE_PNV9_CHIP, \ 1380 } 1381 1382 static const TypeInfo types[] = { 1383 { 1384 .name = TYPE_PNV_MACHINE, 1385 .parent = TYPE_MACHINE, 1386 .instance_size = sizeof(PnvMachineState), 1387 .instance_init = pnv_machine_instance_init, 1388 .class_init = pnv_machine_class_init, 1389 .interfaces = (InterfaceInfo[]) { 1390 { TYPE_XICS_FABRIC }, 1391 { TYPE_INTERRUPT_STATS_PROVIDER }, 1392 { }, 1393 }, 1394 }, 1395 { 1396 .name = TYPE_PNV_CHIP, 1397 .parent = TYPE_SYS_BUS_DEVICE, 1398 .class_init = pnv_chip_class_init, 1399 .instance_init = pnv_chip_instance_init, 1400 .instance_size = sizeof(PnvChip), 1401 .class_size = sizeof(PnvChipClass), 1402 .abstract = true, 1403 }, 1404 1405 /* 1406 * P9 chip and variants 1407 */ 1408 { 1409 .name = TYPE_PNV9_CHIP, 1410 .parent = TYPE_PNV_CHIP, 1411 .instance_init = pnv_chip_power9_instance_init, 1412 .instance_size = sizeof(Pnv9Chip), 1413 }, 1414 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 1415 1416 /* 1417 * P8 chip and variants 1418 */ 1419 { 1420 .name = TYPE_PNV8_CHIP, 1421 .parent = TYPE_PNV_CHIP, 1422 .instance_init = pnv_chip_power8_instance_init, 1423 .instance_size = sizeof(Pnv8Chip), 1424 }, 1425 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 1426 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 1427 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 1428 pnv_chip_power8nvl_class_init), 1429 }; 1430 1431 DEFINE_TYPES(types) 1432