xref: /openbmc/qemu/hw/ppc/pnv.c (revision 35dde5766211cac0e608b29b3f71922f116b5932)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     const char *typename = pnv_chip_core_typename(chip);
284     size_t typesize = object_type_get_instance_size(typename);
285     int i;
286 
287     pnv_dt_xscom(chip, fdt, 0);
288 
289     for (i = 0; i < chip->nr_cores; i++) {
290         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
291 
292         pnv_dt_core(chip, pnv_core, fdt);
293 
294         /* Interrupt Control Presenters (ICP). One per core. */
295         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
296     }
297 
298     if (chip->ram_size) {
299         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
300     }
301 }
302 
303 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
304 {
305     const char *typename = pnv_chip_core_typename(chip);
306     size_t typesize = object_type_get_instance_size(typename);
307     int i;
308 
309     pnv_dt_xscom(chip, fdt, 0);
310 
311     for (i = 0; i < chip->nr_cores; i++) {
312         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
313 
314         pnv_dt_core(chip, pnv_core, fdt);
315     }
316 
317     if (chip->ram_size) {
318         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
319     }
320 
321     pnv_dt_lpc(chip, fdt, 0);
322 }
323 
324 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
325 {
326     uint32_t io_base = d->ioport_id;
327     uint32_t io_regs[] = {
328         cpu_to_be32(1),
329         cpu_to_be32(io_base),
330         cpu_to_be32(2)
331     };
332     char *name;
333     int node;
334 
335     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
336     node = fdt_add_subnode(fdt, lpc_off, name);
337     _FDT(node);
338     g_free(name);
339 
340     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
341     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
342 }
343 
344 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
345 {
346     const char compatible[] = "ns16550\0pnpPNP,501";
347     uint32_t io_base = d->ioport_id;
348     uint32_t io_regs[] = {
349         cpu_to_be32(1),
350         cpu_to_be32(io_base),
351         cpu_to_be32(8)
352     };
353     char *name;
354     int node;
355 
356     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
357     node = fdt_add_subnode(fdt, lpc_off, name);
358     _FDT(node);
359     g_free(name);
360 
361     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
362     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
363                       sizeof(compatible))));
364 
365     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
366     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
367     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
368     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
369                            fdt_get_phandle(fdt, lpc_off))));
370 
371     /* This is needed by Linux */
372     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
373 }
374 
375 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
376 {
377     const char compatible[] = "bt\0ipmi-bt";
378     uint32_t io_base;
379     uint32_t io_regs[] = {
380         cpu_to_be32(1),
381         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
382         cpu_to_be32(3)
383     };
384     uint32_t irq;
385     char *name;
386     int node;
387 
388     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
389     io_regs[1] = cpu_to_be32(io_base);
390 
391     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
392 
393     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
394     node = fdt_add_subnode(fdt, lpc_off, name);
395     _FDT(node);
396     g_free(name);
397 
398     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
399     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
400                       sizeof(compatible))));
401 
402     /* Mark it as reserved to avoid Linux trying to claim it */
403     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
404     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
405     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
406                            fdt_get_phandle(fdt, lpc_off))));
407 }
408 
409 typedef struct ForeachPopulateArgs {
410     void *fdt;
411     int offset;
412 } ForeachPopulateArgs;
413 
414 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
415 {
416     ForeachPopulateArgs *args = opaque;
417     ISADevice *d = ISA_DEVICE(dev);
418 
419     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
420         pnv_dt_rtc(d, args->fdt, args->offset);
421     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
422         pnv_dt_serial(d, args->fdt, args->offset);
423     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
424         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
425     } else {
426         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
427                      d->ioport_id);
428     }
429 
430     return 0;
431 }
432 
433 /*
434  * The default LPC bus of a multichip system is on chip 0. It's
435  * recognized by the firmware (skiboot) using a "primary" property.
436  */
437 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
438 {
439     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
440     ForeachPopulateArgs args = {
441         .fdt = fdt,
442         .offset = isa_offset,
443     };
444     uint32_t phandle;
445 
446     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
447 
448     phandle = qemu_fdt_alloc_phandle(fdt);
449     assert(phandle > 0);
450     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
451 
452     /*
453      * ISA devices are not necessarily parented to the ISA bus so we
454      * can not use object_child_foreach()
455      */
456     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
457                        &args);
458 }
459 
460 static void pnv_dt_power_mgt(void *fdt)
461 {
462     int off;
463 
464     off = fdt_add_subnode(fdt, 0, "ibm,opal");
465     off = fdt_add_subnode(fdt, off, "power-mgt");
466 
467     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
468 }
469 
470 static void *pnv_dt_create(MachineState *machine)
471 {
472     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
473     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
474     PnvMachineState *pnv = PNV_MACHINE(machine);
475     void *fdt;
476     char *buf;
477     int off;
478     int i;
479 
480     fdt = g_malloc0(FDT_MAX_SIZE);
481     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
482 
483     /* Root node */
484     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
485     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
486     _FDT((fdt_setprop_string(fdt, 0, "model",
487                              "IBM PowerNV (emulated by qemu)")));
488     if (pnv_is_power9(pnv)) {
489         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
490                           sizeof(plat_compat9))));
491     } else {
492         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
493                           sizeof(plat_compat8))));
494     }
495 
496 
497     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
498     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
499     if (qemu_uuid_set) {
500         _FDT((fdt_property_string(fdt, "system-id", buf)));
501     }
502     g_free(buf);
503 
504     off = fdt_add_subnode(fdt, 0, "chosen");
505     if (machine->kernel_cmdline) {
506         _FDT((fdt_setprop_string(fdt, off, "bootargs",
507                                  machine->kernel_cmdline)));
508     }
509 
510     if (pnv->initrd_size) {
511         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
512         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
513 
514         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
515                                &start_prop, sizeof(start_prop))));
516         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
517                                &end_prop, sizeof(end_prop))));
518     }
519 
520     /* Populate device tree for each chip */
521     for (i = 0; i < pnv->num_chips; i++) {
522         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
523     }
524 
525     /* Populate ISA devices on chip 0 */
526     pnv_dt_isa(pnv, fdt);
527 
528     if (pnv->bmc) {
529         pnv_dt_bmc_sensors(pnv->bmc, fdt);
530     }
531 
532     /* Create an extra node for power management on Power9 */
533     if (pnv_is_power9(pnv)) {
534         pnv_dt_power_mgt(fdt);
535     }
536 
537     return fdt;
538 }
539 
540 static void pnv_powerdown_notify(Notifier *n, void *opaque)
541 {
542     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
543 
544     if (pnv->bmc) {
545         pnv_bmc_powerdown(pnv->bmc);
546     }
547 }
548 
549 static void pnv_reset(MachineState *machine)
550 {
551     PnvMachineState *pnv = PNV_MACHINE(machine);
552     void *fdt;
553     Object *obj;
554 
555     qemu_devices_reset();
556 
557     /*
558      * OpenPOWER systems have a BMC, which can be defined on the
559      * command line with:
560      *
561      *   -device ipmi-bmc-sim,id=bmc0
562      *
563      * This is the internal simulator but it could also be an external
564      * BMC.
565      */
566     obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL);
567     if (obj) {
568         pnv->bmc = IPMI_BMC(obj);
569     }
570 
571     fdt = pnv_dt_create(machine);
572 
573     /* Pack resulting tree */
574     _FDT((fdt_pack(fdt)));
575 
576     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
577     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
578 }
579 
580 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
581 {
582     Pnv8Chip *chip8 = PNV8_CHIP(chip);
583     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
584 }
585 
586 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
590 }
591 
592 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
593 {
594     Pnv9Chip *chip9 = PNV9_CHIP(chip);
595     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
596 }
597 
598 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
599 {
600     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
601 }
602 
603 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
604 {
605     Pnv8Chip *chip8 = PNV8_CHIP(chip);
606 
607     ics_pic_print_info(&chip8->psi.ics, mon);
608 }
609 
610 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
611 {
612     Pnv9Chip *chip9 = PNV9_CHIP(chip);
613 
614     pnv_xive_pic_print_info(&chip9->xive, mon);
615     pnv_psi_pic_print_info(&chip9->psi, mon);
616 }
617 
618 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
619 {
620     PowerPCCPUClass *ppc_default =
621         POWERPC_CPU_CLASS(object_class_by_name(default_type));
622     PowerPCCPUClass *ppc =
623         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
624 
625     return ppc_default->pvr_match(ppc_default, ppc->pvr);
626 }
627 
628 static void pnv_init(MachineState *machine)
629 {
630     PnvMachineState *pnv = PNV_MACHINE(machine);
631     MachineClass *mc = MACHINE_GET_CLASS(machine);
632     MemoryRegion *ram;
633     char *fw_filename;
634     long fw_size;
635     int i;
636     char *chip_typename;
637     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
638     DeviceState *dev;
639 
640     /* allocate RAM */
641     if (machine->ram_size < (1 * GiB)) {
642         warn_report("skiboot may not work with < 1GB of RAM");
643     }
644 
645     ram = g_new(MemoryRegion, 1);
646     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
647                                          machine->ram_size);
648     memory_region_add_subregion(get_system_memory(), 0, ram);
649 
650     /*
651      * Create our simple PNOR device
652      */
653     dev = qdev_create(NULL, TYPE_PNV_PNOR);
654     if (pnor) {
655         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
656                             &error_abort);
657     }
658     qdev_init_nofail(dev);
659     pnv->pnor = PNV_PNOR(dev);
660 
661     /* load skiboot firmware  */
662     if (bios_name == NULL) {
663         bios_name = FW_FILE_NAME;
664     }
665 
666     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
667     if (!fw_filename) {
668         error_report("Could not find OPAL firmware '%s'", bios_name);
669         exit(1);
670     }
671 
672     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
673     if (fw_size < 0) {
674         error_report("Could not load OPAL firmware '%s'", fw_filename);
675         exit(1);
676     }
677     g_free(fw_filename);
678 
679     /* load kernel */
680     if (machine->kernel_filename) {
681         long kernel_size;
682 
683         kernel_size = load_image_targphys(machine->kernel_filename,
684                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
685         if (kernel_size < 0) {
686             error_report("Could not load kernel '%s'",
687                          machine->kernel_filename);
688             exit(1);
689         }
690     }
691 
692     /* load initrd */
693     if (machine->initrd_filename) {
694         pnv->initrd_base = INITRD_LOAD_ADDR;
695         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
696                                   pnv->initrd_base, INITRD_MAX_SIZE);
697         if (pnv->initrd_size < 0) {
698             error_report("Could not load initial ram disk '%s'",
699                          machine->initrd_filename);
700             exit(1);
701         }
702     }
703 
704     /*
705      * Check compatibility of the specified CPU with the machine
706      * default.
707      */
708     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
709         error_report("invalid CPU model '%s' for %s machine",
710                      machine->cpu_type, mc->name);
711         exit(1);
712     }
713 
714     /* Create the processor chips */
715     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
716     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
717                                     i, machine->cpu_type);
718     if (!object_class_by_name(chip_typename)) {
719         error_report("invalid chip model '%.*s' for %s machine",
720                      i, machine->cpu_type, mc->name);
721         exit(1);
722     }
723 
724     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
725     for (i = 0; i < pnv->num_chips; i++) {
726         char chip_name[32];
727         Object *chip = object_new(chip_typename);
728 
729         pnv->chips[i] = PNV_CHIP(chip);
730 
731         /*
732          * TODO: put all the memory in one node on chip 0 until we find a
733          * way to specify different ranges for each chip
734          */
735         if (i == 0) {
736             object_property_set_int(chip, machine->ram_size, "ram-size",
737                                     &error_fatal);
738         }
739 
740         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
741         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
742         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
743                                 &error_fatal);
744         object_property_set_int(chip, machine->smp.cores,
745                                 "nr-cores", &error_fatal);
746         object_property_set_bool(chip, true, "realized", &error_fatal);
747     }
748     g_free(chip_typename);
749 
750     /* Instantiate ISA bus on chip 0 */
751     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
752 
753     /* Create serial port */
754     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
755 
756     /* Create an RTC ISA device too */
757     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
758 
759     /*
760      * OpenPOWER systems use a IPMI SEL Event message to notify the
761      * host to powerdown
762      */
763     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
764     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
765 }
766 
767 /*
768  *    0:21  Reserved - Read as zeros
769  *   22:24  Chip ID
770  *   25:28  Core number
771  *   29:31  Thread ID
772  */
773 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
774 {
775     return (chip->chip_id << 7) | (core_id << 3);
776 }
777 
778 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
779                                         Error **errp)
780 {
781     Error *local_err = NULL;
782     Object *obj;
783     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
784 
785     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
786                      &local_err);
787     if (local_err) {
788         error_propagate(errp, local_err);
789         return;
790     }
791 
792     pnv_cpu->intc = obj;
793 }
794 
795 
796 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
797 {
798     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
799 
800     icp_reset(ICP(pnv_cpu->intc));
801 }
802 
803 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
804 {
805     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
806 
807     icp_destroy(ICP(pnv_cpu->intc));
808     pnv_cpu->intc = NULL;
809 }
810 
811 /*
812  *    0:48  Reserved - Read as zeroes
813  *   49:52  Node ID
814  *   53:55  Chip ID
815  *   56     Reserved - Read as zero
816  *   57:61  Core number
817  *   62:63  Thread ID
818  *
819  * We only care about the lower bits. uint32_t is fine for the moment.
820  */
821 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
822 {
823     return (chip->chip_id << 8) | (core_id << 2);
824 }
825 
826 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
827                                         Error **errp)
828 {
829     Pnv9Chip *chip9 = PNV9_CHIP(chip);
830     Error *local_err = NULL;
831     Object *obj;
832     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
833 
834     /*
835      * The core creates its interrupt presenter but the XIVE interrupt
836      * controller object is initialized afterwards. Hopefully, it's
837      * only used at runtime.
838      */
839     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
840     if (local_err) {
841         error_propagate(errp, local_err);
842         return;
843     }
844 
845     pnv_cpu->intc = obj;
846 }
847 
848 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
849 {
850     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
851 
852     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
853 }
854 
855 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
856 {
857     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
858 
859     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
860     pnv_cpu->intc = NULL;
861 }
862 
863 /*
864  * Allowed core identifiers on a POWER8 Processor Chip :
865  *
866  * <EX0 reserved>
867  *  EX1  - Venice only
868  *  EX2  - Venice only
869  *  EX3  - Venice only
870  *  EX4
871  *  EX5
872  *  EX6
873  * <EX7,8 reserved> <reserved>
874  *  EX9  - Venice only
875  *  EX10 - Venice only
876  *  EX11 - Venice only
877  *  EX12
878  *  EX13
879  *  EX14
880  * <EX15 reserved>
881  */
882 #define POWER8E_CORE_MASK  (0x7070ull)
883 #define POWER8_CORE_MASK   (0x7e7eull)
884 
885 /*
886  * POWER9 has 24 cores, ids starting at 0x0
887  */
888 #define POWER9_CORE_MASK   (0xffffffffffffffull)
889 
890 static void pnv_chip_power8_instance_init(Object *obj)
891 {
892     Pnv8Chip *chip8 = PNV8_CHIP(obj);
893 
894     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
895                             TYPE_PNV8_PSI, &error_abort, NULL);
896     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
897                                    OBJECT(qdev_get_machine()), &error_abort);
898 
899     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
900                             TYPE_PNV8_LPC, &error_abort, NULL);
901     object_property_add_const_link(OBJECT(&chip8->lpc), "psi",
902                                    OBJECT(&chip8->psi), &error_abort);
903 
904     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
905                             TYPE_PNV8_OCC, &error_abort, NULL);
906     object_property_add_const_link(OBJECT(&chip8->occ), "psi",
907                                    OBJECT(&chip8->psi), &error_abort);
908 
909     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
910                             TYPE_PNV8_HOMER, &error_abort, NULL);
911     object_property_add_const_link(OBJECT(&chip8->homer), "chip", obj,
912                                    &error_abort);
913 }
914 
915 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
916  {
917     PnvChip *chip = PNV_CHIP(chip8);
918     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
919     const char *typename = pnv_chip_core_typename(chip);
920     size_t typesize = object_type_get_instance_size(typename);
921     int i, j;
922     char *name;
923     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
924 
925     name = g_strdup_printf("icp-%x", chip->chip_id);
926     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
927     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
928     g_free(name);
929 
930     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
931 
932     /* Map the ICP registers for each thread */
933     for (i = 0; i < chip->nr_cores; i++) {
934         PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize);
935         int core_hwid = CPU_CORE(pnv_core)->core_id;
936 
937         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
938             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
939             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
940 
941             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
942                                         &icp->mmio);
943         }
944     }
945 }
946 
947 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
948 {
949     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
950     PnvChip *chip = PNV_CHIP(dev);
951     Pnv8Chip *chip8 = PNV8_CHIP(dev);
952     Pnv8Psi *psi8 = &chip8->psi;
953     Error *local_err = NULL;
954 
955     /* XSCOM bridge is first */
956     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
957     if (local_err) {
958         error_propagate(errp, local_err);
959         return;
960     }
961     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
962 
963     pcc->parent_realize(dev, &local_err);
964     if (local_err) {
965         error_propagate(errp, local_err);
966         return;
967     }
968 
969     /* Processor Service Interface (PSI) Host Bridge */
970     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
971                             "bar", &error_fatal);
972     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
973     if (local_err) {
974         error_propagate(errp, local_err);
975         return;
976     }
977     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
978                             &PNV_PSI(psi8)->xscom_regs);
979 
980     /* Create LPC controller */
981     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
982                              &error_fatal);
983     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
984 
985     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
986                                             (uint64_t) PNV_XSCOM_BASE(chip),
987                                             PNV_XSCOM_LPC_BASE);
988 
989     /*
990      * Interrupt Management Area. This is the memory region holding
991      * all the Interrupt Control Presenter (ICP) registers
992      */
993     pnv_chip_icp_realize(chip8, &local_err);
994     if (local_err) {
995         error_propagate(errp, local_err);
996         return;
997     }
998 
999     /* Create the simplified OCC model */
1000     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1001     if (local_err) {
1002         error_propagate(errp, local_err);
1003         return;
1004     }
1005     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1006 
1007     /* OCC SRAM model */
1008     memory_region_add_subregion(get_system_memory(), PNV_OCC_COMMON_AREA(chip),
1009                                 &chip8->occ.sram_regs);
1010 
1011     /* HOMER */
1012     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1013                              &local_err);
1014     if (local_err) {
1015         error_propagate(errp, local_err);
1016         return;
1017     }
1018     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1019                                 &chip8->homer.regs);
1020 }
1021 
1022 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1023 {
1024     DeviceClass *dc = DEVICE_CLASS(klass);
1025     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1026 
1027     k->chip_type = PNV_CHIP_POWER8E;
1028     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1029     k->cores_mask = POWER8E_CORE_MASK;
1030     k->core_pir = pnv_chip_core_pir_p8;
1031     k->intc_create = pnv_chip_power8_intc_create;
1032     k->intc_reset = pnv_chip_power8_intc_reset;
1033     k->intc_destroy = pnv_chip_power8_intc_destroy;
1034     k->isa_create = pnv_chip_power8_isa_create;
1035     k->dt_populate = pnv_chip_power8_dt_populate;
1036     k->pic_print_info = pnv_chip_power8_pic_print_info;
1037     dc->desc = "PowerNV Chip POWER8E";
1038 
1039     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1040                                     &k->parent_realize);
1041 }
1042 
1043 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1044 {
1045     DeviceClass *dc = DEVICE_CLASS(klass);
1046     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1047 
1048     k->chip_type = PNV_CHIP_POWER8;
1049     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1050     k->cores_mask = POWER8_CORE_MASK;
1051     k->core_pir = pnv_chip_core_pir_p8;
1052     k->intc_create = pnv_chip_power8_intc_create;
1053     k->intc_reset = pnv_chip_power8_intc_reset;
1054     k->intc_destroy = pnv_chip_power8_intc_destroy;
1055     k->isa_create = pnv_chip_power8_isa_create;
1056     k->dt_populate = pnv_chip_power8_dt_populate;
1057     k->pic_print_info = pnv_chip_power8_pic_print_info;
1058     dc->desc = "PowerNV Chip POWER8";
1059 
1060     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1061                                     &k->parent_realize);
1062 }
1063 
1064 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1065 {
1066     DeviceClass *dc = DEVICE_CLASS(klass);
1067     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1068 
1069     k->chip_type = PNV_CHIP_POWER8NVL;
1070     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1071     k->cores_mask = POWER8_CORE_MASK;
1072     k->core_pir = pnv_chip_core_pir_p8;
1073     k->intc_create = pnv_chip_power8_intc_create;
1074     k->intc_reset = pnv_chip_power8_intc_reset;
1075     k->intc_destroy = pnv_chip_power8_intc_destroy;
1076     k->isa_create = pnv_chip_power8nvl_isa_create;
1077     k->dt_populate = pnv_chip_power8_dt_populate;
1078     k->pic_print_info = pnv_chip_power8_pic_print_info;
1079     dc->desc = "PowerNV Chip POWER8NVL";
1080 
1081     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1082                                     &k->parent_realize);
1083 }
1084 
1085 static void pnv_chip_power9_instance_init(Object *obj)
1086 {
1087     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1088 
1089     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1090                             TYPE_PNV_XIVE, &error_abort, NULL);
1091     object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj,
1092                                    &error_abort);
1093 
1094     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1095                             TYPE_PNV9_PSI, &error_abort, NULL);
1096     object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj,
1097                                    &error_abort);
1098 
1099     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1100                             TYPE_PNV9_LPC, &error_abort, NULL);
1101     object_property_add_const_link(OBJECT(&chip9->lpc), "psi",
1102                                    OBJECT(&chip9->psi), &error_abort);
1103 
1104     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1105                             TYPE_PNV9_OCC, &error_abort, NULL);
1106     object_property_add_const_link(OBJECT(&chip9->occ), "psi",
1107                                    OBJECT(&chip9->psi), &error_abort);
1108 
1109     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1110                             TYPE_PNV9_HOMER, &error_abort, NULL);
1111     object_property_add_const_link(OBJECT(&chip9->homer), "chip", obj,
1112                                    &error_abort);
1113 }
1114 
1115 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1116 {
1117     PnvChip *chip = PNV_CHIP(chip9);
1118     const char *typename = pnv_chip_core_typename(chip);
1119     size_t typesize = object_type_get_instance_size(typename);
1120     int i;
1121 
1122     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1123     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1124 
1125     for (i = 0; i < chip9->nr_quads; i++) {
1126         char eq_name[32];
1127         PnvQuad *eq = &chip9->quads[i];
1128         PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize);
1129         int core_id = CPU_CORE(pnv_core)->core_id;
1130 
1131         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1132         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1133                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1134 
1135         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1136         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1137 
1138         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1139                                 &eq->xscom_regs);
1140     }
1141 }
1142 
1143 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1144 {
1145     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1146     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1147     PnvChip *chip = PNV_CHIP(dev);
1148     Pnv9Psi *psi9 = &chip9->psi;
1149     Error *local_err = NULL;
1150 
1151     /* XSCOM bridge is first */
1152     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1153     if (local_err) {
1154         error_propagate(errp, local_err);
1155         return;
1156     }
1157     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1158 
1159     pcc->parent_realize(dev, &local_err);
1160     if (local_err) {
1161         error_propagate(errp, local_err);
1162         return;
1163     }
1164 
1165     pnv_chip_quad_realize(chip9, &local_err);
1166     if (local_err) {
1167         error_propagate(errp, local_err);
1168         return;
1169     }
1170 
1171     /* XIVE interrupt controller (POWER9) */
1172     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1173                             "ic-bar", &error_fatal);
1174     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1175                             "vc-bar", &error_fatal);
1176     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1177                             "pc-bar", &error_fatal);
1178     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1179                             "tm-bar", &error_fatal);
1180     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1181                              &local_err);
1182     if (local_err) {
1183         error_propagate(errp, local_err);
1184         return;
1185     }
1186     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1187                             &chip9->xive.xscom_regs);
1188 
1189     /* Processor Service Interface (PSI) Host Bridge */
1190     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1191                             "bar", &error_fatal);
1192     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1193     if (local_err) {
1194         error_propagate(errp, local_err);
1195         return;
1196     }
1197     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1198                             &PNV_PSI(psi9)->xscom_regs);
1199 
1200     /* LPC */
1201     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1202     if (local_err) {
1203         error_propagate(errp, local_err);
1204         return;
1205     }
1206     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1207                                 &chip9->lpc.xscom_regs);
1208 
1209     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1210                                             (uint64_t) PNV9_LPCM_BASE(chip));
1211 
1212     /* Create the simplified OCC model */
1213     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1214     if (local_err) {
1215         error_propagate(errp, local_err);
1216         return;
1217     }
1218     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1219 
1220     /* OCC SRAM model */
1221     memory_region_add_subregion(get_system_memory(), PNV9_OCC_COMMON_AREA(chip),
1222                                 &chip9->occ.sram_regs);
1223 
1224     /* HOMER */
1225     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1226                              &local_err);
1227     if (local_err) {
1228         error_propagate(errp, local_err);
1229         return;
1230     }
1231     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1232                                 &chip9->homer.regs);
1233 }
1234 
1235 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1236 {
1237     DeviceClass *dc = DEVICE_CLASS(klass);
1238     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1239 
1240     k->chip_type = PNV_CHIP_POWER9;
1241     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1242     k->cores_mask = POWER9_CORE_MASK;
1243     k->core_pir = pnv_chip_core_pir_p9;
1244     k->intc_create = pnv_chip_power9_intc_create;
1245     k->intc_reset = pnv_chip_power9_intc_reset;
1246     k->intc_destroy = pnv_chip_power9_intc_destroy;
1247     k->isa_create = pnv_chip_power9_isa_create;
1248     k->dt_populate = pnv_chip_power9_dt_populate;
1249     k->pic_print_info = pnv_chip_power9_pic_print_info;
1250     dc->desc = "PowerNV Chip POWER9";
1251 
1252     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1253                                     &k->parent_realize);
1254 }
1255 
1256 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1257 {
1258     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1259     int cores_max;
1260 
1261     /*
1262      * No custom mask for this chip, let's use the default one from *
1263      * the chip class
1264      */
1265     if (!chip->cores_mask) {
1266         chip->cores_mask = pcc->cores_mask;
1267     }
1268 
1269     /* filter alien core ids ! some are reserved */
1270     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1271         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1272                    chip->cores_mask);
1273         return;
1274     }
1275     chip->cores_mask &= pcc->cores_mask;
1276 
1277     /* now that we have a sane layout, let check the number of cores */
1278     cores_max = ctpop64(chip->cores_mask);
1279     if (chip->nr_cores > cores_max) {
1280         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1281                    cores_max);
1282         return;
1283     }
1284 }
1285 
1286 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1287 {
1288     MachineState *ms = MACHINE(qdev_get_machine());
1289     Error *error = NULL;
1290     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1291     const char *typename = pnv_chip_core_typename(chip);
1292     size_t typesize = object_type_get_instance_size(typename);
1293     int i, core_hwid;
1294 
1295     if (!object_class_by_name(typename)) {
1296         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1297         return;
1298     }
1299 
1300     /* Cores */
1301     pnv_chip_core_sanitize(chip, &error);
1302     if (error) {
1303         error_propagate(errp, error);
1304         return;
1305     }
1306 
1307     chip->cores = g_malloc0(typesize * chip->nr_cores);
1308 
1309     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1310              && (i < chip->nr_cores); core_hwid++) {
1311         char core_name[32];
1312         void *pnv_core = chip->cores + i * typesize;
1313         uint64_t xscom_core_base;
1314 
1315         if (!(chip->cores_mask & (1ull << core_hwid))) {
1316             continue;
1317         }
1318 
1319         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1320         object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize,
1321                                 typename, &error_fatal, NULL);
1322         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1323                                 &error_fatal);
1324         object_property_set_int(OBJECT(pnv_core), core_hwid,
1325                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1326         object_property_set_int(OBJECT(pnv_core),
1327                                 pcc->core_pir(chip, core_hwid),
1328                                 "pir", &error_fatal);
1329         object_property_add_const_link(OBJECT(pnv_core), "chip",
1330                                        OBJECT(chip), &error_fatal);
1331         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1332                                  &error_fatal);
1333 
1334         /* Each core has an XSCOM MMIO region */
1335         if (!pnv_chip_is_power9(chip)) {
1336             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1337         } else {
1338             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1339         }
1340 
1341         pnv_xscom_add_subregion(chip, xscom_core_base,
1342                                 &PNV_CORE(pnv_core)->xscom_regs);
1343         i++;
1344     }
1345 }
1346 
1347 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1348 {
1349     PnvChip *chip = PNV_CHIP(dev);
1350     Error *error = NULL;
1351 
1352     /* Cores */
1353     pnv_chip_core_realize(chip, &error);
1354     if (error) {
1355         error_propagate(errp, error);
1356         return;
1357     }
1358 }
1359 
1360 static Property pnv_chip_properties[] = {
1361     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1362     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1363     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1364     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1365     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1366     DEFINE_PROP_END_OF_LIST(),
1367 };
1368 
1369 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1370 {
1371     DeviceClass *dc = DEVICE_CLASS(klass);
1372 
1373     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1374     dc->realize = pnv_chip_realize;
1375     dc->props = pnv_chip_properties;
1376     dc->desc = "PowerNV Chip";
1377 }
1378 
1379 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1380 {
1381     PnvMachineState *pnv = PNV_MACHINE(xi);
1382     int i;
1383 
1384     for (i = 0; i < pnv->num_chips; i++) {
1385         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1386 
1387         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1388             return &chip8->psi.ics;
1389         }
1390     }
1391     return NULL;
1392 }
1393 
1394 static void pnv_ics_resend(XICSFabric *xi)
1395 {
1396     PnvMachineState *pnv = PNV_MACHINE(xi);
1397     int i;
1398 
1399     for (i = 0; i < pnv->num_chips; i++) {
1400         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1401         ics_resend(&chip8->psi.ics);
1402     }
1403 }
1404 
1405 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1406 {
1407     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1408 
1409     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1410 }
1411 
1412 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1413                                Monitor *mon)
1414 {
1415     PnvMachineState *pnv = PNV_MACHINE(obj);
1416     int i;
1417     CPUState *cs;
1418 
1419     CPU_FOREACH(cs) {
1420         PowerPCCPU *cpu = POWERPC_CPU(cs);
1421 
1422         if (pnv_chip_is_power9(pnv->chips[0])) {
1423             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1424         } else {
1425             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1426         }
1427     }
1428 
1429     for (i = 0; i < pnv->num_chips; i++) {
1430         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1431     }
1432 }
1433 
1434 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1435                               void *opaque, Error **errp)
1436 {
1437     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1438 }
1439 
1440 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1441                               void *opaque, Error **errp)
1442 {
1443     PnvMachineState *pnv = PNV_MACHINE(obj);
1444     uint32_t num_chips;
1445     Error *local_err = NULL;
1446 
1447     visit_type_uint32(v, name, &num_chips, &local_err);
1448     if (local_err) {
1449         error_propagate(errp, local_err);
1450         return;
1451     }
1452 
1453     /*
1454      * TODO: should we decide on how many chips we can create based
1455      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1456      */
1457     if (!is_power_of_2(num_chips) || num_chips > 4) {
1458         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1459         return;
1460     }
1461 
1462     pnv->num_chips = num_chips;
1463 }
1464 
1465 static void pnv_machine_instance_init(Object *obj)
1466 {
1467     PnvMachineState *pnv = PNV_MACHINE(obj);
1468     pnv->num_chips = 1;
1469 }
1470 
1471 static void pnv_machine_class_props_init(ObjectClass *oc)
1472 {
1473     object_class_property_add(oc, "num-chips", "uint32",
1474                               pnv_get_num_chips, pnv_set_num_chips,
1475                               NULL, NULL, NULL);
1476     object_class_property_set_description(oc, "num-chips",
1477                               "Specifies the number of processor chips",
1478                               NULL);
1479 }
1480 
1481 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1482 {
1483     MachineClass *mc = MACHINE_CLASS(oc);
1484     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1485 
1486     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1487     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1488 
1489     xic->icp_get = pnv_icp_get;
1490     xic->ics_get = pnv_ics_get;
1491     xic->ics_resend = pnv_ics_resend;
1492 }
1493 
1494 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1495 {
1496     MachineClass *mc = MACHINE_CLASS(oc);
1497 
1498     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1499     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1500 
1501     mc->alias = "powernv";
1502 }
1503 
1504 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1505 {
1506     MachineClass *mc = MACHINE_CLASS(oc);
1507     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1508 
1509     mc->desc = "IBM PowerNV (Non-Virtualized)";
1510     mc->init = pnv_init;
1511     mc->reset = pnv_reset;
1512     mc->max_cpus = MAX_CPUS;
1513     /* Pnv provides a AHCI device for storage */
1514     mc->block_default_type = IF_IDE;
1515     mc->no_parallel = 1;
1516     mc->default_boot_order = NULL;
1517     /*
1518      * RAM defaults to less than 2048 for 32-bit hosts, and large
1519      * enough to fit the maximum initrd size at it's load address
1520      */
1521     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1522     ispc->print_info = pnv_pic_print_info;
1523 
1524     pnv_machine_class_props_init(oc);
1525 }
1526 
1527 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1528     {                                             \
1529         .name          = type,                    \
1530         .class_init    = class_initfn,            \
1531         .parent        = TYPE_PNV8_CHIP,          \
1532     }
1533 
1534 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1535     {                                             \
1536         .name          = type,                    \
1537         .class_init    = class_initfn,            \
1538         .parent        = TYPE_PNV9_CHIP,          \
1539     }
1540 
1541 static const TypeInfo types[] = {
1542     {
1543         .name          = MACHINE_TYPE_NAME("powernv9"),
1544         .parent        = TYPE_PNV_MACHINE,
1545         .class_init    = pnv_machine_power9_class_init,
1546     },
1547     {
1548         .name          = MACHINE_TYPE_NAME("powernv8"),
1549         .parent        = TYPE_PNV_MACHINE,
1550         .class_init    = pnv_machine_power8_class_init,
1551         .interfaces = (InterfaceInfo[]) {
1552             { TYPE_XICS_FABRIC },
1553             { },
1554         },
1555     },
1556     {
1557         .name          = TYPE_PNV_MACHINE,
1558         .parent        = TYPE_MACHINE,
1559         .abstract       = true,
1560         .instance_size = sizeof(PnvMachineState),
1561         .instance_init = pnv_machine_instance_init,
1562         .class_init    = pnv_machine_class_init,
1563         .interfaces = (InterfaceInfo[]) {
1564             { TYPE_INTERRUPT_STATS_PROVIDER },
1565             { },
1566         },
1567     },
1568     {
1569         .name          = TYPE_PNV_CHIP,
1570         .parent        = TYPE_SYS_BUS_DEVICE,
1571         .class_init    = pnv_chip_class_init,
1572         .instance_size = sizeof(PnvChip),
1573         .class_size    = sizeof(PnvChipClass),
1574         .abstract      = true,
1575     },
1576 
1577     /*
1578      * P9 chip and variants
1579      */
1580     {
1581         .name          = TYPE_PNV9_CHIP,
1582         .parent        = TYPE_PNV_CHIP,
1583         .instance_init = pnv_chip_power9_instance_init,
1584         .instance_size = sizeof(Pnv9Chip),
1585     },
1586     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1587 
1588     /*
1589      * P8 chip and variants
1590      */
1591     {
1592         .name          = TYPE_PNV8_CHIP,
1593         .parent        = TYPE_PNV_CHIP,
1594         .instance_init = pnv_chip_power8_instance_init,
1595         .instance_size = sizeof(Pnv8Chip),
1596     },
1597     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1598     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1599     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1600                           pnv_chip_power8nvl_class_init),
1601 };
1602 
1603 DEFINE_TYPES(types)
1604