xref: /openbmc/qemu/hw/ppc/pnv.c (revision 33467ecb86e7938df605d0384a3a0e3e8a57c707)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 #include "hw/pci-host/pnv_phb.h"
47 #include "hw/pci-host/pnv_phb3.h"
48 #include "hw/pci-host/pnv_phb4.h"
49 
50 #include "hw/ppc/xics.h"
51 #include "hw/qdev-properties.h"
52 #include "hw/ppc/pnv_chip.h"
53 #include "hw/ppc/pnv_xscom.h"
54 #include "hw/ppc/pnv_pnor.h"
55 
56 #include "hw/isa/isa.h"
57 #include "hw/char/serial.h"
58 #include "hw/rtc/mc146818rtc.h"
59 
60 #include <libfdt.h>
61 
62 #define FDT_MAX_SIZE            (1 * MiB)
63 
64 #define FW_FILE_NAME            "skiboot.lid"
65 #define FW_LOAD_ADDR            0x0
66 #define FW_MAX_SIZE             (16 * MiB)
67 
68 #define KERNEL_LOAD_ADDR        0x20000000
69 #define KERNEL_MAX_SIZE         (128 * MiB)
70 #define INITRD_LOAD_ADDR        0x28000000
71 #define INITRD_MAX_SIZE         (128 * MiB)
72 
73 static const char *pnv_chip_core_typename(const PnvChip *o)
74 {
75     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
76     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
77     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
78     const char *core_type = object_class_get_name(object_class_by_name(s));
79     g_free(s);
80     return core_type;
81 }
82 
83 /*
84  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
85  *     4 * 4 sockets * 12 cores * 8 threads = 1536
86  * Let's make it 2^11
87  */
88 #define MAX_CPUS                2048
89 
90 /*
91  * Memory nodes are created by hostboot, one for each range of memory
92  * that has a different "affinity". In practice, it means one range
93  * per chip.
94  */
95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
96 {
97     char *mem_name;
98     uint64_t mem_reg_property[2];
99     int off;
100 
101     mem_reg_property[0] = cpu_to_be64(start);
102     mem_reg_property[1] = cpu_to_be64(size);
103 
104     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
105     off = fdt_add_subnode(fdt, 0, mem_name);
106     g_free(mem_name);
107 
108     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
109     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
110                        sizeof(mem_reg_property))));
111     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
112 }
113 
114 static int get_cpus_node(void *fdt)
115 {
116     int cpus_offset = fdt_path_offset(fdt, "/cpus");
117 
118     if (cpus_offset < 0) {
119         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
120         if (cpus_offset) {
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
123         }
124     }
125     _FDT(cpus_offset);
126     return cpus_offset;
127 }
128 
129 /*
130  * The PowerNV cores (and threads) need to use real HW ids and not an
131  * incremental index like it has been done on other platforms. This HW
132  * id is stored in the CPU PIR, it is used to create cpu nodes in the
133  * device tree, used in XSCOM to address cores and in interrupt
134  * servers.
135  */
136 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
137 {
138     PowerPCCPU *cpu = pc->threads[0];
139     CPUState *cs = CPU(cpu);
140     DeviceClass *dc = DEVICE_GET_CLASS(cs);
141     int smt_threads = CPU_CORE(pc)->nr_threads;
142     CPUPPCState *env = &cpu->env;
143     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
147                        0xffffffff, 0xffffffff};
148     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
149     uint32_t cpufreq = 1000000000;
150     uint32_t page_sizes_prop[64];
151     size_t page_sizes_prop_size;
152     const uint8_t pa_features[] = { 24, 0,
153                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
154                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
155                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
156                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
157     int offset;
158     char *nodename;
159     int cpus_offset = get_cpus_node(fdt);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
240                        pa_features, sizeof(pa_features))));
241 
242     /* Build interrupt servers properties */
243     for (i = 0; i < smt_threads; i++) {
244         servers_prop[i] = cpu_to_be32(pc->pir + i);
245     }
246     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
247                        servers_prop, sizeof(*servers_prop) * smt_threads)));
248 }
249 
250 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
251                        uint32_t nr_threads)
252 {
253     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
254     char *name;
255     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256     uint32_t irange[2], i, rsize;
257     uint64_t *reg;
258     int offset;
259 
260     irange[0] = cpu_to_be32(pir);
261     irange[1] = cpu_to_be32(nr_threads);
262 
263     rsize = sizeof(uint64_t) * 2 * nr_threads;
264     reg = g_malloc(rsize);
265     for (i = 0; i < nr_threads; i++) {
266         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
267         reg[i * 2 + 1] = cpu_to_be64(0x1000);
268     }
269 
270     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
271     offset = fdt_add_subnode(fdt, 0, name);
272     _FDT(offset);
273     g_free(name);
274 
275     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
276     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
277     _FDT((fdt_setprop_string(fdt, offset, "device_type",
278                               "PowerPC-External-Interrupt-Presentation")));
279     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
280     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
281                        irange, sizeof(irange))));
282     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
283     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
284     g_free(reg);
285 }
286 
287 /*
288  * Adds a PnvPHB to the chip on P8.
289  * Implemented here, like for defaults PHBs
290  */
291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
292 {
293     Pnv8Chip *chip8 = PNV8_CHIP(chip);
294 
295     phb->chip = chip;
296 
297     chip8->phbs[chip8->num_phbs] = phb;
298     chip8->num_phbs++;
299     return chip;
300 }
301 
302 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
303 {
304     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
305     int i;
306 
307     pnv_dt_xscom(chip, fdt, 0,
308                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
309                  cpu_to_be64(PNV_XSCOM_SIZE),
310                  compat, sizeof(compat));
311 
312     for (i = 0; i < chip->nr_cores; i++) {
313         PnvCore *pnv_core = chip->cores[i];
314 
315         pnv_dt_core(chip, pnv_core, fdt);
316 
317         /* Interrupt Control Presenters (ICP). One per core. */
318         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
319     }
320 
321     if (chip->ram_size) {
322         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323     }
324 }
325 
326 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
327 {
328     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
329     int i;
330 
331     pnv_dt_xscom(chip, fdt, 0,
332                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
333                  cpu_to_be64(PNV9_XSCOM_SIZE),
334                  compat, sizeof(compat));
335 
336     for (i = 0; i < chip->nr_cores; i++) {
337         PnvCore *pnv_core = chip->cores[i];
338 
339         pnv_dt_core(chip, pnv_core, fdt);
340     }
341 
342     if (chip->ram_size) {
343         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
344     }
345 
346     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
347 }
348 
349 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
350 {
351     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
352     int i;
353 
354     pnv_dt_xscom(chip, fdt, 0,
355                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
356                  cpu_to_be64(PNV10_XSCOM_SIZE),
357                  compat, sizeof(compat));
358 
359     for (i = 0; i < chip->nr_cores; i++) {
360         PnvCore *pnv_core = chip->cores[i];
361 
362         pnv_dt_core(chip, pnv_core, fdt);
363     }
364 
365     if (chip->ram_size) {
366         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
367     }
368 
369     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
370 }
371 
372 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
373 {
374     uint32_t io_base = d->ioport_id;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         cpu_to_be32(io_base),
378         cpu_to_be32(2)
379     };
380     char *name;
381     int node;
382 
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387 
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
390 }
391 
392 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
393 {
394     const char compatible[] = "ns16550\0pnpPNP,501";
395     uint32_t io_base = d->ioport_id;
396     uint32_t io_regs[] = {
397         cpu_to_be32(1),
398         cpu_to_be32(io_base),
399         cpu_to_be32(8)
400     };
401     uint32_t irq;
402     char *name;
403     int node;
404 
405     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
406 
407     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
408     node = fdt_add_subnode(fdt, lpc_off, name);
409     _FDT(node);
410     g_free(name);
411 
412     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
413     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
414                       sizeof(compatible))));
415 
416     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
417     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
418     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
419     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
420                            fdt_get_phandle(fdt, lpc_off))));
421 
422     /* This is needed by Linux */
423     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
424 }
425 
426 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
427 {
428     const char compatible[] = "bt\0ipmi-bt";
429     uint32_t io_base;
430     uint32_t io_regs[] = {
431         cpu_to_be32(1),
432         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
433         cpu_to_be32(3)
434     };
435     uint32_t irq;
436     char *name;
437     int node;
438 
439     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
440     io_regs[1] = cpu_to_be32(io_base);
441 
442     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
443 
444     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
445     node = fdt_add_subnode(fdt, lpc_off, name);
446     _FDT(node);
447     g_free(name);
448 
449     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
450     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
451                       sizeof(compatible))));
452 
453     /* Mark it as reserved to avoid Linux trying to claim it */
454     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
455     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
456     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
457                            fdt_get_phandle(fdt, lpc_off))));
458 }
459 
460 typedef struct ForeachPopulateArgs {
461     void *fdt;
462     int offset;
463 } ForeachPopulateArgs;
464 
465 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
466 {
467     ForeachPopulateArgs *args = opaque;
468     ISADevice *d = ISA_DEVICE(dev);
469 
470     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
471         pnv_dt_rtc(d, args->fdt, args->offset);
472     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
473         pnv_dt_serial(d, args->fdt, args->offset);
474     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
475         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
476     } else {
477         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
478                      d->ioport_id);
479     }
480 
481     return 0;
482 }
483 
484 /*
485  * The default LPC bus of a multichip system is on chip 0. It's
486  * recognized by the firmware (skiboot) using a "primary" property.
487  */
488 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
489 {
490     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
491     ForeachPopulateArgs args = {
492         .fdt = fdt,
493         .offset = isa_offset,
494     };
495     uint32_t phandle;
496 
497     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
498 
499     phandle = qemu_fdt_alloc_phandle(fdt);
500     assert(phandle > 0);
501     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
502 
503     /*
504      * ISA devices are not necessarily parented to the ISA bus so we
505      * can not use object_child_foreach()
506      */
507     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
508                        &args);
509 }
510 
511 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
512 {
513     int off;
514 
515     off = fdt_add_subnode(fdt, 0, "ibm,opal");
516     off = fdt_add_subnode(fdt, off, "power-mgt");
517 
518     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
519 }
520 
521 static void *pnv_dt_create(MachineState *machine)
522 {
523     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
524     PnvMachineState *pnv = PNV_MACHINE(machine);
525     void *fdt;
526     char *buf;
527     int off;
528     int i;
529 
530     fdt = g_malloc0(FDT_MAX_SIZE);
531     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
532 
533     /* /qemu node */
534     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
535 
536     /* Root node */
537     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
538     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
539     _FDT((fdt_setprop_string(fdt, 0, "model",
540                              "IBM PowerNV (emulated by qemu)")));
541     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
542 
543     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
544     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
545     if (qemu_uuid_set) {
546         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
547     }
548     g_free(buf);
549 
550     off = fdt_add_subnode(fdt, 0, "chosen");
551     if (machine->kernel_cmdline) {
552         _FDT((fdt_setprop_string(fdt, off, "bootargs",
553                                  machine->kernel_cmdline)));
554     }
555 
556     if (pnv->initrd_size) {
557         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
558         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
559 
560         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
561                                &start_prop, sizeof(start_prop))));
562         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
563                                &end_prop, sizeof(end_prop))));
564     }
565 
566     /* Populate device tree for each chip */
567     for (i = 0; i < pnv->num_chips; i++) {
568         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
569     }
570 
571     /* Populate ISA devices on chip 0 */
572     pnv_dt_isa(pnv, fdt);
573 
574     if (pnv->bmc) {
575         pnv_dt_bmc_sensors(pnv->bmc, fdt);
576     }
577 
578     /* Create an extra node for power management on machines that support it */
579     if (pmc->dt_power_mgt) {
580         pmc->dt_power_mgt(pnv, fdt);
581     }
582 
583     return fdt;
584 }
585 
586 static void pnv_powerdown_notify(Notifier *n, void *opaque)
587 {
588     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
589 
590     if (pnv->bmc) {
591         pnv_bmc_powerdown(pnv->bmc);
592     }
593 }
594 
595 static void pnv_reset(MachineState *machine, ShutdownCause reason)
596 {
597     PnvMachineState *pnv = PNV_MACHINE(machine);
598     IPMIBmc *bmc;
599     void *fdt;
600 
601     qemu_devices_reset(reason);
602 
603     /*
604      * The machine should provide by default an internal BMC simulator.
605      * If not, try to use the BMC device that was provided on the command
606      * line.
607      */
608     bmc = pnv_bmc_find(&error_fatal);
609     if (!pnv->bmc) {
610         if (!bmc) {
611             if (!qtest_enabled()) {
612                 warn_report("machine has no BMC device. Use '-device "
613                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
614                             "to define one");
615             }
616         } else {
617             pnv_bmc_set_pnor(bmc, pnv->pnor);
618             pnv->bmc = bmc;
619         }
620     }
621 
622     fdt = pnv_dt_create(machine);
623 
624     /* Pack resulting tree */
625     _FDT((fdt_pack(fdt)));
626 
627     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
628     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
629 
630     /*
631      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
632      * the existing machine->fdt to avoid leaking it during
633      * a reset.
634      */
635     g_free(machine->fdt);
636     machine->fdt = fdt;
637 }
638 
639 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
640 {
641     Pnv8Chip *chip8 = PNV8_CHIP(chip);
642     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
643 
644     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
645     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
646 }
647 
648 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
649 {
650     Pnv8Chip *chip8 = PNV8_CHIP(chip);
651     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
652 
653     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
654     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
655 }
656 
657 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
658 {
659     Pnv9Chip *chip9 = PNV9_CHIP(chip);
660     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
661 
662     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
663     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
664 }
665 
666 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
667 {
668     Pnv10Chip *chip10 = PNV10_CHIP(chip);
669     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
670 
671     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
672     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
673 }
674 
675 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
676 {
677     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
678 }
679 
680 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
681 {
682     Pnv8Chip *chip8 = PNV8_CHIP(chip);
683     int i;
684 
685     ics_pic_print_info(&chip8->psi.ics, mon);
686 
687     for (i = 0; i < chip8->num_phbs; i++) {
688         PnvPHB *phb = chip8->phbs[i];
689         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
690 
691         pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
692         ics_pic_print_info(&phb3->lsis, mon);
693     }
694 }
695 
696 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
697 {
698     Monitor *mon = opaque;
699     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
700 
701     if (!phb) {
702         return 0;
703     }
704 
705     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon);
706 
707     return 0;
708 }
709 
710 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
711 {
712     Pnv9Chip *chip9 = PNV9_CHIP(chip);
713 
714     pnv_xive_pic_print_info(&chip9->xive, mon);
715     pnv_psi_pic_print_info(&chip9->psi, mon);
716 
717     object_child_foreach_recursive(OBJECT(chip),
718                          pnv_chip_power9_pic_print_info_child, mon);
719 }
720 
721 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
722                                                 uint32_t core_id)
723 {
724     return PNV_XSCOM_EX_BASE(core_id);
725 }
726 
727 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
728                                                 uint32_t core_id)
729 {
730     return PNV9_XSCOM_EC_BASE(core_id);
731 }
732 
733 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
734                                                  uint32_t core_id)
735 {
736     return PNV10_XSCOM_EC_BASE(core_id);
737 }
738 
739 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
740 {
741     PowerPCCPUClass *ppc_default =
742         POWERPC_CPU_CLASS(object_class_by_name(default_type));
743     PowerPCCPUClass *ppc =
744         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
745 
746     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
747 }
748 
749 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
750 {
751     ISADevice *dev = isa_new("isa-ipmi-bt");
752 
753     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
754     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
755     isa_realize_and_unref(dev, bus, &error_fatal);
756 }
757 
758 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
759 {
760     Pnv10Chip *chip10 = PNV10_CHIP(chip);
761 
762     pnv_xive2_pic_print_info(&chip10->xive, mon);
763     pnv_psi_pic_print_info(&chip10->psi, mon);
764 
765     object_child_foreach_recursive(OBJECT(chip),
766                          pnv_chip_power9_pic_print_info_child, mon);
767 }
768 
769 /* Always give the first 1GB to chip 0 else we won't boot */
770 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
771 {
772     MachineState *machine = MACHINE(pnv);
773     uint64_t ram_per_chip;
774 
775     assert(machine->ram_size >= 1 * GiB);
776 
777     ram_per_chip = machine->ram_size / pnv->num_chips;
778     if (ram_per_chip >= 1 * GiB) {
779         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
780     }
781 
782     assert(pnv->num_chips > 1);
783 
784     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
785     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
786 }
787 
788 static void pnv_init(MachineState *machine)
789 {
790     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
791     PnvMachineState *pnv = PNV_MACHINE(machine);
792     MachineClass *mc = MACHINE_GET_CLASS(machine);
793     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
794     char *fw_filename;
795     long fw_size;
796     uint64_t chip_ram_start = 0;
797     int i;
798     char *chip_typename;
799     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
800     DeviceState *dev;
801 
802     if (kvm_enabled()) {
803         error_report("machine %s does not support the KVM accelerator",
804                      mc->name);
805         exit(EXIT_FAILURE);
806     }
807 
808     /* allocate RAM */
809     if (machine->ram_size < mc->default_ram_size) {
810         char *sz = size_to_str(mc->default_ram_size);
811         error_report("Invalid RAM size, should be bigger than %s", sz);
812         g_free(sz);
813         exit(EXIT_FAILURE);
814     }
815     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
816 
817     /*
818      * Create our simple PNOR device
819      */
820     dev = qdev_new(TYPE_PNV_PNOR);
821     if (pnor) {
822         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
823     }
824     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
825     pnv->pnor = PNV_PNOR(dev);
826 
827     /* load skiboot firmware  */
828     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
829     if (!fw_filename) {
830         error_report("Could not find OPAL firmware '%s'", bios_name);
831         exit(1);
832     }
833 
834     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
835     if (fw_size < 0) {
836         error_report("Could not load OPAL firmware '%s'", fw_filename);
837         exit(1);
838     }
839     g_free(fw_filename);
840 
841     /* load kernel */
842     if (machine->kernel_filename) {
843         long kernel_size;
844 
845         kernel_size = load_image_targphys(machine->kernel_filename,
846                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
847         if (kernel_size < 0) {
848             error_report("Could not load kernel '%s'",
849                          machine->kernel_filename);
850             exit(1);
851         }
852     }
853 
854     /* load initrd */
855     if (machine->initrd_filename) {
856         pnv->initrd_base = INITRD_LOAD_ADDR;
857         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
858                                   pnv->initrd_base, INITRD_MAX_SIZE);
859         if (pnv->initrd_size < 0) {
860             error_report("Could not load initial ram disk '%s'",
861                          machine->initrd_filename);
862             exit(1);
863         }
864     }
865 
866     /* MSIs are supported on this platform */
867     msi_nonbroken = true;
868 
869     /*
870      * Check compatibility of the specified CPU with the machine
871      * default.
872      */
873     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
874         error_report("invalid CPU model '%s' for %s machine",
875                      machine->cpu_type, mc->name);
876         exit(1);
877     }
878 
879     /* Create the processor chips */
880     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
881     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
882                                     i, machine->cpu_type);
883     if (!object_class_by_name(chip_typename)) {
884         error_report("invalid chip model '%.*s' for %s machine",
885                      i, machine->cpu_type, mc->name);
886         exit(1);
887     }
888 
889     pnv->num_chips =
890         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
891 
892     if (machine->smp.threads > 8) {
893         error_report("Cannot support more than 8 threads/core "
894                      "on a powernv machine");
895         exit(1);
896     }
897     if (!is_power_of_2(machine->smp.threads)) {
898         error_report("Cannot support %d threads/core on a powernv"
899                      "machine because it must be a power of 2",
900                      machine->smp.threads);
901         exit(1);
902     }
903     /*
904      * TODO: should we decide on how many chips we can create based
905      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
906      */
907     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
908         error_report("invalid number of chips: '%d'", pnv->num_chips);
909         error_printf(
910             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
911         exit(1);
912     }
913 
914     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
915     for (i = 0; i < pnv->num_chips; i++) {
916         char chip_name[32];
917         Object *chip = OBJECT(qdev_new(chip_typename));
918         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
919 
920         pnv->chips[i] = PNV_CHIP(chip);
921 
922         /* Distribute RAM among the chips  */
923         object_property_set_int(chip, "ram-start", chip_ram_start,
924                                 &error_fatal);
925         object_property_set_int(chip, "ram-size", chip_ram_size,
926                                 &error_fatal);
927         chip_ram_start += chip_ram_size;
928 
929         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
930         object_property_add_child(OBJECT(pnv), chip_name, chip);
931         object_property_set_int(chip, "chip-id", i, &error_fatal);
932         object_property_set_int(chip, "nr-cores", machine->smp.cores,
933                                 &error_fatal);
934         object_property_set_int(chip, "nr-threads", machine->smp.threads,
935                                 &error_fatal);
936         /*
937          * The POWER8 machine use the XICS interrupt interface.
938          * Propagate the XICS fabric to the chip and its controllers.
939          */
940         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
941             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
942         }
943         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
944             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
945                                      &error_abort);
946         }
947         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
948     }
949     g_free(chip_typename);
950 
951     /* Instantiate ISA bus on chip 0 */
952     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
953 
954     /* Create serial port */
955     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
956 
957     /* Create an RTC ISA device too */
958     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
959 
960     /*
961      * Create the machine BMC simulator and the IPMI BT device for
962      * communication with the BMC
963      */
964     if (defaults_enabled()) {
965         pnv->bmc = pnv_bmc_create(pnv->pnor);
966         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
967     }
968 
969     /*
970      * The PNOR is mapped on the LPC FW address space by the BMC.
971      * Since we can not reach the remote BMC machine with LPC memops,
972      * map it always for now.
973      */
974     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
975                                 &pnv->pnor->mmio);
976 
977     /*
978      * OpenPOWER systems use a IPMI SEL Event message to notify the
979      * host to powerdown
980      */
981     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
982     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
983 
984     /*
985      * Create/Connect any machine-specific I2C devices
986      */
987     if (pmc->i2c_init) {
988         pmc->i2c_init(pnv);
989     }
990 }
991 
992 /*
993  *    0:21  Reserved - Read as zeros
994  *   22:24  Chip ID
995  *   25:28  Core number
996  *   29:31  Thread ID
997  */
998 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
999 {
1000     return (chip->chip_id << 7) | (core_id << 3);
1001 }
1002 
1003 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1004                                         Error **errp)
1005 {
1006     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1007     Error *local_err = NULL;
1008     Object *obj;
1009     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1010 
1011     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1012     if (local_err) {
1013         error_propagate(errp, local_err);
1014         return;
1015     }
1016 
1017     pnv_cpu->intc = obj;
1018 }
1019 
1020 
1021 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1022 {
1023     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1024 
1025     icp_reset(ICP(pnv_cpu->intc));
1026 }
1027 
1028 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1029 {
1030     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1031 
1032     icp_destroy(ICP(pnv_cpu->intc));
1033     pnv_cpu->intc = NULL;
1034 }
1035 
1036 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1037                                             Monitor *mon)
1038 {
1039     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1040 }
1041 
1042 /*
1043  *    0:48  Reserved - Read as zeroes
1044  *   49:52  Node ID
1045  *   53:55  Chip ID
1046  *   56     Reserved - Read as zero
1047  *   57:61  Core number
1048  *   62:63  Thread ID
1049  *
1050  * We only care about the lower bits. uint32_t is fine for the moment.
1051  */
1052 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
1053 {
1054     return (chip->chip_id << 8) | (core_id << 2);
1055 }
1056 
1057 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
1058 {
1059     return (chip->chip_id << 8) | (core_id << 2);
1060 }
1061 
1062 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1063                                         Error **errp)
1064 {
1065     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1066     Error *local_err = NULL;
1067     Object *obj;
1068     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1069 
1070     /*
1071      * The core creates its interrupt presenter but the XIVE interrupt
1072      * controller object is initialized afterwards. Hopefully, it's
1073      * only used at runtime.
1074      */
1075     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1076                            &local_err);
1077     if (local_err) {
1078         error_propagate(errp, local_err);
1079         return;
1080     }
1081 
1082     pnv_cpu->intc = obj;
1083 }
1084 
1085 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1086 {
1087     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1088 
1089     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1090 }
1091 
1092 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1093 {
1094     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1095 
1096     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1097     pnv_cpu->intc = NULL;
1098 }
1099 
1100 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1101                                             Monitor *mon)
1102 {
1103     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1104 }
1105 
1106 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1107                                         Error **errp)
1108 {
1109     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1110     Error *local_err = NULL;
1111     Object *obj;
1112     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1113 
1114     /*
1115      * The core creates its interrupt presenter but the XIVE2 interrupt
1116      * controller object is initialized afterwards. Hopefully, it's
1117      * only used at runtime.
1118      */
1119     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1120                            &local_err);
1121     if (local_err) {
1122         error_propagate(errp, local_err);
1123         return;
1124     }
1125 
1126     pnv_cpu->intc = obj;
1127 }
1128 
1129 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1130 {
1131     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1132 
1133     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1134 }
1135 
1136 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1137 {
1138     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1139 
1140     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1141     pnv_cpu->intc = NULL;
1142 }
1143 
1144 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1145                                              Monitor *mon)
1146 {
1147     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1148 }
1149 
1150 /*
1151  * Allowed core identifiers on a POWER8 Processor Chip :
1152  *
1153  * <EX0 reserved>
1154  *  EX1  - Venice only
1155  *  EX2  - Venice only
1156  *  EX3  - Venice only
1157  *  EX4
1158  *  EX5
1159  *  EX6
1160  * <EX7,8 reserved> <reserved>
1161  *  EX9  - Venice only
1162  *  EX10 - Venice only
1163  *  EX11 - Venice only
1164  *  EX12
1165  *  EX13
1166  *  EX14
1167  * <EX15 reserved>
1168  */
1169 #define POWER8E_CORE_MASK  (0x7070ull)
1170 #define POWER8_CORE_MASK   (0x7e7eull)
1171 
1172 /*
1173  * POWER9 has 24 cores, ids starting at 0x0
1174  */
1175 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1176 
1177 
1178 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1179 
1180 static void pnv_chip_power8_instance_init(Object *obj)
1181 {
1182     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1183     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1184     int i;
1185 
1186     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1187                              (Object **)&chip8->xics,
1188                              object_property_allow_set_link,
1189                              OBJ_PROP_LINK_STRONG);
1190 
1191     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1192 
1193     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1194 
1195     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1196 
1197     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1198 
1199     if (defaults_enabled()) {
1200         chip8->num_phbs = pcc->num_phbs;
1201 
1202         for (i = 0; i < chip8->num_phbs; i++) {
1203             Object *phb = object_new(TYPE_PNV_PHB);
1204 
1205             /*
1206              * We need the chip to parent the PHB to allow the DT
1207              * to build correctly (via pnv_xscom_dt()).
1208              *
1209              * TODO: the PHB should be parented by a PEC device that, at
1210              * this moment, is not modelled powernv8/phb3.
1211              */
1212             object_property_add_child(obj, "phb[*]", phb);
1213             chip8->phbs[i] = PNV_PHB(phb);
1214         }
1215     }
1216 
1217 }
1218 
1219 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1220  {
1221     PnvChip *chip = PNV_CHIP(chip8);
1222     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1223     int i, j;
1224     char *name;
1225 
1226     name = g_strdup_printf("icp-%x", chip->chip_id);
1227     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1228     g_free(name);
1229     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1230                                 &chip8->icp_mmio);
1231 
1232     /* Map the ICP registers for each thread */
1233     for (i = 0; i < chip->nr_cores; i++) {
1234         PnvCore *pnv_core = chip->cores[i];
1235         int core_hwid = CPU_CORE(pnv_core)->core_id;
1236 
1237         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1238             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1239             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1240 
1241             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1242                                         &icp->mmio);
1243         }
1244     }
1245 }
1246 
1247 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1248 {
1249     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1250     PnvChip *chip = PNV_CHIP(dev);
1251     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1252     Pnv8Psi *psi8 = &chip8->psi;
1253     Error *local_err = NULL;
1254     int i;
1255 
1256     assert(chip8->xics);
1257 
1258     /* XSCOM bridge is first */
1259     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1260 
1261     pcc->parent_realize(dev, &local_err);
1262     if (local_err) {
1263         error_propagate(errp, local_err);
1264         return;
1265     }
1266 
1267     /* Processor Service Interface (PSI) Host Bridge */
1268     object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1269                             &error_fatal);
1270     object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1271                              OBJECT(chip8->xics), &error_abort);
1272     if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1273         return;
1274     }
1275     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1276                             &PNV_PSI(psi8)->xscom_regs);
1277 
1278     /* Create LPC controller */
1279     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1280     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1281 
1282     chip->fw_mr = &chip8->lpc.isa_fw;
1283     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1284                                             (uint64_t) PNV_XSCOM_BASE(chip),
1285                                             PNV_XSCOM_LPC_BASE);
1286 
1287     /*
1288      * Interrupt Management Area. This is the memory region holding
1289      * all the Interrupt Control Presenter (ICP) registers
1290      */
1291     pnv_chip_icp_realize(chip8, &local_err);
1292     if (local_err) {
1293         error_propagate(errp, local_err);
1294         return;
1295     }
1296 
1297     /* Create the simplified OCC model */
1298     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1299         return;
1300     }
1301     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1302     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1303                           qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC));
1304 
1305     /* OCC SRAM model */
1306     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1307                                 &chip8->occ.sram_regs);
1308 
1309     /* HOMER */
1310     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1311                              &error_abort);
1312     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1313         return;
1314     }
1315     /* Homer Xscom region */
1316     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1317 
1318     /* Homer mmio region */
1319     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1320                                 &chip8->homer.regs);
1321 
1322     /* PHB controllers */
1323     for (i = 0; i < chip8->num_phbs; i++) {
1324         PnvPHB *phb = chip8->phbs[i];
1325 
1326         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1327         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1328                                 &error_fatal);
1329         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1330                                  &error_fatal);
1331         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1332             return;
1333         }
1334     }
1335 }
1336 
1337 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1338 {
1339     addr &= (PNV_XSCOM_SIZE - 1);
1340     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1341 }
1342 
1343 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1344 {
1345     DeviceClass *dc = DEVICE_CLASS(klass);
1346     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1347 
1348     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1349     k->cores_mask = POWER8E_CORE_MASK;
1350     k->num_phbs = 3;
1351     k->core_pir = pnv_chip_core_pir_p8;
1352     k->intc_create = pnv_chip_power8_intc_create;
1353     k->intc_reset = pnv_chip_power8_intc_reset;
1354     k->intc_destroy = pnv_chip_power8_intc_destroy;
1355     k->intc_print_info = pnv_chip_power8_intc_print_info;
1356     k->isa_create = pnv_chip_power8_isa_create;
1357     k->dt_populate = pnv_chip_power8_dt_populate;
1358     k->pic_print_info = pnv_chip_power8_pic_print_info;
1359     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1360     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1361     dc->desc = "PowerNV Chip POWER8E";
1362 
1363     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1364                                     &k->parent_realize);
1365 }
1366 
1367 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1368 {
1369     DeviceClass *dc = DEVICE_CLASS(klass);
1370     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1371 
1372     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1373     k->cores_mask = POWER8_CORE_MASK;
1374     k->num_phbs = 3;
1375     k->core_pir = pnv_chip_core_pir_p8;
1376     k->intc_create = pnv_chip_power8_intc_create;
1377     k->intc_reset = pnv_chip_power8_intc_reset;
1378     k->intc_destroy = pnv_chip_power8_intc_destroy;
1379     k->intc_print_info = pnv_chip_power8_intc_print_info;
1380     k->isa_create = pnv_chip_power8_isa_create;
1381     k->dt_populate = pnv_chip_power8_dt_populate;
1382     k->pic_print_info = pnv_chip_power8_pic_print_info;
1383     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1384     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1385     dc->desc = "PowerNV Chip POWER8";
1386 
1387     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1388                                     &k->parent_realize);
1389 }
1390 
1391 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1392 {
1393     DeviceClass *dc = DEVICE_CLASS(klass);
1394     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1395 
1396     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1397     k->cores_mask = POWER8_CORE_MASK;
1398     k->num_phbs = 4;
1399     k->core_pir = pnv_chip_core_pir_p8;
1400     k->intc_create = pnv_chip_power8_intc_create;
1401     k->intc_reset = pnv_chip_power8_intc_reset;
1402     k->intc_destroy = pnv_chip_power8_intc_destroy;
1403     k->intc_print_info = pnv_chip_power8_intc_print_info;
1404     k->isa_create = pnv_chip_power8nvl_isa_create;
1405     k->dt_populate = pnv_chip_power8_dt_populate;
1406     k->pic_print_info = pnv_chip_power8_pic_print_info;
1407     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1408     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1409     dc->desc = "PowerNV Chip POWER8NVL";
1410 
1411     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1412                                     &k->parent_realize);
1413 }
1414 
1415 static void pnv_chip_power9_instance_init(Object *obj)
1416 {
1417     PnvChip *chip = PNV_CHIP(obj);
1418     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1419     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1420     int i;
1421 
1422     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1423     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1424                               "xive-fabric");
1425 
1426     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1427 
1428     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1429 
1430     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1431 
1432     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1433 
1434     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1435 
1436     /* Number of PECs is the chip default */
1437     chip->num_pecs = pcc->num_pecs;
1438 
1439     for (i = 0; i < chip->num_pecs; i++) {
1440         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1441                                 TYPE_PNV_PHB4_PEC);
1442     }
1443 
1444     for (i = 0; i < pcc->i2c_num_engines; i++) {
1445         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1446     }
1447 }
1448 
1449 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1450                                       PnvCore *pnv_core,
1451                                       const char *type)
1452 {
1453     char eq_name[32];
1454     int core_id = CPU_CORE(pnv_core)->core_id;
1455 
1456     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1457     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1458                                        sizeof(*eq), type,
1459                                        &error_fatal, NULL);
1460 
1461     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1462     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1463 }
1464 
1465 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1466 {
1467     PnvChip *chip = PNV_CHIP(chip9);
1468     int i;
1469 
1470     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1471     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1472 
1473     for (i = 0; i < chip9->nr_quads; i++) {
1474         PnvQuad *eq = &chip9->quads[i];
1475 
1476         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1477                                   PNV_QUAD_TYPE_NAME("power9"));
1478 
1479         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1480                                 &eq->xscom_regs);
1481     }
1482 }
1483 
1484 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1485 {
1486     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1487     int i;
1488 
1489     for (i = 0; i < chip->num_pecs; i++) {
1490         PnvPhb4PecState *pec = &chip9->pecs[i];
1491         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1492         uint32_t pec_nest_base;
1493         uint32_t pec_pci_base;
1494 
1495         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1496         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1497                                 &error_fatal);
1498         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1499                                  &error_fatal);
1500         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1501             return;
1502         }
1503 
1504         pec_nest_base = pecc->xscom_nest_base(pec);
1505         pec_pci_base = pecc->xscom_pci_base(pec);
1506 
1507         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1508         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1509     }
1510 }
1511 
1512 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1513 {
1514     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1515     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1516     PnvChip *chip = PNV_CHIP(dev);
1517     Pnv9Psi *psi9 = &chip9->psi;
1518     Error *local_err = NULL;
1519     int i;
1520 
1521     /* XSCOM bridge is first */
1522     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1523 
1524     pcc->parent_realize(dev, &local_err);
1525     if (local_err) {
1526         error_propagate(errp, local_err);
1527         return;
1528     }
1529 
1530     pnv_chip_quad_realize(chip9, &local_err);
1531     if (local_err) {
1532         error_propagate(errp, local_err);
1533         return;
1534     }
1535 
1536     /* XIVE interrupt controller (POWER9) */
1537     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1538                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1539     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1540                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1541     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1542                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1543     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1544                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1545     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1546                              &error_abort);
1547     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1548         return;
1549     }
1550     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1551                             &chip9->xive.xscom_regs);
1552 
1553     /* Processor Service Interface (PSI) Host Bridge */
1554     object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1555                             &error_fatal);
1556     /* This is the only device with 4k ESB pages */
1557     object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K,
1558                             &error_fatal);
1559     if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1560         return;
1561     }
1562     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1563                             &PNV_PSI(psi9)->xscom_regs);
1564 
1565     /* LPC */
1566     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1567         return;
1568     }
1569     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1570                                 &chip9->lpc.xscom_regs);
1571 
1572     chip->fw_mr = &chip9->lpc.isa_fw;
1573     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1574                                             (uint64_t) PNV9_LPCM_BASE(chip));
1575 
1576     /* Create the simplified OCC model */
1577     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1578         return;
1579     }
1580     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1581     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1582                               DEVICE(&chip9->psi), PSIHB9_IRQ_OCC));
1583 
1584     /* OCC SRAM model */
1585     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1586                                 &chip9->occ.sram_regs);
1587 
1588     /* SBE */
1589     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1590         return;
1591     }
1592     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1593                             &chip9->sbe.xscom_ctrl_regs);
1594     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1595                             &chip9->sbe.xscom_mbox_regs);
1596     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1597                               DEVICE(&chip9->psi), PSIHB9_IRQ_PSU));
1598 
1599     /* HOMER */
1600     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1601                              &error_abort);
1602     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1603         return;
1604     }
1605     /* Homer Xscom region */
1606     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1607 
1608     /* Homer mmio region */
1609     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1610                                 &chip9->homer.regs);
1611 
1612     /* PEC PHBs */
1613     pnv_chip_power9_pec_realize(chip, &local_err);
1614     if (local_err) {
1615         error_propagate(errp, local_err);
1616         return;
1617     }
1618 
1619     /*
1620      * I2C
1621      */
1622     for (i = 0; i < pcc->i2c_num_engines; i++) {
1623         Object *obj =  OBJECT(&chip9->i2c[i]);
1624 
1625         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1626         object_property_set_int(obj, "num-busses",
1627                                 pcc->i2c_ports_per_engine[i],
1628                                 &error_fatal);
1629         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1630         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1631             return;
1632         }
1633         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1634                                 (chip9->i2c[i].engine - 1) *
1635                                         PNV9_XSCOM_I2CM_SIZE,
1636                                 &chip9->i2c[i].xscom_regs);
1637         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1638                               qdev_get_gpio_in(DEVICE(&chip9->psi),
1639                                                PSIHB9_IRQ_SBE_I2C));
1640     }
1641 }
1642 
1643 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1644 {
1645     addr &= (PNV9_XSCOM_SIZE - 1);
1646     return addr >> 3;
1647 }
1648 
1649 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1650 {
1651     DeviceClass *dc = DEVICE_CLASS(klass);
1652     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1653     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1654 
1655     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1656     k->cores_mask = POWER9_CORE_MASK;
1657     k->core_pir = pnv_chip_core_pir_p9;
1658     k->intc_create = pnv_chip_power9_intc_create;
1659     k->intc_reset = pnv_chip_power9_intc_reset;
1660     k->intc_destroy = pnv_chip_power9_intc_destroy;
1661     k->intc_print_info = pnv_chip_power9_intc_print_info;
1662     k->isa_create = pnv_chip_power9_isa_create;
1663     k->dt_populate = pnv_chip_power9_dt_populate;
1664     k->pic_print_info = pnv_chip_power9_pic_print_info;
1665     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1666     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1667     dc->desc = "PowerNV Chip POWER9";
1668     k->num_pecs = PNV9_CHIP_MAX_PEC;
1669     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1670     k->i2c_ports_per_engine = i2c_ports_per_engine;
1671 
1672     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1673                                     &k->parent_realize);
1674 }
1675 
1676 static void pnv_chip_power10_instance_init(Object *obj)
1677 {
1678     PnvChip *chip = PNV_CHIP(obj);
1679     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1680     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1681     int i;
1682 
1683     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1684     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1685                               "xive-fabric");
1686     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1687     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1688     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1689     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1690     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1691 
1692     chip->num_pecs = pcc->num_pecs;
1693 
1694     for (i = 0; i < chip->num_pecs; i++) {
1695         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1696                                 TYPE_PNV_PHB5_PEC);
1697     }
1698 
1699     for (i = 0; i < pcc->i2c_num_engines; i++) {
1700         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1701     }
1702 }
1703 
1704 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1705 {
1706     PnvChip *chip = PNV_CHIP(chip10);
1707     int i;
1708 
1709     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1710     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1711 
1712     for (i = 0; i < chip10->nr_quads; i++) {
1713         PnvQuad *eq = &chip10->quads[i];
1714 
1715         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1716                                   PNV_QUAD_TYPE_NAME("power10"));
1717 
1718         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1719                                 &eq->xscom_regs);
1720 
1721         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1722                                 &eq->xscom_qme_regs);
1723     }
1724 }
1725 
1726 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1727 {
1728     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1729     int i;
1730 
1731     for (i = 0; i < chip->num_pecs; i++) {
1732         PnvPhb4PecState *pec = &chip10->pecs[i];
1733         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1734         uint32_t pec_nest_base;
1735         uint32_t pec_pci_base;
1736 
1737         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1738         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1739                                 &error_fatal);
1740         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1741                                  &error_fatal);
1742         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1743             return;
1744         }
1745 
1746         pec_nest_base = pecc->xscom_nest_base(pec);
1747         pec_pci_base = pecc->xscom_pci_base(pec);
1748 
1749         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1750         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1751     }
1752 }
1753 
1754 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1755 {
1756     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1757     PnvChip *chip = PNV_CHIP(dev);
1758     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1759     Error *local_err = NULL;
1760     int i;
1761 
1762     /* XSCOM bridge is first */
1763     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1764 
1765     pcc->parent_realize(dev, &local_err);
1766     if (local_err) {
1767         error_propagate(errp, local_err);
1768         return;
1769     }
1770 
1771     pnv_chip_power10_quad_realize(chip10, &local_err);
1772     if (local_err) {
1773         error_propagate(errp, local_err);
1774         return;
1775     }
1776 
1777     /* XIVE2 interrupt controller (POWER10) */
1778     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1779                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1780     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1781                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1782     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1783                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1784     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1785                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1786     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1787                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1788     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1789                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1790     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1791                              &error_abort);
1792     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1793         return;
1794     }
1795     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1796                             &chip10->xive.xscom_regs);
1797 
1798     /* Processor Service Interface (PSI) Host Bridge */
1799     object_property_set_int(OBJECT(&chip10->psi), "bar",
1800                             PNV10_PSIHB_BASE(chip), &error_fatal);
1801     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1802     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1803                             &error_fatal);
1804     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1805         return;
1806     }
1807     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1808                             &PNV_PSI(&chip10->psi)->xscom_regs);
1809 
1810     /* LPC */
1811     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1812         return;
1813     }
1814     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1815                                 &chip10->lpc.xscom_regs);
1816 
1817     chip->fw_mr = &chip10->lpc.isa_fw;
1818     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1819                                             (uint64_t) PNV10_LPCM_BASE(chip));
1820 
1821     /* Create the simplified OCC model */
1822     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1823         return;
1824     }
1825     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1826                             &chip10->occ.xscom_regs);
1827     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1828                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1829 
1830     /* OCC SRAM model */
1831     memory_region_add_subregion(get_system_memory(),
1832                                 PNV10_OCC_SENSOR_BASE(chip),
1833                                 &chip10->occ.sram_regs);
1834 
1835     /* SBE */
1836     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1837         return;
1838     }
1839     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
1840                             &chip10->sbe.xscom_ctrl_regs);
1841     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
1842                             &chip10->sbe.xscom_mbox_regs);
1843     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
1844                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
1845 
1846     /* HOMER */
1847     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
1848                              &error_abort);
1849     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
1850         return;
1851     }
1852     /* Homer Xscom region */
1853     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
1854                             &chip10->homer.pba_regs);
1855 
1856     /* Homer mmio region */
1857     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
1858                                 &chip10->homer.regs);
1859 
1860     /* PHBs */
1861     pnv_chip_power10_phb_realize(chip, &local_err);
1862     if (local_err) {
1863         error_propagate(errp, local_err);
1864         return;
1865     }
1866 
1867 
1868     /*
1869      * I2C
1870      */
1871     for (i = 0; i < pcc->i2c_num_engines; i++) {
1872         Object *obj =  OBJECT(&chip10->i2c[i]);
1873 
1874         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1875         object_property_set_int(obj, "num-busses",
1876                                 pcc->i2c_ports_per_engine[i],
1877                                 &error_fatal);
1878         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1879         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1880             return;
1881         }
1882         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
1883                                 (chip10->i2c[i].engine - 1) *
1884                                         PNV10_XSCOM_I2CM_SIZE,
1885                                 &chip10->i2c[i].xscom_regs);
1886         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
1887                               qdev_get_gpio_in(DEVICE(&chip10->psi),
1888                                                PSIHB9_IRQ_SBE_I2C));
1889     }
1890 
1891 }
1892 
1893 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
1894 {
1895     int i;
1896     for (i = 0; i < pnv->num_chips; i++) {
1897         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
1898 
1899         /*
1900          * Add a PCA9552 I2C device for PCIe hotplug control
1901          * to engine 2, bus 1, address 0x63
1902          */
1903         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9552", 0x63);
1904     }
1905 }
1906 
1907 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1908 {
1909     addr &= (PNV10_XSCOM_SIZE - 1);
1910     return addr >> 3;
1911 }
1912 
1913 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1914 {
1915     DeviceClass *dc = DEVICE_CLASS(klass);
1916     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1917     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
1918 
1919     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1920     k->cores_mask = POWER10_CORE_MASK;
1921     k->core_pir = pnv_chip_core_pir_p10;
1922     k->intc_create = pnv_chip_power10_intc_create;
1923     k->intc_reset = pnv_chip_power10_intc_reset;
1924     k->intc_destroy = pnv_chip_power10_intc_destroy;
1925     k->intc_print_info = pnv_chip_power10_intc_print_info;
1926     k->isa_create = pnv_chip_power10_isa_create;
1927     k->dt_populate = pnv_chip_power10_dt_populate;
1928     k->pic_print_info = pnv_chip_power10_pic_print_info;
1929     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1930     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1931     dc->desc = "PowerNV Chip POWER10";
1932     k->num_pecs = PNV10_CHIP_MAX_PEC;
1933     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
1934     k->i2c_ports_per_engine = i2c_ports_per_engine;
1935 
1936     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1937                                     &k->parent_realize);
1938 }
1939 
1940 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1941 {
1942     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1943     int cores_max;
1944 
1945     /*
1946      * No custom mask for this chip, let's use the default one from *
1947      * the chip class
1948      */
1949     if (!chip->cores_mask) {
1950         chip->cores_mask = pcc->cores_mask;
1951     }
1952 
1953     /* filter alien core ids ! some are reserved */
1954     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1955         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1956                    chip->cores_mask);
1957         return;
1958     }
1959     chip->cores_mask &= pcc->cores_mask;
1960 
1961     /* now that we have a sane layout, let check the number of cores */
1962     cores_max = ctpop64(chip->cores_mask);
1963     if (chip->nr_cores > cores_max) {
1964         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1965                    cores_max);
1966         return;
1967     }
1968 }
1969 
1970 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1971 {
1972     Error *error = NULL;
1973     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1974     const char *typename = pnv_chip_core_typename(chip);
1975     int i, core_hwid;
1976     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1977 
1978     if (!object_class_by_name(typename)) {
1979         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1980         return;
1981     }
1982 
1983     /* Cores */
1984     pnv_chip_core_sanitize(chip, &error);
1985     if (error) {
1986         error_propagate(errp, error);
1987         return;
1988     }
1989 
1990     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1991 
1992     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1993              && (i < chip->nr_cores); core_hwid++) {
1994         char core_name[32];
1995         PnvCore *pnv_core;
1996         uint64_t xscom_core_base;
1997 
1998         if (!(chip->cores_mask & (1ull << core_hwid))) {
1999             continue;
2000         }
2001 
2002         pnv_core = PNV_CORE(object_new(typename));
2003 
2004         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2005         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2006         chip->cores[i] = pnv_core;
2007         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2008                                 chip->nr_threads, &error_fatal);
2009         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2010                                 core_hwid, &error_fatal);
2011         object_property_set_int(OBJECT(pnv_core), "pir",
2012                                 pcc->core_pir(chip, core_hwid), &error_fatal);
2013         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2014                                 &error_fatal);
2015         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2016                                  &error_abort);
2017         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2018 
2019         /* Each core has an XSCOM MMIO region */
2020         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2021 
2022         pnv_xscom_add_subregion(chip, xscom_core_base,
2023                                 &pnv_core->xscom_regs);
2024         i++;
2025     }
2026 }
2027 
2028 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2029 {
2030     PnvChip *chip = PNV_CHIP(dev);
2031     Error *error = NULL;
2032 
2033     /* Cores */
2034     pnv_chip_core_realize(chip, &error);
2035     if (error) {
2036         error_propagate(errp, error);
2037         return;
2038     }
2039 }
2040 
2041 static Property pnv_chip_properties[] = {
2042     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2043     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2044     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2045     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2046     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2047     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2048     DEFINE_PROP_END_OF_LIST(),
2049 };
2050 
2051 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2052 {
2053     DeviceClass *dc = DEVICE_CLASS(klass);
2054 
2055     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2056     dc->realize = pnv_chip_realize;
2057     device_class_set_props(dc, pnv_chip_properties);
2058     dc->desc = "PowerNV Chip";
2059 }
2060 
2061 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2062 {
2063     int i, j;
2064 
2065     for (i = 0; i < chip->nr_cores; i++) {
2066         PnvCore *pc = chip->cores[i];
2067         CPUCore *cc = CPU_CORE(pc);
2068 
2069         for (j = 0; j < cc->nr_threads; j++) {
2070             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2071                 return pc->threads[j];
2072             }
2073         }
2074     }
2075     return NULL;
2076 }
2077 
2078 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2079 {
2080     PnvMachineState *pnv = PNV_MACHINE(xi);
2081     int i, j;
2082 
2083     for (i = 0; i < pnv->num_chips; i++) {
2084         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2085 
2086         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2087             return &chip8->psi.ics;
2088         }
2089 
2090         for (j = 0; j < chip8->num_phbs; j++) {
2091             PnvPHB *phb = chip8->phbs[j];
2092             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2093 
2094             if (ics_valid_irq(&phb3->lsis, irq)) {
2095                 return &phb3->lsis;
2096             }
2097 
2098             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2099                 return ICS(&phb3->msis);
2100             }
2101         }
2102     }
2103     return NULL;
2104 }
2105 
2106 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2107 {
2108     int i;
2109 
2110     for (i = 0; i < pnv->num_chips; i++) {
2111         PnvChip *chip = pnv->chips[i];
2112         if (chip->chip_id == chip_id) {
2113             return chip;
2114         }
2115     }
2116     return NULL;
2117 }
2118 
2119 static void pnv_ics_resend(XICSFabric *xi)
2120 {
2121     PnvMachineState *pnv = PNV_MACHINE(xi);
2122     int i, j;
2123 
2124     for (i = 0; i < pnv->num_chips; i++) {
2125         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2126 
2127         ics_resend(&chip8->psi.ics);
2128 
2129         for (j = 0; j < chip8->num_phbs; j++) {
2130             PnvPHB *phb = chip8->phbs[j];
2131             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2132 
2133             ics_resend(&phb3->lsis);
2134             ics_resend(ICS(&phb3->msis));
2135         }
2136     }
2137 }
2138 
2139 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2140 {
2141     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2142 
2143     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2144 }
2145 
2146 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2147                                Monitor *mon)
2148 {
2149     PnvMachineState *pnv = PNV_MACHINE(obj);
2150     int i;
2151     CPUState *cs;
2152 
2153     CPU_FOREACH(cs) {
2154         PowerPCCPU *cpu = POWERPC_CPU(cs);
2155 
2156         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2157         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2158                                                            mon);
2159     }
2160 
2161     for (i = 0; i < pnv->num_chips; i++) {
2162         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2163     }
2164 }
2165 
2166 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2167                          uint8_t nvt_blk, uint32_t nvt_idx,
2168                          bool cam_ignore, uint8_t priority,
2169                          uint32_t logic_serv,
2170                          XiveTCTXMatch *match)
2171 {
2172     PnvMachineState *pnv = PNV_MACHINE(xfb);
2173     int total_count = 0;
2174     int i;
2175 
2176     for (i = 0; i < pnv->num_chips; i++) {
2177         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2178         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2179         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2180         int count;
2181 
2182         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2183                                priority, logic_serv, match);
2184 
2185         if (count < 0) {
2186             return count;
2187         }
2188 
2189         total_count += count;
2190     }
2191 
2192     return total_count;
2193 }
2194 
2195 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2196                                 uint8_t nvt_blk, uint32_t nvt_idx,
2197                                 bool cam_ignore, uint8_t priority,
2198                                 uint32_t logic_serv,
2199                                 XiveTCTXMatch *match)
2200 {
2201     PnvMachineState *pnv = PNV_MACHINE(xfb);
2202     int total_count = 0;
2203     int i;
2204 
2205     for (i = 0; i < pnv->num_chips; i++) {
2206         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2207         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2208         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2209         int count;
2210 
2211         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2212                                priority, logic_serv, match);
2213 
2214         if (count < 0) {
2215             return count;
2216         }
2217 
2218         total_count += count;
2219     }
2220 
2221     return total_count;
2222 }
2223 
2224 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2225 {
2226     MachineClass *mc = MACHINE_CLASS(oc);
2227     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2228     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2229     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2230 
2231     static GlobalProperty phb_compat[] = {
2232         { TYPE_PNV_PHB, "version", "3" },
2233         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2234     };
2235 
2236     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2237     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2238     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2239 
2240     xic->icp_get = pnv_icp_get;
2241     xic->ics_get = pnv_ics_get;
2242     xic->ics_resend = pnv_ics_resend;
2243 
2244     pmc->compat = compat;
2245     pmc->compat_size = sizeof(compat);
2246 
2247     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2248 }
2249 
2250 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2251 {
2252     MachineClass *mc = MACHINE_CLASS(oc);
2253     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2254     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2255     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2256 
2257     static GlobalProperty phb_compat[] = {
2258         { TYPE_PNV_PHB, "version", "4" },
2259         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2260     };
2261 
2262     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2263     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2264     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2265 
2266     xfc->match_nvt = pnv_match_nvt;
2267 
2268     pmc->compat = compat;
2269     pmc->compat_size = sizeof(compat);
2270     pmc->dt_power_mgt = pnv_dt_power_mgt;
2271 
2272     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2273 }
2274 
2275 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2276 {
2277     MachineClass *mc = MACHINE_CLASS(oc);
2278     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2279     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2280     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2281 
2282     static GlobalProperty phb_compat[] = {
2283         { TYPE_PNV_PHB, "version", "5" },
2284         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2285     };
2286 
2287     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2288     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2289 
2290     mc->alias = "powernv";
2291 
2292     pmc->compat = compat;
2293     pmc->compat_size = sizeof(compat);
2294     pmc->dt_power_mgt = pnv_dt_power_mgt;
2295 
2296     xfc->match_nvt = pnv10_xive_match_nvt;
2297 
2298     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2299 }
2300 
2301 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2302 {
2303     MachineClass *mc = MACHINE_CLASS(oc);
2304 
2305     pnv_machine_p10_common_class_init(oc, data);
2306     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2307 }
2308 
2309 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2310 {
2311     MachineClass *mc = MACHINE_CLASS(oc);
2312     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2313 
2314     pnv_machine_p10_common_class_init(oc, data);
2315     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2316     pmc->i2c_init = pnv_rainier_i2c_init;
2317 }
2318 
2319 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2320 {
2321     PnvMachineState *pnv = PNV_MACHINE(obj);
2322 
2323     return !!pnv->fw_load_addr;
2324 }
2325 
2326 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2327 {
2328     PnvMachineState *pnv = PNV_MACHINE(obj);
2329 
2330     if (value) {
2331         pnv->fw_load_addr = 0x8000000;
2332     }
2333 }
2334 
2335 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2336 {
2337     PowerPCCPU *cpu = POWERPC_CPU(cs);
2338     CPUPPCState *env = &cpu->env;
2339 
2340     cpu_synchronize_state(cs);
2341     ppc_cpu_do_system_reset(cs);
2342     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2343         /*
2344          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2345          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2346          * (PPC_BIT(43)).
2347          */
2348         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2349             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2350             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2351         }
2352     } else {
2353         /*
2354          * For non-powersave system resets, SRR1[42:45] are defined to be
2355          * implementation-dependent. The POWER9 User Manual specifies that
2356          * an external (SCOM driven, which may come from a BMC nmi command or
2357          * another CPU requesting a NMI IPI) system reset exception should be
2358          * 0b0010 (PPC_BIT(44)).
2359          */
2360         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2361     }
2362 }
2363 
2364 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2365 {
2366     CPUState *cs;
2367 
2368     CPU_FOREACH(cs) {
2369         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2370     }
2371 }
2372 
2373 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2374 {
2375     MachineClass *mc = MACHINE_CLASS(oc);
2376     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2377     NMIClass *nc = NMI_CLASS(oc);
2378 
2379     mc->desc = "IBM PowerNV (Non-Virtualized)";
2380     mc->init = pnv_init;
2381     mc->reset = pnv_reset;
2382     mc->max_cpus = MAX_CPUS;
2383     /* Pnv provides a AHCI device for storage */
2384     mc->block_default_type = IF_IDE;
2385     mc->no_parallel = 1;
2386     mc->default_boot_order = NULL;
2387     /*
2388      * RAM defaults to less than 2048 for 32-bit hosts, and large
2389      * enough to fit the maximum initrd size at it's load address
2390      */
2391     mc->default_ram_size = 1 * GiB;
2392     mc->default_ram_id = "pnv.ram";
2393     ispc->print_info = pnv_pic_print_info;
2394     nc->nmi_monitor_handler = pnv_nmi;
2395 
2396     object_class_property_add_bool(oc, "hb-mode",
2397                                    pnv_machine_get_hb, pnv_machine_set_hb);
2398     object_class_property_set_description(oc, "hb-mode",
2399                               "Use a hostboot like boot loader");
2400 }
2401 
2402 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2403     {                                             \
2404         .name          = type,                    \
2405         .class_init    = class_initfn,            \
2406         .parent        = TYPE_PNV8_CHIP,          \
2407     }
2408 
2409 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2410     {                                             \
2411         .name          = type,                    \
2412         .class_init    = class_initfn,            \
2413         .parent        = TYPE_PNV9_CHIP,          \
2414     }
2415 
2416 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2417     {                                              \
2418         .name          = type,                     \
2419         .class_init    = class_initfn,             \
2420         .parent        = TYPE_PNV10_CHIP,          \
2421     }
2422 
2423 static const TypeInfo types[] = {
2424     {
2425         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2426         .parent        = MACHINE_TYPE_NAME("powernv10"),
2427         .class_init    = pnv_machine_p10_rainier_class_init,
2428     },
2429     {
2430         .name          = MACHINE_TYPE_NAME("powernv10"),
2431         .parent        = TYPE_PNV_MACHINE,
2432         .class_init    = pnv_machine_power10_class_init,
2433         .interfaces = (InterfaceInfo[]) {
2434             { TYPE_XIVE_FABRIC },
2435             { },
2436         },
2437     },
2438     {
2439         .name          = MACHINE_TYPE_NAME("powernv9"),
2440         .parent        = TYPE_PNV_MACHINE,
2441         .class_init    = pnv_machine_power9_class_init,
2442         .interfaces = (InterfaceInfo[]) {
2443             { TYPE_XIVE_FABRIC },
2444             { },
2445         },
2446     },
2447     {
2448         .name          = MACHINE_TYPE_NAME("powernv8"),
2449         .parent        = TYPE_PNV_MACHINE,
2450         .class_init    = pnv_machine_power8_class_init,
2451         .interfaces = (InterfaceInfo[]) {
2452             { TYPE_XICS_FABRIC },
2453             { },
2454         },
2455     },
2456     {
2457         .name          = TYPE_PNV_MACHINE,
2458         .parent        = TYPE_MACHINE,
2459         .abstract       = true,
2460         .instance_size = sizeof(PnvMachineState),
2461         .class_init    = pnv_machine_class_init,
2462         .class_size    = sizeof(PnvMachineClass),
2463         .interfaces = (InterfaceInfo[]) {
2464             { TYPE_INTERRUPT_STATS_PROVIDER },
2465             { TYPE_NMI },
2466             { },
2467         },
2468     },
2469     {
2470         .name          = TYPE_PNV_CHIP,
2471         .parent        = TYPE_SYS_BUS_DEVICE,
2472         .class_init    = pnv_chip_class_init,
2473         .instance_size = sizeof(PnvChip),
2474         .class_size    = sizeof(PnvChipClass),
2475         .abstract      = true,
2476     },
2477 
2478     /*
2479      * P10 chip and variants
2480      */
2481     {
2482         .name          = TYPE_PNV10_CHIP,
2483         .parent        = TYPE_PNV_CHIP,
2484         .instance_init = pnv_chip_power10_instance_init,
2485         .instance_size = sizeof(Pnv10Chip),
2486     },
2487     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2488 
2489     /*
2490      * P9 chip and variants
2491      */
2492     {
2493         .name          = TYPE_PNV9_CHIP,
2494         .parent        = TYPE_PNV_CHIP,
2495         .instance_init = pnv_chip_power9_instance_init,
2496         .instance_size = sizeof(Pnv9Chip),
2497     },
2498     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2499 
2500     /*
2501      * P8 chip and variants
2502      */
2503     {
2504         .name          = TYPE_PNV8_CHIP,
2505         .parent        = TYPE_PNV_CHIP,
2506         .instance_init = pnv_chip_power8_instance_init,
2507         .instance_size = sizeof(Pnv8Chip),
2508     },
2509     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2510     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2511     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2512                           pnv_chip_power8nvl_class_init),
2513 };
2514 
2515 DEFINE_TYPES(types)
2516