xref: /openbmc/qemu/hw/ppc/pnv.c (revision 2b548a4255ca07cf4d467b7fb3bdf2ab79b7dff5)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     int i;
284 
285     pnv_dt_xscom(chip, fdt, 0);
286 
287     for (i = 0; i < chip->nr_cores; i++) {
288         PnvCore *pnv_core = chip->cores[i];
289 
290         pnv_dt_core(chip, pnv_core, fdt);
291 
292         /* Interrupt Control Presenters (ICP). One per core. */
293         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
294     }
295 
296     if (chip->ram_size) {
297         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
298     }
299 }
300 
301 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
302 {
303     int i;
304 
305     pnv_dt_xscom(chip, fdt, 0);
306 
307     for (i = 0; i < chip->nr_cores; i++) {
308         PnvCore *pnv_core = chip->cores[i];
309 
310         pnv_dt_core(chip, pnv_core, fdt);
311     }
312 
313     if (chip->ram_size) {
314         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
315     }
316 
317     pnv_dt_lpc(chip, fdt, 0);
318 }
319 
320 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
321 {
322     int i;
323 
324     pnv_dt_xscom(chip, fdt, 0);
325 
326     for (i = 0; i < chip->nr_cores; i++) {
327         PnvCore *pnv_core = chip->cores[i];
328 
329         pnv_dt_core(chip, pnv_core, fdt);
330     }
331 
332     if (chip->ram_size) {
333         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
334     }
335 }
336 
337 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
338 {
339     uint32_t io_base = d->ioport_id;
340     uint32_t io_regs[] = {
341         cpu_to_be32(1),
342         cpu_to_be32(io_base),
343         cpu_to_be32(2)
344     };
345     char *name;
346     int node;
347 
348     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
349     node = fdt_add_subnode(fdt, lpc_off, name);
350     _FDT(node);
351     g_free(name);
352 
353     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
354     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
355 }
356 
357 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
358 {
359     const char compatible[] = "ns16550\0pnpPNP,501";
360     uint32_t io_base = d->ioport_id;
361     uint32_t io_regs[] = {
362         cpu_to_be32(1),
363         cpu_to_be32(io_base),
364         cpu_to_be32(8)
365     };
366     char *name;
367     int node;
368 
369     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
370     node = fdt_add_subnode(fdt, lpc_off, name);
371     _FDT(node);
372     g_free(name);
373 
374     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
375     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
376                       sizeof(compatible))));
377 
378     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
379     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
380     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
381     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
382                            fdt_get_phandle(fdt, lpc_off))));
383 
384     /* This is needed by Linux */
385     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
386 }
387 
388 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
389 {
390     const char compatible[] = "bt\0ipmi-bt";
391     uint32_t io_base;
392     uint32_t io_regs[] = {
393         cpu_to_be32(1),
394         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
395         cpu_to_be32(3)
396     };
397     uint32_t irq;
398     char *name;
399     int node;
400 
401     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
402     io_regs[1] = cpu_to_be32(io_base);
403 
404     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
405 
406     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
407     node = fdt_add_subnode(fdt, lpc_off, name);
408     _FDT(node);
409     g_free(name);
410 
411     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
412     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
413                       sizeof(compatible))));
414 
415     /* Mark it as reserved to avoid Linux trying to claim it */
416     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
417     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
418     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
419                            fdt_get_phandle(fdt, lpc_off))));
420 }
421 
422 typedef struct ForeachPopulateArgs {
423     void *fdt;
424     int offset;
425 } ForeachPopulateArgs;
426 
427 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
428 {
429     ForeachPopulateArgs *args = opaque;
430     ISADevice *d = ISA_DEVICE(dev);
431 
432     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
433         pnv_dt_rtc(d, args->fdt, args->offset);
434     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
435         pnv_dt_serial(d, args->fdt, args->offset);
436     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
437         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
438     } else {
439         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
440                      d->ioport_id);
441     }
442 
443     return 0;
444 }
445 
446 /*
447  * The default LPC bus of a multichip system is on chip 0. It's
448  * recognized by the firmware (skiboot) using a "primary" property.
449  */
450 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
451 {
452     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
453     ForeachPopulateArgs args = {
454         .fdt = fdt,
455         .offset = isa_offset,
456     };
457     uint32_t phandle;
458 
459     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
460 
461     phandle = qemu_fdt_alloc_phandle(fdt);
462     assert(phandle > 0);
463     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
464 
465     /*
466      * ISA devices are not necessarily parented to the ISA bus so we
467      * can not use object_child_foreach()
468      */
469     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
470                        &args);
471 }
472 
473 static void pnv_dt_power_mgt(void *fdt)
474 {
475     int off;
476 
477     off = fdt_add_subnode(fdt, 0, "ibm,opal");
478     off = fdt_add_subnode(fdt, off, "power-mgt");
479 
480     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
481 }
482 
483 static void *pnv_dt_create(MachineState *machine)
484 {
485     const char plat_compat8[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
486     const char plat_compat9[] = "qemu,powernv9\0ibm,powernv";
487     const char plat_compat10[] = "qemu,powernv10\0ibm,powernv";
488     PnvMachineState *pnv = PNV_MACHINE(machine);
489     void *fdt;
490     char *buf;
491     int off;
492     int i;
493 
494     fdt = g_malloc0(FDT_MAX_SIZE);
495     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
496 
497     /* /qemu node */
498     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
499 
500     /* Root node */
501     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
502     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
503     _FDT((fdt_setprop_string(fdt, 0, "model",
504                              "IBM PowerNV (emulated by qemu)")));
505     if (pnv_is_power10(pnv)) {
506         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat10,
507                           sizeof(plat_compat10))));
508     } else if (pnv_is_power9(pnv)) {
509         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat9,
510                           sizeof(plat_compat9))));
511     } else {
512         _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat8,
513                           sizeof(plat_compat8))));
514     }
515 
516 
517     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
518     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
519     if (qemu_uuid_set) {
520         _FDT((fdt_property_string(fdt, "system-id", buf)));
521     }
522     g_free(buf);
523 
524     off = fdt_add_subnode(fdt, 0, "chosen");
525     if (machine->kernel_cmdline) {
526         _FDT((fdt_setprop_string(fdt, off, "bootargs",
527                                  machine->kernel_cmdline)));
528     }
529 
530     if (pnv->initrd_size) {
531         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
532         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
533 
534         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
535                                &start_prop, sizeof(start_prop))));
536         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
537                                &end_prop, sizeof(end_prop))));
538     }
539 
540     /* Populate device tree for each chip */
541     for (i = 0; i < pnv->num_chips; i++) {
542         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
543     }
544 
545     /* Populate ISA devices on chip 0 */
546     pnv_dt_isa(pnv, fdt);
547 
548     if (pnv->bmc) {
549         pnv_dt_bmc_sensors(pnv->bmc, fdt);
550     }
551 
552     /* Create an extra node for power management on Power9 and Power10 */
553     if (pnv_is_power9(pnv) || pnv_is_power10(pnv)) {
554         pnv_dt_power_mgt(fdt);
555     }
556 
557     return fdt;
558 }
559 
560 static void pnv_powerdown_notify(Notifier *n, void *opaque)
561 {
562     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
563 
564     if (pnv->bmc) {
565         pnv_bmc_powerdown(pnv->bmc);
566     }
567 }
568 
569 static void pnv_reset(MachineState *machine)
570 {
571     void *fdt;
572 
573     qemu_devices_reset();
574 
575     fdt = pnv_dt_create(machine);
576 
577     /* Pack resulting tree */
578     _FDT((fdt_pack(fdt)));
579 
580     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
581     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
582 }
583 
584 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
585 {
586     Pnv8Chip *chip8 = PNV8_CHIP(chip);
587     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
588 }
589 
590 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
591 {
592     Pnv8Chip *chip8 = PNV8_CHIP(chip);
593     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
594 }
595 
596 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
597 {
598     Pnv9Chip *chip9 = PNV9_CHIP(chip);
599     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
600 }
601 
602 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
603 {
604     error_setg(errp, "No ISA bus!");
605     return NULL;
606 }
607 
608 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
609 {
610     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
611 }
612 
613 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
614 {
615     Pnv8Chip *chip8 = PNV8_CHIP(chip);
616 
617     ics_pic_print_info(&chip8->psi.ics, mon);
618 }
619 
620 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
621 {
622     Pnv9Chip *chip9 = PNV9_CHIP(chip);
623 
624     pnv_xive_pic_print_info(&chip9->xive, mon);
625     pnv_psi_pic_print_info(&chip9->psi, mon);
626 }
627 
628 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
629 {
630     PowerPCCPUClass *ppc_default =
631         POWERPC_CPU_CLASS(object_class_by_name(default_type));
632     PowerPCCPUClass *ppc =
633         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
634 
635     return ppc_default->pvr_match(ppc_default, ppc->pvr);
636 }
637 
638 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
639 {
640     Object *obj;
641 
642     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
643     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
644     object_property_set_int(obj, irq, "irq", &error_fatal);
645     object_property_set_bool(obj, true, "realized", &error_fatal);
646 }
647 
648 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
649 {
650     /*
651      * No interrupt controller yet
652      */;
653 }
654 
655 static void pnv_init(MachineState *machine)
656 {
657     PnvMachineState *pnv = PNV_MACHINE(machine);
658     MachineClass *mc = MACHINE_GET_CLASS(machine);
659     MemoryRegion *ram;
660     char *fw_filename;
661     long fw_size;
662     int i;
663     char *chip_typename;
664     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
665     DeviceState *dev;
666 
667     /* allocate RAM */
668     if (machine->ram_size < (1 * GiB)) {
669         warn_report("skiboot may not work with < 1GB of RAM");
670     }
671 
672     ram = g_new(MemoryRegion, 1);
673     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
674                                          machine->ram_size);
675     memory_region_add_subregion(get_system_memory(), 0, ram);
676 
677     /*
678      * Create our simple PNOR device
679      */
680     dev = qdev_create(NULL, TYPE_PNV_PNOR);
681     if (pnor) {
682         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
683                             &error_abort);
684     }
685     qdev_init_nofail(dev);
686     pnv->pnor = PNV_PNOR(dev);
687 
688     /* load skiboot firmware  */
689     if (bios_name == NULL) {
690         bios_name = FW_FILE_NAME;
691     }
692 
693     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
694     if (!fw_filename) {
695         error_report("Could not find OPAL firmware '%s'", bios_name);
696         exit(1);
697     }
698 
699     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
700     if (fw_size < 0) {
701         error_report("Could not load OPAL firmware '%s'", fw_filename);
702         exit(1);
703     }
704     g_free(fw_filename);
705 
706     /* load kernel */
707     if (machine->kernel_filename) {
708         long kernel_size;
709 
710         kernel_size = load_image_targphys(machine->kernel_filename,
711                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
712         if (kernel_size < 0) {
713             error_report("Could not load kernel '%s'",
714                          machine->kernel_filename);
715             exit(1);
716         }
717     }
718 
719     /* load initrd */
720     if (machine->initrd_filename) {
721         pnv->initrd_base = INITRD_LOAD_ADDR;
722         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
723                                   pnv->initrd_base, INITRD_MAX_SIZE);
724         if (pnv->initrd_size < 0) {
725             error_report("Could not load initial ram disk '%s'",
726                          machine->initrd_filename);
727             exit(1);
728         }
729     }
730 
731     /*
732      * Check compatibility of the specified CPU with the machine
733      * default.
734      */
735     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
736         error_report("invalid CPU model '%s' for %s machine",
737                      machine->cpu_type, mc->name);
738         exit(1);
739     }
740 
741     /* Create the processor chips */
742     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
743     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
744                                     i, machine->cpu_type);
745     if (!object_class_by_name(chip_typename)) {
746         error_report("invalid chip model '%.*s' for %s machine",
747                      i, machine->cpu_type, mc->name);
748         exit(1);
749     }
750 
751     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
752     for (i = 0; i < pnv->num_chips; i++) {
753         char chip_name[32];
754         Object *chip = object_new(chip_typename);
755 
756         pnv->chips[i] = PNV_CHIP(chip);
757 
758         /*
759          * TODO: put all the memory in one node on chip 0 until we find a
760          * way to specify different ranges for each chip
761          */
762         if (i == 0) {
763             object_property_set_int(chip, machine->ram_size, "ram-size",
764                                     &error_fatal);
765         }
766 
767         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
768         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
769         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
770                                 &error_fatal);
771         object_property_set_int(chip, machine->smp.cores,
772                                 "nr-cores", &error_fatal);
773         object_property_set_bool(chip, true, "realized", &error_fatal);
774     }
775     g_free(chip_typename);
776 
777     /* Create the machine BMC simulator */
778     pnv->bmc = pnv_bmc_create();
779 
780     /* Instantiate ISA bus on chip 0 */
781     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
782 
783     /* Create serial port */
784     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
785 
786     /* Create an RTC ISA device too */
787     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
788 
789     /* Create the IPMI BT device for communication with the BMC */
790     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
791 
792     /*
793      * OpenPOWER systems use a IPMI SEL Event message to notify the
794      * host to powerdown
795      */
796     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
797     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
798 }
799 
800 /*
801  *    0:21  Reserved - Read as zeros
802  *   22:24  Chip ID
803  *   25:28  Core number
804  *   29:31  Thread ID
805  */
806 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
807 {
808     return (chip->chip_id << 7) | (core_id << 3);
809 }
810 
811 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
812                                         Error **errp)
813 {
814     Error *local_err = NULL;
815     Object *obj;
816     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
817 
818     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()),
819                      &local_err);
820     if (local_err) {
821         error_propagate(errp, local_err);
822         return;
823     }
824 
825     pnv_cpu->intc = obj;
826 }
827 
828 
829 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
830 {
831     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
832 
833     icp_reset(ICP(pnv_cpu->intc));
834 }
835 
836 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
837 {
838     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
839 
840     icp_destroy(ICP(pnv_cpu->intc));
841     pnv_cpu->intc = NULL;
842 }
843 
844 /*
845  *    0:48  Reserved - Read as zeroes
846  *   49:52  Node ID
847  *   53:55  Chip ID
848  *   56     Reserved - Read as zero
849  *   57:61  Core number
850  *   62:63  Thread ID
851  *
852  * We only care about the lower bits. uint32_t is fine for the moment.
853  */
854 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
855 {
856     return (chip->chip_id << 8) | (core_id << 2);
857 }
858 
859 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
860 {
861     return (chip->chip_id << 8) | (core_id << 2);
862 }
863 
864 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
865                                         Error **errp)
866 {
867     Pnv9Chip *chip9 = PNV9_CHIP(chip);
868     Error *local_err = NULL;
869     Object *obj;
870     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
871 
872     /*
873      * The core creates its interrupt presenter but the XIVE interrupt
874      * controller object is initialized afterwards. Hopefully, it's
875      * only used at runtime.
876      */
877     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
878     if (local_err) {
879         error_propagate(errp, local_err);
880         return;
881     }
882 
883     pnv_cpu->intc = obj;
884 }
885 
886 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
887 {
888     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
889 
890     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
891 }
892 
893 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
894 {
895     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
896 
897     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
898     pnv_cpu->intc = NULL;
899 }
900 
901 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
902                                         Error **errp)
903 {
904     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
905 
906     /* Will be defined when the interrupt controller is */
907     pnv_cpu->intc = NULL;
908 }
909 
910 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
911 {
912     ;
913 }
914 
915 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
916 {
917     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
918 
919     pnv_cpu->intc = NULL;
920 }
921 
922 /*
923  * Allowed core identifiers on a POWER8 Processor Chip :
924  *
925  * <EX0 reserved>
926  *  EX1  - Venice only
927  *  EX2  - Venice only
928  *  EX3  - Venice only
929  *  EX4
930  *  EX5
931  *  EX6
932  * <EX7,8 reserved> <reserved>
933  *  EX9  - Venice only
934  *  EX10 - Venice only
935  *  EX11 - Venice only
936  *  EX12
937  *  EX13
938  *  EX14
939  * <EX15 reserved>
940  */
941 #define POWER8E_CORE_MASK  (0x7070ull)
942 #define POWER8_CORE_MASK   (0x7e7eull)
943 
944 /*
945  * POWER9 has 24 cores, ids starting at 0x0
946  */
947 #define POWER9_CORE_MASK   (0xffffffffffffffull)
948 
949 
950 #define POWER10_CORE_MASK  (0xffffffffffffffull)
951 
952 static void pnv_chip_power8_instance_init(Object *obj)
953 {
954     Pnv8Chip *chip8 = PNV8_CHIP(obj);
955 
956     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
957                             TYPE_PNV8_PSI, &error_abort, NULL);
958     object_property_add_const_link(OBJECT(&chip8->psi), "xics",
959                                    OBJECT(qdev_get_machine()), &error_abort);
960 
961     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
962                             TYPE_PNV8_LPC, &error_abort, NULL);
963 
964     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
965                             TYPE_PNV8_OCC, &error_abort, NULL);
966 
967     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
968                             TYPE_PNV8_HOMER, &error_abort, NULL);
969 }
970 
971 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
972  {
973     PnvChip *chip = PNV_CHIP(chip8);
974     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
975     int i, j;
976     char *name;
977     XICSFabric *xi = XICS_FABRIC(qdev_get_machine());
978 
979     name = g_strdup_printf("icp-%x", chip->chip_id);
980     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
981     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
982     g_free(name);
983 
984     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
985 
986     /* Map the ICP registers for each thread */
987     for (i = 0; i < chip->nr_cores; i++) {
988         PnvCore *pnv_core = chip->cores[i];
989         int core_hwid = CPU_CORE(pnv_core)->core_id;
990 
991         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
992             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
993             PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir));
994 
995             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
996                                         &icp->mmio);
997         }
998     }
999 }
1000 
1001 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1002 {
1003     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1004     PnvChip *chip = PNV_CHIP(dev);
1005     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1006     Pnv8Psi *psi8 = &chip8->psi;
1007     Error *local_err = NULL;
1008 
1009     /* XSCOM bridge is first */
1010     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1011     if (local_err) {
1012         error_propagate(errp, local_err);
1013         return;
1014     }
1015     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1016 
1017     pcc->parent_realize(dev, &local_err);
1018     if (local_err) {
1019         error_propagate(errp, local_err);
1020         return;
1021     }
1022 
1023     /* Processor Service Interface (PSI) Host Bridge */
1024     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1025                             "bar", &error_fatal);
1026     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1027     if (local_err) {
1028         error_propagate(errp, local_err);
1029         return;
1030     }
1031     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1032                             &PNV_PSI(psi8)->xscom_regs);
1033 
1034     /* Create LPC controller */
1035     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1036                              &error_abort);
1037     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1038                              &error_fatal);
1039     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1040 
1041     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1042                                             (uint64_t) PNV_XSCOM_BASE(chip),
1043                                             PNV_XSCOM_LPC_BASE);
1044 
1045     /*
1046      * Interrupt Management Area. This is the memory region holding
1047      * all the Interrupt Control Presenter (ICP) registers
1048      */
1049     pnv_chip_icp_realize(chip8, &local_err);
1050     if (local_err) {
1051         error_propagate(errp, local_err);
1052         return;
1053     }
1054 
1055     /* Create the simplified OCC model */
1056     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1057                              &error_abort);
1058     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1059     if (local_err) {
1060         error_propagate(errp, local_err);
1061         return;
1062     }
1063     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1064 
1065     /* OCC SRAM model */
1066     memory_region_add_subregion(get_system_memory(), PNV_OCC_COMMON_AREA(chip),
1067                                 &chip8->occ.sram_regs);
1068 
1069     /* HOMER */
1070     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1071                              &error_abort);
1072     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1073                              &local_err);
1074     if (local_err) {
1075         error_propagate(errp, local_err);
1076         return;
1077     }
1078     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1079                                 &chip8->homer.regs);
1080 }
1081 
1082 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1083 {
1084     DeviceClass *dc = DEVICE_CLASS(klass);
1085     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1086 
1087     k->chip_type = PNV_CHIP_POWER8E;
1088     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1089     k->cores_mask = POWER8E_CORE_MASK;
1090     k->core_pir = pnv_chip_core_pir_p8;
1091     k->intc_create = pnv_chip_power8_intc_create;
1092     k->intc_reset = pnv_chip_power8_intc_reset;
1093     k->intc_destroy = pnv_chip_power8_intc_destroy;
1094     k->isa_create = pnv_chip_power8_isa_create;
1095     k->dt_populate = pnv_chip_power8_dt_populate;
1096     k->pic_print_info = pnv_chip_power8_pic_print_info;
1097     dc->desc = "PowerNV Chip POWER8E";
1098 
1099     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1100                                     &k->parent_realize);
1101 }
1102 
1103 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1104 {
1105     DeviceClass *dc = DEVICE_CLASS(klass);
1106     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1107 
1108     k->chip_type = PNV_CHIP_POWER8;
1109     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1110     k->cores_mask = POWER8_CORE_MASK;
1111     k->core_pir = pnv_chip_core_pir_p8;
1112     k->intc_create = pnv_chip_power8_intc_create;
1113     k->intc_reset = pnv_chip_power8_intc_reset;
1114     k->intc_destroy = pnv_chip_power8_intc_destroy;
1115     k->isa_create = pnv_chip_power8_isa_create;
1116     k->dt_populate = pnv_chip_power8_dt_populate;
1117     k->pic_print_info = pnv_chip_power8_pic_print_info;
1118     dc->desc = "PowerNV Chip POWER8";
1119 
1120     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1121                                     &k->parent_realize);
1122 }
1123 
1124 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1125 {
1126     DeviceClass *dc = DEVICE_CLASS(klass);
1127     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1128 
1129     k->chip_type = PNV_CHIP_POWER8NVL;
1130     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1131     k->cores_mask = POWER8_CORE_MASK;
1132     k->core_pir = pnv_chip_core_pir_p8;
1133     k->intc_create = pnv_chip_power8_intc_create;
1134     k->intc_reset = pnv_chip_power8_intc_reset;
1135     k->intc_destroy = pnv_chip_power8_intc_destroy;
1136     k->isa_create = pnv_chip_power8nvl_isa_create;
1137     k->dt_populate = pnv_chip_power8_dt_populate;
1138     k->pic_print_info = pnv_chip_power8_pic_print_info;
1139     dc->desc = "PowerNV Chip POWER8NVL";
1140 
1141     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1142                                     &k->parent_realize);
1143 }
1144 
1145 static void pnv_chip_power9_instance_init(Object *obj)
1146 {
1147     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1148 
1149     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1150                             TYPE_PNV_XIVE, &error_abort, NULL);
1151 
1152     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1153                             TYPE_PNV9_PSI, &error_abort, NULL);
1154 
1155     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1156                             TYPE_PNV9_LPC, &error_abort, NULL);
1157 
1158     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1159                             TYPE_PNV9_OCC, &error_abort, NULL);
1160 
1161     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1162                             TYPE_PNV9_HOMER, &error_abort, NULL);
1163 }
1164 
1165 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1166 {
1167     PnvChip *chip = PNV_CHIP(chip9);
1168     int i;
1169 
1170     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1171     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1172 
1173     for (i = 0; i < chip9->nr_quads; i++) {
1174         char eq_name[32];
1175         PnvQuad *eq = &chip9->quads[i];
1176         PnvCore *pnv_core = chip->cores[i * 4];
1177         int core_id = CPU_CORE(pnv_core)->core_id;
1178 
1179         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1180         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1181                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1182 
1183         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1184         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1185 
1186         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1187                                 &eq->xscom_regs);
1188     }
1189 }
1190 
1191 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1192 {
1193     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1194     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1195     PnvChip *chip = PNV_CHIP(dev);
1196     Pnv9Psi *psi9 = &chip9->psi;
1197     Error *local_err = NULL;
1198 
1199     /* XSCOM bridge is first */
1200     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1201     if (local_err) {
1202         error_propagate(errp, local_err);
1203         return;
1204     }
1205     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1206 
1207     pcc->parent_realize(dev, &local_err);
1208     if (local_err) {
1209         error_propagate(errp, local_err);
1210         return;
1211     }
1212 
1213     pnv_chip_quad_realize(chip9, &local_err);
1214     if (local_err) {
1215         error_propagate(errp, local_err);
1216         return;
1217     }
1218 
1219     /* XIVE interrupt controller (POWER9) */
1220     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1221                             "ic-bar", &error_fatal);
1222     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1223                             "vc-bar", &error_fatal);
1224     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1225                             "pc-bar", &error_fatal);
1226     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1227                             "tm-bar", &error_fatal);
1228     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1229                              &error_abort);
1230     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1231                              &local_err);
1232     if (local_err) {
1233         error_propagate(errp, local_err);
1234         return;
1235     }
1236     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1237                             &chip9->xive.xscom_regs);
1238 
1239     /* Processor Service Interface (PSI) Host Bridge */
1240     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1241                             "bar", &error_fatal);
1242     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1243     if (local_err) {
1244         error_propagate(errp, local_err);
1245         return;
1246     }
1247     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1248                             &PNV_PSI(psi9)->xscom_regs);
1249 
1250     /* LPC */
1251     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1252                              &error_abort);
1253     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1254     if (local_err) {
1255         error_propagate(errp, local_err);
1256         return;
1257     }
1258     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1259                                 &chip9->lpc.xscom_regs);
1260 
1261     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1262                                             (uint64_t) PNV9_LPCM_BASE(chip));
1263 
1264     /* Create the simplified OCC model */
1265     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1266                              &error_abort);
1267     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1268     if (local_err) {
1269         error_propagate(errp, local_err);
1270         return;
1271     }
1272     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1273 
1274     /* OCC SRAM model */
1275     memory_region_add_subregion(get_system_memory(), PNV9_OCC_COMMON_AREA(chip),
1276                                 &chip9->occ.sram_regs);
1277 
1278     /* HOMER */
1279     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1280                              &error_abort);
1281     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1282                              &local_err);
1283     if (local_err) {
1284         error_propagate(errp, local_err);
1285         return;
1286     }
1287     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1288                                 &chip9->homer.regs);
1289 }
1290 
1291 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1292 {
1293     DeviceClass *dc = DEVICE_CLASS(klass);
1294     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1295 
1296     k->chip_type = PNV_CHIP_POWER9;
1297     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1298     k->cores_mask = POWER9_CORE_MASK;
1299     k->core_pir = pnv_chip_core_pir_p9;
1300     k->intc_create = pnv_chip_power9_intc_create;
1301     k->intc_reset = pnv_chip_power9_intc_reset;
1302     k->intc_destroy = pnv_chip_power9_intc_destroy;
1303     k->isa_create = pnv_chip_power9_isa_create;
1304     k->dt_populate = pnv_chip_power9_dt_populate;
1305     k->pic_print_info = pnv_chip_power9_pic_print_info;
1306     dc->desc = "PowerNV Chip POWER9";
1307 
1308     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1309                                     &k->parent_realize);
1310 }
1311 
1312 static void pnv_chip_power10_instance_init(Object *obj)
1313 {
1314     /*
1315      * No controllers yet
1316      */
1317     ;
1318 }
1319 
1320 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1321 {
1322     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1323     PnvChip *chip = PNV_CHIP(dev);
1324     Error *local_err = NULL;
1325 
1326     /* XSCOM bridge is first */
1327     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1328     if (local_err) {
1329         error_propagate(errp, local_err);
1330         return;
1331     }
1332     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1333 
1334     pcc->parent_realize(dev, &local_err);
1335     if (local_err) {
1336         error_propagate(errp, local_err);
1337         return;
1338     }
1339 }
1340 
1341 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1342 {
1343     DeviceClass *dc = DEVICE_CLASS(klass);
1344     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1345 
1346     k->chip_type = PNV_CHIP_POWER10;
1347     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1348     k->cores_mask = POWER10_CORE_MASK;
1349     k->core_pir = pnv_chip_core_pir_p10;
1350     k->intc_create = pnv_chip_power10_intc_create;
1351     k->intc_reset = pnv_chip_power10_intc_reset;
1352     k->intc_destroy = pnv_chip_power10_intc_destroy;
1353     k->isa_create = pnv_chip_power10_isa_create;
1354     k->dt_populate = pnv_chip_power10_dt_populate;
1355     k->pic_print_info = pnv_chip_power10_pic_print_info;
1356     dc->desc = "PowerNV Chip POWER10";
1357 
1358     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1359                                     &k->parent_realize);
1360 }
1361 
1362 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1363 {
1364     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1365     int cores_max;
1366 
1367     /*
1368      * No custom mask for this chip, let's use the default one from *
1369      * the chip class
1370      */
1371     if (!chip->cores_mask) {
1372         chip->cores_mask = pcc->cores_mask;
1373     }
1374 
1375     /* filter alien core ids ! some are reserved */
1376     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1377         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1378                    chip->cores_mask);
1379         return;
1380     }
1381     chip->cores_mask &= pcc->cores_mask;
1382 
1383     /* now that we have a sane layout, let check the number of cores */
1384     cores_max = ctpop64(chip->cores_mask);
1385     if (chip->nr_cores > cores_max) {
1386         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1387                    cores_max);
1388         return;
1389     }
1390 }
1391 
1392 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1393 {
1394     MachineState *ms = MACHINE(qdev_get_machine());
1395     Error *error = NULL;
1396     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1397     const char *typename = pnv_chip_core_typename(chip);
1398     int i, core_hwid;
1399 
1400     if (!object_class_by_name(typename)) {
1401         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1402         return;
1403     }
1404 
1405     /* Cores */
1406     pnv_chip_core_sanitize(chip, &error);
1407     if (error) {
1408         error_propagate(errp, error);
1409         return;
1410     }
1411 
1412     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1413 
1414     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1415              && (i < chip->nr_cores); core_hwid++) {
1416         char core_name[32];
1417         PnvCore *pnv_core;
1418         uint64_t xscom_core_base;
1419 
1420         if (!(chip->cores_mask & (1ull << core_hwid))) {
1421             continue;
1422         }
1423 
1424         pnv_core = PNV_CORE(object_new(typename));
1425 
1426         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1427         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1428                                   &error_abort);
1429         chip->cores[i] = pnv_core;
1430         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1431                                 &error_fatal);
1432         object_property_set_int(OBJECT(pnv_core), core_hwid,
1433                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1434         object_property_set_int(OBJECT(pnv_core),
1435                                 pcc->core_pir(chip, core_hwid),
1436                                 "pir", &error_fatal);
1437         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1438                                  &error_abort);
1439         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1440                                  &error_fatal);
1441 
1442         /* Each core has an XSCOM MMIO region */
1443         if (pnv_chip_is_power10(chip)) {
1444             xscom_core_base = PNV10_XSCOM_EC_BASE(core_hwid);
1445         } else if (pnv_chip_is_power9(chip)) {
1446             xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid);
1447         } else {
1448             xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid);
1449         }
1450 
1451         pnv_xscom_add_subregion(chip, xscom_core_base,
1452                                 &pnv_core->xscom_regs);
1453         i++;
1454     }
1455 }
1456 
1457 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1458 {
1459     PnvChip *chip = PNV_CHIP(dev);
1460     Error *error = NULL;
1461 
1462     /* Cores */
1463     pnv_chip_core_realize(chip, &error);
1464     if (error) {
1465         error_propagate(errp, error);
1466         return;
1467     }
1468 }
1469 
1470 static Property pnv_chip_properties[] = {
1471     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1472     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1473     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1474     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1475     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1476     DEFINE_PROP_END_OF_LIST(),
1477 };
1478 
1479 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1480 {
1481     DeviceClass *dc = DEVICE_CLASS(klass);
1482 
1483     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1484     dc->realize = pnv_chip_realize;
1485     dc->props = pnv_chip_properties;
1486     dc->desc = "PowerNV Chip";
1487 }
1488 
1489 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1490 {
1491     int i, j;
1492 
1493     for (i = 0; i < chip->nr_cores; i++) {
1494         PnvCore *pc = chip->cores[i];
1495         CPUCore *cc = CPU_CORE(pc);
1496 
1497         for (j = 0; j < cc->nr_threads; j++) {
1498             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1499                 return pc->threads[j];
1500             }
1501         }
1502     }
1503     return NULL;
1504 }
1505 
1506 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1507 {
1508     PnvMachineState *pnv = PNV_MACHINE(xi);
1509     int i;
1510 
1511     for (i = 0; i < pnv->num_chips; i++) {
1512         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1513 
1514         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1515             return &chip8->psi.ics;
1516         }
1517     }
1518     return NULL;
1519 }
1520 
1521 static void pnv_ics_resend(XICSFabric *xi)
1522 {
1523     PnvMachineState *pnv = PNV_MACHINE(xi);
1524     int i;
1525 
1526     for (i = 0; i < pnv->num_chips; i++) {
1527         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1528         ics_resend(&chip8->psi.ics);
1529     }
1530 }
1531 
1532 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1533 {
1534     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1535 
1536     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1537 }
1538 
1539 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1540                                Monitor *mon)
1541 {
1542     PnvMachineState *pnv = PNV_MACHINE(obj);
1543     int i;
1544     CPUState *cs;
1545 
1546     CPU_FOREACH(cs) {
1547         PowerPCCPU *cpu = POWERPC_CPU(cs);
1548 
1549         if (pnv_chip_is_power9(pnv->chips[0])) {
1550             xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1551         } else {
1552             icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
1553         }
1554     }
1555 
1556     for (i = 0; i < pnv->num_chips; i++) {
1557         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1558     }
1559 }
1560 
1561 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1562                          uint8_t nvt_blk, uint32_t nvt_idx,
1563                          bool cam_ignore, uint8_t priority,
1564                          uint32_t logic_serv,
1565                          XiveTCTXMatch *match)
1566 {
1567     PnvMachineState *pnv = PNV_MACHINE(xfb);
1568     int total_count = 0;
1569     int i;
1570 
1571     for (i = 0; i < pnv->num_chips; i++) {
1572         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1573         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1574         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1575         int count;
1576 
1577         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1578                                priority, logic_serv, match);
1579 
1580         if (count < 0) {
1581             return count;
1582         }
1583 
1584         total_count += count;
1585     }
1586 
1587     return total_count;
1588 }
1589 
1590 PnvChip *pnv_get_chip(uint32_t chip_id)
1591 {
1592     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1593     int i;
1594 
1595     for (i = 0; i < pnv->num_chips; i++) {
1596         PnvChip *chip = pnv->chips[i];
1597         if (chip->chip_id == chip_id) {
1598             return chip;
1599         }
1600     }
1601     return NULL;
1602 }
1603 
1604 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name,
1605                               void *opaque, Error **errp)
1606 {
1607     visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp);
1608 }
1609 
1610 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name,
1611                               void *opaque, Error **errp)
1612 {
1613     PnvMachineState *pnv = PNV_MACHINE(obj);
1614     uint32_t num_chips;
1615     Error *local_err = NULL;
1616 
1617     visit_type_uint32(v, name, &num_chips, &local_err);
1618     if (local_err) {
1619         error_propagate(errp, local_err);
1620         return;
1621     }
1622 
1623     /*
1624      * TODO: should we decide on how many chips we can create based
1625      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1626      */
1627     if (!is_power_of_2(num_chips) || num_chips > 4) {
1628         error_setg(errp, "invalid number of chips: '%d'", num_chips);
1629         return;
1630     }
1631 
1632     pnv->num_chips = num_chips;
1633 }
1634 
1635 static void pnv_machine_instance_init(Object *obj)
1636 {
1637     PnvMachineState *pnv = PNV_MACHINE(obj);
1638     pnv->num_chips = 1;
1639 }
1640 
1641 static void pnv_machine_class_props_init(ObjectClass *oc)
1642 {
1643     object_class_property_add(oc, "num-chips", "uint32",
1644                               pnv_get_num_chips, pnv_set_num_chips,
1645                               NULL, NULL, NULL);
1646     object_class_property_set_description(oc, "num-chips",
1647                               "Specifies the number of processor chips",
1648                               NULL);
1649 }
1650 
1651 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1652 {
1653     MachineClass *mc = MACHINE_CLASS(oc);
1654     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1655 
1656     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1657     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1658 
1659     xic->icp_get = pnv_icp_get;
1660     xic->ics_get = pnv_ics_get;
1661     xic->ics_resend = pnv_ics_resend;
1662 }
1663 
1664 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1665 {
1666     MachineClass *mc = MACHINE_CLASS(oc);
1667     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1668 
1669     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1670     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1671     xfc->match_nvt = pnv_match_nvt;
1672 
1673     mc->alias = "powernv";
1674 }
1675 
1676 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1677 {
1678     MachineClass *mc = MACHINE_CLASS(oc);
1679 
1680     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1681     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1682 }
1683 
1684 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1685 {
1686     MachineClass *mc = MACHINE_CLASS(oc);
1687     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1688 
1689     mc->desc = "IBM PowerNV (Non-Virtualized)";
1690     mc->init = pnv_init;
1691     mc->reset = pnv_reset;
1692     mc->max_cpus = MAX_CPUS;
1693     /* Pnv provides a AHCI device for storage */
1694     mc->block_default_type = IF_IDE;
1695     mc->no_parallel = 1;
1696     mc->default_boot_order = NULL;
1697     /*
1698      * RAM defaults to less than 2048 for 32-bit hosts, and large
1699      * enough to fit the maximum initrd size at it's load address
1700      */
1701     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1702     ispc->print_info = pnv_pic_print_info;
1703 
1704     pnv_machine_class_props_init(oc);
1705 }
1706 
1707 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1708     {                                             \
1709         .name          = type,                    \
1710         .class_init    = class_initfn,            \
1711         .parent        = TYPE_PNV8_CHIP,          \
1712     }
1713 
1714 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1715     {                                             \
1716         .name          = type,                    \
1717         .class_init    = class_initfn,            \
1718         .parent        = TYPE_PNV9_CHIP,          \
1719     }
1720 
1721 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
1722     {                                              \
1723         .name          = type,                     \
1724         .class_init    = class_initfn,             \
1725         .parent        = TYPE_PNV10_CHIP,          \
1726     }
1727 
1728 static const TypeInfo types[] = {
1729     {
1730         .name          = MACHINE_TYPE_NAME("powernv10"),
1731         .parent        = TYPE_PNV_MACHINE,
1732         .class_init    = pnv_machine_power10_class_init,
1733     },
1734     {
1735         .name          = MACHINE_TYPE_NAME("powernv9"),
1736         .parent        = TYPE_PNV_MACHINE,
1737         .class_init    = pnv_machine_power9_class_init,
1738         .interfaces = (InterfaceInfo[]) {
1739             { TYPE_XIVE_FABRIC },
1740             { },
1741         },
1742     },
1743     {
1744         .name          = MACHINE_TYPE_NAME("powernv8"),
1745         .parent        = TYPE_PNV_MACHINE,
1746         .class_init    = pnv_machine_power8_class_init,
1747         .interfaces = (InterfaceInfo[]) {
1748             { TYPE_XICS_FABRIC },
1749             { },
1750         },
1751     },
1752     {
1753         .name          = TYPE_PNV_MACHINE,
1754         .parent        = TYPE_MACHINE,
1755         .abstract       = true,
1756         .instance_size = sizeof(PnvMachineState),
1757         .instance_init = pnv_machine_instance_init,
1758         .class_init    = pnv_machine_class_init,
1759         .interfaces = (InterfaceInfo[]) {
1760             { TYPE_INTERRUPT_STATS_PROVIDER },
1761             { },
1762         },
1763     },
1764     {
1765         .name          = TYPE_PNV_CHIP,
1766         .parent        = TYPE_SYS_BUS_DEVICE,
1767         .class_init    = pnv_chip_class_init,
1768         .instance_size = sizeof(PnvChip),
1769         .class_size    = sizeof(PnvChipClass),
1770         .abstract      = true,
1771     },
1772 
1773     /*
1774      * P10 chip and variants
1775      */
1776     {
1777         .name          = TYPE_PNV10_CHIP,
1778         .parent        = TYPE_PNV_CHIP,
1779         .instance_init = pnv_chip_power10_instance_init,
1780         .instance_size = sizeof(Pnv10Chip),
1781     },
1782     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
1783 
1784     /*
1785      * P9 chip and variants
1786      */
1787     {
1788         .name          = TYPE_PNV9_CHIP,
1789         .parent        = TYPE_PNV_CHIP,
1790         .instance_init = pnv_chip_power9_instance_init,
1791         .instance_size = sizeof(Pnv9Chip),
1792     },
1793     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1794 
1795     /*
1796      * P8 chip and variants
1797      */
1798     {
1799         .name          = TYPE_PNV8_CHIP,
1800         .parent        = TYPE_PNV_CHIP,
1801         .instance_init = pnv_chip_power8_instance_init,
1802         .instance_size = sizeof(Pnv8Chip),
1803     },
1804     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1805     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1806     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1807                           pnv_chip_power8nvl_class_init),
1808 };
1809 
1810 DEFINE_TYPES(types)
1811