xref: /openbmc/qemu/hw/ppc/pnv.c (revision 25de28220cedadac15021ec40047785f30e153fe)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define KERNEL_LOAD_ADDR        0x20000000
68 #define KERNEL_MAX_SIZE         (128 * MiB)
69 #define INITRD_LOAD_ADDR        0x28000000
70 #define INITRD_MAX_SIZE         (128 * MiB)
71 
72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77     const char *core_type = object_class_get_name(object_class_by_name(s));
78     g_free(s);
79     return core_type;
80 }
81 
82 /*
83  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84  *     4 * 4 sockets * 12 cores * 8 threads = 1536
85  * Let's make it 2^11
86  */
87 #define MAX_CPUS                2048
88 
89 /*
90  * Memory nodes are created by hostboot, one for each range of memory
91  * that has a different "affinity". In practice, it means one range
92  * per chip.
93  */
94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96     char *mem_name;
97     uint64_t mem_reg_property[2];
98     int off;
99 
100     mem_reg_property[0] = cpu_to_be64(start);
101     mem_reg_property[1] = cpu_to_be64(size);
102 
103     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104     off = fdt_add_subnode(fdt, 0, mem_name);
105     g_free(mem_name);
106 
107     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109                        sizeof(mem_reg_property))));
110     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112 
113 static int get_cpus_node(void *fdt)
114 {
115     int cpus_offset = fdt_path_offset(fdt, "/cpus");
116 
117     if (cpus_offset < 0) {
118         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119         if (cpus_offset) {
120             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122         }
123     }
124     _FDT(cpus_offset);
125     return cpus_offset;
126 }
127 
128 /*
129  * The PowerNV cores (and threads) need to use real HW ids and not an
130  * incremental index like it has been done on other platforms. This HW
131  * id is stored in the CPU PIR, it is used to create cpu nodes in the
132  * device tree, used in XSCOM to address cores and in interrupt
133  * servers.
134  */
135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137     PowerPCCPU *cpu = pc->threads[0];
138     CPUState *cs = CPU(cpu);
139     DeviceClass *dc = DEVICE_GET_CLASS(cs);
140     int smt_threads = CPU_CORE(pc)->nr_threads;
141     CPUPPCState *env = &cpu->env;
142     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
145     int i;
146     uint32_t pir;
147     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148                        0xffffffff, 0xffffffff};
149     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150     uint32_t cpufreq = 1000000000;
151     uint32_t page_sizes_prop[64];
152     size_t page_sizes_prop_size;
153     int offset;
154     char *nodename;
155     int cpus_offset = get_cpus_node(fdt);
156 
157     pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, NULL);
158 
159     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
160     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
161     _FDT(offset);
162     g_free(nodename);
163 
164     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
167     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
168     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
169 
170     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
171     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
172                             env->dcache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
176                             env->icache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
178                             env->icache_line_size)));
179 
180     if (pcc->l1_dcache_size) {
181         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
182                                pcc->l1_dcache_size)));
183     } else {
184         warn_report("Unknown L1 dcache size for cpu");
185     }
186     if (pcc->l1_icache_size) {
187         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
188                                pcc->l1_icache_size)));
189     } else {
190         warn_report("Unknown L1 icache size for cpu");
191     }
192 
193     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
195     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
196                            cpu->hash64_opts->slb_size)));
197     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
198     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
199 
200     if (ppc_has_spr(cpu, SPR_PURR)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
202     }
203 
204     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
205         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
206                            segs, sizeof(segs))));
207     }
208 
209     /*
210      * Advertise VMX/VSX (vector extensions) if available
211      *   0 / no property == no vector extensions
212      *   1               == VMX / Altivec available
213      *   2               == VSX available
214      */
215     if (env->insns_flags & PPC_ALTIVEC) {
216         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
217 
218         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
219     }
220 
221     /*
222      * Advertise DFP (Decimal Floating Point) if available
223      *   0 / no property == no DFP
224      *   1               == DFP available
225      */
226     if (env->insns_flags2 & PPC2_DFP) {
227         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
228     }
229 
230     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
231                                                       sizeof(page_sizes_prop));
232     if (page_sizes_prop_size) {
233         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
234                            page_sizes_prop, page_sizes_prop_size)));
235     }
236 
237     /* Build interrupt servers properties */
238     for (i = 0; i < smt_threads; i++) {
239         pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
240         servers_prop[i] = cpu_to_be32(pir);
241     }
242     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
243                        servers_prop, sizeof(*servers_prop) * smt_threads)));
244 
245     return offset;
246 }
247 
248 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
249                        uint32_t nr_threads)
250 {
251     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
252     uint32_t pir;
253     uint64_t addr;
254     char *name;
255     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
256     uint32_t irange[2], i, rsize;
257     uint64_t *reg;
258     int offset;
259 
260     pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
261     addr = PNV_ICP_BASE(chip) | (pir << 12);
262 
263     irange[0] = cpu_to_be32(pir);
264     irange[1] = cpu_to_be32(nr_threads);
265 
266     rsize = sizeof(uint64_t) * 2 * nr_threads;
267     reg = g_malloc(rsize);
268     for (i = 0; i < nr_threads; i++) {
269         /* We know P8 PIR is linear with thread id */
270         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
271         reg[i * 2 + 1] = cpu_to_be64(0x1000);
272     }
273 
274     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
275     offset = fdt_add_subnode(fdt, 0, name);
276     _FDT(offset);
277     g_free(name);
278 
279     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
280     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
281     _FDT((fdt_setprop_string(fdt, offset, "device_type",
282                               "PowerPC-External-Interrupt-Presentation")));
283     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
284     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
285                        irange, sizeof(irange))));
286     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
287     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
288     g_free(reg);
289 }
290 
291 /*
292  * Adds a PnvPHB to the chip on P8.
293  * Implemented here, like for defaults PHBs
294  */
295 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
296 {
297     Pnv8Chip *chip8 = PNV8_CHIP(chip);
298 
299     phb->chip = chip;
300 
301     chip8->phbs[chip8->num_phbs] = phb;
302     chip8->num_phbs++;
303     return chip;
304 }
305 
306 /*
307  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
308  * HTM is always enabled because TCG does implement HTM, it's just a
309  * degenerate implementation.
310  */
311 static const uint8_t pa_features_207[] = { 24, 0,
312                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
313                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
314                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
315                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
316 
317 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
318 {
319     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
320     int i;
321 
322     pnv_dt_xscom(chip, fdt, 0,
323                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
324                  cpu_to_be64(PNV_XSCOM_SIZE),
325                  compat, sizeof(compat));
326 
327     for (i = 0; i < chip->nr_cores; i++) {
328         PnvCore *pnv_core = chip->cores[i];
329         int offset;
330 
331         offset = pnv_dt_core(chip, pnv_core, fdt);
332 
333         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
334                            pa_features_207, sizeof(pa_features_207))));
335 
336         /* Interrupt Control Presenters (ICP). One per core. */
337         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
338     }
339 
340     if (chip->ram_size) {
341         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
342     }
343 }
344 
345 /*
346  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
347  */
348 static const uint8_t pa_features_300[] = { 66, 0,
349     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
350     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
351     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
352     /* 6: DS207 */
353     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
354     /* 16: Vector */
355     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
356     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
358     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
359     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
360     /* 32: LE atomic, 34: EBB + ext EBB */
361     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
362     /* 40: Radix MMU */
363     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
364     /* 42: PM, 44: PC RA, 46: SC vec'd */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
366     /* 48: SIMD, 50: QP BFP, 52: String */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
368     /* 54: DecFP, 56: DecI, 58: SHA */
369     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
370     /* 60: NM atomic, 62: RNG */
371     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
372 };
373 
374 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
375 {
376     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
377     int i;
378 
379     pnv_dt_xscom(chip, fdt, 0,
380                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
381                  cpu_to_be64(PNV9_XSCOM_SIZE),
382                  compat, sizeof(compat));
383 
384     for (i = 0; i < chip->nr_cores; i++) {
385         PnvCore *pnv_core = chip->cores[i];
386         int offset;
387 
388         offset = pnv_dt_core(chip, pnv_core, fdt);
389 
390         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
391                            pa_features_300, sizeof(pa_features_300))));
392     }
393 
394     if (chip->ram_size) {
395         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
396     }
397 
398     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
399 }
400 
401 /*
402  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
403  * always disables copy/paste.
404  */
405 static const uint8_t pa_features_31[] = { 74, 0,
406     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
407     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
408     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
409     /* 6: DS207 */
410     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
411     /* 16: Vector */
412     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
413     /* 18: Vec. Scalar, 20: Vec. XOR */
414     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
415     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
416     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
417     /* 32: LE atomic, 34: EBB + ext EBB */
418     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
419     /* 40: Radix MMU */
420     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
421     /* 42: PM, 44: PC RA, 46: SC vec'd */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
423     /* 48: SIMD, 50: QP BFP, 52: String */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
425     /* 54: DecFP, 56: DecI, 58: SHA */
426     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
427     /* 60: NM atomic, 62: RNG */
428     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
429     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
430     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
431     /* 72: [P]HASHST/[P]HASHCHK */
432     0x80, 0x00,                         /* 72 - 73 */
433 };
434 
435 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
436 {
437     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
438     int i;
439 
440     pnv_dt_xscom(chip, fdt, 0,
441                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
442                  cpu_to_be64(PNV10_XSCOM_SIZE),
443                  compat, sizeof(compat));
444 
445     for (i = 0; i < chip->nr_cores; i++) {
446         PnvCore *pnv_core = chip->cores[i];
447         int offset;
448 
449         offset = pnv_dt_core(chip, pnv_core, fdt);
450 
451         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
452                            pa_features_31, sizeof(pa_features_31))));
453     }
454 
455     if (chip->ram_size) {
456         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
457     }
458 
459     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
460 }
461 
462 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
463 {
464     uint32_t io_base = d->ioport_id;
465     uint32_t io_regs[] = {
466         cpu_to_be32(1),
467         cpu_to_be32(io_base),
468         cpu_to_be32(2)
469     };
470     char *name;
471     int node;
472 
473     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
474     node = fdt_add_subnode(fdt, lpc_off, name);
475     _FDT(node);
476     g_free(name);
477 
478     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
479     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
480 }
481 
482 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
483 {
484     const char compatible[] = "ns16550\0pnpPNP,501";
485     uint32_t io_base = d->ioport_id;
486     uint32_t io_regs[] = {
487         cpu_to_be32(1),
488         cpu_to_be32(io_base),
489         cpu_to_be32(8)
490     };
491     uint32_t irq;
492     char *name;
493     int node;
494 
495     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
496 
497     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
498     node = fdt_add_subnode(fdt, lpc_off, name);
499     _FDT(node);
500     g_free(name);
501 
502     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
503     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
504                       sizeof(compatible))));
505 
506     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
507     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
508     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
509     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
510                            fdt_get_phandle(fdt, lpc_off))));
511 
512     /* This is needed by Linux */
513     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
514 }
515 
516 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
517 {
518     const char compatible[] = "bt\0ipmi-bt";
519     uint32_t io_base;
520     uint32_t io_regs[] = {
521         cpu_to_be32(1),
522         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
523         cpu_to_be32(3)
524     };
525     uint32_t irq;
526     char *name;
527     int node;
528 
529     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
530     io_regs[1] = cpu_to_be32(io_base);
531 
532     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
533 
534     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
535     node = fdt_add_subnode(fdt, lpc_off, name);
536     _FDT(node);
537     g_free(name);
538 
539     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
540     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
541                       sizeof(compatible))));
542 
543     /* Mark it as reserved to avoid Linux trying to claim it */
544     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
545     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
546     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
547                            fdt_get_phandle(fdt, lpc_off))));
548 }
549 
550 typedef struct ForeachPopulateArgs {
551     void *fdt;
552     int offset;
553 } ForeachPopulateArgs;
554 
555 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
556 {
557     ForeachPopulateArgs *args = opaque;
558     ISADevice *d = ISA_DEVICE(dev);
559 
560     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
561         pnv_dt_rtc(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
563         pnv_dt_serial(d, args->fdt, args->offset);
564     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
565         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
566     } else {
567         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
568                      d->ioport_id);
569     }
570 
571     return 0;
572 }
573 
574 /*
575  * The default LPC bus of a multichip system is on chip 0. It's
576  * recognized by the firmware (skiboot) using a "primary" property.
577  */
578 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
579 {
580     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
581     ForeachPopulateArgs args = {
582         .fdt = fdt,
583         .offset = isa_offset,
584     };
585     uint32_t phandle;
586 
587     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
588 
589     phandle = qemu_fdt_alloc_phandle(fdt);
590     assert(phandle > 0);
591     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
592 
593     /*
594      * ISA devices are not necessarily parented to the ISA bus so we
595      * can not use object_child_foreach()
596      */
597     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
598                        &args);
599 }
600 
601 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
602 {
603     int off;
604 
605     off = fdt_add_subnode(fdt, 0, "ibm,opal");
606     off = fdt_add_subnode(fdt, off, "power-mgt");
607 
608     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
609 }
610 
611 static void *pnv_dt_create(MachineState *machine)
612 {
613     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
614     PnvMachineState *pnv = PNV_MACHINE(machine);
615     void *fdt;
616     char *buf;
617     int off;
618     int i;
619 
620     fdt = g_malloc0(FDT_MAX_SIZE);
621     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
622 
623     /* /qemu node */
624     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
625 
626     /* Root node */
627     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
628     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
629     _FDT((fdt_setprop_string(fdt, 0, "model",
630                              "IBM PowerNV (emulated by qemu)")));
631     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
632 
633     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
634     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
635     if (qemu_uuid_set) {
636         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
637     }
638     g_free(buf);
639 
640     off = fdt_add_subnode(fdt, 0, "chosen");
641     if (machine->kernel_cmdline) {
642         _FDT((fdt_setprop_string(fdt, off, "bootargs",
643                                  machine->kernel_cmdline)));
644     }
645 
646     if (pnv->initrd_size) {
647         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
648         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
649 
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
651                                &start_prop, sizeof(start_prop))));
652         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
653                                &end_prop, sizeof(end_prop))));
654     }
655 
656     /* Populate device tree for each chip */
657     for (i = 0; i < pnv->num_chips; i++) {
658         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
659     }
660 
661     /* Populate ISA devices on chip 0 */
662     pnv_dt_isa(pnv, fdt);
663 
664     if (pnv->bmc) {
665         pnv_dt_bmc_sensors(pnv->bmc, fdt);
666     }
667 
668     /* Create an extra node for power management on machines that support it */
669     if (pmc->dt_power_mgt) {
670         pmc->dt_power_mgt(pnv, fdt);
671     }
672 
673     return fdt;
674 }
675 
676 static void pnv_powerdown_notify(Notifier *n, void *opaque)
677 {
678     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
679 
680     if (pnv->bmc) {
681         pnv_bmc_powerdown(pnv->bmc);
682     }
683 }
684 
685 static void pnv_reset(MachineState *machine, ShutdownCause reason)
686 {
687     PnvMachineState *pnv = PNV_MACHINE(machine);
688     IPMIBmc *bmc;
689     void *fdt;
690 
691     qemu_devices_reset(reason);
692 
693     /*
694      * The machine should provide by default an internal BMC simulator.
695      * If not, try to use the BMC device that was provided on the command
696      * line.
697      */
698     bmc = pnv_bmc_find(&error_fatal);
699     if (!pnv->bmc) {
700         if (!bmc) {
701             if (!qtest_enabled()) {
702                 warn_report("machine has no BMC device. Use '-device "
703                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
704                             "to define one");
705             }
706         } else {
707             pnv_bmc_set_pnor(bmc, pnv->pnor);
708             pnv->bmc = bmc;
709         }
710     }
711 
712     fdt = pnv_dt_create(machine);
713 
714     /* Pack resulting tree */
715     _FDT((fdt_pack(fdt)));
716 
717     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
718     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
719 
720     /*
721      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
722      * the existing machine->fdt to avoid leaking it during
723      * a reset.
724      */
725     g_free(machine->fdt);
726     machine->fdt = fdt;
727 }
728 
729 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
730 {
731     Pnv8Chip *chip8 = PNV8_CHIP(chip);
732     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
733 
734     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
735 
736     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
737 }
738 
739 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
740 {
741     Pnv8Chip *chip8 = PNV8_CHIP(chip);
742     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
743 
744     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
745 
746     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
747 }
748 
749 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
750 {
751     Pnv9Chip *chip9 = PNV9_CHIP(chip);
752     qemu_irq irq;
753 
754     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
755     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
756 
757     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
758     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
759     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
760     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
761     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
762     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
763     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
764     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
765 
766     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
767 }
768 
769 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
770 {
771     Pnv10Chip *chip10 = PNV10_CHIP(chip);
772     qemu_irq irq;
773 
774     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
775     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
776 
777     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
778     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
779     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
780     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
781     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
782     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
783     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
784     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
785 
786     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
787 }
788 
789 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
790 {
791     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
792 }
793 
794 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
795 {
796     Pnv8Chip *chip8 = PNV8_CHIP(chip);
797     int i;
798 
799     ics_pic_print_info(&chip8->psi.ics, buf);
800 
801     for (i = 0; i < chip8->num_phbs; i++) {
802         PnvPHB *phb = chip8->phbs[i];
803         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
804 
805         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
806         ics_pic_print_info(&phb3->lsis, buf);
807     }
808 }
809 
810 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
811 {
812     GString *buf = opaque;
813     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
814 
815     if (!phb) {
816         return 0;
817     }
818 
819     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
820 
821     return 0;
822 }
823 
824 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
825 {
826     Pnv9Chip *chip9 = PNV9_CHIP(chip);
827 
828     pnv_xive_pic_print_info(&chip9->xive, buf);
829     pnv_psi_pic_print_info(&chip9->psi, buf);
830     object_child_foreach_recursive(OBJECT(chip),
831                          pnv_chip_power9_pic_print_info_child, buf);
832 }
833 
834 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
835                                                 uint32_t core_id)
836 {
837     return PNV_XSCOM_EX_BASE(core_id);
838 }
839 
840 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
841                                                 uint32_t core_id)
842 {
843     return PNV9_XSCOM_EC_BASE(core_id);
844 }
845 
846 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
847                                                  uint32_t core_id)
848 {
849     return PNV10_XSCOM_EC_BASE(core_id);
850 }
851 
852 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
853 {
854     PowerPCCPUClass *ppc_default =
855         POWERPC_CPU_CLASS(object_class_by_name(default_type));
856     PowerPCCPUClass *ppc =
857         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
858 
859     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
860 }
861 
862 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
863 {
864     ISADevice *dev = isa_new("isa-ipmi-bt");
865 
866     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
867     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
868     isa_realize_and_unref(dev, bus, &error_fatal);
869 }
870 
871 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
872 {
873     Pnv10Chip *chip10 = PNV10_CHIP(chip);
874 
875     pnv_xive2_pic_print_info(&chip10->xive, buf);
876     pnv_psi_pic_print_info(&chip10->psi, buf);
877     object_child_foreach_recursive(OBJECT(chip),
878                          pnv_chip_power9_pic_print_info_child, buf);
879 }
880 
881 /* Always give the first 1GB to chip 0 else we won't boot */
882 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
883 {
884     MachineState *machine = MACHINE(pnv);
885     uint64_t ram_per_chip;
886 
887     assert(machine->ram_size >= 1 * GiB);
888 
889     ram_per_chip = machine->ram_size / pnv->num_chips;
890     if (ram_per_chip >= 1 * GiB) {
891         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
892     }
893 
894     assert(pnv->num_chips > 1);
895 
896     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
897     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
898 }
899 
900 static void pnv_init(MachineState *machine)
901 {
902     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
903     PnvMachineState *pnv = PNV_MACHINE(machine);
904     MachineClass *mc = MACHINE_GET_CLASS(machine);
905     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
906     int max_smt_threads = pmc->max_smt_threads;
907     char *fw_filename;
908     long fw_size;
909     uint64_t chip_ram_start = 0;
910     int i;
911     char *chip_typename;
912     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
913     DeviceState *dev;
914 
915     if (kvm_enabled()) {
916         error_report("machine %s does not support the KVM accelerator",
917                      mc->name);
918         exit(EXIT_FAILURE);
919     }
920 
921     /* allocate RAM */
922     if (machine->ram_size < mc->default_ram_size) {
923         char *sz = size_to_str(mc->default_ram_size);
924         error_report("Invalid RAM size, should be bigger than %s", sz);
925         g_free(sz);
926         exit(EXIT_FAILURE);
927     }
928     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
929 
930     /*
931      * Create our simple PNOR device
932      */
933     dev = qdev_new(TYPE_PNV_PNOR);
934     if (pnor) {
935         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
936     }
937     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
938     pnv->pnor = PNV_PNOR(dev);
939 
940     /* load skiboot firmware  */
941     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
942     if (!fw_filename) {
943         error_report("Could not find OPAL firmware '%s'", bios_name);
944         exit(1);
945     }
946 
947     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
948     if (fw_size < 0) {
949         error_report("Could not load OPAL firmware '%s'", fw_filename);
950         exit(1);
951     }
952     g_free(fw_filename);
953 
954     /* load kernel */
955     if (machine->kernel_filename) {
956         long kernel_size;
957 
958         kernel_size = load_image_targphys(machine->kernel_filename,
959                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
960         if (kernel_size < 0) {
961             error_report("Could not load kernel '%s'",
962                          machine->kernel_filename);
963             exit(1);
964         }
965     }
966 
967     /* load initrd */
968     if (machine->initrd_filename) {
969         pnv->initrd_base = INITRD_LOAD_ADDR;
970         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
971                                   pnv->initrd_base, INITRD_MAX_SIZE);
972         if (pnv->initrd_size < 0) {
973             error_report("Could not load initial ram disk '%s'",
974                          machine->initrd_filename);
975             exit(1);
976         }
977     }
978 
979     /* MSIs are supported on this platform */
980     msi_nonbroken = true;
981 
982     /*
983      * Check compatibility of the specified CPU with the machine
984      * default.
985      */
986     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
987         error_report("invalid CPU model '%s' for %s machine",
988                      machine->cpu_type, mc->name);
989         exit(1);
990     }
991 
992     /* Create the processor chips */
993     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
994     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
995                                     i, machine->cpu_type);
996     if (!object_class_by_name(chip_typename)) {
997         error_report("invalid chip model '%.*s' for %s machine",
998                      i, machine->cpu_type, mc->name);
999         exit(1);
1000     }
1001 
1002     pnv->num_chips =
1003         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1004 
1005     if (machine->smp.threads > max_smt_threads) {
1006         error_report("Cannot support more than %d threads/core "
1007                      "on %s machine", max_smt_threads, mc->desc);
1008         exit(1);
1009     }
1010 
1011     if (!is_power_of_2(machine->smp.threads)) {
1012         error_report("Cannot support %d threads/core on a powernv"
1013                      "machine because it must be a power of 2",
1014                      machine->smp.threads);
1015         exit(1);
1016     }
1017 
1018     /*
1019      * TODO: should we decide on how many chips we can create based
1020      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1021      */
1022     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1023         error_report("invalid number of chips: '%d'", pnv->num_chips);
1024         error_printf(
1025             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1026         exit(1);
1027     }
1028 
1029     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1030     for (i = 0; i < pnv->num_chips; i++) {
1031         char chip_name[32];
1032         Object *chip = OBJECT(qdev_new(chip_typename));
1033         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1034 
1035         pnv->chips[i] = PNV_CHIP(chip);
1036 
1037         /* Distribute RAM among the chips  */
1038         object_property_set_int(chip, "ram-start", chip_ram_start,
1039                                 &error_fatal);
1040         object_property_set_int(chip, "ram-size", chip_ram_size,
1041                                 &error_fatal);
1042         chip_ram_start += chip_ram_size;
1043 
1044         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1045         object_property_add_child(OBJECT(pnv), chip_name, chip);
1046         object_property_set_int(chip, "chip-id", i, &error_fatal);
1047         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1048                                 &error_fatal);
1049         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1050                                 &error_fatal);
1051         /*
1052          * The POWER8 machine use the XICS interrupt interface.
1053          * Propagate the XICS fabric to the chip and its controllers.
1054          */
1055         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1056             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1057         }
1058         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1059             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1060                                      &error_abort);
1061         }
1062         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1063     }
1064     g_free(chip_typename);
1065 
1066     /* Instantiate ISA bus on chip 0 */
1067     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1068 
1069     /* Create serial port */
1070     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1071 
1072     /* Create an RTC ISA device too */
1073     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1074 
1075     /*
1076      * Create the machine BMC simulator and the IPMI BT device for
1077      * communication with the BMC
1078      */
1079     if (defaults_enabled()) {
1080         pnv->bmc = pnv_bmc_create(pnv->pnor);
1081         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1082     }
1083 
1084     /*
1085      * The PNOR is mapped on the LPC FW address space by the BMC.
1086      * Since we can not reach the remote BMC machine with LPC memops,
1087      * map it always for now.
1088      */
1089     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1090                                 &pnv->pnor->mmio);
1091 
1092     /*
1093      * OpenPOWER systems use a IPMI SEL Event message to notify the
1094      * host to powerdown
1095      */
1096     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1097     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1098 
1099     /*
1100      * Create/Connect any machine-specific I2C devices
1101      */
1102     if (pmc->i2c_init) {
1103         pmc->i2c_init(pnv);
1104     }
1105 }
1106 
1107 /*
1108  *    0:21  Reserved - Read as zeros
1109  *   22:24  Chip ID
1110  *   25:28  Core number
1111  *   29:31  Thread ID
1112  */
1113 static void pnv_get_pir_tir_p8(PnvChip *chip,
1114                                 uint32_t core_id, uint32_t thread_id,
1115                                 uint32_t *pir, uint32_t *tir)
1116 {
1117     if (pir) {
1118         *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1119     }
1120     if (tir) {
1121         *tir = thread_id;
1122     }
1123 }
1124 
1125 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1126                                         Error **errp)
1127 {
1128     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1129     Error *local_err = NULL;
1130     Object *obj;
1131     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1132 
1133     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1134     if (local_err) {
1135         error_propagate(errp, local_err);
1136         return;
1137     }
1138 
1139     pnv_cpu->intc = obj;
1140 }
1141 
1142 
1143 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1144 {
1145     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1146 
1147     icp_reset(ICP(pnv_cpu->intc));
1148 }
1149 
1150 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1151 {
1152     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1153 
1154     icp_destroy(ICP(pnv_cpu->intc));
1155     pnv_cpu->intc = NULL;
1156 }
1157 
1158 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1159                                             GString *buf)
1160 {
1161     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1162 }
1163 
1164 /*
1165  *    0:48  Reserved - Read as zeroes
1166  *   49:52  Node ID
1167  *   53:55  Chip ID
1168  *   56     Reserved - Read as zero
1169  *   57:61  Core number
1170  *   62:63  Thread ID
1171  *
1172  * We only care about the lower bits. uint32_t is fine for the moment.
1173  */
1174 static void pnv_get_pir_tir_p9(PnvChip *chip,
1175                                 uint32_t core_id, uint32_t thread_id,
1176                                 uint32_t *pir, uint32_t *tir)
1177 {
1178     if (pir) {
1179         if (chip->nr_threads == 8) {
1180             *pir = (chip->chip_id << 8) | ((thread_id & 1) << 2) |
1181                    (core_id << 3) | (thread_id >> 1);
1182         } else {
1183             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1184         }
1185     }
1186     if (tir) {
1187         *tir = thread_id;
1188     }
1189 }
1190 
1191 /*
1192  *    0:48  Reserved - Read as zeroes
1193  *   49:52  Node ID
1194  *   53:55  Chip ID
1195  *   56     Reserved - Read as zero
1196  *   57:59  Quad ID
1197  *   60     Core Chiplet Pair ID
1198  *   61:63  Thread/Core Chiplet ID t0-t2
1199  *
1200  * We only care about the lower bits. uint32_t is fine for the moment.
1201  */
1202 static void pnv_get_pir_tir_p10(PnvChip *chip,
1203                                 uint32_t core_id, uint32_t thread_id,
1204                                 uint32_t *pir, uint32_t *tir)
1205 {
1206     if (pir) {
1207         if (chip->nr_threads == 8) {
1208             *pir = (chip->chip_id << 8) | ((core_id / 4) << 4) |
1209                     ((core_id % 2) << 3) | thread_id;
1210         } else {
1211             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1212         }
1213     }
1214     if (tir) {
1215         *tir = thread_id;
1216     }
1217 }
1218 
1219 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1220                                         Error **errp)
1221 {
1222     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1223     Error *local_err = NULL;
1224     Object *obj;
1225     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1226 
1227     /*
1228      * The core creates its interrupt presenter but the XIVE interrupt
1229      * controller object is initialized afterwards. Hopefully, it's
1230      * only used at runtime.
1231      */
1232     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1233                            &local_err);
1234     if (local_err) {
1235         error_propagate(errp, local_err);
1236         return;
1237     }
1238 
1239     pnv_cpu->intc = obj;
1240 }
1241 
1242 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1243 {
1244     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1245 
1246     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1247 }
1248 
1249 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1250 {
1251     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1252 
1253     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1254     pnv_cpu->intc = NULL;
1255 }
1256 
1257 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1258                                             GString *buf)
1259 {
1260     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1261 }
1262 
1263 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1264                                         Error **errp)
1265 {
1266     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1267     Error *local_err = NULL;
1268     Object *obj;
1269     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1270 
1271     /*
1272      * The core creates its interrupt presenter but the XIVE2 interrupt
1273      * controller object is initialized afterwards. Hopefully, it's
1274      * only used at runtime.
1275      */
1276     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1277                            &local_err);
1278     if (local_err) {
1279         error_propagate(errp, local_err);
1280         return;
1281     }
1282 
1283     pnv_cpu->intc = obj;
1284 }
1285 
1286 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1287 {
1288     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1289 
1290     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1291 }
1292 
1293 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1294 {
1295     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1296 
1297     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1298     pnv_cpu->intc = NULL;
1299 }
1300 
1301 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1302                                              GString *buf)
1303 {
1304     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1305 }
1306 
1307 /*
1308  * Allowed core identifiers on a POWER8 Processor Chip :
1309  *
1310  * <EX0 reserved>
1311  *  EX1  - Venice only
1312  *  EX2  - Venice only
1313  *  EX3  - Venice only
1314  *  EX4
1315  *  EX5
1316  *  EX6
1317  * <EX7,8 reserved> <reserved>
1318  *  EX9  - Venice only
1319  *  EX10 - Venice only
1320  *  EX11 - Venice only
1321  *  EX12
1322  *  EX13
1323  *  EX14
1324  * <EX15 reserved>
1325  */
1326 #define POWER8E_CORE_MASK  (0x7070ull)
1327 #define POWER8_CORE_MASK   (0x7e7eull)
1328 
1329 /*
1330  * POWER9 has 24 cores, ids starting at 0x0
1331  */
1332 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1333 
1334 
1335 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1336 
1337 static void pnv_chip_power8_instance_init(Object *obj)
1338 {
1339     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1340     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1341     int i;
1342 
1343     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1344                              (Object **)&chip8->xics,
1345                              object_property_allow_set_link,
1346                              OBJ_PROP_LINK_STRONG);
1347 
1348     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1349 
1350     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1351 
1352     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1353 
1354     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1355 
1356     if (defaults_enabled()) {
1357         chip8->num_phbs = pcc->num_phbs;
1358 
1359         for (i = 0; i < chip8->num_phbs; i++) {
1360             Object *phb = object_new(TYPE_PNV_PHB);
1361 
1362             /*
1363              * We need the chip to parent the PHB to allow the DT
1364              * to build correctly (via pnv_xscom_dt()).
1365              *
1366              * TODO: the PHB should be parented by a PEC device that, at
1367              * this moment, is not modelled powernv8/phb3.
1368              */
1369             object_property_add_child(obj, "phb[*]", phb);
1370             chip8->phbs[i] = PNV_PHB(phb);
1371         }
1372     }
1373 
1374 }
1375 
1376 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1377  {
1378     PnvChip *chip = PNV_CHIP(chip8);
1379     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1380     int i, j;
1381     char *name;
1382 
1383     name = g_strdup_printf("icp-%x", chip->chip_id);
1384     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1385     g_free(name);
1386     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1387                                 &chip8->icp_mmio);
1388 
1389     /* Map the ICP registers for each thread */
1390     for (i = 0; i < chip->nr_cores; i++) {
1391         PnvCore *pnv_core = chip->cores[i];
1392         int core_hwid = CPU_CORE(pnv_core)->core_id;
1393 
1394         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1395             uint32_t pir;
1396             PnvICPState *icp;
1397 
1398             pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1399             icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1400 
1401             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1402                                         &icp->mmio);
1403         }
1404     }
1405 }
1406 
1407 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1408 {
1409     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1410     PnvChip *chip = PNV_CHIP(dev);
1411     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1412     Pnv8Psi *psi8 = &chip8->psi;
1413     Error *local_err = NULL;
1414     int i;
1415 
1416     assert(chip8->xics);
1417 
1418     /* XSCOM bridge is first */
1419     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1420 
1421     pcc->parent_realize(dev, &local_err);
1422     if (local_err) {
1423         error_propagate(errp, local_err);
1424         return;
1425     }
1426 
1427     /* Processor Service Interface (PSI) Host Bridge */
1428     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1429                             &error_fatal);
1430     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1431                              OBJECT(chip8->xics), &error_abort);
1432     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1433         return;
1434     }
1435     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1436                             &PNV_PSI(psi8)->xscom_regs);
1437 
1438     /* Create LPC controller */
1439     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1440     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1441 
1442     chip->fw_mr = &chip8->lpc.isa_fw;
1443     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1444                                             (uint64_t) PNV_XSCOM_BASE(chip),
1445                                             PNV_XSCOM_LPC_BASE);
1446 
1447     /*
1448      * Interrupt Management Area. This is the memory region holding
1449      * all the Interrupt Control Presenter (ICP) registers
1450      */
1451     pnv_chip_icp_realize(chip8, &local_err);
1452     if (local_err) {
1453         error_propagate(errp, local_err);
1454         return;
1455     }
1456 
1457     /* Create the simplified OCC model */
1458     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1459         return;
1460     }
1461     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1462     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1463                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1464 
1465     /* OCC SRAM model */
1466     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1467                                 &chip8->occ.sram_regs);
1468 
1469     /* HOMER */
1470     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1471                              &error_abort);
1472     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1473         return;
1474     }
1475     /* Homer Xscom region */
1476     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1477 
1478     /* Homer mmio region */
1479     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1480                                 &chip8->homer.regs);
1481 
1482     /* PHB controllers */
1483     for (i = 0; i < chip8->num_phbs; i++) {
1484         PnvPHB *phb = chip8->phbs[i];
1485 
1486         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1487         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1488                                 &error_fatal);
1489         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1490                                  &error_fatal);
1491         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1492             return;
1493         }
1494     }
1495 }
1496 
1497 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1498 {
1499     addr &= (PNV_XSCOM_SIZE - 1);
1500     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1501 }
1502 
1503 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1504 {
1505     DeviceClass *dc = DEVICE_CLASS(klass);
1506     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1507 
1508     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1509     k->cores_mask = POWER8E_CORE_MASK;
1510     k->num_phbs = 3;
1511     k->get_pir_tir = pnv_get_pir_tir_p8;
1512     k->intc_create = pnv_chip_power8_intc_create;
1513     k->intc_reset = pnv_chip_power8_intc_reset;
1514     k->intc_destroy = pnv_chip_power8_intc_destroy;
1515     k->intc_print_info = pnv_chip_power8_intc_print_info;
1516     k->isa_create = pnv_chip_power8_isa_create;
1517     k->dt_populate = pnv_chip_power8_dt_populate;
1518     k->pic_print_info = pnv_chip_power8_pic_print_info;
1519     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1520     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1521     dc->desc = "PowerNV Chip POWER8E";
1522 
1523     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1524                                     &k->parent_realize);
1525 }
1526 
1527 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1528 {
1529     DeviceClass *dc = DEVICE_CLASS(klass);
1530     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1531 
1532     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1533     k->cores_mask = POWER8_CORE_MASK;
1534     k->num_phbs = 3;
1535     k->get_pir_tir = pnv_get_pir_tir_p8;
1536     k->intc_create = pnv_chip_power8_intc_create;
1537     k->intc_reset = pnv_chip_power8_intc_reset;
1538     k->intc_destroy = pnv_chip_power8_intc_destroy;
1539     k->intc_print_info = pnv_chip_power8_intc_print_info;
1540     k->isa_create = pnv_chip_power8_isa_create;
1541     k->dt_populate = pnv_chip_power8_dt_populate;
1542     k->pic_print_info = pnv_chip_power8_pic_print_info;
1543     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1544     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1545     dc->desc = "PowerNV Chip POWER8";
1546 
1547     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1548                                     &k->parent_realize);
1549 }
1550 
1551 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1552 {
1553     DeviceClass *dc = DEVICE_CLASS(klass);
1554     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1555 
1556     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1557     k->cores_mask = POWER8_CORE_MASK;
1558     k->num_phbs = 4;
1559     k->get_pir_tir = pnv_get_pir_tir_p8;
1560     k->intc_create = pnv_chip_power8_intc_create;
1561     k->intc_reset = pnv_chip_power8_intc_reset;
1562     k->intc_destroy = pnv_chip_power8_intc_destroy;
1563     k->intc_print_info = pnv_chip_power8_intc_print_info;
1564     k->isa_create = pnv_chip_power8nvl_isa_create;
1565     k->dt_populate = pnv_chip_power8_dt_populate;
1566     k->pic_print_info = pnv_chip_power8_pic_print_info;
1567     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1568     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1569     dc->desc = "PowerNV Chip POWER8NVL";
1570 
1571     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1572                                     &k->parent_realize);
1573 }
1574 
1575 static void pnv_chip_power9_instance_init(Object *obj)
1576 {
1577     PnvChip *chip = PNV_CHIP(obj);
1578     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1579     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1580     int i;
1581 
1582     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1583     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1584     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1585                               "xive-fabric");
1586 
1587     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1588 
1589     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1590 
1591     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1592 
1593     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1594 
1595     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1596 
1597     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1598 
1599     /* Number of PECs is the chip default */
1600     chip->num_pecs = pcc->num_pecs;
1601 
1602     for (i = 0; i < chip->num_pecs; i++) {
1603         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1604                                 TYPE_PNV_PHB4_PEC);
1605     }
1606 
1607     for (i = 0; i < pcc->i2c_num_engines; i++) {
1608         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1609     }
1610 }
1611 
1612 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1613                                       PnvCore *pnv_core,
1614                                       const char *type)
1615 {
1616     char eq_name[32];
1617     int core_id = CPU_CORE(pnv_core)->core_id;
1618 
1619     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1620     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1621                                        sizeof(*eq), type,
1622                                        &error_fatal, NULL);
1623 
1624     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1625     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1626 }
1627 
1628 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1629 {
1630     PnvChip *chip = PNV_CHIP(chip9);
1631     int i;
1632 
1633     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1634     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1635 
1636     for (i = 0; i < chip9->nr_quads; i++) {
1637         PnvQuad *eq = &chip9->quads[i];
1638 
1639         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1640                                   PNV_QUAD_TYPE_NAME("power9"));
1641 
1642         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1643                                 &eq->xscom_regs);
1644     }
1645 }
1646 
1647 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1648 {
1649     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1650     int i;
1651 
1652     for (i = 0; i < chip->num_pecs; i++) {
1653         PnvPhb4PecState *pec = &chip9->pecs[i];
1654         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1655         uint32_t pec_nest_base;
1656         uint32_t pec_pci_base;
1657 
1658         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1659         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1660                                 &error_fatal);
1661         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1662                                  &error_fatal);
1663         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1664             return;
1665         }
1666 
1667         pec_nest_base = pecc->xscom_nest_base(pec);
1668         pec_pci_base = pecc->xscom_pci_base(pec);
1669 
1670         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1671         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1672     }
1673 }
1674 
1675 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1676 {
1677     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1678     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1679     PnvChip *chip = PNV_CHIP(dev);
1680     Pnv9Psi *psi9 = &chip9->psi;
1681     Error *local_err = NULL;
1682     int i;
1683 
1684     /* XSCOM bridge is first */
1685     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1686 
1687     pcc->parent_realize(dev, &local_err);
1688     if (local_err) {
1689         error_propagate(errp, local_err);
1690         return;
1691     }
1692 
1693     /* ADU */
1694     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1695                              &error_abort);
1696     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1697         return;
1698     }
1699     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1700                             &chip9->adu.xscom_regs);
1701 
1702     pnv_chip_quad_realize(chip9, &local_err);
1703     if (local_err) {
1704         error_propagate(errp, local_err);
1705         return;
1706     }
1707 
1708     /* XIVE interrupt controller (POWER9) */
1709     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1710                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1711     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1712                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1713     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1714                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1715     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1716                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1717     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1718                              &error_abort);
1719     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1720         return;
1721     }
1722     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1723                             &chip9->xive.xscom_regs);
1724 
1725     /* Processor Service Interface (PSI) Host Bridge */
1726     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1727                             &error_fatal);
1728     /* This is the only device with 4k ESB pages */
1729     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1730                             &error_fatal);
1731     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1732         return;
1733     }
1734     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1735                             &PNV_PSI(psi9)->xscom_regs);
1736 
1737     /* LPC */
1738     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1739         return;
1740     }
1741     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1742                                 &chip9->lpc.xscom_regs);
1743 
1744     chip->fw_mr = &chip9->lpc.isa_fw;
1745     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1746                                             (uint64_t) PNV9_LPCM_BASE(chip));
1747 
1748     /* ChipTOD */
1749     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1750                              chip->chip_id == 0, &error_abort);
1751     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1752                              chip->chip_id == 1, &error_abort);
1753     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1754                              &error_abort);
1755     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1756         return;
1757     }
1758     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1759                             &chip9->chiptod.xscom_regs);
1760 
1761     /* Create the simplified OCC model */
1762     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1763         return;
1764     }
1765     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1766     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1767                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1768 
1769     /* OCC SRAM model */
1770     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1771                                 &chip9->occ.sram_regs);
1772 
1773     /* SBE */
1774     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1775         return;
1776     }
1777     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1778                             &chip9->sbe.xscom_ctrl_regs);
1779     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1780                             &chip9->sbe.xscom_mbox_regs);
1781     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1782                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1783 
1784     /* HOMER */
1785     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1786                              &error_abort);
1787     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1788         return;
1789     }
1790     /* Homer Xscom region */
1791     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1792 
1793     /* Homer mmio region */
1794     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1795                                 &chip9->homer.regs);
1796 
1797     /* PEC PHBs */
1798     pnv_chip_power9_pec_realize(chip, &local_err);
1799     if (local_err) {
1800         error_propagate(errp, local_err);
1801         return;
1802     }
1803 
1804     /*
1805      * I2C
1806      */
1807     for (i = 0; i < pcc->i2c_num_engines; i++) {
1808         Object *obj =  OBJECT(&chip9->i2c[i]);
1809 
1810         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1811         object_property_set_int(obj, "num-busses",
1812                                 pcc->i2c_ports_per_engine[i],
1813                                 &error_fatal);
1814         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1815         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1816             return;
1817         }
1818         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1819                                 (chip9->i2c[i].engine - 1) *
1820                                         PNV9_XSCOM_I2CM_SIZE,
1821                                 &chip9->i2c[i].xscom_regs);
1822         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1823                               qdev_get_gpio_in(DEVICE(psi9),
1824                                                PSIHB9_IRQ_SBE_I2C));
1825     }
1826 }
1827 
1828 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1829 {
1830     addr &= (PNV9_XSCOM_SIZE - 1);
1831     return addr >> 3;
1832 }
1833 
1834 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1835 {
1836     DeviceClass *dc = DEVICE_CLASS(klass);
1837     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1838     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1839 
1840     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1841     k->cores_mask = POWER9_CORE_MASK;
1842     k->get_pir_tir = pnv_get_pir_tir_p9;
1843     k->intc_create = pnv_chip_power9_intc_create;
1844     k->intc_reset = pnv_chip_power9_intc_reset;
1845     k->intc_destroy = pnv_chip_power9_intc_destroy;
1846     k->intc_print_info = pnv_chip_power9_intc_print_info;
1847     k->isa_create = pnv_chip_power9_isa_create;
1848     k->dt_populate = pnv_chip_power9_dt_populate;
1849     k->pic_print_info = pnv_chip_power9_pic_print_info;
1850     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1851     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1852     dc->desc = "PowerNV Chip POWER9";
1853     k->num_pecs = PNV9_CHIP_MAX_PEC;
1854     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1855     k->i2c_ports_per_engine = i2c_ports_per_engine;
1856 
1857     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1858                                     &k->parent_realize);
1859 }
1860 
1861 static void pnv_chip_power10_instance_init(Object *obj)
1862 {
1863     PnvChip *chip = PNV_CHIP(obj);
1864     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1865     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1866     int i;
1867 
1868     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1869     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1870     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1871                               "xive-fabric");
1872     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1873     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1874     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1875                             TYPE_PNV10_CHIPTOD);
1876     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1877     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1878     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1879     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1880                             TYPE_PNV_N1_CHIPLET);
1881 
1882     chip->num_pecs = pcc->num_pecs;
1883 
1884     for (i = 0; i < chip->num_pecs; i++) {
1885         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1886                                 TYPE_PNV_PHB5_PEC);
1887     }
1888 
1889     for (i = 0; i < pcc->i2c_num_engines; i++) {
1890         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1891     }
1892 }
1893 
1894 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1895 {
1896     PnvChip *chip = PNV_CHIP(chip10);
1897     int i;
1898 
1899     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1900     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1901 
1902     for (i = 0; i < chip10->nr_quads; i++) {
1903         PnvQuad *eq = &chip10->quads[i];
1904 
1905         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1906                                   PNV_QUAD_TYPE_NAME("power10"));
1907 
1908         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1909                                 &eq->xscom_regs);
1910 
1911         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1912                                 &eq->xscom_qme_regs);
1913     }
1914 }
1915 
1916 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1917 {
1918     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1919     int i;
1920 
1921     for (i = 0; i < chip->num_pecs; i++) {
1922         PnvPhb4PecState *pec = &chip10->pecs[i];
1923         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1924         uint32_t pec_nest_base;
1925         uint32_t pec_pci_base;
1926 
1927         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1928         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1929                                 &error_fatal);
1930         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1931                                  &error_fatal);
1932         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1933             return;
1934         }
1935 
1936         pec_nest_base = pecc->xscom_nest_base(pec);
1937         pec_pci_base = pecc->xscom_pci_base(pec);
1938 
1939         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1940         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1941     }
1942 }
1943 
1944 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1945 {
1946     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1947     PnvChip *chip = PNV_CHIP(dev);
1948     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1949     Error *local_err = NULL;
1950     int i;
1951 
1952     /* XSCOM bridge is first */
1953     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1954 
1955     pcc->parent_realize(dev, &local_err);
1956     if (local_err) {
1957         error_propagate(errp, local_err);
1958         return;
1959     }
1960 
1961     /* ADU */
1962     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
1963                              &error_abort);
1964     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
1965         return;
1966     }
1967     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
1968                             &chip10->adu.xscom_regs);
1969 
1970     pnv_chip_power10_quad_realize(chip10, &local_err);
1971     if (local_err) {
1972         error_propagate(errp, local_err);
1973         return;
1974     }
1975 
1976     /* XIVE2 interrupt controller (POWER10) */
1977     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1978                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1979     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1980                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1981     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1982                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1983     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1984                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1985     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1986                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1987     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1988                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1989     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1990                              &error_abort);
1991     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1992         return;
1993     }
1994     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1995                             &chip10->xive.xscom_regs);
1996 
1997     /* Processor Service Interface (PSI) Host Bridge */
1998     object_property_set_int(OBJECT(&chip10->psi), "bar",
1999                             PNV10_PSIHB_BASE(chip), &error_fatal);
2000     /* PSI can now be configured to use 64k ESB pages on POWER10 */
2001     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2002                             &error_fatal);
2003     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2004         return;
2005     }
2006     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2007                             &PNV_PSI(&chip10->psi)->xscom_regs);
2008 
2009     /* LPC */
2010     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2011         return;
2012     }
2013     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2014                                 &chip10->lpc.xscom_regs);
2015 
2016     chip->fw_mr = &chip10->lpc.isa_fw;
2017     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2018                                             (uint64_t) PNV10_LPCM_BASE(chip));
2019 
2020     /* ChipTOD */
2021     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2022                              chip->chip_id == 0, &error_abort);
2023     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2024                              chip->chip_id == 1, &error_abort);
2025     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2026                              &error_abort);
2027     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2028         return;
2029     }
2030     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2031                             &chip10->chiptod.xscom_regs);
2032 
2033     /* Create the simplified OCC model */
2034     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2035         return;
2036     }
2037     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2038                             &chip10->occ.xscom_regs);
2039     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2040                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2041 
2042     /* OCC SRAM model */
2043     memory_region_add_subregion(get_system_memory(),
2044                                 PNV10_OCC_SENSOR_BASE(chip),
2045                                 &chip10->occ.sram_regs);
2046 
2047     /* SBE */
2048     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2049         return;
2050     }
2051     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2052                             &chip10->sbe.xscom_ctrl_regs);
2053     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2054                             &chip10->sbe.xscom_mbox_regs);
2055     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2056                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2057 
2058     /* HOMER */
2059     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2060                              &error_abort);
2061     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2062         return;
2063     }
2064     /* Homer Xscom region */
2065     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2066                             &chip10->homer.pba_regs);
2067 
2068     /* Homer mmio region */
2069     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2070                                 &chip10->homer.regs);
2071 
2072     /* N1 chiplet */
2073     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2074         return;
2075     }
2076     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2077              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2078 
2079     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2080                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2081 
2082     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2083                            &chip10->n1_chiplet.xscom_pb_es_mr);
2084 
2085     /* PHBs */
2086     pnv_chip_power10_phb_realize(chip, &local_err);
2087     if (local_err) {
2088         error_propagate(errp, local_err);
2089         return;
2090     }
2091 
2092 
2093     /*
2094      * I2C
2095      */
2096     for (i = 0; i < pcc->i2c_num_engines; i++) {
2097         Object *obj =  OBJECT(&chip10->i2c[i]);
2098 
2099         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2100         object_property_set_int(obj, "num-busses",
2101                                 pcc->i2c_ports_per_engine[i],
2102                                 &error_fatal);
2103         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2104         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2105             return;
2106         }
2107         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2108                                 (chip10->i2c[i].engine - 1) *
2109                                         PNV10_XSCOM_I2CM_SIZE,
2110                                 &chip10->i2c[i].xscom_regs);
2111         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2112                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2113                                                PSIHB9_IRQ_SBE_I2C));
2114     }
2115 
2116 }
2117 
2118 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2119 {
2120     int i;
2121     for (i = 0; i < pnv->num_chips; i++) {
2122         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2123 
2124         /*
2125          * Add a PCA9552 I2C device for PCIe hotplug control
2126          * to engine 2, bus 1, address 0x63
2127          */
2128         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2129                                                 "pca9552", 0x63);
2130 
2131         /*
2132          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2133          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2134          * after hypervisor code sets a SLOTx_EN pin high.
2135          */
2136         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2137         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2138         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2139         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2140         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2141 
2142         /*
2143          * Add a PCA9554 I2C device for cable card presence detection
2144          * to engine 2, bus 1, address 0x25
2145          */
2146         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2147     }
2148 }
2149 
2150 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2151 {
2152     addr &= (PNV10_XSCOM_SIZE - 1);
2153     return addr >> 3;
2154 }
2155 
2156 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2157 {
2158     DeviceClass *dc = DEVICE_CLASS(klass);
2159     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2160     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2161 
2162     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2163     k->cores_mask = POWER10_CORE_MASK;
2164     k->get_pir_tir = pnv_get_pir_tir_p10;
2165     k->intc_create = pnv_chip_power10_intc_create;
2166     k->intc_reset = pnv_chip_power10_intc_reset;
2167     k->intc_destroy = pnv_chip_power10_intc_destroy;
2168     k->intc_print_info = pnv_chip_power10_intc_print_info;
2169     k->isa_create = pnv_chip_power10_isa_create;
2170     k->dt_populate = pnv_chip_power10_dt_populate;
2171     k->pic_print_info = pnv_chip_power10_pic_print_info;
2172     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2173     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2174     dc->desc = "PowerNV Chip POWER10";
2175     k->num_pecs = PNV10_CHIP_MAX_PEC;
2176     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2177     k->i2c_ports_per_engine = i2c_ports_per_engine;
2178 
2179     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2180                                     &k->parent_realize);
2181 }
2182 
2183 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2184 {
2185     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2186     int cores_max;
2187 
2188     /*
2189      * No custom mask for this chip, let's use the default one from *
2190      * the chip class
2191      */
2192     if (!chip->cores_mask) {
2193         chip->cores_mask = pcc->cores_mask;
2194     }
2195 
2196     /* filter alien core ids ! some are reserved */
2197     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2198         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2199                    chip->cores_mask);
2200         return;
2201     }
2202     chip->cores_mask &= pcc->cores_mask;
2203 
2204     /* now that we have a sane layout, let check the number of cores */
2205     cores_max = ctpop64(chip->cores_mask);
2206     if (chip->nr_cores > cores_max) {
2207         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2208                    cores_max);
2209         return;
2210     }
2211 }
2212 
2213 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2214 {
2215     Error *error = NULL;
2216     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2217     const char *typename = pnv_chip_core_typename(chip);
2218     int i, core_hwid;
2219     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2220 
2221     if (!object_class_by_name(typename)) {
2222         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2223         return;
2224     }
2225 
2226     /* Cores */
2227     pnv_chip_core_sanitize(chip, &error);
2228     if (error) {
2229         error_propagate(errp, error);
2230         return;
2231     }
2232 
2233     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2234 
2235     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2236              && (i < chip->nr_cores); core_hwid++) {
2237         char core_name[32];
2238         PnvCore *pnv_core;
2239         uint64_t xscom_core_base;
2240 
2241         if (!(chip->cores_mask & (1ull << core_hwid))) {
2242             continue;
2243         }
2244 
2245         pnv_core = PNV_CORE(object_new(typename));
2246 
2247         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2248         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2249         chip->cores[i] = pnv_core;
2250         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2251                                 chip->nr_threads, &error_fatal);
2252         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2253                                 core_hwid, &error_fatal);
2254         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2255                                 &error_fatal);
2256         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2257                                 &error_fatal);
2258         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2259                                  &error_abort);
2260         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2261 
2262         /* Each core has an XSCOM MMIO region */
2263         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2264 
2265         pnv_xscom_add_subregion(chip, xscom_core_base,
2266                                 &pnv_core->xscom_regs);
2267         i++;
2268     }
2269 }
2270 
2271 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2272 {
2273     PnvChip *chip = PNV_CHIP(dev);
2274     Error *error = NULL;
2275 
2276     /* Cores */
2277     pnv_chip_core_realize(chip, &error);
2278     if (error) {
2279         error_propagate(errp, error);
2280         return;
2281     }
2282 }
2283 
2284 static Property pnv_chip_properties[] = {
2285     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2286     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2287     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2288     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2289     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2290     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2291     DEFINE_PROP_END_OF_LIST(),
2292 };
2293 
2294 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2295 {
2296     DeviceClass *dc = DEVICE_CLASS(klass);
2297 
2298     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2299     dc->realize = pnv_chip_realize;
2300     device_class_set_props(dc, pnv_chip_properties);
2301     dc->desc = "PowerNV Chip";
2302 }
2303 
2304 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2305 {
2306     int i;
2307 
2308     for (i = 0; i < chip->nr_cores; i++) {
2309         PnvCore *pc = chip->cores[i];
2310         CPUCore *cc = CPU_CORE(pc);
2311 
2312         if (cc->core_id == core_id) {
2313             return pc;
2314         }
2315     }
2316     return NULL;
2317 }
2318 
2319 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2320 {
2321     int i, j;
2322 
2323     for (i = 0; i < chip->nr_cores; i++) {
2324         PnvCore *pc = chip->cores[i];
2325         CPUCore *cc = CPU_CORE(pc);
2326 
2327         for (j = 0; j < cc->nr_threads; j++) {
2328             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2329                 return pc->threads[j];
2330             }
2331         }
2332     }
2333     return NULL;
2334 }
2335 
2336 static void pnv_chip_foreach_cpu(PnvChip *chip,
2337                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2338                    void *opaque)
2339 {
2340     int i, j;
2341 
2342     for (i = 0; i < chip->nr_cores; i++) {
2343         PnvCore *pc = chip->cores[i];
2344 
2345         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2346             fn(chip, pc->threads[j], opaque);
2347         }
2348     }
2349 }
2350 
2351 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2352 {
2353     PnvMachineState *pnv = PNV_MACHINE(xi);
2354     int i, j;
2355 
2356     for (i = 0; i < pnv->num_chips; i++) {
2357         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2358 
2359         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2360             return &chip8->psi.ics;
2361         }
2362 
2363         for (j = 0; j < chip8->num_phbs; j++) {
2364             PnvPHB *phb = chip8->phbs[j];
2365             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2366 
2367             if (ics_valid_irq(&phb3->lsis, irq)) {
2368                 return &phb3->lsis;
2369             }
2370 
2371             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2372                 return ICS(&phb3->msis);
2373             }
2374         }
2375     }
2376     return NULL;
2377 }
2378 
2379 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2380 {
2381     int i;
2382 
2383     for (i = 0; i < pnv->num_chips; i++) {
2384         PnvChip *chip = pnv->chips[i];
2385         if (chip->chip_id == chip_id) {
2386             return chip;
2387         }
2388     }
2389     return NULL;
2390 }
2391 
2392 static void pnv_ics_resend(XICSFabric *xi)
2393 {
2394     PnvMachineState *pnv = PNV_MACHINE(xi);
2395     int i, j;
2396 
2397     for (i = 0; i < pnv->num_chips; i++) {
2398         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2399 
2400         ics_resend(&chip8->psi.ics);
2401 
2402         for (j = 0; j < chip8->num_phbs; j++) {
2403             PnvPHB *phb = chip8->phbs[j];
2404             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2405 
2406             ics_resend(&phb3->lsis);
2407             ics_resend(ICS(&phb3->msis));
2408         }
2409     }
2410 }
2411 
2412 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2413 {
2414     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2415 
2416     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2417 }
2418 
2419 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2420                                     void *opaque)
2421 {
2422     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2423 }
2424 
2425 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2426 {
2427     PnvMachineState *pnv = PNV_MACHINE(obj);
2428     int i;
2429 
2430     for (i = 0; i < pnv->num_chips; i++) {
2431         PnvChip *chip = pnv->chips[i];
2432 
2433         /* First CPU presenters */
2434         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2435 
2436         /* Then other devices, PHB, PSI, XIVE */
2437         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2438     }
2439 }
2440 
2441 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2442                          uint8_t nvt_blk, uint32_t nvt_idx,
2443                          bool cam_ignore, uint8_t priority,
2444                          uint32_t logic_serv,
2445                          XiveTCTXMatch *match)
2446 {
2447     PnvMachineState *pnv = PNV_MACHINE(xfb);
2448     int total_count = 0;
2449     int i;
2450 
2451     for (i = 0; i < pnv->num_chips; i++) {
2452         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2453         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2454         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2455         int count;
2456 
2457         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2458                                priority, logic_serv, match);
2459 
2460         if (count < 0) {
2461             return count;
2462         }
2463 
2464         total_count += count;
2465     }
2466 
2467     return total_count;
2468 }
2469 
2470 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2471                                 uint8_t nvt_blk, uint32_t nvt_idx,
2472                                 bool cam_ignore, uint8_t priority,
2473                                 uint32_t logic_serv,
2474                                 XiveTCTXMatch *match)
2475 {
2476     PnvMachineState *pnv = PNV_MACHINE(xfb);
2477     int total_count = 0;
2478     int i;
2479 
2480     for (i = 0; i < pnv->num_chips; i++) {
2481         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2482         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2483         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2484         int count;
2485 
2486         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2487                                priority, logic_serv, match);
2488 
2489         if (count < 0) {
2490             return count;
2491         }
2492 
2493         total_count += count;
2494     }
2495 
2496     return total_count;
2497 }
2498 
2499 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2500 {
2501     MachineClass *mc = MACHINE_CLASS(oc);
2502     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2503     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2504     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2505 
2506     static GlobalProperty phb_compat[] = {
2507         { TYPE_PNV_PHB, "version", "3" },
2508         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2509     };
2510 
2511     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2512     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2513     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2514 
2515     xic->icp_get = pnv_icp_get;
2516     xic->ics_get = pnv_ics_get;
2517     xic->ics_resend = pnv_ics_resend;
2518 
2519     pmc->compat = compat;
2520     pmc->compat_size = sizeof(compat);
2521     pmc->max_smt_threads = 8;
2522 
2523     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2524 }
2525 
2526 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2527 {
2528     MachineClass *mc = MACHINE_CLASS(oc);
2529     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2530     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2531     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2532 
2533     static GlobalProperty phb_compat[] = {
2534         { TYPE_PNV_PHB, "version", "4" },
2535         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2536     };
2537 
2538     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2539     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2540     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2541 
2542     xfc->match_nvt = pnv_match_nvt;
2543 
2544     pmc->compat = compat;
2545     pmc->compat_size = sizeof(compat);
2546     pmc->max_smt_threads = 4;
2547     pmc->dt_power_mgt = pnv_dt_power_mgt;
2548 
2549     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2550 }
2551 
2552 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2553 {
2554     MachineClass *mc = MACHINE_CLASS(oc);
2555     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2556     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2557     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2558 
2559     static GlobalProperty phb_compat[] = {
2560         { TYPE_PNV_PHB, "version", "5" },
2561         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2562     };
2563 
2564     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2565     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2566 
2567     mc->alias = "powernv";
2568 
2569     pmc->compat = compat;
2570     pmc->compat_size = sizeof(compat);
2571     pmc->max_smt_threads = 4;
2572     pmc->dt_power_mgt = pnv_dt_power_mgt;
2573 
2574     xfc->match_nvt = pnv10_xive_match_nvt;
2575 
2576     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2577 }
2578 
2579 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2580 {
2581     MachineClass *mc = MACHINE_CLASS(oc);
2582 
2583     pnv_machine_p10_common_class_init(oc, data);
2584     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2585 }
2586 
2587 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2588 {
2589     MachineClass *mc = MACHINE_CLASS(oc);
2590     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2591 
2592     pnv_machine_p10_common_class_init(oc, data);
2593     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2594     pmc->i2c_init = pnv_rainier_i2c_init;
2595 }
2596 
2597 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2598 {
2599     PnvMachineState *pnv = PNV_MACHINE(obj);
2600 
2601     return !!pnv->fw_load_addr;
2602 }
2603 
2604 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2605 {
2606     PnvMachineState *pnv = PNV_MACHINE(obj);
2607 
2608     if (value) {
2609         pnv->fw_load_addr = 0x8000000;
2610     }
2611 }
2612 
2613 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2614 {
2615     CPUPPCState *env = cpu_env(cs);
2616 
2617     cpu_synchronize_state(cs);
2618     ppc_cpu_do_system_reset(cs);
2619     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2620         /*
2621          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2622          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2623          * (PPC_BIT(43)).
2624          */
2625         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2626             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2627             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2628         }
2629     } else {
2630         /*
2631          * For non-powersave system resets, SRR1[42:45] are defined to be
2632          * implementation-dependent. The POWER9 User Manual specifies that
2633          * an external (SCOM driven, which may come from a BMC nmi command or
2634          * another CPU requesting a NMI IPI) system reset exception should be
2635          * 0b0010 (PPC_BIT(44)).
2636          */
2637         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2638     }
2639 }
2640 
2641 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2642 {
2643     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2644 }
2645 
2646 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2647 {
2648     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2649     int i;
2650 
2651     for (i = 0; i < pnv->num_chips; i++) {
2652         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2653     }
2654 }
2655 
2656 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2657 {
2658     MachineClass *mc = MACHINE_CLASS(oc);
2659     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2660     NMIClass *nc = NMI_CLASS(oc);
2661 
2662     mc->desc = "IBM PowerNV (Non-Virtualized)";
2663     mc->init = pnv_init;
2664     mc->reset = pnv_reset;
2665     mc->max_cpus = MAX_CPUS;
2666     /* Pnv provides a AHCI device for storage */
2667     mc->block_default_type = IF_IDE;
2668     mc->no_parallel = 1;
2669     mc->default_boot_order = NULL;
2670     /*
2671      * RAM defaults to less than 2048 for 32-bit hosts, and large
2672      * enough to fit the maximum initrd size at it's load address
2673      */
2674     mc->default_ram_size = 1 * GiB;
2675     mc->default_ram_id = "pnv.ram";
2676     ispc->print_info = pnv_pic_print_info;
2677     nc->nmi_monitor_handler = pnv_nmi;
2678 
2679     object_class_property_add_bool(oc, "hb-mode",
2680                                    pnv_machine_get_hb, pnv_machine_set_hb);
2681     object_class_property_set_description(oc, "hb-mode",
2682                               "Use a hostboot like boot loader");
2683 }
2684 
2685 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2686     {                                             \
2687         .name          = type,                    \
2688         .class_init    = class_initfn,            \
2689         .parent        = TYPE_PNV8_CHIP,          \
2690     }
2691 
2692 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2693     {                                             \
2694         .name          = type,                    \
2695         .class_init    = class_initfn,            \
2696         .parent        = TYPE_PNV9_CHIP,          \
2697     }
2698 
2699 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2700     {                                              \
2701         .name          = type,                     \
2702         .class_init    = class_initfn,             \
2703         .parent        = TYPE_PNV10_CHIP,          \
2704     }
2705 
2706 static const TypeInfo types[] = {
2707     {
2708         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2709         .parent        = MACHINE_TYPE_NAME("powernv10"),
2710         .class_init    = pnv_machine_p10_rainier_class_init,
2711     },
2712     {
2713         .name          = MACHINE_TYPE_NAME("powernv10"),
2714         .parent        = TYPE_PNV_MACHINE,
2715         .class_init    = pnv_machine_power10_class_init,
2716         .interfaces = (InterfaceInfo[]) {
2717             { TYPE_XIVE_FABRIC },
2718             { },
2719         },
2720     },
2721     {
2722         .name          = MACHINE_TYPE_NAME("powernv9"),
2723         .parent        = TYPE_PNV_MACHINE,
2724         .class_init    = pnv_machine_power9_class_init,
2725         .interfaces = (InterfaceInfo[]) {
2726             { TYPE_XIVE_FABRIC },
2727             { },
2728         },
2729     },
2730     {
2731         .name          = MACHINE_TYPE_NAME("powernv8"),
2732         .parent        = TYPE_PNV_MACHINE,
2733         .class_init    = pnv_machine_power8_class_init,
2734         .interfaces = (InterfaceInfo[]) {
2735             { TYPE_XICS_FABRIC },
2736             { },
2737         },
2738     },
2739     {
2740         .name          = TYPE_PNV_MACHINE,
2741         .parent        = TYPE_MACHINE,
2742         .abstract       = true,
2743         .instance_size = sizeof(PnvMachineState),
2744         .class_init    = pnv_machine_class_init,
2745         .class_size    = sizeof(PnvMachineClass),
2746         .interfaces = (InterfaceInfo[]) {
2747             { TYPE_INTERRUPT_STATS_PROVIDER },
2748             { TYPE_NMI },
2749             { },
2750         },
2751     },
2752     {
2753         .name          = TYPE_PNV_CHIP,
2754         .parent        = TYPE_SYS_BUS_DEVICE,
2755         .class_init    = pnv_chip_class_init,
2756         .instance_size = sizeof(PnvChip),
2757         .class_size    = sizeof(PnvChipClass),
2758         .abstract      = true,
2759     },
2760 
2761     /*
2762      * P10 chip and variants
2763      */
2764     {
2765         .name          = TYPE_PNV10_CHIP,
2766         .parent        = TYPE_PNV_CHIP,
2767         .instance_init = pnv_chip_power10_instance_init,
2768         .instance_size = sizeof(Pnv10Chip),
2769     },
2770     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2771 
2772     /*
2773      * P9 chip and variants
2774      */
2775     {
2776         .name          = TYPE_PNV9_CHIP,
2777         .parent        = TYPE_PNV_CHIP,
2778         .instance_init = pnv_chip_power9_instance_init,
2779         .instance_size = sizeof(Pnv9Chip),
2780     },
2781     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2782 
2783     /*
2784      * P8 chip and variants
2785      */
2786     {
2787         .name          = TYPE_PNV8_CHIP,
2788         .parent        = TYPE_PNV_CHIP,
2789         .instance_init = pnv_chip_power8_instance_init,
2790         .instance_size = sizeof(Pnv8Chip),
2791     },
2792     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2793     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2794     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2795                           pnv_chip_power8nvl_class_init),
2796 };
2797 
2798 DEFINE_TYPES(types)
2799