1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/datadir.h" 22 #include "qemu/units.h" 23 #include "qemu/cutils.h" 24 #include "qapi/error.h" 25 #include "sysemu/qtest.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/numa.h" 28 #include "sysemu/reset.h" 29 #include "sysemu/runstate.h" 30 #include "sysemu/cpus.h" 31 #include "sysemu/device_tree.h" 32 #include "sysemu/hw_accel.h" 33 #include "target/ppc/cpu.h" 34 #include "hw/ppc/fdt.h" 35 #include "hw/ppc/ppc.h" 36 #include "hw/ppc/pnv.h" 37 #include "hw/ppc/pnv_core.h" 38 #include "hw/loader.h" 39 #include "hw/nmi.h" 40 #include "qapi/visitor.h" 41 #include "monitor/monitor.h" 42 #include "hw/intc/intc.h" 43 #include "hw/ipmi/ipmi.h" 44 #include "target/ppc/mmu-hash64.h" 45 #include "hw/pci/msi.h" 46 #include "hw/pci-host/pnv_phb.h" 47 #include "hw/pci-host/pnv_phb3.h" 48 #include "hw/pci-host/pnv_phb4.h" 49 50 #include "hw/ppc/xics.h" 51 #include "hw/qdev-properties.h" 52 #include "hw/ppc/pnv_chip.h" 53 #include "hw/ppc/pnv_xscom.h" 54 #include "hw/ppc/pnv_pnor.h" 55 56 #include "hw/isa/isa.h" 57 #include "hw/char/serial.h" 58 #include "hw/rtc/mc146818rtc.h" 59 60 #include <libfdt.h> 61 62 #define FDT_MAX_SIZE (1 * MiB) 63 64 #define FW_FILE_NAME "skiboot.lid" 65 #define FW_LOAD_ADDR 0x0 66 #define FW_MAX_SIZE (16 * MiB) 67 68 #define KERNEL_LOAD_ADDR 0x20000000 69 #define KERNEL_MAX_SIZE (128 * MiB) 70 #define INITRD_LOAD_ADDR 0x28000000 71 #define INITRD_MAX_SIZE (128 * MiB) 72 73 static const char *pnv_chip_core_typename(const PnvChip *o) 74 { 75 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 76 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 77 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 78 const char *core_type = object_class_get_name(object_class_by_name(s)); 79 g_free(s); 80 return core_type; 81 } 82 83 /* 84 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 85 * 4 * 4 sockets * 12 cores * 8 threads = 1536 86 * Let's make it 2^11 87 */ 88 #define MAX_CPUS 2048 89 90 /* 91 * Memory nodes are created by hostboot, one for each range of memory 92 * that has a different "affinity". In practice, it means one range 93 * per chip. 94 */ 95 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 96 { 97 char *mem_name; 98 uint64_t mem_reg_property[2]; 99 int off; 100 101 mem_reg_property[0] = cpu_to_be64(start); 102 mem_reg_property[1] = cpu_to_be64(size); 103 104 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 105 off = fdt_add_subnode(fdt, 0, mem_name); 106 g_free(mem_name); 107 108 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 109 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 110 sizeof(mem_reg_property)))); 111 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 112 } 113 114 static int get_cpus_node(void *fdt) 115 { 116 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 117 118 if (cpus_offset < 0) { 119 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 120 if (cpus_offset) { 121 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 122 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 123 } 124 } 125 _FDT(cpus_offset); 126 return cpus_offset; 127 } 128 129 /* 130 * The PowerNV cores (and threads) need to use real HW ids and not an 131 * incremental index like it has been done on other platforms. This HW 132 * id is stored in the CPU PIR, it is used to create cpu nodes in the 133 * device tree, used in XSCOM to address cores and in interrupt 134 * servers. 135 */ 136 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 137 { 138 PowerPCCPU *cpu = pc->threads[0]; 139 CPUState *cs = CPU(cpu); 140 DeviceClass *dc = DEVICE_GET_CLASS(cs); 141 int smt_threads = CPU_CORE(pc)->nr_threads; 142 CPUPPCState *env = &cpu->env; 143 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 144 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 145 int i; 146 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 147 0xffffffff, 0xffffffff}; 148 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 149 uint32_t cpufreq = 1000000000; 150 uint32_t page_sizes_prop[64]; 151 size_t page_sizes_prop_size; 152 const uint8_t pa_features[] = { 24, 0, 153 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 154 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 155 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 156 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 157 int offset; 158 char *nodename; 159 int cpus_offset = get_cpus_node(fdt); 160 161 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 162 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 163 _FDT(offset); 164 g_free(nodename); 165 166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 167 168 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 169 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 170 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 171 172 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 173 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 174 env->dcache_line_size))); 175 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 176 env->dcache_line_size))); 177 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 178 env->icache_line_size))); 179 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 180 env->icache_line_size))); 181 182 if (pcc->l1_dcache_size) { 183 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 184 pcc->l1_dcache_size))); 185 } else { 186 warn_report("Unknown L1 dcache size for cpu"); 187 } 188 if (pcc->l1_icache_size) { 189 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 190 pcc->l1_icache_size))); 191 } else { 192 warn_report("Unknown L1 icache size for cpu"); 193 } 194 195 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 196 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 197 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", 198 cpu->hash64_opts->slb_size))); 199 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 200 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 201 202 if (ppc_has_spr(cpu, SPR_PURR)) { 203 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 204 } 205 206 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 207 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 208 segs, sizeof(segs)))); 209 } 210 211 /* 212 * Advertise VMX/VSX (vector extensions) if available 213 * 0 / no property == no vector extensions 214 * 1 == VMX / Altivec available 215 * 2 == VSX available 216 */ 217 if (env->insns_flags & PPC_ALTIVEC) { 218 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 219 220 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 221 } 222 223 /* 224 * Advertise DFP (Decimal Floating Point) if available 225 * 0 / no property == no DFP 226 * 1 == DFP available 227 */ 228 if (env->insns_flags2 & PPC2_DFP) { 229 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 230 } 231 232 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 233 sizeof(page_sizes_prop)); 234 if (page_sizes_prop_size) { 235 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 236 page_sizes_prop, page_sizes_prop_size))); 237 } 238 239 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 240 pa_features, sizeof(pa_features)))); 241 242 /* Build interrupt servers properties */ 243 for (i = 0; i < smt_threads; i++) { 244 servers_prop[i] = cpu_to_be32(pc->pir + i); 245 } 246 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 247 servers_prop, sizeof(*servers_prop) * smt_threads))); 248 } 249 250 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 251 uint32_t nr_threads) 252 { 253 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 254 char *name; 255 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 256 uint32_t irange[2], i, rsize; 257 uint64_t *reg; 258 int offset; 259 260 irange[0] = cpu_to_be32(pir); 261 irange[1] = cpu_to_be32(nr_threads); 262 263 rsize = sizeof(uint64_t) * 2 * nr_threads; 264 reg = g_malloc(rsize); 265 for (i = 0; i < nr_threads; i++) { 266 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 267 reg[i * 2 + 1] = cpu_to_be64(0x1000); 268 } 269 270 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 271 offset = fdt_add_subnode(fdt, 0, name); 272 _FDT(offset); 273 g_free(name); 274 275 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 276 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 277 _FDT((fdt_setprop_string(fdt, offset, "device_type", 278 "PowerPC-External-Interrupt-Presentation"))); 279 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 280 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 281 irange, sizeof(irange)))); 282 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 283 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 284 g_free(reg); 285 } 286 287 /* 288 * Adds a PnvPHB to the chip on P8. 289 * Implemented here, like for defaults PHBs 290 */ 291 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb) 292 { 293 Pnv8Chip *chip8 = PNV8_CHIP(chip); 294 295 phb->chip = chip; 296 297 chip8->phbs[chip8->num_phbs] = phb; 298 chip8->num_phbs++; 299 return chip; 300 } 301 302 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 303 { 304 static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; 305 int i; 306 307 pnv_dt_xscom(chip, fdt, 0, 308 cpu_to_be64(PNV_XSCOM_BASE(chip)), 309 cpu_to_be64(PNV_XSCOM_SIZE), 310 compat, sizeof(compat)); 311 312 for (i = 0; i < chip->nr_cores; i++) { 313 PnvCore *pnv_core = chip->cores[i]; 314 315 pnv_dt_core(chip, pnv_core, fdt); 316 317 /* Interrupt Control Presenters (ICP). One per core. */ 318 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 319 } 320 321 if (chip->ram_size) { 322 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 323 } 324 } 325 326 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 327 { 328 static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; 329 int i; 330 331 pnv_dt_xscom(chip, fdt, 0, 332 cpu_to_be64(PNV9_XSCOM_BASE(chip)), 333 cpu_to_be64(PNV9_XSCOM_SIZE), 334 compat, sizeof(compat)); 335 336 for (i = 0; i < chip->nr_cores; i++) { 337 PnvCore *pnv_core = chip->cores[i]; 338 339 pnv_dt_core(chip, pnv_core, fdt); 340 } 341 342 if (chip->ram_size) { 343 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 344 } 345 346 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); 347 } 348 349 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) 350 { 351 static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; 352 int i; 353 354 pnv_dt_xscom(chip, fdt, 0, 355 cpu_to_be64(PNV10_XSCOM_BASE(chip)), 356 cpu_to_be64(PNV10_XSCOM_SIZE), 357 compat, sizeof(compat)); 358 359 for (i = 0; i < chip->nr_cores; i++) { 360 PnvCore *pnv_core = chip->cores[i]; 361 362 pnv_dt_core(chip, pnv_core, fdt); 363 } 364 365 if (chip->ram_size) { 366 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 367 } 368 369 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); 370 } 371 372 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 373 { 374 uint32_t io_base = d->ioport_id; 375 uint32_t io_regs[] = { 376 cpu_to_be32(1), 377 cpu_to_be32(io_base), 378 cpu_to_be32(2) 379 }; 380 char *name; 381 int node; 382 383 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 384 node = fdt_add_subnode(fdt, lpc_off, name); 385 _FDT(node); 386 g_free(name); 387 388 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 389 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 390 } 391 392 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 393 { 394 const char compatible[] = "ns16550\0pnpPNP,501"; 395 uint32_t io_base = d->ioport_id; 396 uint32_t io_regs[] = { 397 cpu_to_be32(1), 398 cpu_to_be32(io_base), 399 cpu_to_be32(8) 400 }; 401 uint32_t irq; 402 char *name; 403 int node; 404 405 irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal); 406 407 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 408 node = fdt_add_subnode(fdt, lpc_off, name); 409 _FDT(node); 410 g_free(name); 411 412 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 413 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 414 sizeof(compatible)))); 415 416 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 417 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 418 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 419 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 420 fdt_get_phandle(fdt, lpc_off)))); 421 422 /* This is needed by Linux */ 423 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 424 } 425 426 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 427 { 428 const char compatible[] = "bt\0ipmi-bt"; 429 uint32_t io_base; 430 uint32_t io_regs[] = { 431 cpu_to_be32(1), 432 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 433 cpu_to_be32(3) 434 }; 435 uint32_t irq; 436 char *name; 437 int node; 438 439 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 440 io_regs[1] = cpu_to_be32(io_base); 441 442 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 443 444 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 445 node = fdt_add_subnode(fdt, lpc_off, name); 446 _FDT(node); 447 g_free(name); 448 449 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 450 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 451 sizeof(compatible)))); 452 453 /* Mark it as reserved to avoid Linux trying to claim it */ 454 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 455 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 456 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 457 fdt_get_phandle(fdt, lpc_off)))); 458 } 459 460 typedef struct ForeachPopulateArgs { 461 void *fdt; 462 int offset; 463 } ForeachPopulateArgs; 464 465 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 466 { 467 ForeachPopulateArgs *args = opaque; 468 ISADevice *d = ISA_DEVICE(dev); 469 470 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 471 pnv_dt_rtc(d, args->fdt, args->offset); 472 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 473 pnv_dt_serial(d, args->fdt, args->offset); 474 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 475 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 476 } else { 477 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 478 d->ioport_id); 479 } 480 481 return 0; 482 } 483 484 /* 485 * The default LPC bus of a multichip system is on chip 0. It's 486 * recognized by the firmware (skiboot) using a "primary" property. 487 */ 488 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 489 { 490 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 491 ForeachPopulateArgs args = { 492 .fdt = fdt, 493 .offset = isa_offset, 494 }; 495 uint32_t phandle; 496 497 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 498 499 phandle = qemu_fdt_alloc_phandle(fdt); 500 assert(phandle > 0); 501 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); 502 503 /* 504 * ISA devices are not necessarily parented to the ISA bus so we 505 * can not use object_child_foreach() 506 */ 507 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 508 &args); 509 } 510 511 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) 512 { 513 int off; 514 515 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 516 off = fdt_add_subnode(fdt, off, "power-mgt"); 517 518 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 519 } 520 521 static void *pnv_dt_create(MachineState *machine) 522 { 523 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 524 PnvMachineState *pnv = PNV_MACHINE(machine); 525 void *fdt; 526 char *buf; 527 int off; 528 int i; 529 530 fdt = g_malloc0(FDT_MAX_SIZE); 531 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 532 533 /* /qemu node */ 534 _FDT((fdt_add_subnode(fdt, 0, "qemu"))); 535 536 /* Root node */ 537 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 538 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 539 _FDT((fdt_setprop_string(fdt, 0, "model", 540 "IBM PowerNV (emulated by qemu)"))); 541 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); 542 543 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 544 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 545 if (qemu_uuid_set) { 546 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf))); 547 } 548 g_free(buf); 549 550 off = fdt_add_subnode(fdt, 0, "chosen"); 551 if (machine->kernel_cmdline) { 552 _FDT((fdt_setprop_string(fdt, off, "bootargs", 553 machine->kernel_cmdline))); 554 } 555 556 if (pnv->initrd_size) { 557 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 558 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 559 560 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 561 &start_prop, sizeof(start_prop)))); 562 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 563 &end_prop, sizeof(end_prop)))); 564 } 565 566 /* Populate device tree for each chip */ 567 for (i = 0; i < pnv->num_chips; i++) { 568 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 569 } 570 571 /* Populate ISA devices on chip 0 */ 572 pnv_dt_isa(pnv, fdt); 573 574 if (pnv->bmc) { 575 pnv_dt_bmc_sensors(pnv->bmc, fdt); 576 } 577 578 /* Create an extra node for power management on machines that support it */ 579 if (pmc->dt_power_mgt) { 580 pmc->dt_power_mgt(pnv, fdt); 581 } 582 583 return fdt; 584 } 585 586 static void pnv_powerdown_notify(Notifier *n, void *opaque) 587 { 588 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); 589 590 if (pnv->bmc) { 591 pnv_bmc_powerdown(pnv->bmc); 592 } 593 } 594 595 static void pnv_reset(MachineState *machine, ShutdownCause reason) 596 { 597 PnvMachineState *pnv = PNV_MACHINE(machine); 598 IPMIBmc *bmc; 599 void *fdt; 600 601 qemu_devices_reset(reason); 602 603 /* 604 * The machine should provide by default an internal BMC simulator. 605 * If not, try to use the BMC device that was provided on the command 606 * line. 607 */ 608 bmc = pnv_bmc_find(&error_fatal); 609 if (!pnv->bmc) { 610 if (!bmc) { 611 if (!qtest_enabled()) { 612 warn_report("machine has no BMC device. Use '-device " 613 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' " 614 "to define one"); 615 } 616 } else { 617 pnv_bmc_set_pnor(bmc, pnv->pnor); 618 pnv->bmc = bmc; 619 } 620 } 621 622 fdt = pnv_dt_create(machine); 623 624 /* Pack resulting tree */ 625 _FDT((fdt_pack(fdt))); 626 627 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 628 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 629 630 /* 631 * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free 632 * the existing machine->fdt to avoid leaking it during 633 * a reset. 634 */ 635 g_free(machine->fdt); 636 machine->fdt = fdt; 637 } 638 639 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 640 { 641 Pnv8Chip *chip8 = PNV8_CHIP(chip); 642 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL); 643 644 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq); 645 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 646 } 647 648 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 649 { 650 Pnv8Chip *chip8 = PNV8_CHIP(chip); 651 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C); 652 653 qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq); 654 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 655 } 656 657 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 658 { 659 Pnv9Chip *chip9 = PNV9_CHIP(chip); 660 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC); 661 662 qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq); 663 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 664 } 665 666 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) 667 { 668 Pnv10Chip *chip10 = PNV10_CHIP(chip); 669 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC); 670 671 qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq); 672 return pnv_lpc_isa_create(&chip10->lpc, false, errp); 673 } 674 675 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 676 { 677 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 678 } 679 680 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 681 { 682 Pnv8Chip *chip8 = PNV8_CHIP(chip); 683 int i; 684 685 ics_pic_print_info(&chip8->psi.ics, mon); 686 687 for (i = 0; i < chip8->num_phbs; i++) { 688 PnvPHB *phb = chip8->phbs[i]; 689 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 690 691 pnv_phb3_msi_pic_print_info(&phb3->msis, mon); 692 ics_pic_print_info(&phb3->lsis, mon); 693 } 694 } 695 696 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque) 697 { 698 Monitor *mon = opaque; 699 PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB); 700 701 if (!phb) { 702 return 0; 703 } 704 705 pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), mon); 706 707 return 0; 708 } 709 710 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 711 { 712 Pnv9Chip *chip9 = PNV9_CHIP(chip); 713 714 pnv_xive_pic_print_info(&chip9->xive, mon); 715 pnv_psi_pic_print_info(&chip9->psi, mon); 716 717 object_child_foreach_recursive(OBJECT(chip), 718 pnv_chip_power9_pic_print_info_child, mon); 719 } 720 721 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, 722 uint32_t core_id) 723 { 724 return PNV_XSCOM_EX_BASE(core_id); 725 } 726 727 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, 728 uint32_t core_id) 729 { 730 return PNV9_XSCOM_EC_BASE(core_id); 731 } 732 733 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, 734 uint32_t core_id) 735 { 736 return PNV10_XSCOM_EC_BASE(core_id); 737 } 738 739 static bool pnv_match_cpu(const char *default_type, const char *cpu_type) 740 { 741 PowerPCCPUClass *ppc_default = 742 POWERPC_CPU_CLASS(object_class_by_name(default_type)); 743 PowerPCCPUClass *ppc = 744 POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); 745 746 return ppc_default->pvr_match(ppc_default, ppc->pvr, false); 747 } 748 749 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) 750 { 751 ISADevice *dev = isa_new("isa-ipmi-bt"); 752 753 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal); 754 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal); 755 isa_realize_and_unref(dev, bus, &error_fatal); 756 } 757 758 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon) 759 { 760 Pnv10Chip *chip10 = PNV10_CHIP(chip); 761 762 pnv_xive2_pic_print_info(&chip10->xive, mon); 763 pnv_psi_pic_print_info(&chip10->psi, mon); 764 765 object_child_foreach_recursive(OBJECT(chip), 766 pnv_chip_power9_pic_print_info_child, mon); 767 } 768 769 /* Always give the first 1GB to chip 0 else we won't boot */ 770 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id) 771 { 772 MachineState *machine = MACHINE(pnv); 773 uint64_t ram_per_chip; 774 775 assert(machine->ram_size >= 1 * GiB); 776 777 ram_per_chip = machine->ram_size / pnv->num_chips; 778 if (ram_per_chip >= 1 * GiB) { 779 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 780 } 781 782 assert(pnv->num_chips > 1); 783 784 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1); 785 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 786 } 787 788 static void pnv_init(MachineState *machine) 789 { 790 const char *bios_name = machine->firmware ?: FW_FILE_NAME; 791 PnvMachineState *pnv = PNV_MACHINE(machine); 792 MachineClass *mc = MACHINE_GET_CLASS(machine); 793 char *fw_filename; 794 long fw_size; 795 uint64_t chip_ram_start = 0; 796 int i; 797 char *chip_typename; 798 DriveInfo *pnor = drive_get(IF_MTD, 0, 0); 799 DeviceState *dev; 800 801 if (kvm_enabled()) { 802 error_report("machine %s does not support the KVM accelerator", 803 mc->name); 804 exit(EXIT_FAILURE); 805 } 806 807 /* allocate RAM */ 808 if (machine->ram_size < mc->default_ram_size) { 809 char *sz = size_to_str(mc->default_ram_size); 810 error_report("Invalid RAM size, should be bigger than %s", sz); 811 g_free(sz); 812 exit(EXIT_FAILURE); 813 } 814 memory_region_add_subregion(get_system_memory(), 0, machine->ram); 815 816 /* 817 * Create our simple PNOR device 818 */ 819 dev = qdev_new(TYPE_PNV_PNOR); 820 if (pnor) { 821 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor)); 822 } 823 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 824 pnv->pnor = PNV_PNOR(dev); 825 826 /* load skiboot firmware */ 827 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 828 if (!fw_filename) { 829 error_report("Could not find OPAL firmware '%s'", bios_name); 830 exit(1); 831 } 832 833 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE); 834 if (fw_size < 0) { 835 error_report("Could not load OPAL firmware '%s'", fw_filename); 836 exit(1); 837 } 838 g_free(fw_filename); 839 840 /* load kernel */ 841 if (machine->kernel_filename) { 842 long kernel_size; 843 844 kernel_size = load_image_targphys(machine->kernel_filename, 845 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 846 if (kernel_size < 0) { 847 error_report("Could not load kernel '%s'", 848 machine->kernel_filename); 849 exit(1); 850 } 851 } 852 853 /* load initrd */ 854 if (machine->initrd_filename) { 855 pnv->initrd_base = INITRD_LOAD_ADDR; 856 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 857 pnv->initrd_base, INITRD_MAX_SIZE); 858 if (pnv->initrd_size < 0) { 859 error_report("Could not load initial ram disk '%s'", 860 machine->initrd_filename); 861 exit(1); 862 } 863 } 864 865 /* MSIs are supported on this platform */ 866 msi_nonbroken = true; 867 868 /* 869 * Check compatibility of the specified CPU with the machine 870 * default. 871 */ 872 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { 873 error_report("invalid CPU model '%s' for %s machine", 874 machine->cpu_type, mc->name); 875 exit(1); 876 } 877 878 /* Create the processor chips */ 879 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 880 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 881 i, machine->cpu_type); 882 if (!object_class_by_name(chip_typename)) { 883 error_report("invalid chip model '%.*s' for %s machine", 884 i, machine->cpu_type, mc->name); 885 exit(1); 886 } 887 888 pnv->num_chips = 889 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); 890 891 if (machine->smp.threads > 8) { 892 error_report("Cannot support more than 8 threads/core " 893 "on a powernv machine"); 894 exit(1); 895 } 896 if (!is_power_of_2(machine->smp.threads)) { 897 error_report("Cannot support %d threads/core on a powernv" 898 "machine because it must be a power of 2", 899 machine->smp.threads); 900 exit(1); 901 } 902 /* 903 * TODO: should we decide on how many chips we can create based 904 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 905 */ 906 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) { 907 error_report("invalid number of chips: '%d'", pnv->num_chips); 908 error_printf( 909 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n"); 910 exit(1); 911 } 912 913 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 914 for (i = 0; i < pnv->num_chips; i++) { 915 char chip_name[32]; 916 Object *chip = OBJECT(qdev_new(chip_typename)); 917 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i); 918 919 pnv->chips[i] = PNV_CHIP(chip); 920 921 /* Distribute RAM among the chips */ 922 object_property_set_int(chip, "ram-start", chip_ram_start, 923 &error_fatal); 924 object_property_set_int(chip, "ram-size", chip_ram_size, 925 &error_fatal); 926 chip_ram_start += chip_ram_size; 927 928 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i); 929 object_property_add_child(OBJECT(pnv), chip_name, chip); 930 object_property_set_int(chip, "chip-id", i, &error_fatal); 931 object_property_set_int(chip, "nr-cores", machine->smp.cores, 932 &error_fatal); 933 object_property_set_int(chip, "nr-threads", machine->smp.threads, 934 &error_fatal); 935 /* 936 * The POWER8 machine use the XICS interrupt interface. 937 * Propagate the XICS fabric to the chip and its controllers. 938 */ 939 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { 940 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort); 941 } 942 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { 943 object_property_set_link(chip, "xive-fabric", OBJECT(pnv), 944 &error_abort); 945 } 946 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal); 947 } 948 g_free(chip_typename); 949 950 /* Instantiate ISA bus on chip 0 */ 951 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 952 953 /* Create serial port */ 954 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 955 956 /* Create an RTC ISA device too */ 957 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 958 959 /* 960 * Create the machine BMC simulator and the IPMI BT device for 961 * communication with the BMC 962 */ 963 if (defaults_enabled()) { 964 pnv->bmc = pnv_bmc_create(pnv->pnor); 965 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); 966 } 967 968 /* 969 * The PNOR is mapped on the LPC FW address space by the BMC. 970 * Since we can not reach the remote BMC machine with LPC memops, 971 * map it always for now. 972 */ 973 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET, 974 &pnv->pnor->mmio); 975 976 /* 977 * OpenPOWER systems use a IPMI SEL Event message to notify the 978 * host to powerdown 979 */ 980 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 981 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 982 } 983 984 /* 985 * 0:21 Reserved - Read as zeros 986 * 22:24 Chip ID 987 * 25:28 Core number 988 * 29:31 Thread ID 989 */ 990 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 991 { 992 return (chip->chip_id << 7) | (core_id << 3); 993 } 994 995 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 996 Error **errp) 997 { 998 Pnv8Chip *chip8 = PNV8_CHIP(chip); 999 Error *local_err = NULL; 1000 Object *obj; 1001 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1002 1003 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); 1004 if (local_err) { 1005 error_propagate(errp, local_err); 1006 return; 1007 } 1008 1009 pnv_cpu->intc = obj; 1010 } 1011 1012 1013 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1014 { 1015 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1016 1017 icp_reset(ICP(pnv_cpu->intc)); 1018 } 1019 1020 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1021 { 1022 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1023 1024 icp_destroy(ICP(pnv_cpu->intc)); 1025 pnv_cpu->intc = NULL; 1026 } 1027 1028 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1029 Monitor *mon) 1030 { 1031 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 1032 } 1033 1034 /* 1035 * 0:48 Reserved - Read as zeroes 1036 * 49:52 Node ID 1037 * 53:55 Chip ID 1038 * 56 Reserved - Read as zero 1039 * 57:61 Core number 1040 * 62:63 Thread ID 1041 * 1042 * We only care about the lower bits. uint32_t is fine for the moment. 1043 */ 1044 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 1045 { 1046 return (chip->chip_id << 8) | (core_id << 2); 1047 } 1048 1049 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id) 1050 { 1051 return (chip->chip_id << 8) | (core_id << 2); 1052 } 1053 1054 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1055 Error **errp) 1056 { 1057 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1058 Error *local_err = NULL; 1059 Object *obj; 1060 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1061 1062 /* 1063 * The core creates its interrupt presenter but the XIVE interrupt 1064 * controller object is initialized afterwards. Hopefully, it's 1065 * only used at runtime. 1066 */ 1067 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive), 1068 &local_err); 1069 if (local_err) { 1070 error_propagate(errp, local_err); 1071 return; 1072 } 1073 1074 pnv_cpu->intc = obj; 1075 } 1076 1077 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1078 { 1079 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1080 1081 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1082 } 1083 1084 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1085 { 1086 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1087 1088 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1089 pnv_cpu->intc = NULL; 1090 } 1091 1092 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1093 Monitor *mon) 1094 { 1095 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1096 } 1097 1098 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1099 Error **errp) 1100 { 1101 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1102 Error *local_err = NULL; 1103 Object *obj; 1104 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1105 1106 /* 1107 * The core creates its interrupt presenter but the XIVE2 interrupt 1108 * controller object is initialized afterwards. Hopefully, it's 1109 * only used at runtime. 1110 */ 1111 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive), 1112 &local_err); 1113 if (local_err) { 1114 error_propagate(errp, local_err); 1115 return; 1116 } 1117 1118 pnv_cpu->intc = obj; 1119 } 1120 1121 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1122 { 1123 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1124 1125 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1126 } 1127 1128 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1129 { 1130 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1131 1132 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1133 pnv_cpu->intc = NULL; 1134 } 1135 1136 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1137 Monitor *mon) 1138 { 1139 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1140 } 1141 1142 /* 1143 * Allowed core identifiers on a POWER8 Processor Chip : 1144 * 1145 * <EX0 reserved> 1146 * EX1 - Venice only 1147 * EX2 - Venice only 1148 * EX3 - Venice only 1149 * EX4 1150 * EX5 1151 * EX6 1152 * <EX7,8 reserved> <reserved> 1153 * EX9 - Venice only 1154 * EX10 - Venice only 1155 * EX11 - Venice only 1156 * EX12 1157 * EX13 1158 * EX14 1159 * <EX15 reserved> 1160 */ 1161 #define POWER8E_CORE_MASK (0x7070ull) 1162 #define POWER8_CORE_MASK (0x7e7eull) 1163 1164 /* 1165 * POWER9 has 24 cores, ids starting at 0x0 1166 */ 1167 #define POWER9_CORE_MASK (0xffffffffffffffull) 1168 1169 1170 #define POWER10_CORE_MASK (0xffffffffffffffull) 1171 1172 static void pnv_chip_power8_instance_init(Object *obj) 1173 { 1174 Pnv8Chip *chip8 = PNV8_CHIP(obj); 1175 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1176 int i; 1177 1178 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, 1179 (Object **)&chip8->xics, 1180 object_property_allow_set_link, 1181 OBJ_PROP_LINK_STRONG); 1182 1183 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI); 1184 1185 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC); 1186 1187 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC); 1188 1189 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER); 1190 1191 if (defaults_enabled()) { 1192 chip8->num_phbs = pcc->num_phbs; 1193 1194 for (i = 0; i < chip8->num_phbs; i++) { 1195 Object *phb = object_new(TYPE_PNV_PHB); 1196 1197 /* 1198 * We need the chip to parent the PHB to allow the DT 1199 * to build correctly (via pnv_xscom_dt()). 1200 * 1201 * TODO: the PHB should be parented by a PEC device that, at 1202 * this moment, is not modelled powernv8/phb3. 1203 */ 1204 object_property_add_child(obj, "phb[*]", phb); 1205 chip8->phbs[i] = PNV_PHB(phb); 1206 } 1207 } 1208 1209 } 1210 1211 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 1212 { 1213 PnvChip *chip = PNV_CHIP(chip8); 1214 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1215 int i, j; 1216 char *name; 1217 1218 name = g_strdup_printf("icp-%x", chip->chip_id); 1219 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 1220 g_free(name); 1221 memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip), 1222 &chip8->icp_mmio); 1223 1224 /* Map the ICP registers for each thread */ 1225 for (i = 0; i < chip->nr_cores; i++) { 1226 PnvCore *pnv_core = chip->cores[i]; 1227 int core_hwid = CPU_CORE(pnv_core)->core_id; 1228 1229 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 1230 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 1231 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); 1232 1233 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 1234 &icp->mmio); 1235 } 1236 } 1237 } 1238 1239 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 1240 { 1241 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1242 PnvChip *chip = PNV_CHIP(dev); 1243 Pnv8Chip *chip8 = PNV8_CHIP(dev); 1244 Pnv8Psi *psi8 = &chip8->psi; 1245 Error *local_err = NULL; 1246 int i; 1247 1248 assert(chip8->xics); 1249 1250 /* XSCOM bridge is first */ 1251 pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip)); 1252 1253 pcc->parent_realize(dev, &local_err); 1254 if (local_err) { 1255 error_propagate(errp, local_err); 1256 return; 1257 } 1258 1259 /* Processor Service Interface (PSI) Host Bridge */ 1260 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip), 1261 &error_fatal); 1262 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS, 1263 OBJECT(chip8->xics), &error_abort); 1264 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) { 1265 return; 1266 } 1267 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 1268 &PNV_PSI(psi8)->xscom_regs); 1269 1270 /* Create LPC controller */ 1271 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal); 1272 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 1273 1274 chip->fw_mr = &chip8->lpc.isa_fw; 1275 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 1276 (uint64_t) PNV_XSCOM_BASE(chip), 1277 PNV_XSCOM_LPC_BASE); 1278 1279 /* 1280 * Interrupt Management Area. This is the memory region holding 1281 * all the Interrupt Control Presenter (ICP) registers 1282 */ 1283 pnv_chip_icp_realize(chip8, &local_err); 1284 if (local_err) { 1285 error_propagate(errp, local_err); 1286 return; 1287 } 1288 1289 /* Create the simplified OCC model */ 1290 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) { 1291 return; 1292 } 1293 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 1294 qdev_connect_gpio_out(DEVICE(&chip8->occ), 0, 1295 qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_OCC)); 1296 1297 /* OCC SRAM model */ 1298 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), 1299 &chip8->occ.sram_regs); 1300 1301 /* HOMER */ 1302 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip), 1303 &error_abort); 1304 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) { 1305 return; 1306 } 1307 /* Homer Xscom region */ 1308 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); 1309 1310 /* Homer mmio region */ 1311 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), 1312 &chip8->homer.regs); 1313 1314 /* PHB controllers */ 1315 for (i = 0; i < chip8->num_phbs; i++) { 1316 PnvPHB *phb = chip8->phbs[i]; 1317 1318 object_property_set_int(OBJECT(phb), "index", i, &error_fatal); 1319 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id, 1320 &error_fatal); 1321 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip), 1322 &error_fatal); 1323 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) { 1324 return; 1325 } 1326 } 1327 } 1328 1329 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) 1330 { 1331 addr &= (PNV_XSCOM_SIZE - 1); 1332 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); 1333 } 1334 1335 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 1336 { 1337 DeviceClass *dc = DEVICE_CLASS(klass); 1338 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1339 1340 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 1341 k->cores_mask = POWER8E_CORE_MASK; 1342 k->num_phbs = 3; 1343 k->core_pir = pnv_chip_core_pir_p8; 1344 k->intc_create = pnv_chip_power8_intc_create; 1345 k->intc_reset = pnv_chip_power8_intc_reset; 1346 k->intc_destroy = pnv_chip_power8_intc_destroy; 1347 k->intc_print_info = pnv_chip_power8_intc_print_info; 1348 k->isa_create = pnv_chip_power8_isa_create; 1349 k->dt_populate = pnv_chip_power8_dt_populate; 1350 k->pic_print_info = pnv_chip_power8_pic_print_info; 1351 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1352 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1353 dc->desc = "PowerNV Chip POWER8E"; 1354 1355 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1356 &k->parent_realize); 1357 } 1358 1359 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 1360 { 1361 DeviceClass *dc = DEVICE_CLASS(klass); 1362 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1363 1364 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 1365 k->cores_mask = POWER8_CORE_MASK; 1366 k->num_phbs = 3; 1367 k->core_pir = pnv_chip_core_pir_p8; 1368 k->intc_create = pnv_chip_power8_intc_create; 1369 k->intc_reset = pnv_chip_power8_intc_reset; 1370 k->intc_destroy = pnv_chip_power8_intc_destroy; 1371 k->intc_print_info = pnv_chip_power8_intc_print_info; 1372 k->isa_create = pnv_chip_power8_isa_create; 1373 k->dt_populate = pnv_chip_power8_dt_populate; 1374 k->pic_print_info = pnv_chip_power8_pic_print_info; 1375 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1376 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1377 dc->desc = "PowerNV Chip POWER8"; 1378 1379 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1380 &k->parent_realize); 1381 } 1382 1383 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 1384 { 1385 DeviceClass *dc = DEVICE_CLASS(klass); 1386 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1387 1388 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 1389 k->cores_mask = POWER8_CORE_MASK; 1390 k->num_phbs = 4; 1391 k->core_pir = pnv_chip_core_pir_p8; 1392 k->intc_create = pnv_chip_power8_intc_create; 1393 k->intc_reset = pnv_chip_power8_intc_reset; 1394 k->intc_destroy = pnv_chip_power8_intc_destroy; 1395 k->intc_print_info = pnv_chip_power8_intc_print_info; 1396 k->isa_create = pnv_chip_power8nvl_isa_create; 1397 k->dt_populate = pnv_chip_power8_dt_populate; 1398 k->pic_print_info = pnv_chip_power8_pic_print_info; 1399 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1400 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1401 dc->desc = "PowerNV Chip POWER8NVL"; 1402 1403 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1404 &k->parent_realize); 1405 } 1406 1407 static void pnv_chip_power9_instance_init(Object *obj) 1408 { 1409 PnvChip *chip = PNV_CHIP(obj); 1410 Pnv9Chip *chip9 = PNV9_CHIP(obj); 1411 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1412 int i; 1413 1414 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE); 1415 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), 1416 "xive-fabric"); 1417 1418 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI); 1419 1420 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC); 1421 1422 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC); 1423 1424 object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE); 1425 1426 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER); 1427 1428 /* Number of PECs is the chip default */ 1429 chip->num_pecs = pcc->num_pecs; 1430 1431 for (i = 0; i < chip->num_pecs; i++) { 1432 object_initialize_child(obj, "pec[*]", &chip9->pecs[i], 1433 TYPE_PNV_PHB4_PEC); 1434 } 1435 } 1436 1437 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq, 1438 PnvCore *pnv_core, 1439 const char *type) 1440 { 1441 char eq_name[32]; 1442 int core_id = CPU_CORE(pnv_core)->core_id; 1443 1444 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1445 object_initialize_child_with_props(OBJECT(chip), eq_name, eq, 1446 sizeof(*eq), type, 1447 &error_fatal, NULL); 1448 1449 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal); 1450 qdev_realize(DEVICE(eq), NULL, &error_fatal); 1451 } 1452 1453 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 1454 { 1455 PnvChip *chip = PNV_CHIP(chip9); 1456 int i; 1457 1458 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1459 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1460 1461 for (i = 0; i < chip9->nr_quads; i++) { 1462 PnvQuad *eq = &chip9->quads[i]; 1463 1464 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], 1465 PNV_QUAD_TYPE_NAME("power9")); 1466 1467 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id), 1468 &eq->xscom_regs); 1469 } 1470 } 1471 1472 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp) 1473 { 1474 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1475 int i; 1476 1477 for (i = 0; i < chip->num_pecs; i++) { 1478 PnvPhb4PecState *pec = &chip9->pecs[i]; 1479 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1480 uint32_t pec_nest_base; 1481 uint32_t pec_pci_base; 1482 1483 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1484 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1485 &error_fatal); 1486 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1487 &error_fatal); 1488 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1489 return; 1490 } 1491 1492 pec_nest_base = pecc->xscom_nest_base(pec); 1493 pec_pci_base = pecc->xscom_pci_base(pec); 1494 1495 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1496 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1497 } 1498 } 1499 1500 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1501 { 1502 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1503 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1504 PnvChip *chip = PNV_CHIP(dev); 1505 Pnv9Psi *psi9 = &chip9->psi; 1506 Error *local_err = NULL; 1507 1508 /* XSCOM bridge is first */ 1509 pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip)); 1510 1511 pcc->parent_realize(dev, &local_err); 1512 if (local_err) { 1513 error_propagate(errp, local_err); 1514 return; 1515 } 1516 1517 pnv_chip_quad_realize(chip9, &local_err); 1518 if (local_err) { 1519 error_propagate(errp, local_err); 1520 return; 1521 } 1522 1523 /* XIVE interrupt controller (POWER9) */ 1524 object_property_set_int(OBJECT(&chip9->xive), "ic-bar", 1525 PNV9_XIVE_IC_BASE(chip), &error_fatal); 1526 object_property_set_int(OBJECT(&chip9->xive), "vc-bar", 1527 PNV9_XIVE_VC_BASE(chip), &error_fatal); 1528 object_property_set_int(OBJECT(&chip9->xive), "pc-bar", 1529 PNV9_XIVE_PC_BASE(chip), &error_fatal); 1530 object_property_set_int(OBJECT(&chip9->xive), "tm-bar", 1531 PNV9_XIVE_TM_BASE(chip), &error_fatal); 1532 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip), 1533 &error_abort); 1534 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) { 1535 return; 1536 } 1537 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1538 &chip9->xive.xscom_regs); 1539 1540 /* Processor Service Interface (PSI) Host Bridge */ 1541 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip), 1542 &error_fatal); 1543 /* This is the only device with 4k ESB pages */ 1544 object_property_set_int(OBJECT(&chip9->psi), "shift", XIVE_ESB_4K, 1545 &error_fatal); 1546 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) { 1547 return; 1548 } 1549 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1550 &PNV_PSI(psi9)->xscom_regs); 1551 1552 /* LPC */ 1553 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) { 1554 return; 1555 } 1556 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1557 &chip9->lpc.xscom_regs); 1558 1559 chip->fw_mr = &chip9->lpc.isa_fw; 1560 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1561 (uint64_t) PNV9_LPCM_BASE(chip)); 1562 1563 /* Create the simplified OCC model */ 1564 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) { 1565 return; 1566 } 1567 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1568 qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in( 1569 DEVICE(&chip9->psi), PSIHB9_IRQ_OCC)); 1570 1571 /* OCC SRAM model */ 1572 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), 1573 &chip9->occ.sram_regs); 1574 1575 /* SBE */ 1576 if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) { 1577 return; 1578 } 1579 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE, 1580 &chip9->sbe.xscom_ctrl_regs); 1581 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE, 1582 &chip9->sbe.xscom_mbox_regs); 1583 qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in( 1584 DEVICE(&chip9->psi), PSIHB9_IRQ_PSU)); 1585 1586 /* HOMER */ 1587 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip), 1588 &error_abort); 1589 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) { 1590 return; 1591 } 1592 /* Homer Xscom region */ 1593 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); 1594 1595 /* Homer mmio region */ 1596 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), 1597 &chip9->homer.regs); 1598 1599 /* PEC PHBs */ 1600 pnv_chip_power9_pec_realize(chip, &local_err); 1601 if (local_err) { 1602 error_propagate(errp, local_err); 1603 return; 1604 } 1605 } 1606 1607 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) 1608 { 1609 addr &= (PNV9_XSCOM_SIZE - 1); 1610 return addr >> 3; 1611 } 1612 1613 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1614 { 1615 DeviceClass *dc = DEVICE_CLASS(klass); 1616 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1617 1618 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1619 k->cores_mask = POWER9_CORE_MASK; 1620 k->core_pir = pnv_chip_core_pir_p9; 1621 k->intc_create = pnv_chip_power9_intc_create; 1622 k->intc_reset = pnv_chip_power9_intc_reset; 1623 k->intc_destroy = pnv_chip_power9_intc_destroy; 1624 k->intc_print_info = pnv_chip_power9_intc_print_info; 1625 k->isa_create = pnv_chip_power9_isa_create; 1626 k->dt_populate = pnv_chip_power9_dt_populate; 1627 k->pic_print_info = pnv_chip_power9_pic_print_info; 1628 k->xscom_core_base = pnv_chip_power9_xscom_core_base; 1629 k->xscom_pcba = pnv_chip_power9_xscom_pcba; 1630 dc->desc = "PowerNV Chip POWER9"; 1631 k->num_pecs = PNV9_CHIP_MAX_PEC; 1632 1633 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1634 &k->parent_realize); 1635 } 1636 1637 static void pnv_chip_power10_instance_init(Object *obj) 1638 { 1639 PnvChip *chip = PNV_CHIP(obj); 1640 Pnv10Chip *chip10 = PNV10_CHIP(obj); 1641 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1642 int i; 1643 1644 object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2); 1645 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive), 1646 "xive-fabric"); 1647 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI); 1648 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC); 1649 object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC); 1650 object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE); 1651 object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER); 1652 1653 chip->num_pecs = pcc->num_pecs; 1654 1655 for (i = 0; i < chip->num_pecs; i++) { 1656 object_initialize_child(obj, "pec[*]", &chip10->pecs[i], 1657 TYPE_PNV_PHB5_PEC); 1658 } 1659 } 1660 1661 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp) 1662 { 1663 PnvChip *chip = PNV_CHIP(chip10); 1664 int i; 1665 1666 chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1667 chip10->quads = g_new0(PnvQuad, chip10->nr_quads); 1668 1669 for (i = 0; i < chip10->nr_quads; i++) { 1670 PnvQuad *eq = &chip10->quads[i]; 1671 1672 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4], 1673 PNV_QUAD_TYPE_NAME("power10")); 1674 1675 pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id), 1676 &eq->xscom_regs); 1677 1678 pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id), 1679 &eq->xscom_qme_regs); 1680 } 1681 } 1682 1683 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp) 1684 { 1685 Pnv10Chip *chip10 = PNV10_CHIP(chip); 1686 int i; 1687 1688 for (i = 0; i < chip->num_pecs; i++) { 1689 PnvPhb4PecState *pec = &chip10->pecs[i]; 1690 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1691 uint32_t pec_nest_base; 1692 uint32_t pec_pci_base; 1693 1694 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1695 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1696 &error_fatal); 1697 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1698 &error_fatal); 1699 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1700 return; 1701 } 1702 1703 pec_nest_base = pecc->xscom_nest_base(pec); 1704 pec_pci_base = pecc->xscom_pci_base(pec); 1705 1706 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1707 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1708 } 1709 } 1710 1711 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) 1712 { 1713 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1714 PnvChip *chip = PNV_CHIP(dev); 1715 Pnv10Chip *chip10 = PNV10_CHIP(dev); 1716 Error *local_err = NULL; 1717 1718 /* XSCOM bridge is first */ 1719 pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip)); 1720 1721 pcc->parent_realize(dev, &local_err); 1722 if (local_err) { 1723 error_propagate(errp, local_err); 1724 return; 1725 } 1726 1727 pnv_chip_power10_quad_realize(chip10, &local_err); 1728 if (local_err) { 1729 error_propagate(errp, local_err); 1730 return; 1731 } 1732 1733 /* XIVE2 interrupt controller (POWER10) */ 1734 object_property_set_int(OBJECT(&chip10->xive), "ic-bar", 1735 PNV10_XIVE2_IC_BASE(chip), &error_fatal); 1736 object_property_set_int(OBJECT(&chip10->xive), "esb-bar", 1737 PNV10_XIVE2_ESB_BASE(chip), &error_fatal); 1738 object_property_set_int(OBJECT(&chip10->xive), "end-bar", 1739 PNV10_XIVE2_END_BASE(chip), &error_fatal); 1740 object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar", 1741 PNV10_XIVE2_NVPG_BASE(chip), &error_fatal); 1742 object_property_set_int(OBJECT(&chip10->xive), "nvc-bar", 1743 PNV10_XIVE2_NVC_BASE(chip), &error_fatal); 1744 object_property_set_int(OBJECT(&chip10->xive), "tm-bar", 1745 PNV10_XIVE2_TM_BASE(chip), &error_fatal); 1746 object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip), 1747 &error_abort); 1748 if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) { 1749 return; 1750 } 1751 pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE, 1752 &chip10->xive.xscom_regs); 1753 1754 /* Processor Service Interface (PSI) Host Bridge */ 1755 object_property_set_int(OBJECT(&chip10->psi), "bar", 1756 PNV10_PSIHB_BASE(chip), &error_fatal); 1757 /* PSI can now be configured to use 64k ESB pages on POWER10 */ 1758 object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K, 1759 &error_fatal); 1760 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) { 1761 return; 1762 } 1763 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, 1764 &PNV_PSI(&chip10->psi)->xscom_regs); 1765 1766 /* LPC */ 1767 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) { 1768 return; 1769 } 1770 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), 1771 &chip10->lpc.xscom_regs); 1772 1773 chip->fw_mr = &chip10->lpc.isa_fw; 1774 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1775 (uint64_t) PNV10_LPCM_BASE(chip)); 1776 1777 /* Create the simplified OCC model */ 1778 if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) { 1779 return; 1780 } 1781 pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE, 1782 &chip10->occ.xscom_regs); 1783 qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in( 1784 DEVICE(&chip10->psi), PSIHB9_IRQ_OCC)); 1785 1786 /* OCC SRAM model */ 1787 memory_region_add_subregion(get_system_memory(), 1788 PNV10_OCC_SENSOR_BASE(chip), 1789 &chip10->occ.sram_regs); 1790 1791 /* SBE */ 1792 if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) { 1793 return; 1794 } 1795 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE, 1796 &chip10->sbe.xscom_ctrl_regs); 1797 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE, 1798 &chip10->sbe.xscom_mbox_regs); 1799 qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in( 1800 DEVICE(&chip10->psi), PSIHB9_IRQ_PSU)); 1801 1802 /* HOMER */ 1803 object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip), 1804 &error_abort); 1805 if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) { 1806 return; 1807 } 1808 /* Homer Xscom region */ 1809 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE, 1810 &chip10->homer.pba_regs); 1811 1812 /* Homer mmio region */ 1813 memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip), 1814 &chip10->homer.regs); 1815 1816 /* PHBs */ 1817 pnv_chip_power10_phb_realize(chip, &local_err); 1818 if (local_err) { 1819 error_propagate(errp, local_err); 1820 return; 1821 } 1822 } 1823 1824 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) 1825 { 1826 addr &= (PNV10_XSCOM_SIZE - 1); 1827 return addr >> 3; 1828 } 1829 1830 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) 1831 { 1832 DeviceClass *dc = DEVICE_CLASS(klass); 1833 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1834 1835 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */ 1836 k->cores_mask = POWER10_CORE_MASK; 1837 k->core_pir = pnv_chip_core_pir_p10; 1838 k->intc_create = pnv_chip_power10_intc_create; 1839 k->intc_reset = pnv_chip_power10_intc_reset; 1840 k->intc_destroy = pnv_chip_power10_intc_destroy; 1841 k->intc_print_info = pnv_chip_power10_intc_print_info; 1842 k->isa_create = pnv_chip_power10_isa_create; 1843 k->dt_populate = pnv_chip_power10_dt_populate; 1844 k->pic_print_info = pnv_chip_power10_pic_print_info; 1845 k->xscom_core_base = pnv_chip_power10_xscom_core_base; 1846 k->xscom_pcba = pnv_chip_power10_xscom_pcba; 1847 dc->desc = "PowerNV Chip POWER10"; 1848 k->num_pecs = PNV10_CHIP_MAX_PEC; 1849 1850 device_class_set_parent_realize(dc, pnv_chip_power10_realize, 1851 &k->parent_realize); 1852 } 1853 1854 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1855 { 1856 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1857 int cores_max; 1858 1859 /* 1860 * No custom mask for this chip, let's use the default one from * 1861 * the chip class 1862 */ 1863 if (!chip->cores_mask) { 1864 chip->cores_mask = pcc->cores_mask; 1865 } 1866 1867 /* filter alien core ids ! some are reserved */ 1868 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1869 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1870 chip->cores_mask); 1871 return; 1872 } 1873 chip->cores_mask &= pcc->cores_mask; 1874 1875 /* now that we have a sane layout, let check the number of cores */ 1876 cores_max = ctpop64(chip->cores_mask); 1877 if (chip->nr_cores > cores_max) { 1878 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1879 cores_max); 1880 return; 1881 } 1882 } 1883 1884 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1885 { 1886 Error *error = NULL; 1887 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1888 const char *typename = pnv_chip_core_typename(chip); 1889 int i, core_hwid; 1890 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 1891 1892 if (!object_class_by_name(typename)) { 1893 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1894 return; 1895 } 1896 1897 /* Cores */ 1898 pnv_chip_core_sanitize(chip, &error); 1899 if (error) { 1900 error_propagate(errp, error); 1901 return; 1902 } 1903 1904 chip->cores = g_new0(PnvCore *, chip->nr_cores); 1905 1906 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1907 && (i < chip->nr_cores); core_hwid++) { 1908 char core_name[32]; 1909 PnvCore *pnv_core; 1910 uint64_t xscom_core_base; 1911 1912 if (!(chip->cores_mask & (1ull << core_hwid))) { 1913 continue; 1914 } 1915 1916 pnv_core = PNV_CORE(object_new(typename)); 1917 1918 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1919 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core)); 1920 chip->cores[i] = pnv_core; 1921 object_property_set_int(OBJECT(pnv_core), "nr-threads", 1922 chip->nr_threads, &error_fatal); 1923 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID, 1924 core_hwid, &error_fatal); 1925 object_property_set_int(OBJECT(pnv_core), "pir", 1926 pcc->core_pir(chip, core_hwid), &error_fatal); 1927 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr, 1928 &error_fatal); 1929 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip), 1930 &error_abort); 1931 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal); 1932 1933 /* Each core has an XSCOM MMIO region */ 1934 xscom_core_base = pcc->xscom_core_base(chip, core_hwid); 1935 1936 pnv_xscom_add_subregion(chip, xscom_core_base, 1937 &pnv_core->xscom_regs); 1938 i++; 1939 } 1940 } 1941 1942 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1943 { 1944 PnvChip *chip = PNV_CHIP(dev); 1945 Error *error = NULL; 1946 1947 /* Cores */ 1948 pnv_chip_core_realize(chip, &error); 1949 if (error) { 1950 error_propagate(errp, error); 1951 return; 1952 } 1953 } 1954 1955 static Property pnv_chip_properties[] = { 1956 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1957 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 1958 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 1959 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 1960 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 1961 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), 1962 DEFINE_PROP_END_OF_LIST(), 1963 }; 1964 1965 static void pnv_chip_class_init(ObjectClass *klass, void *data) 1966 { 1967 DeviceClass *dc = DEVICE_CLASS(klass); 1968 1969 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 1970 dc->realize = pnv_chip_realize; 1971 device_class_set_props(dc, pnv_chip_properties); 1972 dc->desc = "PowerNV Chip"; 1973 } 1974 1975 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) 1976 { 1977 int i, j; 1978 1979 for (i = 0; i < chip->nr_cores; i++) { 1980 PnvCore *pc = chip->cores[i]; 1981 CPUCore *cc = CPU_CORE(pc); 1982 1983 for (j = 0; j < cc->nr_threads; j++) { 1984 if (ppc_cpu_pir(pc->threads[j]) == pir) { 1985 return pc->threads[j]; 1986 } 1987 } 1988 } 1989 return NULL; 1990 } 1991 1992 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 1993 { 1994 PnvMachineState *pnv = PNV_MACHINE(xi); 1995 int i, j; 1996 1997 for (i = 0; i < pnv->num_chips; i++) { 1998 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1999 2000 if (ics_valid_irq(&chip8->psi.ics, irq)) { 2001 return &chip8->psi.ics; 2002 } 2003 2004 for (j = 0; j < chip8->num_phbs; j++) { 2005 PnvPHB *phb = chip8->phbs[j]; 2006 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2007 2008 if (ics_valid_irq(&phb3->lsis, irq)) { 2009 return &phb3->lsis; 2010 } 2011 2012 if (ics_valid_irq(ICS(&phb3->msis), irq)) { 2013 return ICS(&phb3->msis); 2014 } 2015 } 2016 } 2017 return NULL; 2018 } 2019 2020 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id) 2021 { 2022 int i; 2023 2024 for (i = 0; i < pnv->num_chips; i++) { 2025 PnvChip *chip = pnv->chips[i]; 2026 if (chip->chip_id == chip_id) { 2027 return chip; 2028 } 2029 } 2030 return NULL; 2031 } 2032 2033 static void pnv_ics_resend(XICSFabric *xi) 2034 { 2035 PnvMachineState *pnv = PNV_MACHINE(xi); 2036 int i, j; 2037 2038 for (i = 0; i < pnv->num_chips; i++) { 2039 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 2040 2041 ics_resend(&chip8->psi.ics); 2042 2043 for (j = 0; j < chip8->num_phbs; j++) { 2044 PnvPHB *phb = chip8->phbs[j]; 2045 PnvPHB3 *phb3 = PNV_PHB3(phb->backend); 2046 2047 ics_resend(&phb3->lsis); 2048 ics_resend(ICS(&phb3->msis)); 2049 } 2050 } 2051 } 2052 2053 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 2054 { 2055 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 2056 2057 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 2058 } 2059 2060 static void pnv_pic_print_info(InterruptStatsProvider *obj, 2061 Monitor *mon) 2062 { 2063 PnvMachineState *pnv = PNV_MACHINE(obj); 2064 int i; 2065 CPUState *cs; 2066 2067 CPU_FOREACH(cs) { 2068 PowerPCCPU *cpu = POWERPC_CPU(cs); 2069 2070 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */ 2071 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu, 2072 mon); 2073 } 2074 2075 for (i = 0; i < pnv->num_chips; i++) { 2076 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 2077 } 2078 } 2079 2080 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, 2081 uint8_t nvt_blk, uint32_t nvt_idx, 2082 bool cam_ignore, uint8_t priority, 2083 uint32_t logic_serv, 2084 XiveTCTXMatch *match) 2085 { 2086 PnvMachineState *pnv = PNV_MACHINE(xfb); 2087 int total_count = 0; 2088 int i; 2089 2090 for (i = 0; i < pnv->num_chips; i++) { 2091 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 2092 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); 2093 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2094 int count; 2095 2096 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2097 priority, logic_serv, match); 2098 2099 if (count < 0) { 2100 return count; 2101 } 2102 2103 total_count += count; 2104 } 2105 2106 return total_count; 2107 } 2108 2109 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format, 2110 uint8_t nvt_blk, uint32_t nvt_idx, 2111 bool cam_ignore, uint8_t priority, 2112 uint32_t logic_serv, 2113 XiveTCTXMatch *match) 2114 { 2115 PnvMachineState *pnv = PNV_MACHINE(xfb); 2116 int total_count = 0; 2117 int i; 2118 2119 for (i = 0; i < pnv->num_chips; i++) { 2120 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]); 2121 XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive); 2122 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 2123 int count; 2124 2125 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 2126 priority, logic_serv, match); 2127 2128 if (count < 0) { 2129 return count; 2130 } 2131 2132 total_count += count; 2133 } 2134 2135 return total_count; 2136 } 2137 2138 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) 2139 { 2140 MachineClass *mc = MACHINE_CLASS(oc); 2141 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 2142 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2143 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 2144 2145 static GlobalProperty phb_compat[] = { 2146 { TYPE_PNV_PHB, "version", "3" }, 2147 { TYPE_PNV_PHB_ROOT_PORT, "version", "3" }, 2148 }; 2149 2150 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; 2151 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 2152 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2153 2154 xic->icp_get = pnv_icp_get; 2155 xic->ics_get = pnv_ics_get; 2156 xic->ics_resend = pnv_ics_resend; 2157 2158 pmc->compat = compat; 2159 pmc->compat_size = sizeof(compat); 2160 2161 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2162 } 2163 2164 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) 2165 { 2166 MachineClass *mc = MACHINE_CLASS(oc); 2167 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2168 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2169 static const char compat[] = "qemu,powernv9\0ibm,powernv"; 2170 2171 static GlobalProperty phb_compat[] = { 2172 { TYPE_PNV_PHB, "version", "4" }, 2173 { TYPE_PNV_PHB_ROOT_PORT, "version", "4" }, 2174 }; 2175 2176 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; 2177 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 2178 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2179 2180 xfc->match_nvt = pnv_match_nvt; 2181 2182 mc->alias = "powernv"; 2183 2184 pmc->compat = compat; 2185 pmc->compat_size = sizeof(compat); 2186 pmc->dt_power_mgt = pnv_dt_power_mgt; 2187 2188 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2189 } 2190 2191 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) 2192 { 2193 MachineClass *mc = MACHINE_CLASS(oc); 2194 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 2195 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 2196 static const char compat[] = "qemu,powernv10\0ibm,powernv"; 2197 2198 static GlobalProperty phb_compat[] = { 2199 { TYPE_PNV_PHB, "version", "5" }, 2200 { TYPE_PNV_PHB_ROOT_PORT, "version", "5" }, 2201 }; 2202 2203 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; 2204 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 2205 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat)); 2206 2207 pmc->compat = compat; 2208 pmc->compat_size = sizeof(compat); 2209 pmc->dt_power_mgt = pnv_dt_power_mgt; 2210 2211 xfc->match_nvt = pnv10_xive_match_nvt; 2212 2213 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB); 2214 } 2215 2216 static bool pnv_machine_get_hb(Object *obj, Error **errp) 2217 { 2218 PnvMachineState *pnv = PNV_MACHINE(obj); 2219 2220 return !!pnv->fw_load_addr; 2221 } 2222 2223 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp) 2224 { 2225 PnvMachineState *pnv = PNV_MACHINE(obj); 2226 2227 if (value) { 2228 pnv->fw_load_addr = 0x8000000; 2229 } 2230 } 2231 2232 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg) 2233 { 2234 PowerPCCPU *cpu = POWERPC_CPU(cs); 2235 CPUPPCState *env = &cpu->env; 2236 2237 cpu_synchronize_state(cs); 2238 ppc_cpu_do_system_reset(cs); 2239 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) { 2240 /* 2241 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the 2242 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100 2243 * (PPC_BIT(43)). 2244 */ 2245 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) { 2246 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason"); 2247 env->spr[SPR_SRR1] |= SRR1_WAKERESET; 2248 } 2249 } else { 2250 /* 2251 * For non-powersave system resets, SRR1[42:45] are defined to be 2252 * implementation-dependent. The POWER9 User Manual specifies that 2253 * an external (SCOM driven, which may come from a BMC nmi command or 2254 * another CPU requesting a NMI IPI) system reset exception should be 2255 * 0b0010 (PPC_BIT(44)). 2256 */ 2257 env->spr[SPR_SRR1] |= SRR1_WAKESCOM; 2258 } 2259 } 2260 2261 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp) 2262 { 2263 CPUState *cs; 2264 2265 CPU_FOREACH(cs) { 2266 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL); 2267 } 2268 } 2269 2270 static void pnv_machine_class_init(ObjectClass *oc, void *data) 2271 { 2272 MachineClass *mc = MACHINE_CLASS(oc); 2273 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 2274 NMIClass *nc = NMI_CLASS(oc); 2275 2276 mc->desc = "IBM PowerNV (Non-Virtualized)"; 2277 mc->init = pnv_init; 2278 mc->reset = pnv_reset; 2279 mc->max_cpus = MAX_CPUS; 2280 /* Pnv provides a AHCI device for storage */ 2281 mc->block_default_type = IF_IDE; 2282 mc->no_parallel = 1; 2283 mc->default_boot_order = NULL; 2284 /* 2285 * RAM defaults to less than 2048 for 32-bit hosts, and large 2286 * enough to fit the maximum initrd size at it's load address 2287 */ 2288 mc->default_ram_size = 1 * GiB; 2289 mc->default_ram_id = "pnv.ram"; 2290 ispc->print_info = pnv_pic_print_info; 2291 nc->nmi_monitor_handler = pnv_nmi; 2292 2293 object_class_property_add_bool(oc, "hb-mode", 2294 pnv_machine_get_hb, pnv_machine_set_hb); 2295 object_class_property_set_description(oc, "hb-mode", 2296 "Use a hostboot like boot loader"); 2297 } 2298 2299 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 2300 { \ 2301 .name = type, \ 2302 .class_init = class_initfn, \ 2303 .parent = TYPE_PNV8_CHIP, \ 2304 } 2305 2306 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 2307 { \ 2308 .name = type, \ 2309 .class_init = class_initfn, \ 2310 .parent = TYPE_PNV9_CHIP, \ 2311 } 2312 2313 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ 2314 { \ 2315 .name = type, \ 2316 .class_init = class_initfn, \ 2317 .parent = TYPE_PNV10_CHIP, \ 2318 } 2319 2320 static const TypeInfo types[] = { 2321 { 2322 .name = MACHINE_TYPE_NAME("powernv10"), 2323 .parent = TYPE_PNV_MACHINE, 2324 .class_init = pnv_machine_power10_class_init, 2325 .interfaces = (InterfaceInfo[]) { 2326 { TYPE_XIVE_FABRIC }, 2327 { }, 2328 }, 2329 }, 2330 { 2331 .name = MACHINE_TYPE_NAME("powernv9"), 2332 .parent = TYPE_PNV_MACHINE, 2333 .class_init = pnv_machine_power9_class_init, 2334 .interfaces = (InterfaceInfo[]) { 2335 { TYPE_XIVE_FABRIC }, 2336 { }, 2337 }, 2338 }, 2339 { 2340 .name = MACHINE_TYPE_NAME("powernv8"), 2341 .parent = TYPE_PNV_MACHINE, 2342 .class_init = pnv_machine_power8_class_init, 2343 .interfaces = (InterfaceInfo[]) { 2344 { TYPE_XICS_FABRIC }, 2345 { }, 2346 }, 2347 }, 2348 { 2349 .name = TYPE_PNV_MACHINE, 2350 .parent = TYPE_MACHINE, 2351 .abstract = true, 2352 .instance_size = sizeof(PnvMachineState), 2353 .class_init = pnv_machine_class_init, 2354 .class_size = sizeof(PnvMachineClass), 2355 .interfaces = (InterfaceInfo[]) { 2356 { TYPE_INTERRUPT_STATS_PROVIDER }, 2357 { TYPE_NMI }, 2358 { }, 2359 }, 2360 }, 2361 { 2362 .name = TYPE_PNV_CHIP, 2363 .parent = TYPE_SYS_BUS_DEVICE, 2364 .class_init = pnv_chip_class_init, 2365 .instance_size = sizeof(PnvChip), 2366 .class_size = sizeof(PnvChipClass), 2367 .abstract = true, 2368 }, 2369 2370 /* 2371 * P10 chip and variants 2372 */ 2373 { 2374 .name = TYPE_PNV10_CHIP, 2375 .parent = TYPE_PNV_CHIP, 2376 .instance_init = pnv_chip_power10_instance_init, 2377 .instance_size = sizeof(Pnv10Chip), 2378 }, 2379 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), 2380 2381 /* 2382 * P9 chip and variants 2383 */ 2384 { 2385 .name = TYPE_PNV9_CHIP, 2386 .parent = TYPE_PNV_CHIP, 2387 .instance_init = pnv_chip_power9_instance_init, 2388 .instance_size = sizeof(Pnv9Chip), 2389 }, 2390 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 2391 2392 /* 2393 * P8 chip and variants 2394 */ 2395 { 2396 .name = TYPE_PNV8_CHIP, 2397 .parent = TYPE_PNV_CHIP, 2398 .instance_init = pnv_chip_power8_instance_init, 2399 .instance_size = sizeof(Pnv8Chip), 2400 }, 2401 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 2402 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 2403 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 2404 pnv_chip_power8nvl_class_init), 2405 }; 2406 2407 DEFINE_TYPES(types) 2408