xref: /openbmc/qemu/hw/ppc/pnv.c (revision 2194abd6231b36704b77adfdec2a32d38b7dc848)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "sysemu/hw_accel.h"
31 #include "target/ppc/cpu.h"
32 #include "qemu/log.h"
33 #include "hw/ppc/fdt.h"
34 #include "hw/ppc/ppc.h"
35 #include "hw/ppc/pnv.h"
36 #include "hw/ppc/pnv_core.h"
37 #include "hw/loader.h"
38 #include "hw/nmi.h"
39 #include "exec/address-spaces.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51 
52 #include "hw/isa/isa.h"
53 #include "hw/boards.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (4 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (256 * MiB)
67 #define INITRD_LOAD_ADDR        0x60000000
68 #define INITRD_MAX_SIZE         (256 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (env->spr_cb[SPR_PURR].oea_read) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_property_string(fdt, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             warn_report("machine has no BMC device. Use '-device "
591                         "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
592                         "to define one");
593         } else {
594             pnv_bmc_set_pnor(bmc, pnv->pnor);
595             pnv->bmc = bmc;
596         }
597     }
598 
599     fdt = pnv_dt_create(machine);
600 
601     /* Pack resulting tree */
602     _FDT((fdt_pack(fdt)));
603 
604     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
605     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
606 
607     g_free(fdt);
608 }
609 
610 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
611 {
612     Pnv8Chip *chip8 = PNV8_CHIP(chip);
613     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
614 }
615 
616 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
617 {
618     Pnv8Chip *chip8 = PNV8_CHIP(chip);
619     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
620 }
621 
622 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
623 {
624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
625     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
626 }
627 
628 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
629 {
630     Pnv10Chip *chip10 = PNV10_CHIP(chip);
631     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
632 }
633 
634 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
635 {
636     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
637 }
638 
639 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
640 {
641     Pnv8Chip *chip8 = PNV8_CHIP(chip);
642     int i;
643 
644     ics_pic_print_info(&chip8->psi.ics, mon);
645     for (i = 0; i < chip->num_phbs; i++) {
646         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
647         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
648     }
649 }
650 
651 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
652 {
653     Pnv9Chip *chip9 = PNV9_CHIP(chip);
654     int i, j;
655 
656     pnv_xive_pic_print_info(&chip9->xive, mon);
657     pnv_psi_pic_print_info(&chip9->psi, mon);
658 
659     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
660         PnvPhb4PecState *pec = &chip9->pecs[i];
661         for (j = 0; j < pec->num_stacks; j++) {
662             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
663         }
664     }
665 }
666 
667 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
668                                                 uint32_t core_id)
669 {
670     return PNV_XSCOM_EX_BASE(core_id);
671 }
672 
673 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
674                                                 uint32_t core_id)
675 {
676     return PNV9_XSCOM_EC_BASE(core_id);
677 }
678 
679 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
680                                                  uint32_t core_id)
681 {
682     return PNV10_XSCOM_EC_BASE(core_id);
683 }
684 
685 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
686 {
687     PowerPCCPUClass *ppc_default =
688         POWERPC_CPU_CLASS(object_class_by_name(default_type));
689     PowerPCCPUClass *ppc =
690         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
691 
692     return ppc_default->pvr_match(ppc_default, ppc->pvr);
693 }
694 
695 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
696 {
697     ISADevice *dev = isa_new("isa-ipmi-bt");
698 
699     object_property_set_link(OBJECT(dev), OBJECT(bmc), "bmc", &error_fatal);
700     object_property_set_int(OBJECT(dev), irq, "irq", &error_fatal);
701     isa_realize_and_unref(dev, bus, &error_fatal);
702 }
703 
704 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
705 {
706     Pnv10Chip *chip10 = PNV10_CHIP(chip);
707 
708     pnv_psi_pic_print_info(&chip10->psi, mon);
709 }
710 
711 static void pnv_init(MachineState *machine)
712 {
713     PnvMachineState *pnv = PNV_MACHINE(machine);
714     MachineClass *mc = MACHINE_GET_CLASS(machine);
715     char *fw_filename;
716     long fw_size;
717     int i;
718     char *chip_typename;
719     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
720     DeviceState *dev;
721 
722     /* allocate RAM */
723     if (machine->ram_size < (1 * GiB)) {
724         warn_report("skiboot may not work with < 1GB of RAM");
725     }
726     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
727 
728     /*
729      * Create our simple PNOR device
730      */
731     dev = qdev_new(TYPE_PNV_PNOR);
732     if (pnor) {
733         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
734                             &error_abort);
735     }
736     qdev_realize_and_unref(dev, NULL, &error_fatal);
737     pnv->pnor = PNV_PNOR(dev);
738 
739     /* load skiboot firmware  */
740     if (bios_name == NULL) {
741         bios_name = FW_FILE_NAME;
742     }
743 
744     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
745     if (!fw_filename) {
746         error_report("Could not find OPAL firmware '%s'", bios_name);
747         exit(1);
748     }
749 
750     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
751     if (fw_size < 0) {
752         error_report("Could not load OPAL firmware '%s'", fw_filename);
753         exit(1);
754     }
755     g_free(fw_filename);
756 
757     /* load kernel */
758     if (machine->kernel_filename) {
759         long kernel_size;
760 
761         kernel_size = load_image_targphys(machine->kernel_filename,
762                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
763         if (kernel_size < 0) {
764             error_report("Could not load kernel '%s'",
765                          machine->kernel_filename);
766             exit(1);
767         }
768     }
769 
770     /* load initrd */
771     if (machine->initrd_filename) {
772         pnv->initrd_base = INITRD_LOAD_ADDR;
773         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
774                                   pnv->initrd_base, INITRD_MAX_SIZE);
775         if (pnv->initrd_size < 0) {
776             error_report("Could not load initial ram disk '%s'",
777                          machine->initrd_filename);
778             exit(1);
779         }
780     }
781 
782     /* MSIs are supported on this platform */
783     msi_nonbroken = true;
784 
785     /*
786      * Check compatibility of the specified CPU with the machine
787      * default.
788      */
789     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
790         error_report("invalid CPU model '%s' for %s machine",
791                      machine->cpu_type, mc->name);
792         exit(1);
793     }
794 
795     /* Create the processor chips */
796     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
797     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
798                                     i, machine->cpu_type);
799     if (!object_class_by_name(chip_typename)) {
800         error_report("invalid chip model '%.*s' for %s machine",
801                      i, machine->cpu_type, mc->name);
802         exit(1);
803     }
804 
805     pnv->num_chips =
806         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
807     /*
808      * TODO: should we decide on how many chips we can create based
809      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
810      */
811     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
812         error_report("invalid number of chips: '%d'", pnv->num_chips);
813         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
814         exit(1);
815     }
816 
817     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
818     for (i = 0; i < pnv->num_chips; i++) {
819         char chip_name[32];
820         Object *chip = OBJECT(qdev_new(chip_typename));
821 
822         pnv->chips[i] = PNV_CHIP(chip);
823 
824         /*
825          * TODO: put all the memory in one node on chip 0 until we find a
826          * way to specify different ranges for each chip
827          */
828         if (i == 0) {
829             object_property_set_int(chip, machine->ram_size, "ram-size",
830                                     &error_fatal);
831         }
832 
833         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
834         object_property_add_child(OBJECT(pnv), chip_name, chip);
835         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
836                                 &error_fatal);
837         object_property_set_int(chip, machine->smp.cores,
838                                 "nr-cores", &error_fatal);
839         object_property_set_int(chip, machine->smp.threads,
840                                 "nr-threads", &error_fatal);
841         /*
842          * The POWER8 machine use the XICS interrupt interface.
843          * Propagate the XICS fabric to the chip and its controllers.
844          */
845         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
846             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
847         }
848         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
849             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
850                                      &error_abort);
851         }
852         qdev_realize_and_unref(DEVICE(chip), NULL, &error_fatal);
853     }
854     g_free(chip_typename);
855 
856     /* Instantiate ISA bus on chip 0 */
857     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
858 
859     /* Create serial port */
860     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
861 
862     /* Create an RTC ISA device too */
863     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
864 
865     /*
866      * Create the machine BMC simulator and the IPMI BT device for
867      * communication with the BMC
868      */
869     if (defaults_enabled()) {
870         pnv->bmc = pnv_bmc_create(pnv->pnor);
871         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
872     }
873 
874     /*
875      * OpenPOWER systems use a IPMI SEL Event message to notify the
876      * host to powerdown
877      */
878     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
879     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
880 }
881 
882 /*
883  *    0:21  Reserved - Read as zeros
884  *   22:24  Chip ID
885  *   25:28  Core number
886  *   29:31  Thread ID
887  */
888 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
889 {
890     return (chip->chip_id << 7) | (core_id << 3);
891 }
892 
893 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
894                                         Error **errp)
895 {
896     Pnv8Chip *chip8 = PNV8_CHIP(chip);
897     Error *local_err = NULL;
898     Object *obj;
899     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
900 
901     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
902     if (local_err) {
903         error_propagate(errp, local_err);
904         return;
905     }
906 
907     pnv_cpu->intc = obj;
908 }
909 
910 
911 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
912 {
913     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
914 
915     icp_reset(ICP(pnv_cpu->intc));
916 }
917 
918 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
919 {
920     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
921 
922     icp_destroy(ICP(pnv_cpu->intc));
923     pnv_cpu->intc = NULL;
924 }
925 
926 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
927                                             Monitor *mon)
928 {
929     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
930 }
931 
932 /*
933  *    0:48  Reserved - Read as zeroes
934  *   49:52  Node ID
935  *   53:55  Chip ID
936  *   56     Reserved - Read as zero
937  *   57:61  Core number
938  *   62:63  Thread ID
939  *
940  * We only care about the lower bits. uint32_t is fine for the moment.
941  */
942 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
943 {
944     return (chip->chip_id << 8) | (core_id << 2);
945 }
946 
947 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
948 {
949     return (chip->chip_id << 8) | (core_id << 2);
950 }
951 
952 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
953                                         Error **errp)
954 {
955     Pnv9Chip *chip9 = PNV9_CHIP(chip);
956     Error *local_err = NULL;
957     Object *obj;
958     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
959 
960     /*
961      * The core creates its interrupt presenter but the XIVE interrupt
962      * controller object is initialized afterwards. Hopefully, it's
963      * only used at runtime.
964      */
965     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
966                            &local_err);
967     if (local_err) {
968         error_propagate(errp, local_err);
969         return;
970     }
971 
972     pnv_cpu->intc = obj;
973 }
974 
975 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
976 {
977     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
978 
979     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
980 }
981 
982 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
983 {
984     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
985 
986     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
987     pnv_cpu->intc = NULL;
988 }
989 
990 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
991                                             Monitor *mon)
992 {
993     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
994 }
995 
996 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
997                                         Error **errp)
998 {
999     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1000 
1001     /* Will be defined when the interrupt controller is */
1002     pnv_cpu->intc = NULL;
1003 }
1004 
1005 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1006 {
1007     ;
1008 }
1009 
1010 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1011 {
1012     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013 
1014     pnv_cpu->intc = NULL;
1015 }
1016 
1017 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1018                                              Monitor *mon)
1019 {
1020 }
1021 
1022 /*
1023  * Allowed core identifiers on a POWER8 Processor Chip :
1024  *
1025  * <EX0 reserved>
1026  *  EX1  - Venice only
1027  *  EX2  - Venice only
1028  *  EX3  - Venice only
1029  *  EX4
1030  *  EX5
1031  *  EX6
1032  * <EX7,8 reserved> <reserved>
1033  *  EX9  - Venice only
1034  *  EX10 - Venice only
1035  *  EX11 - Venice only
1036  *  EX12
1037  *  EX13
1038  *  EX14
1039  * <EX15 reserved>
1040  */
1041 #define POWER8E_CORE_MASK  (0x7070ull)
1042 #define POWER8_CORE_MASK   (0x7e7eull)
1043 
1044 /*
1045  * POWER9 has 24 cores, ids starting at 0x0
1046  */
1047 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1048 
1049 
1050 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1051 
1052 static void pnv_chip_power8_instance_init(Object *obj)
1053 {
1054     PnvChip *chip = PNV_CHIP(obj);
1055     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1056     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1057     int i;
1058 
1059     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1060                              (Object **)&chip8->xics,
1061                              object_property_allow_set_link,
1062                              OBJ_PROP_LINK_STRONG);
1063 
1064     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1065                             TYPE_PNV8_PSI, &error_abort, NULL);
1066 
1067     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1068                             TYPE_PNV8_LPC, &error_abort, NULL);
1069 
1070     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1071                             TYPE_PNV8_OCC, &error_abort, NULL);
1072 
1073     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1074                             TYPE_PNV8_HOMER, &error_abort, NULL);
1075 
1076     for (i = 0; i < pcc->num_phbs; i++) {
1077         object_initialize_child(obj, "phb[*]", &chip8->phbs[i],
1078                                 sizeof(chip8->phbs[i]), TYPE_PNV_PHB3,
1079                                 &error_abort, NULL);
1080     }
1081 
1082     /*
1083      * Number of PHBs is the chip default
1084      */
1085     chip->num_phbs = pcc->num_phbs;
1086 }
1087 
1088 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1089  {
1090     PnvChip *chip = PNV_CHIP(chip8);
1091     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1092     int i, j;
1093     char *name;
1094 
1095     name = g_strdup_printf("icp-%x", chip->chip_id);
1096     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1097     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1098     g_free(name);
1099 
1100     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1101 
1102     /* Map the ICP registers for each thread */
1103     for (i = 0; i < chip->nr_cores; i++) {
1104         PnvCore *pnv_core = chip->cores[i];
1105         int core_hwid = CPU_CORE(pnv_core)->core_id;
1106 
1107         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1108             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1109             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1110 
1111             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1112                                         &icp->mmio);
1113         }
1114     }
1115 }
1116 
1117 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1118 {
1119     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1120     PnvChip *chip = PNV_CHIP(dev);
1121     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1122     Pnv8Psi *psi8 = &chip8->psi;
1123     Error *local_err = NULL;
1124     int i;
1125 
1126     assert(chip8->xics);
1127 
1128     /* XSCOM bridge is first */
1129     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1130     if (local_err) {
1131         error_propagate(errp, local_err);
1132         return;
1133     }
1134     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1135 
1136     pcc->parent_realize(dev, &local_err);
1137     if (local_err) {
1138         error_propagate(errp, local_err);
1139         return;
1140     }
1141 
1142     /* Processor Service Interface (PSI) Host Bridge */
1143     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1144                             "bar", &error_fatal);
1145     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1146                              ICS_PROP_XICS, &error_abort);
1147     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1148     if (local_err) {
1149         error_propagate(errp, local_err);
1150         return;
1151     }
1152     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1153                             &PNV_PSI(psi8)->xscom_regs);
1154 
1155     /* Create LPC controller */
1156     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1157                              &error_abort);
1158     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1159                              &error_fatal);
1160     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1161 
1162     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1163                                             (uint64_t) PNV_XSCOM_BASE(chip),
1164                                             PNV_XSCOM_LPC_BASE);
1165 
1166     /*
1167      * Interrupt Management Area. This is the memory region holding
1168      * all the Interrupt Control Presenter (ICP) registers
1169      */
1170     pnv_chip_icp_realize(chip8, &local_err);
1171     if (local_err) {
1172         error_propagate(errp, local_err);
1173         return;
1174     }
1175 
1176     /* Create the simplified OCC model */
1177     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1178                              &error_abort);
1179     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1180     if (local_err) {
1181         error_propagate(errp, local_err);
1182         return;
1183     }
1184     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1185 
1186     /* OCC SRAM model */
1187     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1188                                 &chip8->occ.sram_regs);
1189 
1190     /* HOMER */
1191     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1192                              &error_abort);
1193     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1194                              &local_err);
1195     if (local_err) {
1196         error_propagate(errp, local_err);
1197         return;
1198     }
1199     /* Homer Xscom region */
1200     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1201 
1202     /* Homer mmio region */
1203     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1204                                 &chip8->homer.regs);
1205 
1206     /* PHB3 controllers */
1207     for (i = 0; i < chip->num_phbs; i++) {
1208         PnvPHB3 *phb = &chip8->phbs[i];
1209         PnvPBCQState *pbcq = &phb->pbcq;
1210 
1211         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1212         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1213                                 &error_fatal);
1214         qdev_realize(DEVICE(phb), NULL, &local_err);
1215         if (local_err) {
1216             error_propagate(errp, local_err);
1217             return;
1218         }
1219 
1220         /* Populate the XSCOM address space. */
1221         pnv_xscom_add_subregion(chip,
1222                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1223                                 &pbcq->xscom_nest_regs);
1224         pnv_xscom_add_subregion(chip,
1225                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1226                                 &pbcq->xscom_pci_regs);
1227         pnv_xscom_add_subregion(chip,
1228                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1229                                 &pbcq->xscom_spci_regs);
1230     }
1231 }
1232 
1233 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1234 {
1235     addr &= (PNV_XSCOM_SIZE - 1);
1236     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1237 }
1238 
1239 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1240 {
1241     DeviceClass *dc = DEVICE_CLASS(klass);
1242     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1243 
1244     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1245     k->cores_mask = POWER8E_CORE_MASK;
1246     k->num_phbs = 3;
1247     k->core_pir = pnv_chip_core_pir_p8;
1248     k->intc_create = pnv_chip_power8_intc_create;
1249     k->intc_reset = pnv_chip_power8_intc_reset;
1250     k->intc_destroy = pnv_chip_power8_intc_destroy;
1251     k->intc_print_info = pnv_chip_power8_intc_print_info;
1252     k->isa_create = pnv_chip_power8_isa_create;
1253     k->dt_populate = pnv_chip_power8_dt_populate;
1254     k->pic_print_info = pnv_chip_power8_pic_print_info;
1255     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1256     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1257     dc->desc = "PowerNV Chip POWER8E";
1258 
1259     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1260                                     &k->parent_realize);
1261 }
1262 
1263 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1264 {
1265     DeviceClass *dc = DEVICE_CLASS(klass);
1266     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1267 
1268     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1269     k->cores_mask = POWER8_CORE_MASK;
1270     k->num_phbs = 3;
1271     k->core_pir = pnv_chip_core_pir_p8;
1272     k->intc_create = pnv_chip_power8_intc_create;
1273     k->intc_reset = pnv_chip_power8_intc_reset;
1274     k->intc_destroy = pnv_chip_power8_intc_destroy;
1275     k->intc_print_info = pnv_chip_power8_intc_print_info;
1276     k->isa_create = pnv_chip_power8_isa_create;
1277     k->dt_populate = pnv_chip_power8_dt_populate;
1278     k->pic_print_info = pnv_chip_power8_pic_print_info;
1279     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1280     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1281     dc->desc = "PowerNV Chip POWER8";
1282 
1283     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1284                                     &k->parent_realize);
1285 }
1286 
1287 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1288 {
1289     DeviceClass *dc = DEVICE_CLASS(klass);
1290     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1291 
1292     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1293     k->cores_mask = POWER8_CORE_MASK;
1294     k->num_phbs = 3;
1295     k->core_pir = pnv_chip_core_pir_p8;
1296     k->intc_create = pnv_chip_power8_intc_create;
1297     k->intc_reset = pnv_chip_power8_intc_reset;
1298     k->intc_destroy = pnv_chip_power8_intc_destroy;
1299     k->intc_print_info = pnv_chip_power8_intc_print_info;
1300     k->isa_create = pnv_chip_power8nvl_isa_create;
1301     k->dt_populate = pnv_chip_power8_dt_populate;
1302     k->pic_print_info = pnv_chip_power8_pic_print_info;
1303     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1304     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1305     dc->desc = "PowerNV Chip POWER8NVL";
1306 
1307     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1308                                     &k->parent_realize);
1309 }
1310 
1311 static void pnv_chip_power9_instance_init(Object *obj)
1312 {
1313     PnvChip *chip = PNV_CHIP(obj);
1314     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1315     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1316     int i;
1317 
1318     sysbus_init_child_obj(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1319                           TYPE_PNV_XIVE);
1320     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1321                               "xive-fabric");
1322 
1323     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1324                             TYPE_PNV9_PSI, &error_abort, NULL);
1325 
1326     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1327                             TYPE_PNV9_LPC, &error_abort, NULL);
1328 
1329     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1330                             TYPE_PNV9_OCC, &error_abort, NULL);
1331 
1332     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1333                             TYPE_PNV9_HOMER, &error_abort, NULL);
1334 
1335     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1336         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1337                                 sizeof(chip9->pecs[i]), TYPE_PNV_PHB4_PEC,
1338                                 &error_abort, NULL);
1339     }
1340 
1341     /*
1342      * Number of PHBs is the chip default
1343      */
1344     chip->num_phbs = pcc->num_phbs;
1345 }
1346 
1347 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1348 {
1349     PnvChip *chip = PNV_CHIP(chip9);
1350     int i;
1351 
1352     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1353     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1354 
1355     for (i = 0; i < chip9->nr_quads; i++) {
1356         char eq_name[32];
1357         PnvQuad *eq = &chip9->quads[i];
1358         PnvCore *pnv_core = chip->cores[i * 4];
1359         int core_id = CPU_CORE(pnv_core)->core_id;
1360 
1361         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1362         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1363                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1364 
1365         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1366         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1367 
1368         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1369                                 &eq->xscom_regs);
1370     }
1371 }
1372 
1373 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1374 {
1375     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1376     Error *local_err = NULL;
1377     int i, j;
1378     int phb_id = 0;
1379 
1380     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1381         PnvPhb4PecState *pec = &chip9->pecs[i];
1382         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1383         uint32_t pec_nest_base;
1384         uint32_t pec_pci_base;
1385 
1386         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1387         /*
1388          * PEC0 -> 1 stack
1389          * PEC1 -> 2 stacks
1390          * PEC2 -> 3 stacks
1391          */
1392         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1393                                 &error_fatal);
1394         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1395                                  &error_fatal);
1396         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1397                                  "system-memory", &error_abort);
1398         object_property_set_bool(OBJECT(pec), true, "realized", &local_err);
1399         if (local_err) {
1400             error_propagate(errp, local_err);
1401             return;
1402         }
1403 
1404         pec_nest_base = pecc->xscom_nest_base(pec);
1405         pec_pci_base = pecc->xscom_pci_base(pec);
1406 
1407         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1408         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1409 
1410         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1411              j++, phb_id++) {
1412             PnvPhb4PecStack *stack = &pec->stacks[j];
1413             Object *obj = OBJECT(&stack->phb);
1414 
1415             object_property_set_int(obj, phb_id, "index", &error_fatal);
1416             object_property_set_int(obj, chip->chip_id, "chip-id",
1417                                     &error_fatal);
1418             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1419                                     &error_fatal);
1420             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1421                                     &error_fatal);
1422             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1423             qdev_realize(DEVICE(obj), NULL, &local_err);
1424             if (local_err) {
1425                 error_propagate(errp, local_err);
1426                 return;
1427             }
1428 
1429             /* Populate the XSCOM address space. */
1430             pnv_xscom_add_subregion(chip,
1431                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1432                                    &stack->nest_regs_mr);
1433             pnv_xscom_add_subregion(chip,
1434                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1435                                     &stack->pci_regs_mr);
1436             pnv_xscom_add_subregion(chip,
1437                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1438                                     0x40 * stack->stack_no,
1439                                     &stack->phb_regs_mr);
1440         }
1441     }
1442 }
1443 
1444 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1445 {
1446     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1447     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1448     PnvChip *chip = PNV_CHIP(dev);
1449     Pnv9Psi *psi9 = &chip9->psi;
1450     Error *local_err = NULL;
1451 
1452     /* XSCOM bridge is first */
1453     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1454     if (local_err) {
1455         error_propagate(errp, local_err);
1456         return;
1457     }
1458     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1459 
1460     pcc->parent_realize(dev, &local_err);
1461     if (local_err) {
1462         error_propagate(errp, local_err);
1463         return;
1464     }
1465 
1466     pnv_chip_quad_realize(chip9, &local_err);
1467     if (local_err) {
1468         error_propagate(errp, local_err);
1469         return;
1470     }
1471 
1472     /* XIVE interrupt controller (POWER9) */
1473     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1474                             "ic-bar", &error_fatal);
1475     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1476                             "vc-bar", &error_fatal);
1477     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1478                             "pc-bar", &error_fatal);
1479     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1480                             "tm-bar", &error_fatal);
1481     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1482                              &error_abort);
1483     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1484                              &local_err);
1485     if (local_err) {
1486         error_propagate(errp, local_err);
1487         return;
1488     }
1489     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1490                             &chip9->xive.xscom_regs);
1491 
1492     /* Processor Service Interface (PSI) Host Bridge */
1493     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1494                             "bar", &error_fatal);
1495     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1496     if (local_err) {
1497         error_propagate(errp, local_err);
1498         return;
1499     }
1500     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1501                             &PNV_PSI(psi9)->xscom_regs);
1502 
1503     /* LPC */
1504     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1505                              &error_abort);
1506     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1507     if (local_err) {
1508         error_propagate(errp, local_err);
1509         return;
1510     }
1511     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1512                                 &chip9->lpc.xscom_regs);
1513 
1514     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1515                                             (uint64_t) PNV9_LPCM_BASE(chip));
1516 
1517     /* Create the simplified OCC model */
1518     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1519                              &error_abort);
1520     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1521     if (local_err) {
1522         error_propagate(errp, local_err);
1523         return;
1524     }
1525     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1526 
1527     /* OCC SRAM model */
1528     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1529                                 &chip9->occ.sram_regs);
1530 
1531     /* HOMER */
1532     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1533                              &error_abort);
1534     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1535                              &local_err);
1536     if (local_err) {
1537         error_propagate(errp, local_err);
1538         return;
1539     }
1540     /* Homer Xscom region */
1541     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1542 
1543     /* Homer mmio region */
1544     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1545                                 &chip9->homer.regs);
1546 
1547     /* PHBs */
1548     pnv_chip_power9_phb_realize(chip, &local_err);
1549     if (local_err) {
1550         error_propagate(errp, local_err);
1551         return;
1552     }
1553 }
1554 
1555 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1556 {
1557     addr &= (PNV9_XSCOM_SIZE - 1);
1558     return addr >> 3;
1559 }
1560 
1561 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1562 {
1563     DeviceClass *dc = DEVICE_CLASS(klass);
1564     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1565 
1566     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1567     k->cores_mask = POWER9_CORE_MASK;
1568     k->core_pir = pnv_chip_core_pir_p9;
1569     k->intc_create = pnv_chip_power9_intc_create;
1570     k->intc_reset = pnv_chip_power9_intc_reset;
1571     k->intc_destroy = pnv_chip_power9_intc_destroy;
1572     k->intc_print_info = pnv_chip_power9_intc_print_info;
1573     k->isa_create = pnv_chip_power9_isa_create;
1574     k->dt_populate = pnv_chip_power9_dt_populate;
1575     k->pic_print_info = pnv_chip_power9_pic_print_info;
1576     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1577     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1578     dc->desc = "PowerNV Chip POWER9";
1579     k->num_phbs = 6;
1580 
1581     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1582                                     &k->parent_realize);
1583 }
1584 
1585 static void pnv_chip_power10_instance_init(Object *obj)
1586 {
1587     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1588 
1589     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1590                             TYPE_PNV10_PSI, &error_abort, NULL);
1591     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1592                             TYPE_PNV10_LPC, &error_abort, NULL);
1593 }
1594 
1595 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1596 {
1597     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1598     PnvChip *chip = PNV_CHIP(dev);
1599     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1600     Error *local_err = NULL;
1601 
1602     /* XSCOM bridge is first */
1603     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1604     if (local_err) {
1605         error_propagate(errp, local_err);
1606         return;
1607     }
1608     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1609 
1610     pcc->parent_realize(dev, &local_err);
1611     if (local_err) {
1612         error_propagate(errp, local_err);
1613         return;
1614     }
1615 
1616     /* Processor Service Interface (PSI) Host Bridge */
1617     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1618                             "bar", &error_fatal);
1619     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1620                              &local_err);
1621     if (local_err) {
1622         error_propagate(errp, local_err);
1623         return;
1624     }
1625     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1626                             &PNV_PSI(&chip10->psi)->xscom_regs);
1627 
1628     /* LPC */
1629     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1630                              &error_abort);
1631     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1632                              &local_err);
1633     if (local_err) {
1634         error_propagate(errp, local_err);
1635         return;
1636     }
1637     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1638                                 &chip10->lpc.xscom_regs);
1639 
1640     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1641                                             (uint64_t) PNV10_LPCM_BASE(chip));
1642 }
1643 
1644 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1645 {
1646     addr &= (PNV10_XSCOM_SIZE - 1);
1647     return addr >> 3;
1648 }
1649 
1650 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1651 {
1652     DeviceClass *dc = DEVICE_CLASS(klass);
1653     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1654 
1655     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1656     k->cores_mask = POWER10_CORE_MASK;
1657     k->core_pir = pnv_chip_core_pir_p10;
1658     k->intc_create = pnv_chip_power10_intc_create;
1659     k->intc_reset = pnv_chip_power10_intc_reset;
1660     k->intc_destroy = pnv_chip_power10_intc_destroy;
1661     k->intc_print_info = pnv_chip_power10_intc_print_info;
1662     k->isa_create = pnv_chip_power10_isa_create;
1663     k->dt_populate = pnv_chip_power10_dt_populate;
1664     k->pic_print_info = pnv_chip_power10_pic_print_info;
1665     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1666     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1667     dc->desc = "PowerNV Chip POWER10";
1668 
1669     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1670                                     &k->parent_realize);
1671 }
1672 
1673 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1674 {
1675     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1676     int cores_max;
1677 
1678     /*
1679      * No custom mask for this chip, let's use the default one from *
1680      * the chip class
1681      */
1682     if (!chip->cores_mask) {
1683         chip->cores_mask = pcc->cores_mask;
1684     }
1685 
1686     /* filter alien core ids ! some are reserved */
1687     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1688         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1689                    chip->cores_mask);
1690         return;
1691     }
1692     chip->cores_mask &= pcc->cores_mask;
1693 
1694     /* now that we have a sane layout, let check the number of cores */
1695     cores_max = ctpop64(chip->cores_mask);
1696     if (chip->nr_cores > cores_max) {
1697         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1698                    cores_max);
1699         return;
1700     }
1701 }
1702 
1703 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1704 {
1705     Error *error = NULL;
1706     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1707     const char *typename = pnv_chip_core_typename(chip);
1708     int i, core_hwid;
1709     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1710 
1711     if (!object_class_by_name(typename)) {
1712         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1713         return;
1714     }
1715 
1716     /* Cores */
1717     pnv_chip_core_sanitize(chip, &error);
1718     if (error) {
1719         error_propagate(errp, error);
1720         return;
1721     }
1722 
1723     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1724 
1725     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1726              && (i < chip->nr_cores); core_hwid++) {
1727         char core_name[32];
1728         PnvCore *pnv_core;
1729         uint64_t xscom_core_base;
1730 
1731         if (!(chip->cores_mask & (1ull << core_hwid))) {
1732             continue;
1733         }
1734 
1735         pnv_core = PNV_CORE(object_new(typename));
1736 
1737         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1738         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1739         chip->cores[i] = pnv_core;
1740         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1741                                 "nr-threads", &error_fatal);
1742         object_property_set_int(OBJECT(pnv_core), core_hwid,
1743                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1744         object_property_set_int(OBJECT(pnv_core),
1745                                 pcc->core_pir(chip, core_hwid),
1746                                 "pir", &error_fatal);
1747         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1748                                 "hrmor", &error_fatal);
1749         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1750                                  &error_abort);
1751         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1752                                  &error_fatal);
1753 
1754         /* Each core has an XSCOM MMIO region */
1755         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1756 
1757         pnv_xscom_add_subregion(chip, xscom_core_base,
1758                                 &pnv_core->xscom_regs);
1759         i++;
1760     }
1761 }
1762 
1763 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1764 {
1765     PnvChip *chip = PNV_CHIP(dev);
1766     Error *error = NULL;
1767 
1768     /* Cores */
1769     pnv_chip_core_realize(chip, &error);
1770     if (error) {
1771         error_propagate(errp, error);
1772         return;
1773     }
1774 }
1775 
1776 static Property pnv_chip_properties[] = {
1777     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1778     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1779     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1780     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1781     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1782     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1783     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1784     DEFINE_PROP_END_OF_LIST(),
1785 };
1786 
1787 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1788 {
1789     DeviceClass *dc = DEVICE_CLASS(klass);
1790 
1791     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1792     dc->realize = pnv_chip_realize;
1793     device_class_set_props(dc, pnv_chip_properties);
1794     dc->desc = "PowerNV Chip";
1795 }
1796 
1797 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1798 {
1799     int i, j;
1800 
1801     for (i = 0; i < chip->nr_cores; i++) {
1802         PnvCore *pc = chip->cores[i];
1803         CPUCore *cc = CPU_CORE(pc);
1804 
1805         for (j = 0; j < cc->nr_threads; j++) {
1806             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1807                 return pc->threads[j];
1808             }
1809         }
1810     }
1811     return NULL;
1812 }
1813 
1814 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1815 {
1816     PnvMachineState *pnv = PNV_MACHINE(xi);
1817     int i, j;
1818 
1819     for (i = 0; i < pnv->num_chips; i++) {
1820         PnvChip *chip = pnv->chips[i];
1821         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1822 
1823         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1824             return &chip8->psi.ics;
1825         }
1826         for (j = 0; j < chip->num_phbs; j++) {
1827             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1828                 return &chip8->phbs[j].lsis;
1829             }
1830             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1831                 return ICS(&chip8->phbs[j].msis);
1832             }
1833         }
1834     }
1835     return NULL;
1836 }
1837 
1838 static void pnv_ics_resend(XICSFabric *xi)
1839 {
1840     PnvMachineState *pnv = PNV_MACHINE(xi);
1841     int i, j;
1842 
1843     for (i = 0; i < pnv->num_chips; i++) {
1844         PnvChip *chip = pnv->chips[i];
1845         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1846 
1847         ics_resend(&chip8->psi.ics);
1848         for (j = 0; j < chip->num_phbs; j++) {
1849             ics_resend(&chip8->phbs[j].lsis);
1850             ics_resend(ICS(&chip8->phbs[j].msis));
1851         }
1852     }
1853 }
1854 
1855 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1856 {
1857     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1858 
1859     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1860 }
1861 
1862 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1863                                Monitor *mon)
1864 {
1865     PnvMachineState *pnv = PNV_MACHINE(obj);
1866     int i;
1867     CPUState *cs;
1868 
1869     CPU_FOREACH(cs) {
1870         PowerPCCPU *cpu = POWERPC_CPU(cs);
1871 
1872         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1873         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1874                                                            mon);
1875     }
1876 
1877     for (i = 0; i < pnv->num_chips; i++) {
1878         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1879     }
1880 }
1881 
1882 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1883                          uint8_t nvt_blk, uint32_t nvt_idx,
1884                          bool cam_ignore, uint8_t priority,
1885                          uint32_t logic_serv,
1886                          XiveTCTXMatch *match)
1887 {
1888     PnvMachineState *pnv = PNV_MACHINE(xfb);
1889     int total_count = 0;
1890     int i;
1891 
1892     for (i = 0; i < pnv->num_chips; i++) {
1893         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1894         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1895         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1896         int count;
1897 
1898         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1899                                priority, logic_serv, match);
1900 
1901         if (count < 0) {
1902             return count;
1903         }
1904 
1905         total_count += count;
1906     }
1907 
1908     return total_count;
1909 }
1910 
1911 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1912 {
1913     MachineClass *mc = MACHINE_CLASS(oc);
1914     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1915     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1916     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1917 
1918     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1919     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1920 
1921     xic->icp_get = pnv_icp_get;
1922     xic->ics_get = pnv_ics_get;
1923     xic->ics_resend = pnv_ics_resend;
1924 
1925     pmc->compat = compat;
1926     pmc->compat_size = sizeof(compat);
1927 }
1928 
1929 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1930 {
1931     MachineClass *mc = MACHINE_CLASS(oc);
1932     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1933     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1934     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1935 
1936     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1937     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1938     xfc->match_nvt = pnv_match_nvt;
1939 
1940     mc->alias = "powernv";
1941 
1942     pmc->compat = compat;
1943     pmc->compat_size = sizeof(compat);
1944     pmc->dt_power_mgt = pnv_dt_power_mgt;
1945 }
1946 
1947 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1948 {
1949     MachineClass *mc = MACHINE_CLASS(oc);
1950     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1951     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1952 
1953     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1954     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1955 
1956     pmc->compat = compat;
1957     pmc->compat_size = sizeof(compat);
1958     pmc->dt_power_mgt = pnv_dt_power_mgt;
1959 }
1960 
1961 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1962 {
1963     PnvMachineState *pnv = PNV_MACHINE(obj);
1964 
1965     return !!pnv->fw_load_addr;
1966 }
1967 
1968 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1969 {
1970     PnvMachineState *pnv = PNV_MACHINE(obj);
1971 
1972     if (value) {
1973         pnv->fw_load_addr = 0x8000000;
1974     }
1975 }
1976 
1977 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1978 {
1979     PowerPCCPU *cpu = POWERPC_CPU(cs);
1980     CPUPPCState *env = &cpu->env;
1981 
1982     cpu_synchronize_state(cs);
1983     ppc_cpu_do_system_reset(cs);
1984     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1985         /*
1986          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1987          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1988          * (PPC_BIT(43)).
1989          */
1990         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1991             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1992             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1993         }
1994     } else {
1995         /*
1996          * For non-powersave system resets, SRR1[42:45] are defined to be
1997          * implementation-dependent. The POWER9 User Manual specifies that
1998          * an external (SCOM driven, which may come from a BMC nmi command or
1999          * another CPU requesting a NMI IPI) system reset exception should be
2000          * 0b0010 (PPC_BIT(44)).
2001          */
2002         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2003     }
2004 }
2005 
2006 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2007 {
2008     CPUState *cs;
2009 
2010     CPU_FOREACH(cs) {
2011         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2012     }
2013 }
2014 
2015 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2016 {
2017     MachineClass *mc = MACHINE_CLASS(oc);
2018     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2019     NMIClass *nc = NMI_CLASS(oc);
2020 
2021     mc->desc = "IBM PowerNV (Non-Virtualized)";
2022     mc->init = pnv_init;
2023     mc->reset = pnv_reset;
2024     mc->max_cpus = MAX_CPUS;
2025     /* Pnv provides a AHCI device for storage */
2026     mc->block_default_type = IF_IDE;
2027     mc->no_parallel = 1;
2028     mc->default_boot_order = NULL;
2029     /*
2030      * RAM defaults to less than 2048 for 32-bit hosts, and large
2031      * enough to fit the maximum initrd size at it's load address
2032      */
2033     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
2034     mc->default_ram_id = "pnv.ram";
2035     ispc->print_info = pnv_pic_print_info;
2036     nc->nmi_monitor_handler = pnv_nmi;
2037 
2038     object_class_property_add_bool(oc, "hb-mode",
2039                                    pnv_machine_get_hb, pnv_machine_set_hb);
2040     object_class_property_set_description(oc, "hb-mode",
2041                               "Use a hostboot like boot loader");
2042 }
2043 
2044 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2045     {                                             \
2046         .name          = type,                    \
2047         .class_init    = class_initfn,            \
2048         .parent        = TYPE_PNV8_CHIP,          \
2049     }
2050 
2051 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2052     {                                             \
2053         .name          = type,                    \
2054         .class_init    = class_initfn,            \
2055         .parent        = TYPE_PNV9_CHIP,          \
2056     }
2057 
2058 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2059     {                                              \
2060         .name          = type,                     \
2061         .class_init    = class_initfn,             \
2062         .parent        = TYPE_PNV10_CHIP,          \
2063     }
2064 
2065 static const TypeInfo types[] = {
2066     {
2067         .name          = MACHINE_TYPE_NAME("powernv10"),
2068         .parent        = TYPE_PNV_MACHINE,
2069         .class_init    = pnv_machine_power10_class_init,
2070     },
2071     {
2072         .name          = MACHINE_TYPE_NAME("powernv9"),
2073         .parent        = TYPE_PNV_MACHINE,
2074         .class_init    = pnv_machine_power9_class_init,
2075         .interfaces = (InterfaceInfo[]) {
2076             { TYPE_XIVE_FABRIC },
2077             { },
2078         },
2079     },
2080     {
2081         .name          = MACHINE_TYPE_NAME("powernv8"),
2082         .parent        = TYPE_PNV_MACHINE,
2083         .class_init    = pnv_machine_power8_class_init,
2084         .interfaces = (InterfaceInfo[]) {
2085             { TYPE_XICS_FABRIC },
2086             { },
2087         },
2088     },
2089     {
2090         .name          = TYPE_PNV_MACHINE,
2091         .parent        = TYPE_MACHINE,
2092         .abstract       = true,
2093         .instance_size = sizeof(PnvMachineState),
2094         .class_init    = pnv_machine_class_init,
2095         .class_size    = sizeof(PnvMachineClass),
2096         .interfaces = (InterfaceInfo[]) {
2097             { TYPE_INTERRUPT_STATS_PROVIDER },
2098             { TYPE_NMI },
2099             { },
2100         },
2101     },
2102     {
2103         .name          = TYPE_PNV_CHIP,
2104         .parent        = TYPE_SYS_BUS_DEVICE,
2105         .class_init    = pnv_chip_class_init,
2106         .instance_size = sizeof(PnvChip),
2107         .class_size    = sizeof(PnvChipClass),
2108         .abstract      = true,
2109     },
2110 
2111     /*
2112      * P10 chip and variants
2113      */
2114     {
2115         .name          = TYPE_PNV10_CHIP,
2116         .parent        = TYPE_PNV_CHIP,
2117         .instance_init = pnv_chip_power10_instance_init,
2118         .instance_size = sizeof(Pnv10Chip),
2119     },
2120     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2121 
2122     /*
2123      * P9 chip and variants
2124      */
2125     {
2126         .name          = TYPE_PNV9_CHIP,
2127         .parent        = TYPE_PNV_CHIP,
2128         .instance_init = pnv_chip_power9_instance_init,
2129         .instance_size = sizeof(Pnv9Chip),
2130     },
2131     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2132 
2133     /*
2134      * P8 chip and variants
2135      */
2136     {
2137         .name          = TYPE_PNV8_CHIP,
2138         .parent        = TYPE_PNV_CHIP,
2139         .instance_init = pnv_chip_power8_instance_init,
2140         .instance_size = sizeof(Pnv8Chip),
2141     },
2142     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2143     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2144     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2145                           pnv_chip_power8nvl_class_init),
2146 };
2147 
2148 DEFINE_TYPES(types)
2149