xref: /openbmc/qemu/hw/ppc/pnv.c (revision 2055dbc1)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "sysemu/hw_accel.h"
31 #include "target/ppc/cpu.h"
32 #include "qemu/log.h"
33 #include "hw/ppc/fdt.h"
34 #include "hw/ppc/ppc.h"
35 #include "hw/ppc/pnv.h"
36 #include "hw/ppc/pnv_core.h"
37 #include "hw/loader.h"
38 #include "hw/nmi.h"
39 #include "exec/address-spaces.h"
40 #include "qapi/visitor.h"
41 #include "monitor/monitor.h"
42 #include "hw/intc/intc.h"
43 #include "hw/ipmi/ipmi.h"
44 #include "target/ppc/mmu-hash64.h"
45 #include "hw/pci/msi.h"
46 
47 #include "hw/ppc/xics.h"
48 #include "hw/qdev-properties.h"
49 #include "hw/ppc/pnv_xscom.h"
50 #include "hw/ppc/pnv_pnor.h"
51 
52 #include "hw/isa/isa.h"
53 #include "hw/boards.h"
54 #include "hw/char/serial.h"
55 #include "hw/rtc/mc146818rtc.h"
56 
57 #include <libfdt.h>
58 
59 #define FDT_MAX_SIZE            (1 * MiB)
60 
61 #define FW_FILE_NAME            "skiboot.lid"
62 #define FW_LOAD_ADDR            0x0
63 #define FW_MAX_SIZE             (4 * MiB)
64 
65 #define KERNEL_LOAD_ADDR        0x20000000
66 #define KERNEL_MAX_SIZE         (256 * MiB)
67 #define INITRD_LOAD_ADDR        0x60000000
68 #define INITRD_MAX_SIZE         (256 * MiB)
69 
70 static const char *pnv_chip_core_typename(const PnvChip *o)
71 {
72     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75     const char *core_type = object_class_get_name(object_class_by_name(s));
76     g_free(s);
77     return core_type;
78 }
79 
80 /*
81  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82  *     4 * 4 sockets * 12 cores * 8 threads = 1536
83  * Let's make it 2^11
84  */
85 #define MAX_CPUS                2048
86 
87 /*
88  * Memory nodes are created by hostboot, one for each range of memory
89  * that has a different "affinity". In practice, it means one range
90  * per chip.
91  */
92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93 {
94     char *mem_name;
95     uint64_t mem_reg_property[2];
96     int off;
97 
98     mem_reg_property[0] = cpu_to_be64(start);
99     mem_reg_property[1] = cpu_to_be64(size);
100 
101     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102     off = fdt_add_subnode(fdt, 0, mem_name);
103     g_free(mem_name);
104 
105     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                        sizeof(mem_reg_property))));
108     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109 }
110 
111 static int get_cpus_node(void *fdt)
112 {
113     int cpus_offset = fdt_path_offset(fdt, "/cpus");
114 
115     if (cpus_offset < 0) {
116         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117         if (cpus_offset) {
118             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120         }
121     }
122     _FDT(cpus_offset);
123     return cpus_offset;
124 }
125 
126 /*
127  * The PowerNV cores (and threads) need to use real HW ids and not an
128  * incremental index like it has been done on other platforms. This HW
129  * id is stored in the CPU PIR, it is used to create cpu nodes in the
130  * device tree, used in XSCOM to address cores and in interrupt
131  * servers.
132  */
133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134 {
135     PowerPCCPU *cpu = pc->threads[0];
136     CPUState *cs = CPU(cpu);
137     DeviceClass *dc = DEVICE_GET_CLASS(cs);
138     int smt_threads = CPU_CORE(pc)->nr_threads;
139     CPUPPCState *env = &cpu->env;
140     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141     uint32_t servers_prop[smt_threads];
142     int i;
143     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                        0xffffffff, 0xffffffff};
145     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146     uint32_t cpufreq = 1000000000;
147     uint32_t page_sizes_prop[64];
148     size_t page_sizes_prop_size;
149     const uint8_t pa_features[] = { 24, 0,
150                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154     int offset;
155     char *nodename;
156     int cpus_offset = get_cpus_node(fdt);
157 
158     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160     _FDT(offset);
161     g_free(nodename);
162 
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164 
165     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                             env->dcache_line_size)));
172     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                             env->dcache_line_size)));
174     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                             env->icache_line_size)));
176     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                             env->icache_line_size)));
178 
179     if (pcc->l1_dcache_size) {
180         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                pcc->l1_dcache_size)));
182     } else {
183         warn_report("Unknown L1 dcache size for cpu");
184     }
185     if (pcc->l1_icache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                pcc->l1_icache_size)));
188     } else {
189         warn_report("Unknown L1 icache size for cpu");
190     }
191 
192     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                            cpu->hash64_opts->slb_size)));
196     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198 
199     if (env->spr_cb[SPR_PURR].oea_read) {
200         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201     }
202 
203     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                            segs, sizeof(segs))));
206     }
207 
208     /*
209      * Advertise VMX/VSX (vector extensions) if available
210      *   0 / no property == no vector extensions
211      *   1               == VMX / Altivec available
212      *   2               == VSX available
213      */
214     if (env->insns_flags & PPC_ALTIVEC) {
215         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216 
217         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218     }
219 
220     /*
221      * Advertise DFP (Decimal Floating Point) if available
222      *   0 / no property == no DFP
223      *   1               == DFP available
224      */
225     if (env->insns_flags2 & PPC2_DFP) {
226         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227     }
228 
229     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                       sizeof(page_sizes_prop));
231     if (page_sizes_prop_size) {
232         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                            page_sizes_prop, page_sizes_prop_size)));
234     }
235 
236     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                        pa_features, sizeof(pa_features))));
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pc->pir + i);
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(servers_prop))));
245 }
246 
247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                        uint32_t nr_threads)
249 {
250     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251     char *name;
252     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253     uint32_t irange[2], i, rsize;
254     uint64_t *reg;
255     int offset;
256 
257     irange[0] = cpu_to_be32(pir);
258     irange[1] = cpu_to_be32(nr_threads);
259 
260     rsize = sizeof(uint64_t) * 2 * nr_threads;
261     reg = g_malloc(rsize);
262     for (i = 0; i < nr_threads; i++) {
263         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264         reg[i * 2 + 1] = cpu_to_be64(0x1000);
265     }
266 
267     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268     offset = fdt_add_subnode(fdt, 0, name);
269     _FDT(offset);
270     g_free(name);
271 
272     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274     _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                               "PowerPC-External-Interrupt-Presentation")));
276     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                        irange, sizeof(irange))));
279     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281     g_free(reg);
282 }
283 
284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285 {
286     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287     int i;
288 
289     pnv_dt_xscom(chip, fdt, 0,
290                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                  cpu_to_be64(PNV_XSCOM_SIZE),
292                  compat, sizeof(compat));
293 
294     for (i = 0; i < chip->nr_cores; i++) {
295         PnvCore *pnv_core = chip->cores[i];
296 
297         pnv_dt_core(chip, pnv_core, fdt);
298 
299         /* Interrupt Control Presenters (ICP). One per core. */
300         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301     }
302 
303     if (chip->ram_size) {
304         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305     }
306 }
307 
308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309 {
310     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311     int i;
312 
313     pnv_dt_xscom(chip, fdt, 0,
314                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                  cpu_to_be64(PNV9_XSCOM_SIZE),
316                  compat, sizeof(compat));
317 
318     for (i = 0; i < chip->nr_cores; i++) {
319         PnvCore *pnv_core = chip->cores[i];
320 
321         pnv_dt_core(chip, pnv_core, fdt);
322     }
323 
324     if (chip->ram_size) {
325         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326     }
327 
328     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329 }
330 
331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332 {
333     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334     int i;
335 
336     pnv_dt_xscom(chip, fdt, 0,
337                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                  cpu_to_be64(PNV10_XSCOM_SIZE),
339                  compat, sizeof(compat));
340 
341     for (i = 0; i < chip->nr_cores; i++) {
342         PnvCore *pnv_core = chip->cores[i];
343 
344         pnv_dt_core(chip, pnv_core, fdt);
345     }
346 
347     if (chip->ram_size) {
348         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349     }
350 
351     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352 }
353 
354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355 {
356     uint32_t io_base = d->ioport_id;
357     uint32_t io_regs[] = {
358         cpu_to_be32(1),
359         cpu_to_be32(io_base),
360         cpu_to_be32(2)
361     };
362     char *name;
363     int node;
364 
365     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366     node = fdt_add_subnode(fdt, lpc_off, name);
367     _FDT(node);
368     g_free(name);
369 
370     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372 }
373 
374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375 {
376     const char compatible[] = "ns16550\0pnpPNP,501";
377     uint32_t io_base = d->ioport_id;
378     uint32_t io_regs[] = {
379         cpu_to_be32(1),
380         cpu_to_be32(io_base),
381         cpu_to_be32(8)
382     };
383     char *name;
384     int node;
385 
386     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387     node = fdt_add_subnode(fdt, lpc_off, name);
388     _FDT(node);
389     g_free(name);
390 
391     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                       sizeof(compatible))));
394 
395     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                            fdt_get_phandle(fdt, lpc_off))));
400 
401     /* This is needed by Linux */
402     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403 }
404 
405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406 {
407     const char compatible[] = "bt\0ipmi-bt";
408     uint32_t io_base;
409     uint32_t io_regs[] = {
410         cpu_to_be32(1),
411         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412         cpu_to_be32(3)
413     };
414     uint32_t irq;
415     char *name;
416     int node;
417 
418     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419     io_regs[1] = cpu_to_be32(io_base);
420 
421     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422 
423     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424     node = fdt_add_subnode(fdt, lpc_off, name);
425     _FDT(node);
426     g_free(name);
427 
428     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                       sizeof(compatible))));
431 
432     /* Mark it as reserved to avoid Linux trying to claim it */
433     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                            fdt_get_phandle(fdt, lpc_off))));
437 }
438 
439 typedef struct ForeachPopulateArgs {
440     void *fdt;
441     int offset;
442 } ForeachPopulateArgs;
443 
444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445 {
446     ForeachPopulateArgs *args = opaque;
447     ISADevice *d = ISA_DEVICE(dev);
448 
449     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450         pnv_dt_rtc(d, args->fdt, args->offset);
451     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452         pnv_dt_serial(d, args->fdt, args->offset);
453     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455     } else {
456         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                      d->ioport_id);
458     }
459 
460     return 0;
461 }
462 
463 /*
464  * The default LPC bus of a multichip system is on chip 0. It's
465  * recognized by the firmware (skiboot) using a "primary" property.
466  */
467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468 {
469     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470     ForeachPopulateArgs args = {
471         .fdt = fdt,
472         .offset = isa_offset,
473     };
474     uint32_t phandle;
475 
476     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477 
478     phandle = qemu_fdt_alloc_phandle(fdt);
479     assert(phandle > 0);
480     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481 
482     /*
483      * ISA devices are not necessarily parented to the ISA bus so we
484      * can not use object_child_foreach()
485      */
486     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                        &args);
488 }
489 
490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491 {
492     int off;
493 
494     off = fdt_add_subnode(fdt, 0, "ibm,opal");
495     off = fdt_add_subnode(fdt, off, "power-mgt");
496 
497     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498 }
499 
500 static void *pnv_dt_create(MachineState *machine)
501 {
502     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503     PnvMachineState *pnv = PNV_MACHINE(machine);
504     void *fdt;
505     char *buf;
506     int off;
507     int i;
508 
509     fdt = g_malloc0(FDT_MAX_SIZE);
510     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511 
512     /* /qemu node */
513     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514 
515     /* Root node */
516     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518     _FDT((fdt_setprop_string(fdt, 0, "model",
519                              "IBM PowerNV (emulated by qemu)")));
520     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521 
522     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524     if (qemu_uuid_set) {
525         _FDT((fdt_property_string(fdt, "system-id", buf)));
526     }
527     g_free(buf);
528 
529     off = fdt_add_subnode(fdt, 0, "chosen");
530     if (machine->kernel_cmdline) {
531         _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                  machine->kernel_cmdline)));
533     }
534 
535     if (pnv->initrd_size) {
536         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538 
539         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                &start_prop, sizeof(start_prop))));
541         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                &end_prop, sizeof(end_prop))));
543     }
544 
545     /* Populate device tree for each chip */
546     for (i = 0; i < pnv->num_chips; i++) {
547         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548     }
549 
550     /* Populate ISA devices on chip 0 */
551     pnv_dt_isa(pnv, fdt);
552 
553     if (pnv->bmc) {
554         pnv_dt_bmc_sensors(pnv->bmc, fdt);
555     }
556 
557     /* Create an extra node for power management on machines that support it */
558     if (pmc->dt_power_mgt) {
559         pmc->dt_power_mgt(pnv, fdt);
560     }
561 
562     return fdt;
563 }
564 
565 static void pnv_powerdown_notify(Notifier *n, void *opaque)
566 {
567     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568 
569     if (pnv->bmc) {
570         pnv_bmc_powerdown(pnv->bmc);
571     }
572 }
573 
574 static void pnv_reset(MachineState *machine)
575 {
576     PnvMachineState *pnv = PNV_MACHINE(machine);
577     IPMIBmc *bmc;
578     void *fdt;
579 
580     qemu_devices_reset();
581 
582     /*
583      * The machine should provide by default an internal BMC simulator.
584      * If not, try to use the BMC device that was provided on the command
585      * line.
586      */
587     bmc = pnv_bmc_find(&error_fatal);
588     if (!pnv->bmc) {
589         if (!bmc) {
590             warn_report("machine has no BMC device. Use '-device "
591                         "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
592                         "to define one");
593         } else {
594             pnv_bmc_set_pnor(bmc, pnv->pnor);
595             pnv->bmc = bmc;
596         }
597     }
598 
599     fdt = pnv_dt_create(machine);
600 
601     /* Pack resulting tree */
602     _FDT((fdt_pack(fdt)));
603 
604     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
605     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
606 
607     g_free(fdt);
608 }
609 
610 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
611 {
612     Pnv8Chip *chip8 = PNV8_CHIP(chip);
613     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
614 }
615 
616 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
617 {
618     Pnv8Chip *chip8 = PNV8_CHIP(chip);
619     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
620 }
621 
622 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
623 {
624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
625     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
626 }
627 
628 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
629 {
630     Pnv10Chip *chip10 = PNV10_CHIP(chip);
631     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
632 }
633 
634 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
635 {
636     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
637 }
638 
639 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
640 {
641     Pnv8Chip *chip8 = PNV8_CHIP(chip);
642     int i;
643 
644     ics_pic_print_info(&chip8->psi.ics, mon);
645     for (i = 0; i < chip->num_phbs; i++) {
646         pnv_phb3_msi_pic_print_info(&chip8->phbs[i].msis, mon);
647         ics_pic_print_info(&chip8->phbs[i].lsis, mon);
648     }
649 }
650 
651 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
652 {
653     Pnv9Chip *chip9 = PNV9_CHIP(chip);
654     int i, j;
655 
656     pnv_xive_pic_print_info(&chip9->xive, mon);
657     pnv_psi_pic_print_info(&chip9->psi, mon);
658 
659     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
660         PnvPhb4PecState *pec = &chip9->pecs[i];
661         for (j = 0; j < pec->num_stacks; j++) {
662             pnv_phb4_pic_print_info(&pec->stacks[j].phb, mon);
663         }
664     }
665 }
666 
667 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
668                                                 uint32_t core_id)
669 {
670     return PNV_XSCOM_EX_BASE(core_id);
671 }
672 
673 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
674                                                 uint32_t core_id)
675 {
676     return PNV9_XSCOM_EC_BASE(core_id);
677 }
678 
679 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
680                                                  uint32_t core_id)
681 {
682     return PNV10_XSCOM_EC_BASE(core_id);
683 }
684 
685 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
686 {
687     PowerPCCPUClass *ppc_default =
688         POWERPC_CPU_CLASS(object_class_by_name(default_type));
689     PowerPCCPUClass *ppc =
690         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
691 
692     return ppc_default->pvr_match(ppc_default, ppc->pvr);
693 }
694 
695 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
696 {
697     ISADevice *dev = isa_new("isa-ipmi-bt");
698 
699     object_property_set_link(OBJECT(dev), OBJECT(bmc), "bmc", &error_fatal);
700     object_property_set_int(OBJECT(dev), irq, "irq", &error_fatal);
701     isa_realize_and_unref(dev, bus, &error_fatal);
702 }
703 
704 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
705 {
706     Pnv10Chip *chip10 = PNV10_CHIP(chip);
707 
708     pnv_psi_pic_print_info(&chip10->psi, mon);
709 }
710 
711 static void pnv_init(MachineState *machine)
712 {
713     PnvMachineState *pnv = PNV_MACHINE(machine);
714     MachineClass *mc = MACHINE_GET_CLASS(machine);
715     char *fw_filename;
716     long fw_size;
717     int i;
718     char *chip_typename;
719     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
720     DeviceState *dev;
721 
722     /* allocate RAM */
723     if (machine->ram_size < (1 * GiB)) {
724         warn_report("skiboot may not work with < 1GB of RAM");
725     }
726     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
727 
728     /*
729      * Create our simple PNOR device
730      */
731     dev = qdev_new(TYPE_PNV_PNOR);
732     if (pnor) {
733         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
734                             &error_abort);
735     }
736     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
737     pnv->pnor = PNV_PNOR(dev);
738 
739     /* load skiboot firmware  */
740     if (bios_name == NULL) {
741         bios_name = FW_FILE_NAME;
742     }
743 
744     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
745     if (!fw_filename) {
746         error_report("Could not find OPAL firmware '%s'", bios_name);
747         exit(1);
748     }
749 
750     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
751     if (fw_size < 0) {
752         error_report("Could not load OPAL firmware '%s'", fw_filename);
753         exit(1);
754     }
755     g_free(fw_filename);
756 
757     /* load kernel */
758     if (machine->kernel_filename) {
759         long kernel_size;
760 
761         kernel_size = load_image_targphys(machine->kernel_filename,
762                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
763         if (kernel_size < 0) {
764             error_report("Could not load kernel '%s'",
765                          machine->kernel_filename);
766             exit(1);
767         }
768     }
769 
770     /* load initrd */
771     if (machine->initrd_filename) {
772         pnv->initrd_base = INITRD_LOAD_ADDR;
773         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
774                                   pnv->initrd_base, INITRD_MAX_SIZE);
775         if (pnv->initrd_size < 0) {
776             error_report("Could not load initial ram disk '%s'",
777                          machine->initrd_filename);
778             exit(1);
779         }
780     }
781 
782     /* MSIs are supported on this platform */
783     msi_nonbroken = true;
784 
785     /*
786      * Check compatibility of the specified CPU with the machine
787      * default.
788      */
789     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
790         error_report("invalid CPU model '%s' for %s machine",
791                      machine->cpu_type, mc->name);
792         exit(1);
793     }
794 
795     /* Create the processor chips */
796     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
797     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
798                                     i, machine->cpu_type);
799     if (!object_class_by_name(chip_typename)) {
800         error_report("invalid chip model '%.*s' for %s machine",
801                      i, machine->cpu_type, mc->name);
802         exit(1);
803     }
804 
805     pnv->num_chips =
806         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
807     /*
808      * TODO: should we decide on how many chips we can create based
809      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
810      */
811     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
812         error_report("invalid number of chips: '%d'", pnv->num_chips);
813         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
814         exit(1);
815     }
816 
817     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
818     for (i = 0; i < pnv->num_chips; i++) {
819         char chip_name[32];
820         Object *chip = OBJECT(qdev_new(chip_typename));
821 
822         pnv->chips[i] = PNV_CHIP(chip);
823 
824         /*
825          * TODO: put all the memory in one node on chip 0 until we find a
826          * way to specify different ranges for each chip
827          */
828         if (i == 0) {
829             object_property_set_int(chip, machine->ram_size, "ram-size",
830                                     &error_fatal);
831         }
832 
833         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
834         object_property_add_child(OBJECT(pnv), chip_name, chip);
835         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
836                                 &error_fatal);
837         object_property_set_int(chip, machine->smp.cores,
838                                 "nr-cores", &error_fatal);
839         object_property_set_int(chip, machine->smp.threads,
840                                 "nr-threads", &error_fatal);
841         /*
842          * The POWER8 machine use the XICS interrupt interface.
843          * Propagate the XICS fabric to the chip and its controllers.
844          */
845         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
846             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
847         }
848         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
849             object_property_set_link(chip, OBJECT(pnv), "xive-fabric",
850                                      &error_abort);
851         }
852         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
853     }
854     g_free(chip_typename);
855 
856     /* Instantiate ISA bus on chip 0 */
857     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
858 
859     /* Create serial port */
860     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
861 
862     /* Create an RTC ISA device too */
863     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
864 
865     /*
866      * Create the machine BMC simulator and the IPMI BT device for
867      * communication with the BMC
868      */
869     if (defaults_enabled()) {
870         pnv->bmc = pnv_bmc_create(pnv->pnor);
871         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
872     }
873 
874     /*
875      * OpenPOWER systems use a IPMI SEL Event message to notify the
876      * host to powerdown
877      */
878     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
879     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
880 }
881 
882 /*
883  *    0:21  Reserved - Read as zeros
884  *   22:24  Chip ID
885  *   25:28  Core number
886  *   29:31  Thread ID
887  */
888 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
889 {
890     return (chip->chip_id << 7) | (core_id << 3);
891 }
892 
893 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
894                                         Error **errp)
895 {
896     Pnv8Chip *chip8 = PNV8_CHIP(chip);
897     Error *local_err = NULL;
898     Object *obj;
899     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
900 
901     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
902     if (local_err) {
903         error_propagate(errp, local_err);
904         return;
905     }
906 
907     pnv_cpu->intc = obj;
908 }
909 
910 
911 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
912 {
913     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
914 
915     icp_reset(ICP(pnv_cpu->intc));
916 }
917 
918 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
919 {
920     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
921 
922     icp_destroy(ICP(pnv_cpu->intc));
923     pnv_cpu->intc = NULL;
924 }
925 
926 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
927                                             Monitor *mon)
928 {
929     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
930 }
931 
932 /*
933  *    0:48  Reserved - Read as zeroes
934  *   49:52  Node ID
935  *   53:55  Chip ID
936  *   56     Reserved - Read as zero
937  *   57:61  Core number
938  *   62:63  Thread ID
939  *
940  * We only care about the lower bits. uint32_t is fine for the moment.
941  */
942 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
943 {
944     return (chip->chip_id << 8) | (core_id << 2);
945 }
946 
947 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
948 {
949     return (chip->chip_id << 8) | (core_id << 2);
950 }
951 
952 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
953                                         Error **errp)
954 {
955     Pnv9Chip *chip9 = PNV9_CHIP(chip);
956     Error *local_err = NULL;
957     Object *obj;
958     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
959 
960     /*
961      * The core creates its interrupt presenter but the XIVE interrupt
962      * controller object is initialized afterwards. Hopefully, it's
963      * only used at runtime.
964      */
965     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
966                            &local_err);
967     if (local_err) {
968         error_propagate(errp, local_err);
969         return;
970     }
971 
972     pnv_cpu->intc = obj;
973 }
974 
975 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
976 {
977     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
978 
979     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
980 }
981 
982 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
983 {
984     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
985 
986     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
987     pnv_cpu->intc = NULL;
988 }
989 
990 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
991                                             Monitor *mon)
992 {
993     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
994 }
995 
996 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
997                                         Error **errp)
998 {
999     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1000 
1001     /* Will be defined when the interrupt controller is */
1002     pnv_cpu->intc = NULL;
1003 }
1004 
1005 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1006 {
1007     ;
1008 }
1009 
1010 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1011 {
1012     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1013 
1014     pnv_cpu->intc = NULL;
1015 }
1016 
1017 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1018                                              Monitor *mon)
1019 {
1020 }
1021 
1022 /*
1023  * Allowed core identifiers on a POWER8 Processor Chip :
1024  *
1025  * <EX0 reserved>
1026  *  EX1  - Venice only
1027  *  EX2  - Venice only
1028  *  EX3  - Venice only
1029  *  EX4
1030  *  EX5
1031  *  EX6
1032  * <EX7,8 reserved> <reserved>
1033  *  EX9  - Venice only
1034  *  EX10 - Venice only
1035  *  EX11 - Venice only
1036  *  EX12
1037  *  EX13
1038  *  EX14
1039  * <EX15 reserved>
1040  */
1041 #define POWER8E_CORE_MASK  (0x7070ull)
1042 #define POWER8_CORE_MASK   (0x7e7eull)
1043 
1044 /*
1045  * POWER9 has 24 cores, ids starting at 0x0
1046  */
1047 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1048 
1049 
1050 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1051 
1052 static void pnv_chip_power8_instance_init(Object *obj)
1053 {
1054     PnvChip *chip = PNV_CHIP(obj);
1055     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1056     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1057     int i;
1058 
1059     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1060                              (Object **)&chip8->xics,
1061                              object_property_allow_set_link,
1062                              OBJ_PROP_LINK_STRONG);
1063 
1064     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1065 
1066     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1067 
1068     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1069 
1070     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1071 
1072     for (i = 0; i < pcc->num_phbs; i++) {
1073         object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1074     }
1075 
1076     /*
1077      * Number of PHBs is the chip default
1078      */
1079     chip->num_phbs = pcc->num_phbs;
1080 }
1081 
1082 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1083  {
1084     PnvChip *chip = PNV_CHIP(chip8);
1085     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1086     int i, j;
1087     char *name;
1088 
1089     name = g_strdup_printf("icp-%x", chip->chip_id);
1090     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1091     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1092     g_free(name);
1093 
1094     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1095 
1096     /* Map the ICP registers for each thread */
1097     for (i = 0; i < chip->nr_cores; i++) {
1098         PnvCore *pnv_core = chip->cores[i];
1099         int core_hwid = CPU_CORE(pnv_core)->core_id;
1100 
1101         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1102             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1103             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1104 
1105             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1106                                         &icp->mmio);
1107         }
1108     }
1109 }
1110 
1111 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1112 {
1113     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1114     PnvChip *chip = PNV_CHIP(dev);
1115     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1116     Pnv8Psi *psi8 = &chip8->psi;
1117     Error *local_err = NULL;
1118     int i;
1119 
1120     assert(chip8->xics);
1121 
1122     /* XSCOM bridge is first */
1123     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1124     if (local_err) {
1125         error_propagate(errp, local_err);
1126         return;
1127     }
1128     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1129 
1130     pcc->parent_realize(dev, &local_err);
1131     if (local_err) {
1132         error_propagate(errp, local_err);
1133         return;
1134     }
1135 
1136     /* Processor Service Interface (PSI) Host Bridge */
1137     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1138                             "bar", &error_fatal);
1139     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1140                              ICS_PROP_XICS, &error_abort);
1141     qdev_realize(DEVICE(&chip8->psi), NULL, &local_err);
1142     if (local_err) {
1143         error_propagate(errp, local_err);
1144         return;
1145     }
1146     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1147                             &PNV_PSI(psi8)->xscom_regs);
1148 
1149     /* Create LPC controller */
1150     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1151                              &error_abort);
1152     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1153     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1154 
1155     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1156                                             (uint64_t) PNV_XSCOM_BASE(chip),
1157                                             PNV_XSCOM_LPC_BASE);
1158 
1159     /*
1160      * Interrupt Management Area. This is the memory region holding
1161      * all the Interrupt Control Presenter (ICP) registers
1162      */
1163     pnv_chip_icp_realize(chip8, &local_err);
1164     if (local_err) {
1165         error_propagate(errp, local_err);
1166         return;
1167     }
1168 
1169     /* Create the simplified OCC model */
1170     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1171                              &error_abort);
1172     qdev_realize(DEVICE(&chip8->occ), NULL, &local_err);
1173     if (local_err) {
1174         error_propagate(errp, local_err);
1175         return;
1176     }
1177     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1178 
1179     /* OCC SRAM model */
1180     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1181                                 &chip8->occ.sram_regs);
1182 
1183     /* HOMER */
1184     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1185                              &error_abort);
1186     qdev_realize(DEVICE(&chip8->homer), NULL, &local_err);
1187     if (local_err) {
1188         error_propagate(errp, local_err);
1189         return;
1190     }
1191     /* Homer Xscom region */
1192     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1193 
1194     /* Homer mmio region */
1195     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1196                                 &chip8->homer.regs);
1197 
1198     /* PHB3 controllers */
1199     for (i = 0; i < chip->num_phbs; i++) {
1200         PnvPHB3 *phb = &chip8->phbs[i];
1201         PnvPBCQState *pbcq = &phb->pbcq;
1202 
1203         object_property_set_int(OBJECT(phb), i, "index", &error_fatal);
1204         object_property_set_int(OBJECT(phb), chip->chip_id, "chip-id",
1205                                 &error_fatal);
1206         sysbus_realize(SYS_BUS_DEVICE(phb), &local_err);
1207         if (local_err) {
1208             error_propagate(errp, local_err);
1209             return;
1210         }
1211 
1212         /* Populate the XSCOM address space. */
1213         pnv_xscom_add_subregion(chip,
1214                                 PNV_XSCOM_PBCQ_NEST_BASE + 0x400 * phb->phb_id,
1215                                 &pbcq->xscom_nest_regs);
1216         pnv_xscom_add_subregion(chip,
1217                                 PNV_XSCOM_PBCQ_PCI_BASE + 0x400 * phb->phb_id,
1218                                 &pbcq->xscom_pci_regs);
1219         pnv_xscom_add_subregion(chip,
1220                                 PNV_XSCOM_PBCQ_SPCI_BASE + 0x040 * phb->phb_id,
1221                                 &pbcq->xscom_spci_regs);
1222     }
1223 }
1224 
1225 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1226 {
1227     addr &= (PNV_XSCOM_SIZE - 1);
1228     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1229 }
1230 
1231 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1232 {
1233     DeviceClass *dc = DEVICE_CLASS(klass);
1234     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1235 
1236     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1237     k->cores_mask = POWER8E_CORE_MASK;
1238     k->num_phbs = 3;
1239     k->core_pir = pnv_chip_core_pir_p8;
1240     k->intc_create = pnv_chip_power8_intc_create;
1241     k->intc_reset = pnv_chip_power8_intc_reset;
1242     k->intc_destroy = pnv_chip_power8_intc_destroy;
1243     k->intc_print_info = pnv_chip_power8_intc_print_info;
1244     k->isa_create = pnv_chip_power8_isa_create;
1245     k->dt_populate = pnv_chip_power8_dt_populate;
1246     k->pic_print_info = pnv_chip_power8_pic_print_info;
1247     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1248     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1249     dc->desc = "PowerNV Chip POWER8E";
1250 
1251     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1252                                     &k->parent_realize);
1253 }
1254 
1255 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1256 {
1257     DeviceClass *dc = DEVICE_CLASS(klass);
1258     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1259 
1260     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1261     k->cores_mask = POWER8_CORE_MASK;
1262     k->num_phbs = 3;
1263     k->core_pir = pnv_chip_core_pir_p8;
1264     k->intc_create = pnv_chip_power8_intc_create;
1265     k->intc_reset = pnv_chip_power8_intc_reset;
1266     k->intc_destroy = pnv_chip_power8_intc_destroy;
1267     k->intc_print_info = pnv_chip_power8_intc_print_info;
1268     k->isa_create = pnv_chip_power8_isa_create;
1269     k->dt_populate = pnv_chip_power8_dt_populate;
1270     k->pic_print_info = pnv_chip_power8_pic_print_info;
1271     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1272     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1273     dc->desc = "PowerNV Chip POWER8";
1274 
1275     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1276                                     &k->parent_realize);
1277 }
1278 
1279 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1280 {
1281     DeviceClass *dc = DEVICE_CLASS(klass);
1282     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1283 
1284     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1285     k->cores_mask = POWER8_CORE_MASK;
1286     k->num_phbs = 3;
1287     k->core_pir = pnv_chip_core_pir_p8;
1288     k->intc_create = pnv_chip_power8_intc_create;
1289     k->intc_reset = pnv_chip_power8_intc_reset;
1290     k->intc_destroy = pnv_chip_power8_intc_destroy;
1291     k->intc_print_info = pnv_chip_power8_intc_print_info;
1292     k->isa_create = pnv_chip_power8nvl_isa_create;
1293     k->dt_populate = pnv_chip_power8_dt_populate;
1294     k->pic_print_info = pnv_chip_power8_pic_print_info;
1295     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1296     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1297     dc->desc = "PowerNV Chip POWER8NVL";
1298 
1299     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1300                                     &k->parent_realize);
1301 }
1302 
1303 static void pnv_chip_power9_instance_init(Object *obj)
1304 {
1305     PnvChip *chip = PNV_CHIP(obj);
1306     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1307     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1308     int i;
1309 
1310     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1311     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1312                               "xive-fabric");
1313 
1314     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1315 
1316     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1317 
1318     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1319 
1320     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1321 
1322     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1323         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1324                                 TYPE_PNV_PHB4_PEC);
1325     }
1326 
1327     /*
1328      * Number of PHBs is the chip default
1329      */
1330     chip->num_phbs = pcc->num_phbs;
1331 }
1332 
1333 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1334 {
1335     PnvChip *chip = PNV_CHIP(chip9);
1336     int i;
1337 
1338     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1339     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1340 
1341     for (i = 0; i < chip9->nr_quads; i++) {
1342         char eq_name[32];
1343         PnvQuad *eq = &chip9->quads[i];
1344         PnvCore *pnv_core = chip->cores[i * 4];
1345         int core_id = CPU_CORE(pnv_core)->core_id;
1346 
1347         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1348         object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1349                                            sizeof(*eq), TYPE_PNV_QUAD,
1350                                            &error_fatal, NULL);
1351 
1352         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1353         qdev_realize(DEVICE(eq), NULL, &error_fatal);
1354 
1355         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1356                                 &eq->xscom_regs);
1357     }
1358 }
1359 
1360 static void pnv_chip_power9_phb_realize(PnvChip *chip, Error **errp)
1361 {
1362     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1363     Error *local_err = NULL;
1364     int i, j;
1365     int phb_id = 0;
1366 
1367     for (i = 0; i < PNV9_CHIP_MAX_PEC; i++) {
1368         PnvPhb4PecState *pec = &chip9->pecs[i];
1369         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1370         uint32_t pec_nest_base;
1371         uint32_t pec_pci_base;
1372 
1373         object_property_set_int(OBJECT(pec), i, "index", &error_fatal);
1374         /*
1375          * PEC0 -> 1 stack
1376          * PEC1 -> 2 stacks
1377          * PEC2 -> 3 stacks
1378          */
1379         object_property_set_int(OBJECT(pec), i + 1, "num-stacks",
1380                                 &error_fatal);
1381         object_property_set_int(OBJECT(pec), chip->chip_id, "chip-id",
1382                                  &error_fatal);
1383         object_property_set_link(OBJECT(pec), OBJECT(get_system_memory()),
1384                                  "system-memory", &error_abort);
1385         qdev_realize(DEVICE(pec), NULL, &local_err);
1386         if (local_err) {
1387             error_propagate(errp, local_err);
1388             return;
1389         }
1390 
1391         pec_nest_base = pecc->xscom_nest_base(pec);
1392         pec_pci_base = pecc->xscom_pci_base(pec);
1393 
1394         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1395         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1396 
1397         for (j = 0; j < pec->num_stacks && phb_id < chip->num_phbs;
1398              j++, phb_id++) {
1399             PnvPhb4PecStack *stack = &pec->stacks[j];
1400             Object *obj = OBJECT(&stack->phb);
1401 
1402             object_property_set_int(obj, phb_id, "index", &error_fatal);
1403             object_property_set_int(obj, chip->chip_id, "chip-id",
1404                                     &error_fatal);
1405             object_property_set_int(obj, PNV_PHB4_VERSION, "version",
1406                                     &error_fatal);
1407             object_property_set_int(obj, PNV_PHB4_DEVICE_ID, "device-id",
1408                                     &error_fatal);
1409             object_property_set_link(obj, OBJECT(stack), "stack", &error_abort);
1410             sysbus_realize(SYS_BUS_DEVICE(obj), &local_err);
1411             if (local_err) {
1412                 error_propagate(errp, local_err);
1413                 return;
1414             }
1415 
1416             /* Populate the XSCOM address space. */
1417             pnv_xscom_add_subregion(chip,
1418                                    pec_nest_base + 0x40 * (stack->stack_no + 1),
1419                                    &stack->nest_regs_mr);
1420             pnv_xscom_add_subregion(chip,
1421                                     pec_pci_base + 0x40 * (stack->stack_no + 1),
1422                                     &stack->pci_regs_mr);
1423             pnv_xscom_add_subregion(chip,
1424                                     pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 +
1425                                     0x40 * stack->stack_no,
1426                                     &stack->phb_regs_mr);
1427         }
1428     }
1429 }
1430 
1431 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1432 {
1433     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1434     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1435     PnvChip *chip = PNV_CHIP(dev);
1436     Pnv9Psi *psi9 = &chip9->psi;
1437     Error *local_err = NULL;
1438 
1439     /* XSCOM bridge is first */
1440     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1441     if (local_err) {
1442         error_propagate(errp, local_err);
1443         return;
1444     }
1445     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1446 
1447     pcc->parent_realize(dev, &local_err);
1448     if (local_err) {
1449         error_propagate(errp, local_err);
1450         return;
1451     }
1452 
1453     pnv_chip_quad_realize(chip9, &local_err);
1454     if (local_err) {
1455         error_propagate(errp, local_err);
1456         return;
1457     }
1458 
1459     /* XIVE interrupt controller (POWER9) */
1460     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1461                             "ic-bar", &error_fatal);
1462     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1463                             "vc-bar", &error_fatal);
1464     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1465                             "pc-bar", &error_fatal);
1466     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1467                             "tm-bar", &error_fatal);
1468     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1469                              &error_abort);
1470     sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), &local_err);
1471     if (local_err) {
1472         error_propagate(errp, local_err);
1473         return;
1474     }
1475     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1476                             &chip9->xive.xscom_regs);
1477 
1478     /* Processor Service Interface (PSI) Host Bridge */
1479     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1480                             "bar", &error_fatal);
1481     qdev_realize(DEVICE(&chip9->psi), NULL, &local_err);
1482     if (local_err) {
1483         error_propagate(errp, local_err);
1484         return;
1485     }
1486     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1487                             &PNV_PSI(psi9)->xscom_regs);
1488 
1489     /* LPC */
1490     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1491                              &error_abort);
1492     qdev_realize(DEVICE(&chip9->lpc), NULL, &local_err);
1493     if (local_err) {
1494         error_propagate(errp, local_err);
1495         return;
1496     }
1497     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1498                                 &chip9->lpc.xscom_regs);
1499 
1500     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1501                                             (uint64_t) PNV9_LPCM_BASE(chip));
1502 
1503     /* Create the simplified OCC model */
1504     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1505                              &error_abort);
1506     qdev_realize(DEVICE(&chip9->occ), NULL, &local_err);
1507     if (local_err) {
1508         error_propagate(errp, local_err);
1509         return;
1510     }
1511     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1512 
1513     /* OCC SRAM model */
1514     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1515                                 &chip9->occ.sram_regs);
1516 
1517     /* HOMER */
1518     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1519                              &error_abort);
1520     qdev_realize(DEVICE(&chip9->homer), NULL, &local_err);
1521     if (local_err) {
1522         error_propagate(errp, local_err);
1523         return;
1524     }
1525     /* Homer Xscom region */
1526     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1527 
1528     /* Homer mmio region */
1529     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1530                                 &chip9->homer.regs);
1531 
1532     /* PHBs */
1533     pnv_chip_power9_phb_realize(chip, &local_err);
1534     if (local_err) {
1535         error_propagate(errp, local_err);
1536         return;
1537     }
1538 }
1539 
1540 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1541 {
1542     addr &= (PNV9_XSCOM_SIZE - 1);
1543     return addr >> 3;
1544 }
1545 
1546 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1547 {
1548     DeviceClass *dc = DEVICE_CLASS(klass);
1549     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1550 
1551     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1552     k->cores_mask = POWER9_CORE_MASK;
1553     k->core_pir = pnv_chip_core_pir_p9;
1554     k->intc_create = pnv_chip_power9_intc_create;
1555     k->intc_reset = pnv_chip_power9_intc_reset;
1556     k->intc_destroy = pnv_chip_power9_intc_destroy;
1557     k->intc_print_info = pnv_chip_power9_intc_print_info;
1558     k->isa_create = pnv_chip_power9_isa_create;
1559     k->dt_populate = pnv_chip_power9_dt_populate;
1560     k->pic_print_info = pnv_chip_power9_pic_print_info;
1561     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1562     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1563     dc->desc = "PowerNV Chip POWER9";
1564     k->num_phbs = 6;
1565 
1566     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1567                                     &k->parent_realize);
1568 }
1569 
1570 static void pnv_chip_power10_instance_init(Object *obj)
1571 {
1572     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1573 
1574     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1575     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1576 }
1577 
1578 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1579 {
1580     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1581     PnvChip *chip = PNV_CHIP(dev);
1582     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1583     Error *local_err = NULL;
1584 
1585     /* XSCOM bridge is first */
1586     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1587     if (local_err) {
1588         error_propagate(errp, local_err);
1589         return;
1590     }
1591     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1592 
1593     pcc->parent_realize(dev, &local_err);
1594     if (local_err) {
1595         error_propagate(errp, local_err);
1596         return;
1597     }
1598 
1599     /* Processor Service Interface (PSI) Host Bridge */
1600     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1601                             "bar", &error_fatal);
1602     qdev_realize(DEVICE(&chip10->psi), NULL, &local_err);
1603     if (local_err) {
1604         error_propagate(errp, local_err);
1605         return;
1606     }
1607     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1608                             &PNV_PSI(&chip10->psi)->xscom_regs);
1609 
1610     /* LPC */
1611     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1612                              &error_abort);
1613     qdev_realize(DEVICE(&chip10->lpc), NULL, &local_err);
1614     if (local_err) {
1615         error_propagate(errp, local_err);
1616         return;
1617     }
1618     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1619                                 &chip10->lpc.xscom_regs);
1620 
1621     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1622                                             (uint64_t) PNV10_LPCM_BASE(chip));
1623 }
1624 
1625 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1626 {
1627     addr &= (PNV10_XSCOM_SIZE - 1);
1628     return addr >> 3;
1629 }
1630 
1631 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1632 {
1633     DeviceClass *dc = DEVICE_CLASS(klass);
1634     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1635 
1636     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1637     k->cores_mask = POWER10_CORE_MASK;
1638     k->core_pir = pnv_chip_core_pir_p10;
1639     k->intc_create = pnv_chip_power10_intc_create;
1640     k->intc_reset = pnv_chip_power10_intc_reset;
1641     k->intc_destroy = pnv_chip_power10_intc_destroy;
1642     k->intc_print_info = pnv_chip_power10_intc_print_info;
1643     k->isa_create = pnv_chip_power10_isa_create;
1644     k->dt_populate = pnv_chip_power10_dt_populate;
1645     k->pic_print_info = pnv_chip_power10_pic_print_info;
1646     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1647     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1648     dc->desc = "PowerNV Chip POWER10";
1649 
1650     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1651                                     &k->parent_realize);
1652 }
1653 
1654 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1655 {
1656     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1657     int cores_max;
1658 
1659     /*
1660      * No custom mask for this chip, let's use the default one from *
1661      * the chip class
1662      */
1663     if (!chip->cores_mask) {
1664         chip->cores_mask = pcc->cores_mask;
1665     }
1666 
1667     /* filter alien core ids ! some are reserved */
1668     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1669         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1670                    chip->cores_mask);
1671         return;
1672     }
1673     chip->cores_mask &= pcc->cores_mask;
1674 
1675     /* now that we have a sane layout, let check the number of cores */
1676     cores_max = ctpop64(chip->cores_mask);
1677     if (chip->nr_cores > cores_max) {
1678         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1679                    cores_max);
1680         return;
1681     }
1682 }
1683 
1684 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1685 {
1686     Error *error = NULL;
1687     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1688     const char *typename = pnv_chip_core_typename(chip);
1689     int i, core_hwid;
1690     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1691 
1692     if (!object_class_by_name(typename)) {
1693         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1694         return;
1695     }
1696 
1697     /* Cores */
1698     pnv_chip_core_sanitize(chip, &error);
1699     if (error) {
1700         error_propagate(errp, error);
1701         return;
1702     }
1703 
1704     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1705 
1706     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1707              && (i < chip->nr_cores); core_hwid++) {
1708         char core_name[32];
1709         PnvCore *pnv_core;
1710         uint64_t xscom_core_base;
1711 
1712         if (!(chip->cores_mask & (1ull << core_hwid))) {
1713             continue;
1714         }
1715 
1716         pnv_core = PNV_CORE(object_new(typename));
1717 
1718         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1719         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1720         chip->cores[i] = pnv_core;
1721         object_property_set_int(OBJECT(pnv_core), chip->nr_threads,
1722                                 "nr-threads", &error_fatal);
1723         object_property_set_int(OBJECT(pnv_core), core_hwid,
1724                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1725         object_property_set_int(OBJECT(pnv_core),
1726                                 pcc->core_pir(chip, core_hwid),
1727                                 "pir", &error_fatal);
1728         object_property_set_int(OBJECT(pnv_core), pnv->fw_load_addr,
1729                                 "hrmor", &error_fatal);
1730         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1731                                  &error_abort);
1732         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1733 
1734         /* Each core has an XSCOM MMIO region */
1735         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1736 
1737         pnv_xscom_add_subregion(chip, xscom_core_base,
1738                                 &pnv_core->xscom_regs);
1739         i++;
1740     }
1741 }
1742 
1743 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1744 {
1745     PnvChip *chip = PNV_CHIP(dev);
1746     Error *error = NULL;
1747 
1748     /* Cores */
1749     pnv_chip_core_realize(chip, &error);
1750     if (error) {
1751         error_propagate(errp, error);
1752         return;
1753     }
1754 }
1755 
1756 static Property pnv_chip_properties[] = {
1757     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1758     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1759     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1760     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1761     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1762     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1763     DEFINE_PROP_UINT32("num-phbs", PnvChip, num_phbs, 0),
1764     DEFINE_PROP_END_OF_LIST(),
1765 };
1766 
1767 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1768 {
1769     DeviceClass *dc = DEVICE_CLASS(klass);
1770 
1771     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1772     dc->realize = pnv_chip_realize;
1773     device_class_set_props(dc, pnv_chip_properties);
1774     dc->desc = "PowerNV Chip";
1775 }
1776 
1777 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1778 {
1779     int i, j;
1780 
1781     for (i = 0; i < chip->nr_cores; i++) {
1782         PnvCore *pc = chip->cores[i];
1783         CPUCore *cc = CPU_CORE(pc);
1784 
1785         for (j = 0; j < cc->nr_threads; j++) {
1786             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1787                 return pc->threads[j];
1788             }
1789         }
1790     }
1791     return NULL;
1792 }
1793 
1794 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1795 {
1796     PnvMachineState *pnv = PNV_MACHINE(xi);
1797     int i, j;
1798 
1799     for (i = 0; i < pnv->num_chips; i++) {
1800         PnvChip *chip = pnv->chips[i];
1801         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1802 
1803         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1804             return &chip8->psi.ics;
1805         }
1806         for (j = 0; j < chip->num_phbs; j++) {
1807             if (ics_valid_irq(&chip8->phbs[j].lsis, irq)) {
1808                 return &chip8->phbs[j].lsis;
1809             }
1810             if (ics_valid_irq(ICS(&chip8->phbs[j].msis), irq)) {
1811                 return ICS(&chip8->phbs[j].msis);
1812             }
1813         }
1814     }
1815     return NULL;
1816 }
1817 
1818 static void pnv_ics_resend(XICSFabric *xi)
1819 {
1820     PnvMachineState *pnv = PNV_MACHINE(xi);
1821     int i, j;
1822 
1823     for (i = 0; i < pnv->num_chips; i++) {
1824         PnvChip *chip = pnv->chips[i];
1825         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1826 
1827         ics_resend(&chip8->psi.ics);
1828         for (j = 0; j < chip->num_phbs; j++) {
1829             ics_resend(&chip8->phbs[j].lsis);
1830             ics_resend(ICS(&chip8->phbs[j].msis));
1831         }
1832     }
1833 }
1834 
1835 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1836 {
1837     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1838 
1839     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1840 }
1841 
1842 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1843                                Monitor *mon)
1844 {
1845     PnvMachineState *pnv = PNV_MACHINE(obj);
1846     int i;
1847     CPUState *cs;
1848 
1849     CPU_FOREACH(cs) {
1850         PowerPCCPU *cpu = POWERPC_CPU(cs);
1851 
1852         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1853         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1854                                                            mon);
1855     }
1856 
1857     for (i = 0; i < pnv->num_chips; i++) {
1858         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1859     }
1860 }
1861 
1862 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1863                          uint8_t nvt_blk, uint32_t nvt_idx,
1864                          bool cam_ignore, uint8_t priority,
1865                          uint32_t logic_serv,
1866                          XiveTCTXMatch *match)
1867 {
1868     PnvMachineState *pnv = PNV_MACHINE(xfb);
1869     int total_count = 0;
1870     int i;
1871 
1872     for (i = 0; i < pnv->num_chips; i++) {
1873         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1874         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1875         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1876         int count;
1877 
1878         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1879                                priority, logic_serv, match);
1880 
1881         if (count < 0) {
1882             return count;
1883         }
1884 
1885         total_count += count;
1886     }
1887 
1888     return total_count;
1889 }
1890 
1891 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1892 {
1893     MachineClass *mc = MACHINE_CLASS(oc);
1894     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1895     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1896     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1897 
1898     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1899     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1900 
1901     xic->icp_get = pnv_icp_get;
1902     xic->ics_get = pnv_ics_get;
1903     xic->ics_resend = pnv_ics_resend;
1904 
1905     pmc->compat = compat;
1906     pmc->compat_size = sizeof(compat);
1907 }
1908 
1909 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1910 {
1911     MachineClass *mc = MACHINE_CLASS(oc);
1912     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1913     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1914     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1915 
1916     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1917     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1918     xfc->match_nvt = pnv_match_nvt;
1919 
1920     mc->alias = "powernv";
1921 
1922     pmc->compat = compat;
1923     pmc->compat_size = sizeof(compat);
1924     pmc->dt_power_mgt = pnv_dt_power_mgt;
1925 }
1926 
1927 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1928 {
1929     MachineClass *mc = MACHINE_CLASS(oc);
1930     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1931     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1932 
1933     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1934     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1935 
1936     pmc->compat = compat;
1937     pmc->compat_size = sizeof(compat);
1938     pmc->dt_power_mgt = pnv_dt_power_mgt;
1939 }
1940 
1941 static bool pnv_machine_get_hb(Object *obj, Error **errp)
1942 {
1943     PnvMachineState *pnv = PNV_MACHINE(obj);
1944 
1945     return !!pnv->fw_load_addr;
1946 }
1947 
1948 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1949 {
1950     PnvMachineState *pnv = PNV_MACHINE(obj);
1951 
1952     if (value) {
1953         pnv->fw_load_addr = 0x8000000;
1954     }
1955 }
1956 
1957 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1958 {
1959     PowerPCCPU *cpu = POWERPC_CPU(cs);
1960     CPUPPCState *env = &cpu->env;
1961 
1962     cpu_synchronize_state(cs);
1963     ppc_cpu_do_system_reset(cs);
1964     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1965         /*
1966          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1967          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1968          * (PPC_BIT(43)).
1969          */
1970         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1971             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1972             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1973         }
1974     } else {
1975         /*
1976          * For non-powersave system resets, SRR1[42:45] are defined to be
1977          * implementation-dependent. The POWER9 User Manual specifies that
1978          * an external (SCOM driven, which may come from a BMC nmi command or
1979          * another CPU requesting a NMI IPI) system reset exception should be
1980          * 0b0010 (PPC_BIT(44)).
1981          */
1982         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1983     }
1984 }
1985 
1986 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1987 {
1988     CPUState *cs;
1989 
1990     CPU_FOREACH(cs) {
1991         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1992     }
1993 }
1994 
1995 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1996 {
1997     MachineClass *mc = MACHINE_CLASS(oc);
1998     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1999     NMIClass *nc = NMI_CLASS(oc);
2000 
2001     mc->desc = "IBM PowerNV (Non-Virtualized)";
2002     mc->init = pnv_init;
2003     mc->reset = pnv_reset;
2004     mc->max_cpus = MAX_CPUS;
2005     /* Pnv provides a AHCI device for storage */
2006     mc->block_default_type = IF_IDE;
2007     mc->no_parallel = 1;
2008     mc->default_boot_order = NULL;
2009     /*
2010      * RAM defaults to less than 2048 for 32-bit hosts, and large
2011      * enough to fit the maximum initrd size at it's load address
2012      */
2013     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
2014     mc->default_ram_id = "pnv.ram";
2015     ispc->print_info = pnv_pic_print_info;
2016     nc->nmi_monitor_handler = pnv_nmi;
2017 
2018     object_class_property_add_bool(oc, "hb-mode",
2019                                    pnv_machine_get_hb, pnv_machine_set_hb);
2020     object_class_property_set_description(oc, "hb-mode",
2021                               "Use a hostboot like boot loader");
2022 }
2023 
2024 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2025     {                                             \
2026         .name          = type,                    \
2027         .class_init    = class_initfn,            \
2028         .parent        = TYPE_PNV8_CHIP,          \
2029     }
2030 
2031 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2032     {                                             \
2033         .name          = type,                    \
2034         .class_init    = class_initfn,            \
2035         .parent        = TYPE_PNV9_CHIP,          \
2036     }
2037 
2038 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2039     {                                              \
2040         .name          = type,                     \
2041         .class_init    = class_initfn,             \
2042         .parent        = TYPE_PNV10_CHIP,          \
2043     }
2044 
2045 static const TypeInfo types[] = {
2046     {
2047         .name          = MACHINE_TYPE_NAME("powernv10"),
2048         .parent        = TYPE_PNV_MACHINE,
2049         .class_init    = pnv_machine_power10_class_init,
2050     },
2051     {
2052         .name          = MACHINE_TYPE_NAME("powernv9"),
2053         .parent        = TYPE_PNV_MACHINE,
2054         .class_init    = pnv_machine_power9_class_init,
2055         .interfaces = (InterfaceInfo[]) {
2056             { TYPE_XIVE_FABRIC },
2057             { },
2058         },
2059     },
2060     {
2061         .name          = MACHINE_TYPE_NAME("powernv8"),
2062         .parent        = TYPE_PNV_MACHINE,
2063         .class_init    = pnv_machine_power8_class_init,
2064         .interfaces = (InterfaceInfo[]) {
2065             { TYPE_XICS_FABRIC },
2066             { },
2067         },
2068     },
2069     {
2070         .name          = TYPE_PNV_MACHINE,
2071         .parent        = TYPE_MACHINE,
2072         .abstract       = true,
2073         .instance_size = sizeof(PnvMachineState),
2074         .class_init    = pnv_machine_class_init,
2075         .class_size    = sizeof(PnvMachineClass),
2076         .interfaces = (InterfaceInfo[]) {
2077             { TYPE_INTERRUPT_STATS_PROVIDER },
2078             { TYPE_NMI },
2079             { },
2080         },
2081     },
2082     {
2083         .name          = TYPE_PNV_CHIP,
2084         .parent        = TYPE_SYS_BUS_DEVICE,
2085         .class_init    = pnv_chip_class_init,
2086         .instance_size = sizeof(PnvChip),
2087         .class_size    = sizeof(PnvChipClass),
2088         .abstract      = true,
2089     },
2090 
2091     /*
2092      * P10 chip and variants
2093      */
2094     {
2095         .name          = TYPE_PNV10_CHIP,
2096         .parent        = TYPE_PNV_CHIP,
2097         .instance_init = pnv_chip_power10_instance_init,
2098         .instance_size = sizeof(Pnv10Chip),
2099     },
2100     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2101 
2102     /*
2103      * P9 chip and variants
2104      */
2105     {
2106         .name          = TYPE_PNV9_CHIP,
2107         .parent        = TYPE_PNV_CHIP,
2108         .instance_init = pnv_chip_power9_instance_init,
2109         .instance_size = sizeof(Pnv9Chip),
2110     },
2111     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2112 
2113     /*
2114      * P8 chip and variants
2115      */
2116     {
2117         .name          = TYPE_PNV8_CHIP,
2118         .parent        = TYPE_PNV_CHIP,
2119         .instance_init = pnv_chip_power8_instance_init,
2120         .instance_size = sizeof(Pnv8Chip),
2121     },
2122     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2123     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2124     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2125                           pnv_chip_power8nvl_class_init),
2126 };
2127 
2128 DEFINE_TYPES(types)
2129