1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/units.h" 22 #include "qapi/error.h" 23 #include "sysemu/sysemu.h" 24 #include "sysemu/numa.h" 25 #include "sysemu/cpus.h" 26 #include "hw/hw.h" 27 #include "target/ppc/cpu.h" 28 #include "qemu/log.h" 29 #include "hw/ppc/fdt.h" 30 #include "hw/ppc/ppc.h" 31 #include "hw/ppc/pnv.h" 32 #include "hw/ppc/pnv_core.h" 33 #include "hw/loader.h" 34 #include "exec/address-spaces.h" 35 #include "qapi/visitor.h" 36 #include "monitor/monitor.h" 37 #include "hw/intc/intc.h" 38 #include "hw/ipmi/ipmi.h" 39 #include "target/ppc/mmu-hash64.h" 40 41 #include "hw/ppc/xics.h" 42 #include "hw/ppc/pnv_xscom.h" 43 44 #include "hw/isa/isa.h" 45 #include "hw/char/serial.h" 46 #include "hw/timer/mc146818rtc.h" 47 48 #include <libfdt.h> 49 50 #define FDT_MAX_SIZE (1 * MiB) 51 52 #define FW_FILE_NAME "skiboot.lid" 53 #define FW_LOAD_ADDR 0x0 54 #define FW_MAX_SIZE (4 * MiB) 55 56 #define KERNEL_LOAD_ADDR 0x20000000 57 #define KERNEL_MAX_SIZE (256 * MiB) 58 #define INITRD_LOAD_ADDR 0x60000000 59 #define INITRD_MAX_SIZE (256 * MiB) 60 61 static const char *pnv_chip_core_typename(const PnvChip *o) 62 { 63 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 64 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 65 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 66 const char *core_type = object_class_get_name(object_class_by_name(s)); 67 g_free(s); 68 return core_type; 69 } 70 71 /* 72 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 73 * 4 * 4 sockets * 12 cores * 8 threads = 1536 74 * Let's make it 2^11 75 */ 76 #define MAX_CPUS 2048 77 78 /* 79 * Memory nodes are created by hostboot, one for each range of memory 80 * that has a different "affinity". In practice, it means one range 81 * per chip. 82 */ 83 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 84 { 85 char *mem_name; 86 uint64_t mem_reg_property[2]; 87 int off; 88 89 mem_reg_property[0] = cpu_to_be64(start); 90 mem_reg_property[1] = cpu_to_be64(size); 91 92 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 93 off = fdt_add_subnode(fdt, 0, mem_name); 94 g_free(mem_name); 95 96 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 97 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 98 sizeof(mem_reg_property)))); 99 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 100 } 101 102 static int get_cpus_node(void *fdt) 103 { 104 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 105 106 if (cpus_offset < 0) { 107 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 108 if (cpus_offset) { 109 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 110 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 111 } 112 } 113 _FDT(cpus_offset); 114 return cpus_offset; 115 } 116 117 /* 118 * The PowerNV cores (and threads) need to use real HW ids and not an 119 * incremental index like it has been done on other platforms. This HW 120 * id is stored in the CPU PIR, it is used to create cpu nodes in the 121 * device tree, used in XSCOM to address cores and in interrupt 122 * servers. 123 */ 124 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 125 { 126 PowerPCCPU *cpu = pc->threads[0]; 127 CPUState *cs = CPU(cpu); 128 DeviceClass *dc = DEVICE_GET_CLASS(cs); 129 int smt_threads = CPU_CORE(pc)->nr_threads; 130 CPUPPCState *env = &cpu->env; 131 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 132 uint32_t servers_prop[smt_threads]; 133 int i; 134 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 135 0xffffffff, 0xffffffff}; 136 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 137 uint32_t cpufreq = 1000000000; 138 uint32_t page_sizes_prop[64]; 139 size_t page_sizes_prop_size; 140 const uint8_t pa_features[] = { 24, 0, 141 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 142 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 143 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 144 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 145 int offset; 146 char *nodename; 147 int cpus_offset = get_cpus_node(fdt); 148 149 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 150 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 151 _FDT(offset); 152 g_free(nodename); 153 154 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 155 156 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 157 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 158 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 159 160 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 161 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 162 env->dcache_line_size))); 163 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 164 env->dcache_line_size))); 165 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 166 env->icache_line_size))); 167 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 168 env->icache_line_size))); 169 170 if (pcc->l1_dcache_size) { 171 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 172 pcc->l1_dcache_size))); 173 } else { 174 warn_report("Unknown L1 dcache size for cpu"); 175 } 176 if (pcc->l1_icache_size) { 177 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 178 pcc->l1_icache_size))); 179 } else { 180 warn_report("Unknown L1 icache size for cpu"); 181 } 182 183 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 184 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 185 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 186 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 187 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 188 189 if (env->spr_cb[SPR_PURR].oea_read) { 190 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 191 } 192 193 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 194 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 195 segs, sizeof(segs)))); 196 } 197 198 /* Advertise VMX/VSX (vector extensions) if available 199 * 0 / no property == no vector extensions 200 * 1 == VMX / Altivec available 201 * 2 == VSX available */ 202 if (env->insns_flags & PPC_ALTIVEC) { 203 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 204 205 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 206 } 207 208 /* Advertise DFP (Decimal Floating Point) if available 209 * 0 / no property == no DFP 210 * 1 == DFP available */ 211 if (env->insns_flags2 & PPC2_DFP) { 212 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 213 } 214 215 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 216 sizeof(page_sizes_prop)); 217 if (page_sizes_prop_size) { 218 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 219 page_sizes_prop, page_sizes_prop_size))); 220 } 221 222 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 223 pa_features, sizeof(pa_features)))); 224 225 /* Build interrupt servers properties */ 226 for (i = 0; i < smt_threads; i++) { 227 servers_prop[i] = cpu_to_be32(pc->pir + i); 228 } 229 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 230 servers_prop, sizeof(servers_prop)))); 231 } 232 233 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 234 uint32_t nr_threads) 235 { 236 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 237 char *name; 238 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 239 uint32_t irange[2], i, rsize; 240 uint64_t *reg; 241 int offset; 242 243 irange[0] = cpu_to_be32(pir); 244 irange[1] = cpu_to_be32(nr_threads); 245 246 rsize = sizeof(uint64_t) * 2 * nr_threads; 247 reg = g_malloc(rsize); 248 for (i = 0; i < nr_threads; i++) { 249 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 250 reg[i * 2 + 1] = cpu_to_be64(0x1000); 251 } 252 253 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 254 offset = fdt_add_subnode(fdt, 0, name); 255 _FDT(offset); 256 g_free(name); 257 258 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 259 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 260 _FDT((fdt_setprop_string(fdt, offset, "device_type", 261 "PowerPC-External-Interrupt-Presentation"))); 262 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 263 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 264 irange, sizeof(irange)))); 265 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 266 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 267 g_free(reg); 268 } 269 270 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 271 { 272 const char *typename = pnv_chip_core_typename(chip); 273 size_t typesize = object_type_get_instance_size(typename); 274 int i; 275 276 pnv_dt_xscom(chip, fdt, 0); 277 278 for (i = 0; i < chip->nr_cores; i++) { 279 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 280 281 pnv_dt_core(chip, pnv_core, fdt); 282 283 /* Interrupt Control Presenters (ICP). One per core. */ 284 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 285 } 286 287 if (chip->ram_size) { 288 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 289 } 290 } 291 292 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 293 { 294 const char *typename = pnv_chip_core_typename(chip); 295 size_t typesize = object_type_get_instance_size(typename); 296 int i; 297 298 pnv_dt_xscom(chip, fdt, 0); 299 300 for (i = 0; i < chip->nr_cores; i++) { 301 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 302 303 pnv_dt_core(chip, pnv_core, fdt); 304 } 305 306 if (chip->ram_size) { 307 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 308 } 309 310 pnv_dt_lpc(chip, fdt, 0); 311 } 312 313 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 314 { 315 uint32_t io_base = d->ioport_id; 316 uint32_t io_regs[] = { 317 cpu_to_be32(1), 318 cpu_to_be32(io_base), 319 cpu_to_be32(2) 320 }; 321 char *name; 322 int node; 323 324 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 325 node = fdt_add_subnode(fdt, lpc_off, name); 326 _FDT(node); 327 g_free(name); 328 329 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 330 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 331 } 332 333 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 334 { 335 const char compatible[] = "ns16550\0pnpPNP,501"; 336 uint32_t io_base = d->ioport_id; 337 uint32_t io_regs[] = { 338 cpu_to_be32(1), 339 cpu_to_be32(io_base), 340 cpu_to_be32(8) 341 }; 342 char *name; 343 int node; 344 345 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 346 node = fdt_add_subnode(fdt, lpc_off, name); 347 _FDT(node); 348 g_free(name); 349 350 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 351 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 352 sizeof(compatible)))); 353 354 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 355 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 356 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); 357 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 358 fdt_get_phandle(fdt, lpc_off)))); 359 360 /* This is needed by Linux */ 361 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 362 } 363 364 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 365 { 366 const char compatible[] = "bt\0ipmi-bt"; 367 uint32_t io_base; 368 uint32_t io_regs[] = { 369 cpu_to_be32(1), 370 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 371 cpu_to_be32(3) 372 }; 373 uint32_t irq; 374 char *name; 375 int node; 376 377 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 378 io_regs[1] = cpu_to_be32(io_base); 379 380 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 381 382 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 383 node = fdt_add_subnode(fdt, lpc_off, name); 384 _FDT(node); 385 g_free(name); 386 387 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 388 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 389 sizeof(compatible)))); 390 391 /* Mark it as reserved to avoid Linux trying to claim it */ 392 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 393 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 394 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 395 fdt_get_phandle(fdt, lpc_off)))); 396 } 397 398 typedef struct ForeachPopulateArgs { 399 void *fdt; 400 int offset; 401 } ForeachPopulateArgs; 402 403 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 404 { 405 ForeachPopulateArgs *args = opaque; 406 ISADevice *d = ISA_DEVICE(dev); 407 408 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 409 pnv_dt_rtc(d, args->fdt, args->offset); 410 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 411 pnv_dt_serial(d, args->fdt, args->offset); 412 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 413 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 414 } else { 415 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 416 d->ioport_id); 417 } 418 419 return 0; 420 } 421 422 /* The default LPC bus of a multichip system is on chip 0. It's 423 * recognized by the firmware (skiboot) using a "primary" property. 424 */ 425 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 426 { 427 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 428 ForeachPopulateArgs args = { 429 .fdt = fdt, 430 .offset = isa_offset, 431 }; 432 433 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 434 435 /* ISA devices are not necessarily parented to the ISA bus so we 436 * can not use object_child_foreach() */ 437 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 438 &args); 439 } 440 441 static void pnv_dt_power_mgt(void *fdt) 442 { 443 int off; 444 445 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 446 off = fdt_add_subnode(fdt, off, "power-mgt"); 447 448 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 449 } 450 451 static void *pnv_dt_create(MachineState *machine) 452 { 453 const char plat_compat[] = "qemu,powernv\0ibm,powernv"; 454 PnvMachineState *pnv = PNV_MACHINE(machine); 455 void *fdt; 456 char *buf; 457 int off; 458 int i; 459 460 fdt = g_malloc0(FDT_MAX_SIZE); 461 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 462 463 /* Root node */ 464 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 465 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 466 _FDT((fdt_setprop_string(fdt, 0, "model", 467 "IBM PowerNV (emulated by qemu)"))); 468 _FDT((fdt_setprop(fdt, 0, "compatible", plat_compat, 469 sizeof(plat_compat)))); 470 471 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 472 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 473 if (qemu_uuid_set) { 474 _FDT((fdt_property_string(fdt, "system-id", buf))); 475 } 476 g_free(buf); 477 478 off = fdt_add_subnode(fdt, 0, "chosen"); 479 if (machine->kernel_cmdline) { 480 _FDT((fdt_setprop_string(fdt, off, "bootargs", 481 machine->kernel_cmdline))); 482 } 483 484 if (pnv->initrd_size) { 485 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 486 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 487 488 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 489 &start_prop, sizeof(start_prop)))); 490 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 491 &end_prop, sizeof(end_prop)))); 492 } 493 494 /* Populate device tree for each chip */ 495 for (i = 0; i < pnv->num_chips; i++) { 496 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 497 } 498 499 /* Populate ISA devices on chip 0 */ 500 pnv_dt_isa(pnv, fdt); 501 502 if (pnv->bmc) { 503 pnv_dt_bmc_sensors(pnv->bmc, fdt); 504 } 505 506 /* Create an extra node for power management on Power9 */ 507 if (pnv_is_power9(pnv)) { 508 pnv_dt_power_mgt(fdt); 509 } 510 511 return fdt; 512 } 513 514 static void pnv_powerdown_notify(Notifier *n, void *opaque) 515 { 516 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 517 518 if (pnv->bmc) { 519 pnv_bmc_powerdown(pnv->bmc); 520 } 521 } 522 523 static void pnv_reset(void) 524 { 525 MachineState *machine = MACHINE(qdev_get_machine()); 526 PnvMachineState *pnv = PNV_MACHINE(machine); 527 void *fdt; 528 Object *obj; 529 530 qemu_devices_reset(); 531 532 /* OpenPOWER systems have a BMC, which can be defined on the 533 * command line with: 534 * 535 * -device ipmi-bmc-sim,id=bmc0 536 * 537 * This is the internal simulator but it could also be an external 538 * BMC. 539 */ 540 obj = object_resolve_path_type("", "ipmi-bmc-sim", NULL); 541 if (obj) { 542 pnv->bmc = IPMI_BMC(obj); 543 } 544 545 fdt = pnv_dt_create(machine); 546 547 /* Pack resulting tree */ 548 _FDT((fdt_pack(fdt))); 549 550 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 551 } 552 553 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 554 { 555 Pnv8Chip *chip8 = PNV8_CHIP(chip); 556 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 557 } 558 559 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 560 { 561 Pnv8Chip *chip8 = PNV8_CHIP(chip); 562 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 563 } 564 565 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 566 { 567 Pnv9Chip *chip9 = PNV9_CHIP(chip); 568 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 569 } 570 571 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 572 { 573 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 574 } 575 576 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 577 { 578 Pnv8Chip *chip8 = PNV8_CHIP(chip); 579 580 ics_pic_print_info(&chip8->psi.ics, mon); 581 } 582 583 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 584 { 585 Pnv9Chip *chip9 = PNV9_CHIP(chip); 586 587 pnv_xive_pic_print_info(&chip9->xive, mon); 588 pnv_psi_pic_print_info(&chip9->psi, mon); 589 } 590 591 static void pnv_init(MachineState *machine) 592 { 593 PnvMachineState *pnv = PNV_MACHINE(machine); 594 MemoryRegion *ram; 595 char *fw_filename; 596 long fw_size; 597 int i; 598 char *chip_typename; 599 600 /* allocate RAM */ 601 if (machine->ram_size < (1 * GiB)) { 602 warn_report("skiboot may not work with < 1GB of RAM"); 603 } 604 605 ram = g_new(MemoryRegion, 1); 606 memory_region_allocate_system_memory(ram, NULL, "pnv.ram", 607 machine->ram_size); 608 memory_region_add_subregion(get_system_memory(), 0, ram); 609 610 /* load skiboot firmware */ 611 if (bios_name == NULL) { 612 bios_name = FW_FILE_NAME; 613 } 614 615 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 616 if (!fw_filename) { 617 error_report("Could not find OPAL firmware '%s'", bios_name); 618 exit(1); 619 } 620 621 fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE); 622 if (fw_size < 0) { 623 error_report("Could not load OPAL firmware '%s'", fw_filename); 624 exit(1); 625 } 626 g_free(fw_filename); 627 628 /* load kernel */ 629 if (machine->kernel_filename) { 630 long kernel_size; 631 632 kernel_size = load_image_targphys(machine->kernel_filename, 633 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 634 if (kernel_size < 0) { 635 error_report("Could not load kernel '%s'", 636 machine->kernel_filename); 637 exit(1); 638 } 639 } 640 641 /* load initrd */ 642 if (machine->initrd_filename) { 643 pnv->initrd_base = INITRD_LOAD_ADDR; 644 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 645 pnv->initrd_base, INITRD_MAX_SIZE); 646 if (pnv->initrd_size < 0) { 647 error_report("Could not load initial ram disk '%s'", 648 machine->initrd_filename); 649 exit(1); 650 } 651 } 652 653 /* Create the processor chips */ 654 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 655 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 656 i, machine->cpu_type); 657 if (!object_class_by_name(chip_typename)) { 658 error_report("invalid CPU model '%.*s' for %s machine", 659 i, machine->cpu_type, MACHINE_GET_CLASS(machine)->name); 660 exit(1); 661 } 662 663 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 664 for (i = 0; i < pnv->num_chips; i++) { 665 char chip_name[32]; 666 Object *chip = object_new(chip_typename); 667 668 pnv->chips[i] = PNV_CHIP(chip); 669 670 /* TODO: put all the memory in one node on chip 0 until we find a 671 * way to specify different ranges for each chip 672 */ 673 if (i == 0) { 674 object_property_set_int(chip, machine->ram_size, "ram-size", 675 &error_fatal); 676 } 677 678 snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i)); 679 object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal); 680 object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id", 681 &error_fatal); 682 object_property_set_int(chip, smp_cores, "nr-cores", &error_fatal); 683 object_property_set_bool(chip, true, "realized", &error_fatal); 684 } 685 g_free(chip_typename); 686 687 /* Instantiate ISA bus on chip 0 */ 688 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 689 690 /* Create serial port */ 691 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 692 693 /* Create an RTC ISA device too */ 694 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 695 696 /* OpenPOWER systems use a IPMI SEL Event message to notify the 697 * host to powerdown */ 698 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 699 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 700 } 701 702 /* 703 * 0:21 Reserved - Read as zeros 704 * 22:24 Chip ID 705 * 25:28 Core number 706 * 29:31 Thread ID 707 */ 708 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 709 { 710 return (chip->chip_id << 7) | (core_id << 3); 711 } 712 713 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 714 Error **errp) 715 { 716 Error *local_err = NULL; 717 Object *obj; 718 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 719 720 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, XICS_FABRIC(qdev_get_machine()), 721 &local_err); 722 if (local_err) { 723 error_propagate(errp, local_err); 724 return; 725 } 726 727 pnv_cpu->intc = obj; 728 } 729 730 /* 731 * 0:48 Reserved - Read as zeroes 732 * 49:52 Node ID 733 * 53:55 Chip ID 734 * 56 Reserved - Read as zero 735 * 57:61 Core number 736 * 62:63 Thread ID 737 * 738 * We only care about the lower bits. uint32_t is fine for the moment. 739 */ 740 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 741 { 742 return (chip->chip_id << 8) | (core_id << 2); 743 } 744 745 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 746 Error **errp) 747 { 748 Pnv9Chip *chip9 = PNV9_CHIP(chip); 749 Error *local_err = NULL; 750 Object *obj; 751 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 752 753 /* 754 * The core creates its interrupt presenter but the XIVE interrupt 755 * controller object is initialized afterwards. Hopefully, it's 756 * only used at runtime. 757 */ 758 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err); 759 if (local_err) { 760 error_propagate(errp, local_err); 761 return; 762 } 763 764 pnv_cpu->intc = obj; 765 } 766 767 /* Allowed core identifiers on a POWER8 Processor Chip : 768 * 769 * <EX0 reserved> 770 * EX1 - Venice only 771 * EX2 - Venice only 772 * EX3 - Venice only 773 * EX4 774 * EX5 775 * EX6 776 * <EX7,8 reserved> <reserved> 777 * EX9 - Venice only 778 * EX10 - Venice only 779 * EX11 - Venice only 780 * EX12 781 * EX13 782 * EX14 783 * <EX15 reserved> 784 */ 785 #define POWER8E_CORE_MASK (0x7070ull) 786 #define POWER8_CORE_MASK (0x7e7eull) 787 788 /* 789 * POWER9 has 24 cores, ids starting at 0x0 790 */ 791 #define POWER9_CORE_MASK (0xffffffffffffffull) 792 793 static void pnv_chip_power8_instance_init(Object *obj) 794 { 795 Pnv8Chip *chip8 = PNV8_CHIP(obj); 796 797 object_initialize_child(obj, "psi", &chip8->psi, sizeof(chip8->psi), 798 TYPE_PNV8_PSI, &error_abort, NULL); 799 object_property_add_const_link(OBJECT(&chip8->psi), "xics", 800 OBJECT(qdev_get_machine()), &error_abort); 801 802 object_initialize_child(obj, "lpc", &chip8->lpc, sizeof(chip8->lpc), 803 TYPE_PNV8_LPC, &error_abort, NULL); 804 object_property_add_const_link(OBJECT(&chip8->lpc), "psi", 805 OBJECT(&chip8->psi), &error_abort); 806 807 object_initialize_child(obj, "occ", &chip8->occ, sizeof(chip8->occ), 808 TYPE_PNV8_OCC, &error_abort, NULL); 809 object_property_add_const_link(OBJECT(&chip8->occ), "psi", 810 OBJECT(&chip8->psi), &error_abort); 811 } 812 813 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 814 { 815 PnvChip *chip = PNV_CHIP(chip8); 816 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 817 const char *typename = pnv_chip_core_typename(chip); 818 size_t typesize = object_type_get_instance_size(typename); 819 int i, j; 820 char *name; 821 XICSFabric *xi = XICS_FABRIC(qdev_get_machine()); 822 823 name = g_strdup_printf("icp-%x", chip->chip_id); 824 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 825 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio); 826 g_free(name); 827 828 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 829 830 /* Map the ICP registers for each thread */ 831 for (i = 0; i < chip->nr_cores; i++) { 832 PnvCore *pnv_core = PNV_CORE(chip->cores + i * typesize); 833 int core_hwid = CPU_CORE(pnv_core)->core_id; 834 835 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 836 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 837 PnvICPState *icp = PNV_ICP(xics_icp_get(xi, pir)); 838 839 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 840 &icp->mmio); 841 } 842 } 843 } 844 845 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 846 { 847 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 848 PnvChip *chip = PNV_CHIP(dev); 849 Pnv8Chip *chip8 = PNV8_CHIP(dev); 850 Pnv8Psi *psi8 = &chip8->psi; 851 Error *local_err = NULL; 852 853 pcc->parent_realize(dev, &local_err); 854 if (local_err) { 855 error_propagate(errp, local_err); 856 return; 857 } 858 859 /* Processor Service Interface (PSI) Host Bridge */ 860 object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip), 861 "bar", &error_fatal); 862 object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err); 863 if (local_err) { 864 error_propagate(errp, local_err); 865 return; 866 } 867 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 868 &PNV_PSI(psi8)->xscom_regs); 869 870 /* Create LPC controller */ 871 object_property_set_bool(OBJECT(&chip8->lpc), true, "realized", 872 &error_fatal); 873 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 874 875 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 876 (uint64_t) PNV_XSCOM_BASE(chip), 877 PNV_XSCOM_LPC_BASE); 878 879 /* Interrupt Management Area. This is the memory region holding 880 * all the Interrupt Control Presenter (ICP) registers */ 881 pnv_chip_icp_realize(chip8, &local_err); 882 if (local_err) { 883 error_propagate(errp, local_err); 884 return; 885 } 886 887 /* Create the simplified OCC model */ 888 object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err); 889 if (local_err) { 890 error_propagate(errp, local_err); 891 return; 892 } 893 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 894 } 895 896 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 897 { 898 DeviceClass *dc = DEVICE_CLASS(klass); 899 PnvChipClass *k = PNV_CHIP_CLASS(klass); 900 901 k->chip_type = PNV_CHIP_POWER8E; 902 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 903 k->cores_mask = POWER8E_CORE_MASK; 904 k->core_pir = pnv_chip_core_pir_p8; 905 k->intc_create = pnv_chip_power8_intc_create; 906 k->isa_create = pnv_chip_power8_isa_create; 907 k->dt_populate = pnv_chip_power8_dt_populate; 908 k->pic_print_info = pnv_chip_power8_pic_print_info; 909 k->xscom_base = 0x003fc0000000000ull; 910 dc->desc = "PowerNV Chip POWER8E"; 911 912 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 913 &k->parent_realize); 914 } 915 916 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 917 { 918 DeviceClass *dc = DEVICE_CLASS(klass); 919 PnvChipClass *k = PNV_CHIP_CLASS(klass); 920 921 k->chip_type = PNV_CHIP_POWER8; 922 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 923 k->cores_mask = POWER8_CORE_MASK; 924 k->core_pir = pnv_chip_core_pir_p8; 925 k->intc_create = pnv_chip_power8_intc_create; 926 k->isa_create = pnv_chip_power8_isa_create; 927 k->dt_populate = pnv_chip_power8_dt_populate; 928 k->pic_print_info = pnv_chip_power8_pic_print_info; 929 k->xscom_base = 0x003fc0000000000ull; 930 dc->desc = "PowerNV Chip POWER8"; 931 932 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 933 &k->parent_realize); 934 } 935 936 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 937 { 938 DeviceClass *dc = DEVICE_CLASS(klass); 939 PnvChipClass *k = PNV_CHIP_CLASS(klass); 940 941 k->chip_type = PNV_CHIP_POWER8NVL; 942 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 943 k->cores_mask = POWER8_CORE_MASK; 944 k->core_pir = pnv_chip_core_pir_p8; 945 k->intc_create = pnv_chip_power8_intc_create; 946 k->isa_create = pnv_chip_power8nvl_isa_create; 947 k->dt_populate = pnv_chip_power8_dt_populate; 948 k->pic_print_info = pnv_chip_power8_pic_print_info; 949 k->xscom_base = 0x003fc0000000000ull; 950 dc->desc = "PowerNV Chip POWER8NVL"; 951 952 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 953 &k->parent_realize); 954 } 955 956 static void pnv_chip_power9_instance_init(Object *obj) 957 { 958 Pnv9Chip *chip9 = PNV9_CHIP(obj); 959 960 object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive), 961 TYPE_PNV_XIVE, &error_abort, NULL); 962 object_property_add_const_link(OBJECT(&chip9->xive), "chip", obj, 963 &error_abort); 964 965 object_initialize_child(obj, "psi", &chip9->psi, sizeof(chip9->psi), 966 TYPE_PNV9_PSI, &error_abort, NULL); 967 object_property_add_const_link(OBJECT(&chip9->psi), "chip", obj, 968 &error_abort); 969 970 object_initialize_child(obj, "lpc", &chip9->lpc, sizeof(chip9->lpc), 971 TYPE_PNV9_LPC, &error_abort, NULL); 972 object_property_add_const_link(OBJECT(&chip9->lpc), "psi", 973 OBJECT(&chip9->psi), &error_abort); 974 975 object_initialize_child(obj, "occ", &chip9->occ, sizeof(chip9->occ), 976 TYPE_PNV9_OCC, &error_abort, NULL); 977 object_property_add_const_link(OBJECT(&chip9->occ), "psi", 978 OBJECT(&chip9->psi), &error_abort); 979 } 980 981 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 982 { 983 PnvChip *chip = PNV_CHIP(chip9); 984 const char *typename = pnv_chip_core_typename(chip); 985 size_t typesize = object_type_get_instance_size(typename); 986 int i; 987 988 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 989 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 990 991 for (i = 0; i < chip9->nr_quads; i++) { 992 char eq_name[32]; 993 PnvQuad *eq = &chip9->quads[i]; 994 PnvCore *pnv_core = PNV_CORE(chip->cores + (i * 4) * typesize); 995 int core_id = CPU_CORE(pnv_core)->core_id; 996 997 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 998 object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq), 999 TYPE_PNV_QUAD, &error_fatal, NULL); 1000 1001 object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal); 1002 object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal); 1003 1004 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id), 1005 &eq->xscom_regs); 1006 } 1007 } 1008 1009 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1010 { 1011 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1012 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1013 PnvChip *chip = PNV_CHIP(dev); 1014 Pnv9Psi *psi9 = &chip9->psi; 1015 Error *local_err = NULL; 1016 1017 pcc->parent_realize(dev, &local_err); 1018 if (local_err) { 1019 error_propagate(errp, local_err); 1020 return; 1021 } 1022 1023 pnv_chip_quad_realize(chip9, &local_err); 1024 if (local_err) { 1025 error_propagate(errp, local_err); 1026 return; 1027 } 1028 1029 /* XIVE interrupt controller (POWER9) */ 1030 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip), 1031 "ic-bar", &error_fatal); 1032 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip), 1033 "vc-bar", &error_fatal); 1034 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip), 1035 "pc-bar", &error_fatal); 1036 object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip), 1037 "tm-bar", &error_fatal); 1038 object_property_set_bool(OBJECT(&chip9->xive), true, "realized", 1039 &local_err); 1040 if (local_err) { 1041 error_propagate(errp, local_err); 1042 return; 1043 } 1044 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1045 &chip9->xive.xscom_regs); 1046 1047 /* Processor Service Interface (PSI) Host Bridge */ 1048 object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip), 1049 "bar", &error_fatal); 1050 object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err); 1051 if (local_err) { 1052 error_propagate(errp, local_err); 1053 return; 1054 } 1055 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1056 &PNV_PSI(psi9)->xscom_regs); 1057 1058 /* LPC */ 1059 object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err); 1060 if (local_err) { 1061 error_propagate(errp, local_err); 1062 return; 1063 } 1064 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1065 &chip9->lpc.xscom_regs); 1066 1067 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1068 (uint64_t) PNV9_LPCM_BASE(chip)); 1069 1070 /* Create the simplified OCC model */ 1071 object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err); 1072 if (local_err) { 1073 error_propagate(errp, local_err); 1074 return; 1075 } 1076 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1077 } 1078 1079 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1080 { 1081 DeviceClass *dc = DEVICE_CLASS(klass); 1082 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1083 1084 k->chip_type = PNV_CHIP_POWER9; 1085 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1086 k->cores_mask = POWER9_CORE_MASK; 1087 k->core_pir = pnv_chip_core_pir_p9; 1088 k->intc_create = pnv_chip_power9_intc_create; 1089 k->isa_create = pnv_chip_power9_isa_create; 1090 k->dt_populate = pnv_chip_power9_dt_populate; 1091 k->pic_print_info = pnv_chip_power9_pic_print_info; 1092 k->xscom_base = 0x00603fc00000000ull; 1093 dc->desc = "PowerNV Chip POWER9"; 1094 1095 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1096 &k->parent_realize); 1097 } 1098 1099 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1100 { 1101 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1102 int cores_max; 1103 1104 /* 1105 * No custom mask for this chip, let's use the default one from * 1106 * the chip class 1107 */ 1108 if (!chip->cores_mask) { 1109 chip->cores_mask = pcc->cores_mask; 1110 } 1111 1112 /* filter alien core ids ! some are reserved */ 1113 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1114 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1115 chip->cores_mask); 1116 return; 1117 } 1118 chip->cores_mask &= pcc->cores_mask; 1119 1120 /* now that we have a sane layout, let check the number of cores */ 1121 cores_max = ctpop64(chip->cores_mask); 1122 if (chip->nr_cores > cores_max) { 1123 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1124 cores_max); 1125 return; 1126 } 1127 } 1128 1129 static void pnv_chip_instance_init(Object *obj) 1130 { 1131 PNV_CHIP(obj)->xscom_base = PNV_CHIP_GET_CLASS(obj)->xscom_base; 1132 } 1133 1134 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1135 { 1136 Error *error = NULL; 1137 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1138 const char *typename = pnv_chip_core_typename(chip); 1139 size_t typesize = object_type_get_instance_size(typename); 1140 int i, core_hwid; 1141 1142 if (!object_class_by_name(typename)) { 1143 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1144 return; 1145 } 1146 1147 /* Cores */ 1148 pnv_chip_core_sanitize(chip, &error); 1149 if (error) { 1150 error_propagate(errp, error); 1151 return; 1152 } 1153 1154 chip->cores = g_malloc0(typesize * chip->nr_cores); 1155 1156 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1157 && (i < chip->nr_cores); core_hwid++) { 1158 char core_name[32]; 1159 void *pnv_core = chip->cores + i * typesize; 1160 uint64_t xscom_core_base; 1161 1162 if (!(chip->cores_mask & (1ull << core_hwid))) { 1163 continue; 1164 } 1165 1166 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1167 object_initialize_child(OBJECT(chip), core_name, pnv_core, typesize, 1168 typename, &error_fatal, NULL); 1169 object_property_set_int(OBJECT(pnv_core), smp_threads, "nr-threads", 1170 &error_fatal); 1171 object_property_set_int(OBJECT(pnv_core), core_hwid, 1172 CPU_CORE_PROP_CORE_ID, &error_fatal); 1173 object_property_set_int(OBJECT(pnv_core), 1174 pcc->core_pir(chip, core_hwid), 1175 "pir", &error_fatal); 1176 object_property_add_const_link(OBJECT(pnv_core), "chip", 1177 OBJECT(chip), &error_fatal); 1178 object_property_set_bool(OBJECT(pnv_core), true, "realized", 1179 &error_fatal); 1180 1181 /* Each core has an XSCOM MMIO region */ 1182 if (!pnv_chip_is_power9(chip)) { 1183 xscom_core_base = PNV_XSCOM_EX_BASE(core_hwid); 1184 } else { 1185 xscom_core_base = PNV9_XSCOM_EC_BASE(core_hwid); 1186 } 1187 1188 pnv_xscom_add_subregion(chip, xscom_core_base, 1189 &PNV_CORE(pnv_core)->xscom_regs); 1190 i++; 1191 } 1192 } 1193 1194 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1195 { 1196 PnvChip *chip = PNV_CHIP(dev); 1197 Error *error = NULL; 1198 1199 /* XSCOM bridge */ 1200 pnv_xscom_realize(chip, &error); 1201 if (error) { 1202 error_propagate(errp, error); 1203 return; 1204 } 1205 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 1206 1207 /* Cores */ 1208 pnv_chip_core_realize(chip, &error); 1209 if (error) { 1210 error_propagate(errp, error); 1211 return; 1212 } 1213 } 1214 1215 static Property pnv_chip_properties[] = { 1216 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1217 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 1218 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 1219 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 1220 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 1221 DEFINE_PROP_END_OF_LIST(), 1222 }; 1223 1224 static void pnv_chip_class_init(ObjectClass *klass, void *data) 1225 { 1226 DeviceClass *dc = DEVICE_CLASS(klass); 1227 1228 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 1229 dc->realize = pnv_chip_realize; 1230 dc->props = pnv_chip_properties; 1231 dc->desc = "PowerNV Chip"; 1232 } 1233 1234 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 1235 { 1236 PnvMachineState *pnv = PNV_MACHINE(xi); 1237 int i; 1238 1239 for (i = 0; i < pnv->num_chips; i++) { 1240 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1241 1242 if (ics_valid_irq(&chip8->psi.ics, irq)) { 1243 return &chip8->psi.ics; 1244 } 1245 } 1246 return NULL; 1247 } 1248 1249 static void pnv_ics_resend(XICSFabric *xi) 1250 { 1251 PnvMachineState *pnv = PNV_MACHINE(xi); 1252 int i; 1253 1254 for (i = 0; i < pnv->num_chips; i++) { 1255 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1256 ics_resend(&chip8->psi.ics); 1257 } 1258 } 1259 1260 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 1261 { 1262 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 1263 1264 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 1265 } 1266 1267 static void pnv_pic_print_info(InterruptStatsProvider *obj, 1268 Monitor *mon) 1269 { 1270 PnvMachineState *pnv = PNV_MACHINE(obj); 1271 int i; 1272 CPUState *cs; 1273 1274 CPU_FOREACH(cs) { 1275 PowerPCCPU *cpu = POWERPC_CPU(cs); 1276 1277 if (pnv_chip_is_power9(pnv->chips[0])) { 1278 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1279 } else { 1280 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 1281 } 1282 } 1283 1284 for (i = 0; i < pnv->num_chips; i++) { 1285 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 1286 } 1287 } 1288 1289 static void pnv_get_num_chips(Object *obj, Visitor *v, const char *name, 1290 void *opaque, Error **errp) 1291 { 1292 visit_type_uint32(v, name, &PNV_MACHINE(obj)->num_chips, errp); 1293 } 1294 1295 static void pnv_set_num_chips(Object *obj, Visitor *v, const char *name, 1296 void *opaque, Error **errp) 1297 { 1298 PnvMachineState *pnv = PNV_MACHINE(obj); 1299 uint32_t num_chips; 1300 Error *local_err = NULL; 1301 1302 visit_type_uint32(v, name, &num_chips, &local_err); 1303 if (local_err) { 1304 error_propagate(errp, local_err); 1305 return; 1306 } 1307 1308 /* 1309 * TODO: should we decide on how many chips we can create based 1310 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 1311 */ 1312 if (!is_power_of_2(num_chips) || num_chips > 4) { 1313 error_setg(errp, "invalid number of chips: '%d'", num_chips); 1314 return; 1315 } 1316 1317 pnv->num_chips = num_chips; 1318 } 1319 1320 static void pnv_machine_instance_init(Object *obj) 1321 { 1322 PnvMachineState *pnv = PNV_MACHINE(obj); 1323 pnv->num_chips = 1; 1324 } 1325 1326 static void pnv_machine_class_props_init(ObjectClass *oc) 1327 { 1328 object_class_property_add(oc, "num-chips", "uint32", 1329 pnv_get_num_chips, pnv_set_num_chips, 1330 NULL, NULL, NULL); 1331 object_class_property_set_description(oc, "num-chips", 1332 "Specifies the number of processor chips", 1333 NULL); 1334 } 1335 1336 static void pnv_machine_class_init(ObjectClass *oc, void *data) 1337 { 1338 MachineClass *mc = MACHINE_CLASS(oc); 1339 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 1340 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 1341 1342 mc->desc = "IBM PowerNV (Non-Virtualized)"; 1343 mc->init = pnv_init; 1344 mc->reset = pnv_reset; 1345 mc->max_cpus = MAX_CPUS; 1346 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 1347 mc->block_default_type = IF_IDE; /* Pnv provides a AHCI device for 1348 * storage */ 1349 mc->no_parallel = 1; 1350 mc->default_boot_order = NULL; 1351 mc->default_ram_size = 1 * GiB; 1352 xic->icp_get = pnv_icp_get; 1353 xic->ics_get = pnv_ics_get; 1354 xic->ics_resend = pnv_ics_resend; 1355 ispc->print_info = pnv_pic_print_info; 1356 1357 pnv_machine_class_props_init(oc); 1358 } 1359 1360 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 1361 { \ 1362 .name = type, \ 1363 .class_init = class_initfn, \ 1364 .parent = TYPE_PNV8_CHIP, \ 1365 } 1366 1367 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 1368 { \ 1369 .name = type, \ 1370 .class_init = class_initfn, \ 1371 .parent = TYPE_PNV9_CHIP, \ 1372 } 1373 1374 static const TypeInfo types[] = { 1375 { 1376 .name = TYPE_PNV_MACHINE, 1377 .parent = TYPE_MACHINE, 1378 .instance_size = sizeof(PnvMachineState), 1379 .instance_init = pnv_machine_instance_init, 1380 .class_init = pnv_machine_class_init, 1381 .interfaces = (InterfaceInfo[]) { 1382 { TYPE_XICS_FABRIC }, 1383 { TYPE_INTERRUPT_STATS_PROVIDER }, 1384 { }, 1385 }, 1386 }, 1387 { 1388 .name = TYPE_PNV_CHIP, 1389 .parent = TYPE_SYS_BUS_DEVICE, 1390 .class_init = pnv_chip_class_init, 1391 .instance_init = pnv_chip_instance_init, 1392 .instance_size = sizeof(PnvChip), 1393 .class_size = sizeof(PnvChipClass), 1394 .abstract = true, 1395 }, 1396 1397 /* 1398 * P9 chip and variants 1399 */ 1400 { 1401 .name = TYPE_PNV9_CHIP, 1402 .parent = TYPE_PNV_CHIP, 1403 .instance_init = pnv_chip_power9_instance_init, 1404 .instance_size = sizeof(Pnv9Chip), 1405 }, 1406 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 1407 1408 /* 1409 * P8 chip and variants 1410 */ 1411 { 1412 .name = TYPE_PNV8_CHIP, 1413 .parent = TYPE_PNV_CHIP, 1414 .instance_init = pnv_chip_power8_instance_init, 1415 .instance_size = sizeof(Pnv8Chip), 1416 }, 1417 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 1418 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 1419 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 1420 pnv_chip_power8nvl_class_init), 1421 }; 1422 1423 DEFINE_TYPES(types) 1424