xref: /openbmc/qemu/hw/ppc/pnv.c (revision 19db3b5a247c57a40d7e8a545a8dee9faf4db150)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "system/qtest.h"
26 #include "system/system.h"
27 #include "system/numa.h"
28 #include "system/reset.h"
29 #include "system/runstate.h"
30 #include "system/cpus.h"
31 #include "system/device_tree.h"
32 #include "system/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48 
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54 
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial-isa.h"
57 #include "hw/rtc/mc146818rtc.h"
58 
59 #include <libfdt.h>
60 
61 #define FDT_MAX_SIZE            (1 * MiB)
62 
63 #define FW_FILE_NAME            "skiboot.lid"
64 #define FW_LOAD_ADDR            0x0
65 #define FW_MAX_SIZE             (16 * MiB)
66 
67 #define PNOR_FILE_NAME          "pnv-pnor.bin"
68 
69 #define KERNEL_LOAD_ADDR        0x20000000
70 #define KERNEL_MAX_SIZE         (128 * MiB)
71 #define INITRD_LOAD_ADDR        0x28000000
72 #define INITRD_MAX_SIZE         (128 * MiB)
73 
74 static const char *pnv_chip_core_typename(const PnvChip *o)
75 {
76     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
77     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
78     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
79     const char *core_type = object_class_get_name(object_class_by_name(s));
80     g_free(s);
81     return core_type;
82 }
83 
84 /*
85  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
86  *     4 * 4 sockets * 12 cores * 8 threads = 1536
87  * Let's make it 2^11
88  */
89 #define MAX_CPUS                2048
90 
91 /*
92  * Memory nodes are created by hostboot, one for each range of memory
93  * that has a different "affinity". In practice, it means one range
94  * per chip.
95  */
96 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 {
98     char *mem_name;
99     uint64_t mem_reg_property[2];
100     int off;
101 
102     mem_reg_property[0] = cpu_to_be64(start);
103     mem_reg_property[1] = cpu_to_be64(size);
104 
105     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
106     off = fdt_add_subnode(fdt, 0, mem_name);
107     g_free(mem_name);
108 
109     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
110     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
111                        sizeof(mem_reg_property))));
112     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
113 }
114 
115 static int get_cpus_node(void *fdt)
116 {
117     int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 
119     if (cpus_offset < 0) {
120         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
121         if (cpus_offset) {
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
123             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
124         }
125     }
126     _FDT(cpus_offset);
127     return cpus_offset;
128 }
129 
130 /*
131  * The PowerNV cores (and threads) need to use real HW ids and not an
132  * incremental index like it has been done on other platforms. This HW
133  * id is stored in the CPU PIR, it is used to create cpu nodes in the
134  * device tree, used in XSCOM to address cores and in interrupt
135  * servers.
136  */
137 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 {
139     PowerPCCPU *cpu = pc->threads[0];
140     CPUState *cs = CPU(cpu);
141     DeviceClass *dc = DEVICE_GET_CLASS(cs);
142     int smt_threads = CPU_CORE(pc)->nr_threads;
143     CPUPPCState *env = &cpu->env;
144     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
145     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
146     uint32_t *servers_prop;
147     int i;
148     uint32_t pir, tir;
149     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
150                        0xffffffff, 0xffffffff};
151     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
152     uint32_t cpufreq = 1000000000;
153     uint32_t page_sizes_prop[64];
154     size_t page_sizes_prop_size;
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
160 
161     /* Only one DT node per (big) core */
162     g_assert(tir == 0);
163 
164     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
165     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
166     _FDT(offset);
167     g_free(nodename);
168 
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
170 
171     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
172     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
173     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
174 
175     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
176     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
177                             env->dcache_line_size)));
178     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
179                             env->dcache_line_size)));
180     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
181                             env->icache_line_size)));
182     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
183                             env->icache_line_size)));
184 
185     if (pcc->l1_dcache_size) {
186         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
187                                pcc->l1_dcache_size)));
188     } else {
189         warn_report("Unknown L1 dcache size for cpu");
190     }
191     if (pcc->l1_icache_size) {
192         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
193                                pcc->l1_icache_size)));
194     } else {
195         warn_report("Unknown L1 icache size for cpu");
196     }
197 
198     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
199     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
200     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
201                            cpu->hash64_opts->slb_size)));
202     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
203     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
204 
205     if (ppc_has_spr(cpu, SPR_PURR)) {
206         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
207     }
208 
209     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
210         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
211                            segs, sizeof(segs))));
212     }
213 
214     /*
215      * Advertise VMX/VSX (vector extensions) if available
216      *   0 / no property == no vector extensions
217      *   1               == VMX / Altivec available
218      *   2               == VSX available
219      */
220     if (env->insns_flags & PPC_ALTIVEC) {
221         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
222 
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
224     }
225 
226     /*
227      * Advertise DFP (Decimal Floating Point) if available
228      *   0 / no property == no DFP
229      *   1               == DFP available
230      */
231     if (env->insns_flags2 & PPC2_DFP) {
232         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
233     }
234 
235     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
236                                                       sizeof(page_sizes_prop));
237     if (page_sizes_prop_size) {
238         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
239                            page_sizes_prop, page_sizes_prop_size)));
240     }
241 
242     /* Build interrupt servers properties */
243     if (pc->big_core) {
244         servers_prop = g_new(uint32_t, smt_threads * 2);
245         for (i = 0; i < smt_threads; i++) {
246             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
247             servers_prop[i * 2] = cpu_to_be32(pir);
248 
249             pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
250             servers_prop[i * 2 + 1] = cpu_to_be32(pir);
251         }
252         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
253                           servers_prop, sizeof(*servers_prop) * smt_threads
254                                         * 2)));
255     } else {
256         servers_prop = g_new(uint32_t, smt_threads);
257         for (i = 0; i < smt_threads; i++) {
258             pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
259             servers_prop[i] = cpu_to_be32(pir);
260         }
261         _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
262                           servers_prop, sizeof(*servers_prop) * smt_threads)));
263     }
264     g_free(servers_prop);
265 
266     return offset;
267 }
268 
269 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
270                        uint32_t nr_threads)
271 {
272     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
273     uint32_t pir;
274     uint64_t addr;
275     char *name;
276     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
277     uint32_t irange[2], i, rsize;
278     uint64_t *reg;
279     int offset;
280 
281     pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
282     addr = PNV_ICP_BASE(chip) | (pir << 12);
283 
284     irange[0] = cpu_to_be32(pir);
285     irange[1] = cpu_to_be32(nr_threads);
286 
287     rsize = sizeof(uint64_t) * 2 * nr_threads;
288     reg = g_malloc(rsize);
289     for (i = 0; i < nr_threads; i++) {
290         /* We know P8 PIR is linear with thread id */
291         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
292         reg[i * 2 + 1] = cpu_to_be64(0x1000);
293     }
294 
295     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
296     offset = fdt_add_subnode(fdt, 0, name);
297     _FDT(offset);
298     g_free(name);
299 
300     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
301     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
302     _FDT((fdt_setprop_string(fdt, offset, "device_type",
303                               "PowerPC-External-Interrupt-Presentation")));
304     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
305     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
306                        irange, sizeof(irange))));
307     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
308     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
309     g_free(reg);
310 }
311 
312 /*
313  * Adds a PnvPHB to the chip on P8.
314  * Implemented here, like for defaults PHBs
315  */
316 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
317 {
318     Pnv8Chip *chip8 = PNV8_CHIP(chip);
319 
320     phb->chip = chip;
321 
322     chip8->phbs[chip8->num_phbs] = phb;
323     chip8->num_phbs++;
324     return chip;
325 }
326 
327 /*
328  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
329  * HTM is always enabled because TCG does implement HTM, it's just a
330  * degenerate implementation.
331  */
332 static const uint8_t pa_features_207[] = { 24, 0,
333                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
334                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
335                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
336                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
337 
338 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
339 {
340     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
341     int i;
342 
343     pnv_dt_xscom(chip, fdt, 0,
344                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
345                  cpu_to_be64(PNV_XSCOM_SIZE),
346                  compat, sizeof(compat));
347 
348     for (i = 0; i < chip->nr_cores; i++) {
349         PnvCore *pnv_core = chip->cores[i];
350         int offset;
351 
352         offset = pnv_dt_core(chip, pnv_core, fdt);
353 
354         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
355                            pa_features_207, sizeof(pa_features_207))));
356 
357         /* Interrupt Control Presenters (ICP). One per core. */
358         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
359     }
360 
361     if (chip->ram_size) {
362         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
363     }
364 }
365 
366 /*
367  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
368  */
369 static const uint8_t pa_features_300[] = { 66, 0,
370     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
371     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
372     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
373     /* 6: DS207 */
374     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
375     /* 16: Vector */
376     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
377     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
378     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
379     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
380     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
381     /* 32: LE atomic, 34: EBB + ext EBB */
382     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
383     /* 40: Radix MMU */
384     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
385     /* 42: PM, 44: PC RA, 46: SC vec'd */
386     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
387     /* 48: SIMD, 50: QP BFP, 52: String */
388     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
389     /* 54: DecFP, 56: DecI, 58: SHA */
390     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
391     /* 60: NM atomic, 62: RNG */
392     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
393 };
394 
395 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
396 {
397     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
398     int i;
399 
400     pnv_dt_xscom(chip, fdt, 0,
401                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
402                  cpu_to_be64(PNV9_XSCOM_SIZE),
403                  compat, sizeof(compat));
404 
405     for (i = 0; i < chip->nr_cores; i++) {
406         PnvCore *pnv_core = chip->cores[i];
407         int offset;
408 
409         offset = pnv_dt_core(chip, pnv_core, fdt);
410 
411         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
412                            pa_features_300, sizeof(pa_features_300))));
413 
414         if (pnv_core->big_core) {
415             i++; /* Big-core groups two QEMU cores */
416         }
417     }
418 
419     if (chip->ram_size) {
420         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
421     }
422 
423     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
424 }
425 
426 /*
427  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
428  * always disables copy/paste.
429  */
430 static const uint8_t pa_features_31[] = { 74, 0,
431     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
432     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
433     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
434     /* 6: DS207 */
435     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
436     /* 16: Vector */
437     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
438     /* 18: Vec. Scalar, 20: Vec. XOR */
439     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
440     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
441     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
442     /* 32: LE atomic, 34: EBB + ext EBB */
443     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
444     /* 40: Radix MMU */
445     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
446     /* 42: PM, 44: PC RA, 46: SC vec'd */
447     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
448     /* 48: SIMD, 50: QP BFP, 52: String */
449     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
450     /* 54: DecFP, 56: DecI, 58: SHA */
451     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
452     /* 60: NM atomic, 62: RNG */
453     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
454     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
455     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
456     /* 72: [P]HASHST/[P]HASHCHK */
457     0x80, 0x00,                         /* 72 - 73 */
458 };
459 
460 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
461 {
462     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
463     int i;
464 
465     pnv_dt_xscom(chip, fdt, 0,
466                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
467                  cpu_to_be64(PNV10_XSCOM_SIZE),
468                  compat, sizeof(compat));
469 
470     for (i = 0; i < chip->nr_cores; i++) {
471         PnvCore *pnv_core = chip->cores[i];
472         int offset;
473 
474         offset = pnv_dt_core(chip, pnv_core, fdt);
475 
476         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
477                            pa_features_31, sizeof(pa_features_31))));
478 
479         if (pnv_core->big_core) {
480             i++; /* Big-core groups two QEMU cores */
481         }
482     }
483 
484     if (chip->ram_size) {
485         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
486     }
487 
488     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
489 }
490 
491 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
492 {
493     uint32_t io_base = d->ioport_id;
494     uint32_t io_regs[] = {
495         cpu_to_be32(1),
496         cpu_to_be32(io_base),
497         cpu_to_be32(2)
498     };
499     char *name;
500     int node;
501 
502     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
503     node = fdt_add_subnode(fdt, lpc_off, name);
504     _FDT(node);
505     g_free(name);
506 
507     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
508     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
509 }
510 
511 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
512 {
513     const char compatible[] = "ns16550\0pnpPNP,501";
514     uint32_t io_base = d->ioport_id;
515     uint32_t io_regs[] = {
516         cpu_to_be32(1),
517         cpu_to_be32(io_base),
518         cpu_to_be32(8)
519     };
520     uint32_t irq;
521     char *name;
522     int node;
523 
524     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
525 
526     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
527     node = fdt_add_subnode(fdt, lpc_off, name);
528     _FDT(node);
529     g_free(name);
530 
531     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
532     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
533                       sizeof(compatible))));
534 
535     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
536     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
537     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
538     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
539                            fdt_get_phandle(fdt, lpc_off))));
540 
541     /* This is needed by Linux */
542     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
543 }
544 
545 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
546 {
547     const char compatible[] = "bt\0ipmi-bt";
548     uint32_t io_base;
549     uint32_t io_regs[] = {
550         cpu_to_be32(1),
551         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
552         cpu_to_be32(3)
553     };
554     uint32_t irq;
555     char *name;
556     int node;
557 
558     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
559     io_regs[1] = cpu_to_be32(io_base);
560 
561     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
562 
563     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
564     node = fdt_add_subnode(fdt, lpc_off, name);
565     _FDT(node);
566     g_free(name);
567 
568     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
569     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
570                       sizeof(compatible))));
571 
572     /* Mark it as reserved to avoid Linux trying to claim it */
573     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
574     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
575     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
576                            fdt_get_phandle(fdt, lpc_off))));
577 }
578 
579 typedef struct ForeachPopulateArgs {
580     void *fdt;
581     int offset;
582 } ForeachPopulateArgs;
583 
584 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
585 {
586     ForeachPopulateArgs *args = opaque;
587     ISADevice *d = ISA_DEVICE(dev);
588 
589     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
590         pnv_dt_rtc(d, args->fdt, args->offset);
591     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
592         pnv_dt_serial(d, args->fdt, args->offset);
593     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
594         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
595     } else {
596         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
597                      d->ioport_id);
598     }
599 
600     return 0;
601 }
602 
603 /*
604  * The default LPC bus of a multichip system is on chip 0. It's
605  * recognized by the firmware (skiboot) using a "primary" property.
606  */
607 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
608 {
609     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
610     ForeachPopulateArgs args = {
611         .fdt = fdt,
612         .offset = isa_offset,
613     };
614     uint32_t phandle;
615 
616     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
617 
618     phandle = qemu_fdt_alloc_phandle(fdt);
619     assert(phandle > 0);
620     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
621 
622     /*
623      * ISA devices are not necessarily parented to the ISA bus so we
624      * can not use object_child_foreach()
625      */
626     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
627                        &args);
628 }
629 
630 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
631 {
632     int off;
633 
634     off = fdt_add_subnode(fdt, 0, "ibm,opal");
635     off = fdt_add_subnode(fdt, off, "power-mgt");
636 
637     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
638 }
639 
640 static void *pnv_dt_create(MachineState *machine)
641 {
642     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
643     PnvMachineState *pnv = PNV_MACHINE(machine);
644     void *fdt;
645     char *buf;
646     int off;
647     int i;
648 
649     fdt = g_malloc0(FDT_MAX_SIZE);
650     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
651 
652     /* /qemu node */
653     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
654 
655     /* Root node */
656     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
657     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
658     _FDT((fdt_setprop_string(fdt, 0, "model",
659                              "IBM PowerNV (emulated by qemu)")));
660     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
661 
662     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
663     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
664     if (qemu_uuid_set) {
665         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
666     }
667     g_free(buf);
668 
669     off = fdt_add_subnode(fdt, 0, "chosen");
670     if (machine->kernel_cmdline) {
671         _FDT((fdt_setprop_string(fdt, off, "bootargs",
672                                  machine->kernel_cmdline)));
673     }
674 
675     if (pnv->initrd_size) {
676         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
677         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
678 
679         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
680                                &start_prop, sizeof(start_prop))));
681         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
682                                &end_prop, sizeof(end_prop))));
683     }
684 
685     /* Populate device tree for each chip */
686     for (i = 0; i < pnv->num_chips; i++) {
687         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
688     }
689 
690     /* Populate ISA devices on chip 0 */
691     pnv_dt_isa(pnv, fdt);
692 
693     if (pnv->bmc) {
694         pnv_dt_bmc_sensors(pnv->bmc, fdt);
695     }
696 
697     /* Create an extra node for power management on machines that support it */
698     if (pmc->dt_power_mgt) {
699         pmc->dt_power_mgt(pnv, fdt);
700     }
701 
702     return fdt;
703 }
704 
705 static void pnv_powerdown_notify(Notifier *n, void *opaque)
706 {
707     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
708 
709     if (pnv->bmc) {
710         pnv_bmc_powerdown(pnv->bmc);
711     }
712 }
713 
714 static void pnv_reset(MachineState *machine, ResetType type)
715 {
716     PnvMachineState *pnv = PNV_MACHINE(machine);
717     IPMIBmc *bmc;
718     void *fdt;
719 
720     qemu_devices_reset(type);
721 
722     /*
723      * The machine should provide by default an internal BMC simulator.
724      * If not, try to use the BMC device that was provided on the command
725      * line.
726      */
727     bmc = pnv_bmc_find(&error_fatal);
728     if (!pnv->bmc) {
729         if (!bmc) {
730             if (!qtest_enabled()) {
731                 warn_report("machine has no BMC device. Use '-device "
732                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
733                             "to define one");
734             }
735         } else {
736             pnv_bmc_set_pnor(bmc, pnv->pnor);
737             pnv->bmc = bmc;
738         }
739     }
740 
741     if (machine->fdt) {
742         fdt = machine->fdt;
743     } else {
744         fdt = pnv_dt_create(machine);
745         /* Pack resulting tree */
746         _FDT((fdt_pack(fdt)));
747     }
748 
749     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
750 
751     /* Update machine->fdt with latest fdt */
752     if (machine->fdt != fdt) {
753         /*
754          * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
755          * the existing machine->fdt to avoid leaking it during
756          * a reset.
757          */
758         g_free(machine->fdt);
759         machine->fdt = fdt;
760     }
761 }
762 
763 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
764 {
765     Pnv8Chip *chip8 = PNV8_CHIP(chip);
766     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
767 
768     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
769 
770     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
771 }
772 
773 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
774 {
775     Pnv8Chip *chip8 = PNV8_CHIP(chip);
776     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
777 
778     qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
779 
780     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
781 }
782 
783 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
784 {
785     Pnv9Chip *chip9 = PNV9_CHIP(chip);
786     qemu_irq irq;
787 
788     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
789     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
790 
791     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
792     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
793     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
794     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
795     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
796     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
797     irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
798     qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
799 
800     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
801 }
802 
803 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
804 {
805     Pnv10Chip *chip10 = PNV10_CHIP(chip);
806     qemu_irq irq;
807 
808     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
809     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
810 
811     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
812     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
813     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
814     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
815     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
816     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
817     irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
818     qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
819 
820     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
821 }
822 
823 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
824 {
825     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
826 }
827 
828 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
829 {
830     Pnv8Chip *chip8 = PNV8_CHIP(chip);
831     int i;
832 
833     ics_pic_print_info(&chip8->psi.ics, buf);
834 
835     for (i = 0; i < chip8->num_phbs; i++) {
836         PnvPHB *phb = chip8->phbs[i];
837         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
838 
839         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
840         ics_pic_print_info(&phb3->lsis, buf);
841     }
842 }
843 
844 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
845 {
846     GString *buf = opaque;
847     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
848 
849     if (!phb) {
850         return 0;
851     }
852 
853     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
854 
855     return 0;
856 }
857 
858 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
859 {
860     Pnv9Chip *chip9 = PNV9_CHIP(chip);
861 
862     pnv_xive_pic_print_info(&chip9->xive, buf);
863     pnv_psi_pic_print_info(&chip9->psi, buf);
864     object_child_foreach_recursive(OBJECT(chip),
865                          pnv_chip_power9_pic_print_info_child, buf);
866 }
867 
868 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
869                                                 uint32_t core_id)
870 {
871     return PNV_XSCOM_EX_BASE(core_id);
872 }
873 
874 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
875                                                 uint32_t core_id)
876 {
877     return PNV9_XSCOM_EC_BASE(core_id);
878 }
879 
880 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
881                                                  uint32_t core_id)
882 {
883     return PNV10_XSCOM_EC_BASE(core_id);
884 }
885 
886 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
887 {
888     PowerPCCPUClass *ppc_default =
889         POWERPC_CPU_CLASS(object_class_by_name(default_type));
890     PowerPCCPUClass *ppc =
891         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
892 
893     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
894 }
895 
896 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
897 {
898     ISADevice *dev = isa_new("isa-ipmi-bt");
899 
900     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
901     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
902     isa_realize_and_unref(dev, bus, &error_fatal);
903 }
904 
905 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
906 {
907     Pnv10Chip *chip10 = PNV10_CHIP(chip);
908 
909     pnv_xive2_pic_print_info(&chip10->xive, buf);
910     pnv_psi_pic_print_info(&chip10->psi, buf);
911     object_child_foreach_recursive(OBJECT(chip),
912                          pnv_chip_power9_pic_print_info_child, buf);
913 }
914 
915 /* Always give the first 1GB to chip 0 else we won't boot */
916 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
917 {
918     MachineState *machine = MACHINE(pnv);
919     uint64_t ram_per_chip;
920 
921     assert(machine->ram_size >= 1 * GiB);
922 
923     ram_per_chip = machine->ram_size / pnv->num_chips;
924     if (ram_per_chip >= 1 * GiB) {
925         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
926     }
927 
928     assert(pnv->num_chips > 1);
929 
930     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
931     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
932 }
933 
934 static void pnv_init(MachineState *machine)
935 {
936     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
937     PnvMachineState *pnv = PNV_MACHINE(machine);
938     MachineClass *mc = MACHINE_GET_CLASS(machine);
939     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
940     int max_smt_threads = pmc->max_smt_threads;
941     char *fw_filename;
942     long fw_size;
943     uint64_t chip_ram_start = 0;
944     int i;
945     char *chip_typename;
946     DriveInfo *pnor;
947     DeviceState *dev;
948 
949     if (kvm_enabled()) {
950         error_report("machine %s does not support the KVM accelerator",
951                      mc->name);
952         exit(EXIT_FAILURE);
953     }
954 
955     /* allocate RAM */
956     if (machine->ram_size < mc->default_ram_size) {
957         char *sz = size_to_str(mc->default_ram_size);
958         error_report("Invalid RAM size, should be bigger than %s", sz);
959         g_free(sz);
960         exit(EXIT_FAILURE);
961     }
962 
963     /* checks for invalid option combinations */
964     if (machine->dtb && (strlen(machine->kernel_cmdline) != 0)) {
965         error_report("-append and -dtb cannot be used together, as passed"
966                 " command line is ignored in case of custom dtb");
967         exit(EXIT_FAILURE);
968     }
969 
970     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
971 
972     /*
973      * Create our simple PNOR device
974      */
975     dev = qdev_new(TYPE_PNV_PNOR);
976     pnor = drive_get(IF_MTD, 0, 0);
977     if (!pnor && defaults_enabled()) {
978         fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, PNOR_FILE_NAME);
979         if (!fw_filename) {
980             warn_report("Could not find PNOR '%s'", PNOR_FILE_NAME);
981         } else {
982             QemuOpts *opts;
983             opts = drive_add(IF_MTD, -1, fw_filename, "format=raw,readonly=on");
984             pnor = drive_new(opts, IF_MTD, &error_fatal);
985             g_free(fw_filename);
986         }
987     }
988     if (pnor) {
989         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
990     }
991     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
992     pnv->pnor = PNV_PNOR(dev);
993 
994     /* load skiboot firmware  */
995     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
996     if (!fw_filename) {
997         error_report("Could not find OPAL firmware '%s'", bios_name);
998         exit(1);
999     }
1000 
1001     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
1002     if (fw_size < 0) {
1003         error_report("Could not load OPAL firmware '%s'", fw_filename);
1004         exit(1);
1005     }
1006     g_free(fw_filename);
1007 
1008     /* load kernel */
1009     if (machine->kernel_filename) {
1010         long kernel_size;
1011 
1012         kernel_size = load_image_targphys(machine->kernel_filename,
1013                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
1014         if (kernel_size < 0) {
1015             error_report("Could not load kernel '%s'",
1016                          machine->kernel_filename);
1017             exit(1);
1018         }
1019     }
1020 
1021     /* load initrd */
1022     if (machine->initrd_filename) {
1023         pnv->initrd_base = INITRD_LOAD_ADDR;
1024         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
1025                                   pnv->initrd_base, INITRD_MAX_SIZE);
1026         if (pnv->initrd_size < 0) {
1027             error_report("Could not load initial ram disk '%s'",
1028                          machine->initrd_filename);
1029             exit(1);
1030         }
1031     }
1032 
1033     /* load dtb if passed */
1034     if (machine->dtb) {
1035         int fdt_size;
1036 
1037         warn_report("with manually passed dtb, some options like '-append'"
1038                 " will get ignored and the dtb passed will be used as-is");
1039 
1040         /* read the file 'machine->dtb', and load it into 'fdt' buffer */
1041         machine->fdt = load_device_tree(machine->dtb, &fdt_size);
1042         if (!machine->fdt) {
1043             error_report("Could not load dtb '%s'", machine->dtb);
1044             exit(1);
1045         }
1046     }
1047 
1048     /* MSIs are supported on this platform */
1049     msi_nonbroken = true;
1050 
1051     /*
1052      * Check compatibility of the specified CPU with the machine
1053      * default.
1054      */
1055     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
1056         error_report("invalid CPU model '%s' for %s machine",
1057                      machine->cpu_type, mc->name);
1058         exit(1);
1059     }
1060 
1061     /* Create the processor chips */
1062     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
1063     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
1064                                     i, machine->cpu_type);
1065     if (!object_class_by_name(chip_typename)) {
1066         error_report("invalid chip model '%.*s' for %s machine",
1067                      i, machine->cpu_type, mc->name);
1068         exit(1);
1069     }
1070 
1071     /* Set lpar-per-core mode if lpar-per-thread is not supported */
1072     if (!pmc->has_lpar_per_thread) {
1073         pnv->lpar_per_core = true;
1074     }
1075 
1076     pnv->num_chips =
1077         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1078 
1079     if (pnv->big_core) {
1080         if (machine->smp.threads % 2 == 1) {
1081             error_report("Cannot support %d threads with big-core option "
1082                          "because it must be an even number",
1083                          machine->smp.threads);
1084             exit(1);
1085         }
1086         max_smt_threads *= 2;
1087     }
1088 
1089     if (machine->smp.threads > max_smt_threads) {
1090         error_report("Cannot support more than %d threads/core "
1091                      "on %s machine", max_smt_threads, mc->desc);
1092         if (pmc->max_smt_threads == 4) {
1093             error_report("(use big-core=on for 8 threads per core)");
1094         }
1095         exit(1);
1096     }
1097 
1098     if (pnv->big_core) {
1099         /*
1100          * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
1101          * per core, so adjust topology here. pnv_dt_core() processor
1102          * device-tree and TCG SMT code make the 2 cores appear as one big core
1103          * from software point of view. pnv pervasive models and xscoms tend to
1104          * see the big core as 2 small core halves.
1105          */
1106         machine->smp.cores *= 2;
1107         machine->smp.threads /= 2;
1108     }
1109 
1110     if (!is_power_of_2(machine->smp.threads)) {
1111         error_report("Cannot support %d threads/core on a powernv "
1112                      "machine because it must be a power of 2",
1113                      machine->smp.threads);
1114         exit(1);
1115     }
1116 
1117     /*
1118      * TODO: should we decide on how many chips we can create based
1119      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1120      */
1121     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1122         error_report("invalid number of chips: '%d'", pnv->num_chips);
1123         error_printf(
1124             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1125         exit(1);
1126     }
1127 
1128     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1129     for (i = 0; i < pnv->num_chips; i++) {
1130         char chip_name[32];
1131         Object *chip = OBJECT(qdev_new(chip_typename));
1132         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1133 
1134         pnv->chips[i] = PNV_CHIP(chip);
1135 
1136         /* Distribute RAM among the chips  */
1137         object_property_set_int(chip, "ram-start", chip_ram_start,
1138                                 &error_fatal);
1139         object_property_set_int(chip, "ram-size", chip_ram_size,
1140                                 &error_fatal);
1141         chip_ram_start += chip_ram_size;
1142 
1143         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1144         object_property_add_child(OBJECT(pnv), chip_name, chip);
1145         object_property_set_int(chip, "chip-id", i, &error_fatal);
1146         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1147                                 &error_fatal);
1148         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1149                                 &error_fatal);
1150         object_property_set_bool(chip, "big-core", pnv->big_core,
1151                                 &error_fatal);
1152         object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
1153                                 &error_fatal);
1154         /*
1155          * The POWER8 machine use the XICS interrupt interface.
1156          * Propagate the XICS fabric to the chip and its controllers.
1157          */
1158         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1159             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1160         }
1161         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1162             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1163                                      &error_abort);
1164         }
1165         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1166     }
1167     g_free(chip_typename);
1168 
1169     /* Instantiate ISA bus on chip 0 */
1170     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1171 
1172     /* Create serial port */
1173     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1174 
1175     /* Create an RTC ISA device too */
1176     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1177 
1178     /*
1179      * Create the machine BMC simulator and the IPMI BT device for
1180      * communication with the BMC
1181      */
1182     if (defaults_enabled()) {
1183         pnv->bmc = pnv_bmc_create(pnv->pnor);
1184         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1185     }
1186 
1187     /*
1188      * The PNOR is mapped on the LPC FW address space by the BMC.
1189      * Since we can not reach the remote BMC machine with LPC memops,
1190      * map it always for now.
1191      */
1192     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1193                                 &pnv->pnor->mmio);
1194 
1195     /*
1196      * OpenPOWER systems use a IPMI SEL Event message to notify the
1197      * host to powerdown
1198      */
1199     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1200     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1201 
1202     /*
1203      * Create/Connect any machine-specific I2C devices
1204      */
1205     if (pmc->i2c_init) {
1206         pmc->i2c_init(pnv);
1207     }
1208 }
1209 
1210 /*
1211  *    0:21  Reserved - Read as zeros
1212  *   22:24  Chip ID
1213  *   25:28  Core number
1214  *   29:31  Thread ID
1215  */
1216 static void pnv_get_pir_tir_p8(PnvChip *chip,
1217                                 uint32_t core_id, uint32_t thread_id,
1218                                 uint32_t *pir, uint32_t *tir)
1219 {
1220     if (pir) {
1221         *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1222     }
1223     if (tir) {
1224         *tir = thread_id;
1225     }
1226 }
1227 
1228 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1229                                         Error **errp)
1230 {
1231     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1232     Error *local_err = NULL;
1233     Object *obj;
1234     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1235 
1236     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1237     if (local_err) {
1238         error_propagate(errp, local_err);
1239         return;
1240     }
1241 
1242     pnv_cpu->intc = obj;
1243 }
1244 
1245 
1246 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1247 {
1248     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1249 
1250     icp_reset(ICP(pnv_cpu->intc));
1251 }
1252 
1253 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1254 {
1255     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1256 
1257     icp_destroy(ICP(pnv_cpu->intc));
1258     pnv_cpu->intc = NULL;
1259 }
1260 
1261 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1262                                             GString *buf)
1263 {
1264     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1265 }
1266 
1267 /*
1268  *    0:48  Reserved - Read as zeroes
1269  *   49:52  Node ID
1270  *   53:55  Chip ID
1271  *   56     Reserved - Read as zero
1272  *   57:61  Core number
1273  *   62:63  Thread ID
1274  *
1275  * We only care about the lower bits. uint32_t is fine for the moment.
1276  */
1277 static void pnv_get_pir_tir_p9(PnvChip *chip,
1278                                 uint32_t core_id, uint32_t thread_id,
1279                                 uint32_t *pir, uint32_t *tir)
1280 {
1281     if (chip->big_core) {
1282         /* Big-core interleaves thread ID between small-cores */
1283         thread_id <<= 1;
1284         thread_id |= core_id & 1;
1285         core_id >>= 1;
1286 
1287         if (pir) {
1288             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1289         }
1290     } else {
1291         if (pir) {
1292             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1293         }
1294     }
1295     if (tir) {
1296         *tir = thread_id;
1297     }
1298 }
1299 
1300 /*
1301  *    0:48  Reserved - Read as zeroes
1302  *   49:52  Node ID
1303  *   53:55  Chip ID
1304  *   56     Reserved - Read as zero
1305  *   57:59  Quad ID
1306  *   60     Core Chiplet Pair ID
1307  *   61:63  Thread/Core Chiplet ID t0-t2
1308  *
1309  * We only care about the lower bits. uint32_t is fine for the moment.
1310  */
1311 static void pnv_get_pir_tir_p10(PnvChip *chip,
1312                                 uint32_t core_id, uint32_t thread_id,
1313                                 uint32_t *pir, uint32_t *tir)
1314 {
1315     if (chip->big_core) {
1316         /* Big-core interleaves thread ID between small-cores */
1317         thread_id <<= 1;
1318         thread_id |= core_id & 1;
1319         core_id >>= 1;
1320 
1321         if (pir) {
1322             *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1323         }
1324     } else {
1325         if (pir) {
1326             *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1327         }
1328     }
1329     if (tir) {
1330         *tir = thread_id;
1331     }
1332 }
1333 
1334 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1335                                         Error **errp)
1336 {
1337     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1338     Error *local_err = NULL;
1339     Object *obj;
1340     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1341 
1342     /*
1343      * The core creates its interrupt presenter but the XIVE interrupt
1344      * controller object is initialized afterwards. Hopefully, it's
1345      * only used at runtime.
1346      */
1347     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1348                            &local_err);
1349     if (local_err) {
1350         error_propagate(errp, local_err);
1351         return;
1352     }
1353 
1354     pnv_cpu->intc = obj;
1355 }
1356 
1357 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1358 {
1359     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1360 
1361     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1362 }
1363 
1364 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1365 {
1366     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1367 
1368     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1369     pnv_cpu->intc = NULL;
1370 }
1371 
1372 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1373                                             GString *buf)
1374 {
1375     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1376 }
1377 
1378 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1379                                         Error **errp)
1380 {
1381     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1382     Error *local_err = NULL;
1383     Object *obj;
1384     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1385 
1386     /*
1387      * The core creates its interrupt presenter but the XIVE2 interrupt
1388      * controller object is initialized afterwards. Hopefully, it's
1389      * only used at runtime.
1390      */
1391     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1392                            &local_err);
1393     if (local_err) {
1394         error_propagate(errp, local_err);
1395         return;
1396     }
1397 
1398     pnv_cpu->intc = obj;
1399 }
1400 
1401 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1402 {
1403     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1404 
1405     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1406 }
1407 
1408 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1409 {
1410     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1411 
1412     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1413     pnv_cpu->intc = NULL;
1414 }
1415 
1416 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1417                                              GString *buf)
1418 {
1419     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1420 }
1421 
1422 /*
1423  * Allowed core identifiers on a POWER8 Processor Chip :
1424  *
1425  * <EX0 reserved>
1426  *  EX1  - Venice only
1427  *  EX2  - Venice only
1428  *  EX3  - Venice only
1429  *  EX4
1430  *  EX5
1431  *  EX6
1432  * <EX7,8 reserved> <reserved>
1433  *  EX9  - Venice only
1434  *  EX10 - Venice only
1435  *  EX11 - Venice only
1436  *  EX12
1437  *  EX13
1438  *  EX14
1439  * <EX15 reserved>
1440  */
1441 #define POWER8E_CORE_MASK  (0x7070ull)
1442 #define POWER8_CORE_MASK   (0x7e7eull)
1443 
1444 /*
1445  * POWER9 has 24 cores, ids starting at 0x0
1446  */
1447 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1448 
1449 
1450 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1451 
1452 static void pnv_chip_power8_instance_init(Object *obj)
1453 {
1454     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1455     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1456     int i;
1457 
1458     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1459                              (Object **)&chip8->xics,
1460                              object_property_allow_set_link,
1461                              OBJ_PROP_LINK_STRONG);
1462 
1463     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1464 
1465     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1466 
1467     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1468 
1469     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1470 
1471     if (defaults_enabled()) {
1472         chip8->num_phbs = pcc->num_phbs;
1473 
1474         for (i = 0; i < chip8->num_phbs; i++) {
1475             Object *phb = object_new(TYPE_PNV_PHB);
1476 
1477             /*
1478              * We need the chip to parent the PHB to allow the DT
1479              * to build correctly (via pnv_xscom_dt()).
1480              *
1481              * TODO: the PHB should be parented by a PEC device that, at
1482              * this moment, is not modelled powernv8/phb3.
1483              */
1484             object_property_add_child(obj, "phb[*]", phb);
1485             chip8->phbs[i] = PNV_PHB(phb);
1486         }
1487     }
1488 
1489 }
1490 
1491 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1492  {
1493     PnvChip *chip = PNV_CHIP(chip8);
1494     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1495     int i, j;
1496     char *name;
1497 
1498     name = g_strdup_printf("icp-%x", chip->chip_id);
1499     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1500     g_free(name);
1501     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1502                                 &chip8->icp_mmio);
1503 
1504     /* Map the ICP registers for each thread */
1505     for (i = 0; i < chip->nr_cores; i++) {
1506         PnvCore *pnv_core = chip->cores[i];
1507         int core_hwid = CPU_CORE(pnv_core)->core_id;
1508 
1509         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1510             uint32_t pir;
1511             PnvICPState *icp;
1512 
1513             pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1514             icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1515 
1516             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1517                                         &icp->mmio);
1518         }
1519     }
1520 }
1521 
1522 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1523 {
1524     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1525     PnvChip *chip = PNV_CHIP(dev);
1526     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1527     Pnv8Psi *psi8 = &chip8->psi;
1528     Error *local_err = NULL;
1529     int i;
1530 
1531     assert(chip8->xics);
1532 
1533     /* XSCOM bridge is first */
1534     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1535 
1536     pcc->parent_realize(dev, &local_err);
1537     if (local_err) {
1538         error_propagate(errp, local_err);
1539         return;
1540     }
1541 
1542     /* Processor Service Interface (PSI) Host Bridge */
1543     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1544                             &error_fatal);
1545     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1546                              OBJECT(chip8->xics), &error_abort);
1547     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1548         return;
1549     }
1550     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1551                             &PNV_PSI(psi8)->xscom_regs);
1552 
1553     /* Create LPC controller */
1554     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1555     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1556 
1557     chip->fw_mr = &chip8->lpc.isa_fw;
1558     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1559                                             (uint64_t) PNV_XSCOM_BASE(chip),
1560                                             PNV_XSCOM_LPC_BASE);
1561 
1562     /*
1563      * Interrupt Management Area. This is the memory region holding
1564      * all the Interrupt Control Presenter (ICP) registers
1565      */
1566     pnv_chip_icp_realize(chip8, &local_err);
1567     if (local_err) {
1568         error_propagate(errp, local_err);
1569         return;
1570     }
1571 
1572     /* HOMER (must be created before OCC) */
1573     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1574                              &error_abort);
1575     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1576         return;
1577     }
1578     /* Homer Xscom region */
1579     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1580     /* Homer RAM region */
1581     memory_region_add_subregion(get_system_memory(), chip8->homer.base,
1582                                 &chip8->homer.mem);
1583 
1584     /* Create the simplified OCC model */
1585     object_property_set_link(OBJECT(&chip8->occ), "homer",
1586                              OBJECT(&chip8->homer), &error_abort);
1587     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1588         return;
1589     }
1590     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1591     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1592                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1593 
1594     /* OCC SRAM model */
1595     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1596                                 &chip8->occ.sram_regs);
1597 
1598     /* PHB controllers */
1599     for (i = 0; i < chip8->num_phbs; i++) {
1600         PnvPHB *phb = chip8->phbs[i];
1601 
1602         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1603         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1604                                 &error_fatal);
1605         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1606                                  &error_fatal);
1607         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1608             return;
1609         }
1610     }
1611 }
1612 
1613 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1614 {
1615     addr &= (PNV_XSCOM_SIZE - 1);
1616     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1617 }
1618 
1619 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1620 {
1621     DeviceClass *dc = DEVICE_CLASS(klass);
1622     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1623 
1624     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1625     k->cores_mask = POWER8E_CORE_MASK;
1626     k->num_phbs = 3;
1627     k->get_pir_tir = pnv_get_pir_tir_p8;
1628     k->intc_create = pnv_chip_power8_intc_create;
1629     k->intc_reset = pnv_chip_power8_intc_reset;
1630     k->intc_destroy = pnv_chip_power8_intc_destroy;
1631     k->intc_print_info = pnv_chip_power8_intc_print_info;
1632     k->isa_create = pnv_chip_power8_isa_create;
1633     k->dt_populate = pnv_chip_power8_dt_populate;
1634     k->pic_print_info = pnv_chip_power8_pic_print_info;
1635     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1636     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1637     dc->desc = "PowerNV Chip POWER8E";
1638 
1639     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1640                                     &k->parent_realize);
1641 }
1642 
1643 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1644 {
1645     DeviceClass *dc = DEVICE_CLASS(klass);
1646     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1647 
1648     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1649     k->cores_mask = POWER8_CORE_MASK;
1650     k->num_phbs = 3;
1651     k->get_pir_tir = pnv_get_pir_tir_p8;
1652     k->intc_create = pnv_chip_power8_intc_create;
1653     k->intc_reset = pnv_chip_power8_intc_reset;
1654     k->intc_destroy = pnv_chip_power8_intc_destroy;
1655     k->intc_print_info = pnv_chip_power8_intc_print_info;
1656     k->isa_create = pnv_chip_power8_isa_create;
1657     k->dt_populate = pnv_chip_power8_dt_populate;
1658     k->pic_print_info = pnv_chip_power8_pic_print_info;
1659     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1660     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1661     dc->desc = "PowerNV Chip POWER8";
1662 
1663     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1664                                     &k->parent_realize);
1665 }
1666 
1667 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1668 {
1669     DeviceClass *dc = DEVICE_CLASS(klass);
1670     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1671 
1672     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1673     k->cores_mask = POWER8_CORE_MASK;
1674     k->num_phbs = 4;
1675     k->get_pir_tir = pnv_get_pir_tir_p8;
1676     k->intc_create = pnv_chip_power8_intc_create;
1677     k->intc_reset = pnv_chip_power8_intc_reset;
1678     k->intc_destroy = pnv_chip_power8_intc_destroy;
1679     k->intc_print_info = pnv_chip_power8_intc_print_info;
1680     k->isa_create = pnv_chip_power8nvl_isa_create;
1681     k->dt_populate = pnv_chip_power8_dt_populate;
1682     k->pic_print_info = pnv_chip_power8_pic_print_info;
1683     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1684     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1685     dc->desc = "PowerNV Chip POWER8NVL";
1686 
1687     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1688                                     &k->parent_realize);
1689 }
1690 
1691 static void pnv_chip_power9_instance_init(Object *obj)
1692 {
1693     PnvChip *chip = PNV_CHIP(obj);
1694     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1695     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1696     int i;
1697 
1698     object_initialize_child(obj, "adu",  &chip9->adu, TYPE_PNV_ADU);
1699     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1700     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1701                               "xive-fabric");
1702 
1703     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1704 
1705     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1706 
1707     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1708 
1709     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1710 
1711     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1712 
1713     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1714 
1715     /* Number of PECs is the chip default */
1716     chip->num_pecs = pcc->num_pecs;
1717 
1718     for (i = 0; i < chip->num_pecs; i++) {
1719         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1720                                 TYPE_PNV_PHB4_PEC);
1721     }
1722 
1723     for (i = 0; i < pcc->i2c_num_engines; i++) {
1724         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1725     }
1726 }
1727 
1728 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1729                                       PnvCore *pnv_core,
1730                                       const char *type)
1731 {
1732     char eq_name[32];
1733     int core_id = CPU_CORE(pnv_core)->core_id;
1734 
1735     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1736     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1737                                        sizeof(*eq), type,
1738                                        &error_fatal, NULL);
1739 
1740     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1741     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1742 }
1743 
1744 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1745 {
1746     PnvChip *chip = PNV_CHIP(chip9);
1747     int i;
1748 
1749     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1750     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1751 
1752     for (i = 0; i < chip9->nr_quads; i++) {
1753         PnvQuad *eq = &chip9->quads[i];
1754 
1755         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1756                                   PNV_QUAD_TYPE_NAME("power9"));
1757 
1758         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1759                                 &eq->xscom_regs);
1760     }
1761 }
1762 
1763 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1764 {
1765     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1766     int i;
1767 
1768     for (i = 0; i < chip->num_pecs; i++) {
1769         PnvPhb4PecState *pec = &chip9->pecs[i];
1770         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1771         uint32_t pec_cplt_base;
1772         uint32_t pec_nest_base;
1773         uint32_t pec_pci_base;
1774 
1775         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1776         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1777                                 &error_fatal);
1778         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1779                                  &error_fatal);
1780         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1781             return;
1782         }
1783 
1784         pec_cplt_base = pecc->xscom_cplt_base(pec);
1785         pec_nest_base = pecc->xscom_nest_base(pec);
1786         pec_pci_base = pecc->xscom_pci_base(pec);
1787 
1788         pnv_xscom_add_subregion(chip, pec_cplt_base,
1789                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
1790         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1791         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1792     }
1793 }
1794 
1795 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1796 {
1797     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1798     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1799     PnvChip *chip = PNV_CHIP(dev);
1800     Pnv9Psi *psi9 = &chip9->psi;
1801     Error *local_err = NULL;
1802     int i;
1803 
1804     /* XSCOM bridge is first */
1805     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1806 
1807     pcc->parent_realize(dev, &local_err);
1808     if (local_err) {
1809         error_propagate(errp, local_err);
1810         return;
1811     }
1812 
1813     /* ADU */
1814     object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1815                              &error_abort);
1816     if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1817         return;
1818     }
1819     pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1820                             &chip9->adu.xscom_regs);
1821 
1822     pnv_chip_quad_realize(chip9, &local_err);
1823     if (local_err) {
1824         error_propagate(errp, local_err);
1825         return;
1826     }
1827 
1828     /* XIVE interrupt controller (POWER9) */
1829     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1830                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1831     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1832                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1833     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1834                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1835     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1836                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1837     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1838                              &error_abort);
1839     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1840         return;
1841     }
1842     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1843                             &chip9->xive.xscom_regs);
1844 
1845     /* Processor Service Interface (PSI) Host Bridge */
1846     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1847                             &error_fatal);
1848     /* This is the only device with 4k ESB pages */
1849     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1850                             &error_fatal);
1851     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1852         return;
1853     }
1854     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1855                             &PNV_PSI(psi9)->xscom_regs);
1856 
1857     /* LPC */
1858     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1859         return;
1860     }
1861     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1862                                 &chip9->lpc.xscom_regs);
1863 
1864     chip->fw_mr = &chip9->lpc.isa_fw;
1865     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1866                                             (uint64_t) PNV9_LPCM_BASE(chip));
1867 
1868     /* ChipTOD */
1869     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1870                              chip->chip_id == 0, &error_abort);
1871     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1872                              chip->chip_id == 1, &error_abort);
1873     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1874                              &error_abort);
1875     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1876         return;
1877     }
1878     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1879                             &chip9->chiptod.xscom_regs);
1880 
1881     /* SBE */
1882     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1883         return;
1884     }
1885     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1886                             &chip9->sbe.xscom_ctrl_regs);
1887     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1888                             &chip9->sbe.xscom_mbox_regs);
1889     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1890                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1891 
1892     /* HOMER (must be created before OCC) */
1893     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1894                              &error_abort);
1895     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1896         return;
1897     }
1898     /* Homer Xscom region */
1899     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1900     /* Homer RAM region */
1901     memory_region_add_subregion(get_system_memory(), chip9->homer.base,
1902                                 &chip9->homer.mem);
1903 
1904     /* Create the simplified OCC model */
1905     object_property_set_link(OBJECT(&chip9->occ), "homer",
1906                              OBJECT(&chip9->homer), &error_abort);
1907     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1908         return;
1909     }
1910     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1911     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1912                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1913 
1914     /* OCC SRAM model */
1915     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1916                                 &chip9->occ.sram_regs);
1917 
1918     /* PEC PHBs */
1919     pnv_chip_power9_pec_realize(chip, &local_err);
1920     if (local_err) {
1921         error_propagate(errp, local_err);
1922         return;
1923     }
1924 
1925     /*
1926      * I2C
1927      */
1928     for (i = 0; i < pcc->i2c_num_engines; i++) {
1929         Object *obj =  OBJECT(&chip9->i2c[i]);
1930 
1931         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1932         object_property_set_int(obj, "num-busses",
1933                                 pcc->i2c_ports_per_engine[i],
1934                                 &error_fatal);
1935         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1936         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1937             return;
1938         }
1939         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1940                                 (chip9->i2c[i].engine - 1) *
1941                                         PNV9_XSCOM_I2CM_SIZE,
1942                                 &chip9->i2c[i].xscom_regs);
1943         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1944                               qdev_get_gpio_in(DEVICE(psi9),
1945                                                PSIHB9_IRQ_SBE_I2C));
1946     }
1947 }
1948 
1949 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1950 {
1951     addr &= (PNV9_XSCOM_SIZE - 1);
1952     return addr >> 3;
1953 }
1954 
1955 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1956 {
1957     DeviceClass *dc = DEVICE_CLASS(klass);
1958     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1959     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1960 
1961     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1962     k->cores_mask = POWER9_CORE_MASK;
1963     k->get_pir_tir = pnv_get_pir_tir_p9;
1964     k->intc_create = pnv_chip_power9_intc_create;
1965     k->intc_reset = pnv_chip_power9_intc_reset;
1966     k->intc_destroy = pnv_chip_power9_intc_destroy;
1967     k->intc_print_info = pnv_chip_power9_intc_print_info;
1968     k->isa_create = pnv_chip_power9_isa_create;
1969     k->dt_populate = pnv_chip_power9_dt_populate;
1970     k->pic_print_info = pnv_chip_power9_pic_print_info;
1971     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1972     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1973     dc->desc = "PowerNV Chip POWER9";
1974     k->num_pecs = PNV9_CHIP_MAX_PEC;
1975     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1976     k->i2c_ports_per_engine = i2c_ports_per_engine;
1977 
1978     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1979                                     &k->parent_realize);
1980 }
1981 
1982 static void pnv_chip_power10_instance_init(Object *obj)
1983 {
1984     PnvChip *chip = PNV_CHIP(obj);
1985     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1986     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1987     int i;
1988 
1989     object_initialize_child(obj, "adu",  &chip10->adu, TYPE_PNV_ADU);
1990     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1991     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1992                               "xive-fabric");
1993     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1994     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1995     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1996                             TYPE_PNV10_CHIPTOD);
1997     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1998     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1999     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
2000     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
2001                             TYPE_PNV_N1_CHIPLET);
2002 
2003     chip->num_pecs = pcc->num_pecs;
2004 
2005     for (i = 0; i < chip->num_pecs; i++) {
2006         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
2007                                 TYPE_PNV_PHB5_PEC);
2008     }
2009 
2010     for (i = 0; i < pcc->i2c_num_engines; i++) {
2011         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
2012     }
2013 
2014     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2015         object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
2016                                 TYPE_PNV_SPI);
2017     }
2018 }
2019 
2020 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
2021 {
2022     PnvChip *chip = PNV_CHIP(chip10);
2023     int i;
2024 
2025     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
2026     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
2027 
2028     for (i = 0; i < chip10->nr_quads; i++) {
2029         PnvQuad *eq = &chip10->quads[i];
2030 
2031         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
2032                                   PNV_QUAD_TYPE_NAME("power10"));
2033 
2034         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
2035                                 &eq->xscom_regs);
2036 
2037         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
2038                                 &eq->xscom_qme_regs);
2039     }
2040 }
2041 
2042 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
2043 {
2044     Pnv10Chip *chip10 = PNV10_CHIP(chip);
2045     int i;
2046 
2047     for (i = 0; i < chip->num_pecs; i++) {
2048         PnvPhb4PecState *pec = &chip10->pecs[i];
2049         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
2050         uint32_t pec_cplt_base;
2051         uint32_t pec_nest_base;
2052         uint32_t pec_pci_base;
2053 
2054         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
2055         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
2056                                 &error_fatal);
2057         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
2058                                  &error_fatal);
2059         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
2060             return;
2061         }
2062 
2063         pec_cplt_base = pecc->xscom_cplt_base(pec);
2064         pec_nest_base = pecc->xscom_nest_base(pec);
2065         pec_pci_base = pecc->xscom_pci_base(pec);
2066 
2067         pnv_xscom_add_subregion(chip, pec_cplt_base,
2068                  &pec->nest_pervasive.xscom_ctrl_regs_mr);
2069         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
2070         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
2071     }
2072 }
2073 
2074 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
2075 {
2076     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
2077     PnvChip *chip = PNV_CHIP(dev);
2078     Pnv10Chip *chip10 = PNV10_CHIP(dev);
2079     Error *local_err = NULL;
2080     int i;
2081 
2082     /* XSCOM bridge is first */
2083     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
2084 
2085     pcc->parent_realize(dev, &local_err);
2086     if (local_err) {
2087         error_propagate(errp, local_err);
2088         return;
2089     }
2090 
2091     /* ADU */
2092     object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
2093                              &error_abort);
2094     if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
2095         return;
2096     }
2097     pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
2098                             &chip10->adu.xscom_regs);
2099 
2100     pnv_chip_power10_quad_realize(chip10, &local_err);
2101     if (local_err) {
2102         error_propagate(errp, local_err);
2103         return;
2104     }
2105 
2106     /* XIVE2 interrupt controller (POWER10) */
2107     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
2108                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
2109     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
2110                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
2111     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
2112                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
2113     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
2114                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
2115     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
2116                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
2117     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
2118                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
2119     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
2120                              &error_abort);
2121     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
2122         return;
2123     }
2124     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
2125                             &chip10->xive.xscom_regs);
2126 
2127     /* Processor Service Interface (PSI) Host Bridge */
2128     object_property_set_int(OBJECT(&chip10->psi), "bar",
2129                             PNV10_PSIHB_BASE(chip), &error_fatal);
2130     /* PSI can now be configured to use 64k ESB pages on POWER10 */
2131     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2132                             &error_fatal);
2133     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2134         return;
2135     }
2136     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2137                             &PNV_PSI(&chip10->psi)->xscom_regs);
2138 
2139     /* LPC */
2140     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2141         return;
2142     }
2143     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2144                                 &chip10->lpc.xscom_regs);
2145 
2146     chip->fw_mr = &chip10->lpc.isa_fw;
2147     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2148                                             (uint64_t) PNV10_LPCM_BASE(chip));
2149 
2150     /* ChipTOD */
2151     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2152                              chip->chip_id == 0, &error_abort);
2153     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2154                              chip->chip_id == 1, &error_abort);
2155     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2156                              &error_abort);
2157     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2158         return;
2159     }
2160     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2161                             &chip10->chiptod.xscom_regs);
2162 
2163     /* HOMER (must be created before OCC) */
2164     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2165                              &error_abort);
2166     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2167         return;
2168     }
2169     /* Homer Xscom region */
2170     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2171                             &chip10->homer.pba_regs);
2172     /* Homer RAM region */
2173     memory_region_add_subregion(get_system_memory(), chip10->homer.base,
2174                                 &chip10->homer.mem);
2175 
2176     /* Create the simplified OCC model */
2177     object_property_set_link(OBJECT(&chip10->occ), "homer",
2178                              OBJECT(&chip10->homer), &error_abort);
2179     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2180         return;
2181     }
2182     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2183                             &chip10->occ.xscom_regs);
2184     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2185                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2186 
2187     /* OCC SRAM model */
2188     memory_region_add_subregion(get_system_memory(),
2189                                 PNV10_OCC_SENSOR_BASE(chip),
2190                                 &chip10->occ.sram_regs);
2191 
2192     /* SBE */
2193     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2194         return;
2195     }
2196     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2197                             &chip10->sbe.xscom_ctrl_regs);
2198     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2199                             &chip10->sbe.xscom_mbox_regs);
2200     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2201                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2202 
2203     /* N1 chiplet */
2204     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2205         return;
2206     }
2207     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2208              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2209 
2210     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2211                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2212 
2213     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2214                            &chip10->n1_chiplet.xscom_pb_es_mr);
2215 
2216     /* PHBs */
2217     pnv_chip_power10_phb_realize(chip, &local_err);
2218     if (local_err) {
2219         error_propagate(errp, local_err);
2220         return;
2221     }
2222 
2223 
2224     /*
2225      * I2C
2226      */
2227     for (i = 0; i < pcc->i2c_num_engines; i++) {
2228         Object *obj =  OBJECT(&chip10->i2c[i]);
2229 
2230         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2231         object_property_set_int(obj, "num-busses",
2232                                 pcc->i2c_ports_per_engine[i],
2233                                 &error_fatal);
2234         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2235         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2236             return;
2237         }
2238         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2239                                 (chip10->i2c[i].engine - 1) *
2240                                         PNV10_XSCOM_I2CM_SIZE,
2241                                 &chip10->i2c[i].xscom_regs);
2242         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2243                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2244                                                PSIHB9_IRQ_SBE_I2C));
2245     }
2246     /* PIB SPI Controller */
2247     for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2248         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
2249                                 i, &error_fatal);
2250         /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
2251         object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
2252                                 (i == 2) ? 1 : 4, &error_fatal);
2253         if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
2254                                         (&chip10->pib_spic[i])), errp)) {
2255             return;
2256         }
2257         pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
2258                                 i * PNV10_XSCOM_PIB_SPIC_SIZE,
2259                                 &chip10->pib_spic[i].xscom_spic_regs);
2260     }
2261 }
2262 
2263 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2264 {
2265     int i;
2266     for (i = 0; i < pnv->num_chips; i++) {
2267         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2268 
2269         /*
2270          * Add a PCA9552 I2C device for PCIe hotplug control
2271          * to engine 2, bus 1, address 0x63
2272          */
2273         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2274                                                 "pca9552", 0x63);
2275 
2276         /*
2277          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2278          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2279          * after hypervisor code sets a SLOTx_EN pin high.
2280          */
2281         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2282         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2283         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2284         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2285         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2286 
2287         /*
2288          * Add a PCA9554 I2C device for cable card presence detection
2289          * to engine 2, bus 1, address 0x25
2290          */
2291         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2292     }
2293 }
2294 
2295 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2296 {
2297     addr &= (PNV10_XSCOM_SIZE - 1);
2298     return addr >> 3;
2299 }
2300 
2301 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2302 {
2303     DeviceClass *dc = DEVICE_CLASS(klass);
2304     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2305     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2306 
2307     k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2308     k->cores_mask = POWER10_CORE_MASK;
2309     k->get_pir_tir = pnv_get_pir_tir_p10;
2310     k->intc_create = pnv_chip_power10_intc_create;
2311     k->intc_reset = pnv_chip_power10_intc_reset;
2312     k->intc_destroy = pnv_chip_power10_intc_destroy;
2313     k->intc_print_info = pnv_chip_power10_intc_print_info;
2314     k->isa_create = pnv_chip_power10_isa_create;
2315     k->dt_populate = pnv_chip_power10_dt_populate;
2316     k->pic_print_info = pnv_chip_power10_pic_print_info;
2317     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2318     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2319     dc->desc = "PowerNV Chip POWER10";
2320     k->num_pecs = PNV10_CHIP_MAX_PEC;
2321     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2322     k->i2c_ports_per_engine = i2c_ports_per_engine;
2323 
2324     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2325                                     &k->parent_realize);
2326 }
2327 
2328 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
2329                                    Error **errp)
2330 {
2331     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2332     int cores_max;
2333 
2334     /*
2335      * No custom mask for this chip, let's use the default one from *
2336      * the chip class
2337      */
2338     if (!chip->cores_mask) {
2339         chip->cores_mask = pcc->cores_mask;
2340     }
2341 
2342     /* filter alien core ids ! some are reserved */
2343     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2344         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2345                    chip->cores_mask);
2346         return;
2347     }
2348     chip->cores_mask &= pcc->cores_mask;
2349 
2350     /* Ensure small-cores a paired up in big-core mode */
2351     if (pnv->big_core) {
2352         uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
2353         uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
2354 
2355         if (even_cores ^ (odd_cores >> 1)) {
2356             error_setg(errp, "warning: unpaired cores in big-core mode !");
2357             return;
2358         }
2359     }
2360 
2361     /* now that we have a sane layout, let check the number of cores */
2362     cores_max = ctpop64(chip->cores_mask);
2363     if (chip->nr_cores > cores_max) {
2364         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2365                    cores_max);
2366         return;
2367     }
2368 }
2369 
2370 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2371 {
2372     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2373     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
2374     Error *error = NULL;
2375     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2376     const char *typename = pnv_chip_core_typename(chip);
2377     int i, core_hwid;
2378 
2379     if (!object_class_by_name(typename)) {
2380         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2381         return;
2382     }
2383 
2384     /* Cores */
2385     pnv_chip_core_sanitize(pnv, chip, &error);
2386     if (error) {
2387         error_propagate(errp, error);
2388         return;
2389     }
2390 
2391     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2392 
2393     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2394              && (i < chip->nr_cores); core_hwid++) {
2395         char core_name[32];
2396         PnvCore *pnv_core;
2397         uint64_t xscom_core_base;
2398 
2399         if (!(chip->cores_mask & (1ull << core_hwid))) {
2400             continue;
2401         }
2402 
2403         pnv_core = PNV_CORE(object_new(typename));
2404 
2405         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2406         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2407         chip->cores[i] = pnv_core;
2408         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2409                                 chip->nr_threads, &error_fatal);
2410         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2411                                 core_hwid, &error_fatal);
2412         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2413                                 &error_fatal);
2414         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2415                                 &error_fatal);
2416         object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
2417                                 &error_fatal);
2418         object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
2419                                 pmc->quirk_tb_big_core, &error_fatal);
2420         object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
2421                                 chip->lpar_per_core, &error_fatal);
2422         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2423                                  &error_abort);
2424 
2425         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2426 
2427         /* Each core has an XSCOM MMIO region */
2428         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2429 
2430         pnv_xscom_add_subregion(chip, xscom_core_base,
2431                                 &pnv_core->xscom_regs);
2432         i++;
2433     }
2434 }
2435 
2436 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2437 {
2438     PnvChip *chip = PNV_CHIP(dev);
2439     Error *error = NULL;
2440 
2441     /* Cores */
2442     pnv_chip_core_realize(chip, &error);
2443     if (error) {
2444         error_propagate(errp, error);
2445         return;
2446     }
2447 }
2448 
2449 static const Property pnv_chip_properties[] = {
2450     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2451     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2452     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2453     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2454     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2455     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2456     DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
2457     DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
2458 };
2459 
2460 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2461 {
2462     DeviceClass *dc = DEVICE_CLASS(klass);
2463 
2464     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2465     dc->realize = pnv_chip_realize;
2466     device_class_set_props(dc, pnv_chip_properties);
2467     dc->desc = "PowerNV Chip";
2468 }
2469 
2470 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2471 {
2472     int i;
2473 
2474     for (i = 0; i < chip->nr_cores; i++) {
2475         PnvCore *pc = chip->cores[i];
2476         CPUCore *cc = CPU_CORE(pc);
2477 
2478         if (cc->core_id == core_id) {
2479             return pc;
2480         }
2481     }
2482     return NULL;
2483 }
2484 
2485 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2486 {
2487     int i, j;
2488 
2489     for (i = 0; i < chip->nr_cores; i++) {
2490         PnvCore *pc = chip->cores[i];
2491         CPUCore *cc = CPU_CORE(pc);
2492 
2493         for (j = 0; j < cc->nr_threads; j++) {
2494             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2495                 return pc->threads[j];
2496             }
2497         }
2498     }
2499     return NULL;
2500 }
2501 
2502 static void pnv_chip_foreach_cpu(PnvChip *chip,
2503                    void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2504                    void *opaque)
2505 {
2506     int i, j;
2507 
2508     for (i = 0; i < chip->nr_cores; i++) {
2509         PnvCore *pc = chip->cores[i];
2510 
2511         for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2512             fn(chip, pc->threads[j], opaque);
2513         }
2514     }
2515 }
2516 
2517 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2518 {
2519     PnvMachineState *pnv = PNV_MACHINE(xi);
2520     int i, j;
2521 
2522     for (i = 0; i < pnv->num_chips; i++) {
2523         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2524 
2525         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2526             return &chip8->psi.ics;
2527         }
2528 
2529         for (j = 0; j < chip8->num_phbs; j++) {
2530             PnvPHB *phb = chip8->phbs[j];
2531             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2532 
2533             if (ics_valid_irq(&phb3->lsis, irq)) {
2534                 return &phb3->lsis;
2535             }
2536 
2537             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2538                 return ICS(&phb3->msis);
2539             }
2540         }
2541     }
2542     return NULL;
2543 }
2544 
2545 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2546 {
2547     int i;
2548 
2549     for (i = 0; i < pnv->num_chips; i++) {
2550         PnvChip *chip = pnv->chips[i];
2551         if (chip->chip_id == chip_id) {
2552             return chip;
2553         }
2554     }
2555     return NULL;
2556 }
2557 
2558 static void pnv_ics_resend(XICSFabric *xi)
2559 {
2560     PnvMachineState *pnv = PNV_MACHINE(xi);
2561     int i, j;
2562 
2563     for (i = 0; i < pnv->num_chips; i++) {
2564         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2565 
2566         ics_resend(&chip8->psi.ics);
2567 
2568         for (j = 0; j < chip8->num_phbs; j++) {
2569             PnvPHB *phb = chip8->phbs[j];
2570             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2571 
2572             ics_resend(&phb3->lsis);
2573             ics_resend(ICS(&phb3->msis));
2574         }
2575     }
2576 }
2577 
2578 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2579 {
2580     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2581 
2582     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2583 }
2584 
2585 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2586                                     void *opaque)
2587 {
2588     PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2589 }
2590 
2591 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2592 {
2593     PnvMachineState *pnv = PNV_MACHINE(obj);
2594     int i;
2595 
2596     for (i = 0; i < pnv->num_chips; i++) {
2597         PnvChip *chip = pnv->chips[i];
2598 
2599         /* First CPU presenters */
2600         pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2601 
2602         /* Then other devices, PHB, PSI, XIVE */
2603         PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2604     }
2605 }
2606 
2607 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2608                          uint8_t nvt_blk, uint32_t nvt_idx,
2609                          bool cam_ignore, uint8_t priority,
2610                          uint32_t logic_serv,
2611                          XiveTCTXMatch *match)
2612 {
2613     PnvMachineState *pnv = PNV_MACHINE(xfb);
2614     int total_count = 0;
2615     int i;
2616 
2617     for (i = 0; i < pnv->num_chips; i++) {
2618         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2619         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2620         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2621         int count;
2622 
2623         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2624                                priority, logic_serv, match);
2625 
2626         if (count < 0) {
2627             return count;
2628         }
2629 
2630         total_count += count;
2631     }
2632 
2633     return total_count;
2634 }
2635 
2636 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2637                                 uint8_t nvt_blk, uint32_t nvt_idx,
2638                                 bool cam_ignore, uint8_t priority,
2639                                 uint32_t logic_serv,
2640                                 XiveTCTXMatch *match)
2641 {
2642     PnvMachineState *pnv = PNV_MACHINE(xfb);
2643     int total_count = 0;
2644     int i;
2645 
2646     for (i = 0; i < pnv->num_chips; i++) {
2647         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2648         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2649         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2650         int count;
2651 
2652         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2653                                priority, logic_serv, match);
2654 
2655         if (count < 0) {
2656             return count;
2657         }
2658 
2659         total_count += count;
2660     }
2661 
2662     return total_count;
2663 }
2664 
2665 static bool pnv_machine_get_big_core(Object *obj, Error **errp)
2666 {
2667     PnvMachineState *pnv = PNV_MACHINE(obj);
2668     return pnv->big_core;
2669 }
2670 
2671 static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
2672 {
2673     PnvMachineState *pnv = PNV_MACHINE(obj);
2674     pnv->big_core = value;
2675 }
2676 
2677 static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
2678 {
2679     PnvMachineState *pnv = PNV_MACHINE(obj);
2680     return pnv->lpar_per_core;
2681 }
2682 
2683 static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
2684 {
2685     PnvMachineState *pnv = PNV_MACHINE(obj);
2686     pnv->lpar_per_core = value;
2687 }
2688 
2689 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2690 {
2691     PnvMachineState *pnv = PNV_MACHINE(obj);
2692 
2693     return !!pnv->fw_load_addr;
2694 }
2695 
2696 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2697 {
2698     PnvMachineState *pnv = PNV_MACHINE(obj);
2699 
2700     if (value) {
2701         pnv->fw_load_addr = 0x8000000;
2702     }
2703 }
2704 
2705 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2706 {
2707     MachineClass *mc = MACHINE_CLASS(oc);
2708     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2709     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2710     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2711 
2712     static GlobalProperty phb_compat[] = {
2713         { TYPE_PNV_PHB, "version", "3" },
2714         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2715     };
2716 
2717     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2718     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2719     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2720 
2721     xic->icp_get = pnv_icp_get;
2722     xic->ics_get = pnv_ics_get;
2723     xic->ics_resend = pnv_ics_resend;
2724 
2725     pmc->compat = compat;
2726     pmc->compat_size = sizeof(compat);
2727     pmc->max_smt_threads = 8;
2728     /* POWER8 is always lpar-per-core mode */
2729     pmc->has_lpar_per_thread = false;
2730 
2731     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2732 }
2733 
2734 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2735 {
2736     MachineClass *mc = MACHINE_CLASS(oc);
2737     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2738     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2739     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2740 
2741     static GlobalProperty phb_compat[] = {
2742         { TYPE_PNV_PHB, "version", "4" },
2743         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2744     };
2745 
2746     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2747     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2748     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2749 
2750     xfc->match_nvt = pnv_match_nvt;
2751 
2752     pmc->compat = compat;
2753     pmc->compat_size = sizeof(compat);
2754     pmc->max_smt_threads = 4;
2755     pmc->has_lpar_per_thread = true;
2756     pmc->dt_power_mgt = pnv_dt_power_mgt;
2757 
2758     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2759 
2760     object_class_property_add_bool(oc, "big-core",
2761                                    pnv_machine_get_big_core,
2762                                    pnv_machine_set_big_core);
2763     object_class_property_set_description(oc, "big-core",
2764                               "Use big-core (aka fused-core) mode");
2765 
2766     object_class_property_add_bool(oc, "lpar-per-core",
2767                                    pnv_machine_get_lpar_per_core,
2768                                    pnv_machine_set_lpar_per_core);
2769     object_class_property_set_description(oc, "lpar-per-core",
2770                               "Use 1 LPAR per core mode");
2771 }
2772 
2773 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2774 {
2775     MachineClass *mc = MACHINE_CLASS(oc);
2776     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2777     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2778     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2779 
2780     static GlobalProperty phb_compat[] = {
2781         { TYPE_PNV_PHB, "version", "5" },
2782         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2783     };
2784 
2785     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2786     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2787 
2788     mc->alias = "powernv";
2789 
2790     pmc->compat = compat;
2791     pmc->compat_size = sizeof(compat);
2792     pmc->max_smt_threads = 4;
2793     pmc->has_lpar_per_thread = true;
2794     pmc->quirk_tb_big_core = true;
2795     pmc->dt_power_mgt = pnv_dt_power_mgt;
2796 
2797     xfc->match_nvt = pnv10_xive_match_nvt;
2798 
2799     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2800 }
2801 
2802 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2803 {
2804     MachineClass *mc = MACHINE_CLASS(oc);
2805 
2806     pnv_machine_p10_common_class_init(oc, data);
2807     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2808 
2809     /*
2810      * This is the parent of POWER10 Rainier class, so properies go here
2811      * rather than common init (which would add them to both parent and
2812      * child which is invalid).
2813      */
2814     object_class_property_add_bool(oc, "big-core",
2815                                    pnv_machine_get_big_core,
2816                                    pnv_machine_set_big_core);
2817     object_class_property_set_description(oc, "big-core",
2818                               "Use big-core (aka fused-core) mode");
2819 
2820     object_class_property_add_bool(oc, "lpar-per-core",
2821                                    pnv_machine_get_lpar_per_core,
2822                                    pnv_machine_set_lpar_per_core);
2823     object_class_property_set_description(oc, "lpar-per-core",
2824                               "Use 1 LPAR per core mode");
2825 }
2826 
2827 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2828 {
2829     MachineClass *mc = MACHINE_CLASS(oc);
2830     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2831 
2832     pnv_machine_p10_common_class_init(oc, data);
2833     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2834     pmc->i2c_init = pnv_rainier_i2c_init;
2835 }
2836 
2837 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2838 {
2839     CPUPPCState *env = cpu_env(cs);
2840 
2841     cpu_synchronize_state(cs);
2842     ppc_cpu_do_system_reset(cs);
2843     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2844         /*
2845          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2846          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2847          * (PPC_BIT(43)).
2848          */
2849         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2850             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2851             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2852         }
2853     } else {
2854         /*
2855          * For non-powersave system resets, SRR1[42:45] are defined to be
2856          * implementation-dependent. The POWER9 User Manual specifies that
2857          * an external (SCOM driven, which may come from a BMC nmi command or
2858          * another CPU requesting a NMI IPI) system reset exception should be
2859          * 0b0010 (PPC_BIT(44)).
2860          */
2861         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2862     }
2863     if (arg.host_int == 1) {
2864         cpu_resume(cs);
2865     }
2866 }
2867 
2868 /*
2869  * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
2870  * paused.
2871  */
2872 void pnv_cpu_do_nmi_resume(CPUState *cs)
2873 {
2874     async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
2875 }
2876 
2877 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2878 {
2879     async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
2880 }
2881 
2882 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2883 {
2884     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2885     int i;
2886 
2887     for (i = 0; i < pnv->num_chips; i++) {
2888         pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2889     }
2890 }
2891 
2892 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2893 {
2894     MachineClass *mc = MACHINE_CLASS(oc);
2895     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2896     NMIClass *nc = NMI_CLASS(oc);
2897 
2898     mc->desc = "IBM PowerNV (Non-Virtualized)";
2899     mc->init = pnv_init;
2900     mc->reset = pnv_reset;
2901     mc->max_cpus = MAX_CPUS;
2902     /* Pnv provides a AHCI device for storage */
2903     mc->block_default_type = IF_IDE;
2904     mc->no_parallel = 1;
2905     mc->default_boot_order = NULL;
2906     /*
2907      * RAM defaults to less than 2048 for 32-bit hosts, and large
2908      * enough to fit the maximum initrd size at it's load address
2909      */
2910     mc->default_ram_size = 1 * GiB;
2911     mc->default_ram_id = "pnv.ram";
2912     ispc->print_info = pnv_pic_print_info;
2913     nc->nmi_monitor_handler = pnv_nmi;
2914 
2915     object_class_property_add_bool(oc, "hb-mode",
2916                                    pnv_machine_get_hb, pnv_machine_set_hb);
2917     object_class_property_set_description(oc, "hb-mode",
2918                               "Use a hostboot like boot loader");
2919 }
2920 
2921 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2922     {                                             \
2923         .name          = type,                    \
2924         .class_init    = class_initfn,            \
2925         .parent        = TYPE_PNV8_CHIP,          \
2926     }
2927 
2928 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2929     {                                             \
2930         .name          = type,                    \
2931         .class_init    = class_initfn,            \
2932         .parent        = TYPE_PNV9_CHIP,          \
2933     }
2934 
2935 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2936     {                                              \
2937         .name          = type,                     \
2938         .class_init    = class_initfn,             \
2939         .parent        = TYPE_PNV10_CHIP,          \
2940     }
2941 
2942 static const TypeInfo types[] = {
2943     {
2944         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2945         .parent        = MACHINE_TYPE_NAME("powernv10"),
2946         .class_init    = pnv_machine_p10_rainier_class_init,
2947     },
2948     {
2949         .name          = MACHINE_TYPE_NAME("powernv10"),
2950         .parent        = TYPE_PNV_MACHINE,
2951         .class_init    = pnv_machine_power10_class_init,
2952         .interfaces = (InterfaceInfo[]) {
2953             { TYPE_XIVE_FABRIC },
2954             { },
2955         },
2956     },
2957     {
2958         .name          = MACHINE_TYPE_NAME("powernv9"),
2959         .parent        = TYPE_PNV_MACHINE,
2960         .class_init    = pnv_machine_power9_class_init,
2961         .interfaces = (InterfaceInfo[]) {
2962             { TYPE_XIVE_FABRIC },
2963             { },
2964         },
2965     },
2966     {
2967         .name          = MACHINE_TYPE_NAME("powernv8"),
2968         .parent        = TYPE_PNV_MACHINE,
2969         .class_init    = pnv_machine_power8_class_init,
2970         .interfaces = (InterfaceInfo[]) {
2971             { TYPE_XICS_FABRIC },
2972             { },
2973         },
2974     },
2975     {
2976         .name          = TYPE_PNV_MACHINE,
2977         .parent        = TYPE_MACHINE,
2978         .abstract       = true,
2979         .instance_size = sizeof(PnvMachineState),
2980         .class_init    = pnv_machine_class_init,
2981         .class_size    = sizeof(PnvMachineClass),
2982         .interfaces = (InterfaceInfo[]) {
2983             { TYPE_INTERRUPT_STATS_PROVIDER },
2984             { TYPE_NMI },
2985             { },
2986         },
2987     },
2988     {
2989         .name          = TYPE_PNV_CHIP,
2990         .parent        = TYPE_SYS_BUS_DEVICE,
2991         .class_init    = pnv_chip_class_init,
2992         .instance_size = sizeof(PnvChip),
2993         .class_size    = sizeof(PnvChipClass),
2994         .abstract      = true,
2995     },
2996 
2997     /*
2998      * P10 chip and variants
2999      */
3000     {
3001         .name          = TYPE_PNV10_CHIP,
3002         .parent        = TYPE_PNV_CHIP,
3003         .instance_init = pnv_chip_power10_instance_init,
3004         .instance_size = sizeof(Pnv10Chip),
3005     },
3006     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
3007 
3008     /*
3009      * P9 chip and variants
3010      */
3011     {
3012         .name          = TYPE_PNV9_CHIP,
3013         .parent        = TYPE_PNV_CHIP,
3014         .instance_init = pnv_chip_power9_instance_init,
3015         .instance_size = sizeof(Pnv9Chip),
3016     },
3017     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
3018 
3019     /*
3020      * P8 chip and variants
3021      */
3022     {
3023         .name          = TYPE_PNV8_CHIP,
3024         .parent        = TYPE_PNV_CHIP,
3025         .instance_init = pnv_chip_power8_instance_init,
3026         .instance_size = sizeof(Pnv8Chip),
3027     },
3028     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
3029     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
3030     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
3031                           pnv_chip_power8nvl_class_init),
3032 };
3033 
3034 DEFINE_TYPES(types)
3035