1 /* 2 * QEMU PowerPC PowerNV machine model 3 * 4 * Copyright (c) 2016, IBM Corporation. 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/datadir.h" 23 #include "qemu/units.h" 24 #include "qemu/cutils.h" 25 #include "qapi/error.h" 26 #include "sysemu/qtest.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/numa.h" 29 #include "sysemu/reset.h" 30 #include "sysemu/runstate.h" 31 #include "sysemu/cpus.h" 32 #include "sysemu/device_tree.h" 33 #include "sysemu/hw_accel.h" 34 #include "target/ppc/cpu.h" 35 #include "hw/ppc/fdt.h" 36 #include "hw/ppc/ppc.h" 37 #include "hw/ppc/pnv.h" 38 #include "hw/ppc/pnv_core.h" 39 #include "hw/loader.h" 40 #include "hw/nmi.h" 41 #include "qapi/visitor.h" 42 #include "monitor/monitor.h" 43 #include "hw/intc/intc.h" 44 #include "hw/ipmi/ipmi.h" 45 #include "target/ppc/mmu-hash64.h" 46 #include "hw/pci/msi.h" 47 48 #include "hw/ppc/xics.h" 49 #include "hw/qdev-properties.h" 50 #include "hw/ppc/pnv_xscom.h" 51 #include "hw/ppc/pnv_pnor.h" 52 53 #include "hw/isa/isa.h" 54 #include "hw/char/serial.h" 55 #include "hw/rtc/mc146818rtc.h" 56 57 #include <libfdt.h> 58 59 #define FDT_MAX_SIZE (1 * MiB) 60 61 #define FW_FILE_NAME "skiboot.lid" 62 #define FW_LOAD_ADDR 0x0 63 #define FW_MAX_SIZE (16 * MiB) 64 65 #define KERNEL_LOAD_ADDR 0x20000000 66 #define KERNEL_MAX_SIZE (128 * MiB) 67 #define INITRD_LOAD_ADDR 0x28000000 68 #define INITRD_MAX_SIZE (128 * MiB) 69 70 static const char *pnv_chip_core_typename(const PnvChip *o) 71 { 72 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o))); 73 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX); 74 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type); 75 const char *core_type = object_class_get_name(object_class_by_name(s)); 76 g_free(s); 77 return core_type; 78 } 79 80 /* 81 * On Power Systems E880 (POWER8), the max cpus (threads) should be : 82 * 4 * 4 sockets * 12 cores * 8 threads = 1536 83 * Let's make it 2^11 84 */ 85 #define MAX_CPUS 2048 86 87 /* 88 * Memory nodes are created by hostboot, one for each range of memory 89 * that has a different "affinity". In practice, it means one range 90 * per chip. 91 */ 92 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size) 93 { 94 char *mem_name; 95 uint64_t mem_reg_property[2]; 96 int off; 97 98 mem_reg_property[0] = cpu_to_be64(start); 99 mem_reg_property[1] = cpu_to_be64(size); 100 101 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start); 102 off = fdt_add_subnode(fdt, 0, mem_name); 103 g_free(mem_name); 104 105 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 106 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 107 sizeof(mem_reg_property)))); 108 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id))); 109 } 110 111 static int get_cpus_node(void *fdt) 112 { 113 int cpus_offset = fdt_path_offset(fdt, "/cpus"); 114 115 if (cpus_offset < 0) { 116 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 117 if (cpus_offset) { 118 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 119 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 120 } 121 } 122 _FDT(cpus_offset); 123 return cpus_offset; 124 } 125 126 /* 127 * The PowerNV cores (and threads) need to use real HW ids and not an 128 * incremental index like it has been done on other platforms. This HW 129 * id is stored in the CPU PIR, it is used to create cpu nodes in the 130 * device tree, used in XSCOM to address cores and in interrupt 131 * servers. 132 */ 133 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt) 134 { 135 PowerPCCPU *cpu = pc->threads[0]; 136 CPUState *cs = CPU(cpu); 137 DeviceClass *dc = DEVICE_GET_CLASS(cs); 138 int smt_threads = CPU_CORE(pc)->nr_threads; 139 CPUPPCState *env = &cpu->env; 140 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 141 uint32_t servers_prop[smt_threads]; 142 int i; 143 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 144 0xffffffff, 0xffffffff}; 145 uint32_t tbfreq = PNV_TIMEBASE_FREQ; 146 uint32_t cpufreq = 1000000000; 147 uint32_t page_sizes_prop[64]; 148 size_t page_sizes_prop_size; 149 const uint8_t pa_features[] = { 24, 0, 150 0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0, 151 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 152 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 153 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 }; 154 int offset; 155 char *nodename; 156 int cpus_offset = get_cpus_node(fdt); 157 158 nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir); 159 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 160 _FDT(offset); 161 g_free(nodename); 162 163 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id))); 164 165 _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir))); 166 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir))); 167 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 168 169 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 170 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 171 env->dcache_line_size))); 172 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 173 env->dcache_line_size))); 174 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 175 env->icache_line_size))); 176 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 177 env->icache_line_size))); 178 179 if (pcc->l1_dcache_size) { 180 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 181 pcc->l1_dcache_size))); 182 } else { 183 warn_report("Unknown L1 dcache size for cpu"); 184 } 185 if (pcc->l1_icache_size) { 186 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 187 pcc->l1_icache_size))); 188 } else { 189 warn_report("Unknown L1 icache size for cpu"); 190 } 191 192 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 193 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 194 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", 195 cpu->hash64_opts->slb_size))); 196 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 197 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 198 199 if (ppc_has_spr(cpu, SPR_PURR)) { 200 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 201 } 202 203 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 204 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 205 segs, sizeof(segs)))); 206 } 207 208 /* 209 * Advertise VMX/VSX (vector extensions) if available 210 * 0 / no property == no vector extensions 211 * 1 == VMX / Altivec available 212 * 2 == VSX available 213 */ 214 if (env->insns_flags & PPC_ALTIVEC) { 215 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; 216 217 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx))); 218 } 219 220 /* 221 * Advertise DFP (Decimal Floating Point) if available 222 * 0 / no property == no DFP 223 * 1 == DFP available 224 */ 225 if (env->insns_flags2 & PPC2_DFP) { 226 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 227 } 228 229 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 230 sizeof(page_sizes_prop)); 231 if (page_sizes_prop_size) { 232 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 233 page_sizes_prop, page_sizes_prop_size))); 234 } 235 236 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", 237 pa_features, sizeof(pa_features)))); 238 239 /* Build interrupt servers properties */ 240 for (i = 0; i < smt_threads; i++) { 241 servers_prop[i] = cpu_to_be32(pc->pir + i); 242 } 243 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 244 servers_prop, sizeof(servers_prop)))); 245 } 246 247 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir, 248 uint32_t nr_threads) 249 { 250 uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12); 251 char *name; 252 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp"; 253 uint32_t irange[2], i, rsize; 254 uint64_t *reg; 255 int offset; 256 257 irange[0] = cpu_to_be32(pir); 258 irange[1] = cpu_to_be32(nr_threads); 259 260 rsize = sizeof(uint64_t) * 2 * nr_threads; 261 reg = g_malloc(rsize); 262 for (i = 0; i < nr_threads; i++) { 263 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000)); 264 reg[i * 2 + 1] = cpu_to_be64(0x1000); 265 } 266 267 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr); 268 offset = fdt_add_subnode(fdt, 0, name); 269 _FDT(offset); 270 g_free(name); 271 272 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat)))); 273 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize))); 274 _FDT((fdt_setprop_string(fdt, offset, "device_type", 275 "PowerPC-External-Interrupt-Presentation"))); 276 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0))); 277 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges", 278 irange, sizeof(irange)))); 279 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1))); 280 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0))); 281 g_free(reg); 282 } 283 284 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt) 285 { 286 static const char compat[] = "ibm,power8-xscom\0ibm,xscom"; 287 int i; 288 289 pnv_dt_xscom(chip, fdt, 0, 290 cpu_to_be64(PNV_XSCOM_BASE(chip)), 291 cpu_to_be64(PNV_XSCOM_SIZE), 292 compat, sizeof(compat)); 293 294 for (i = 0; i < chip->nr_cores; i++) { 295 PnvCore *pnv_core = chip->cores[i]; 296 297 pnv_dt_core(chip, pnv_core, fdt); 298 299 /* Interrupt Control Presenters (ICP). One per core. */ 300 pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads); 301 } 302 303 if (chip->ram_size) { 304 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 305 } 306 } 307 308 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt) 309 { 310 static const char compat[] = "ibm,power9-xscom\0ibm,xscom"; 311 int i; 312 313 pnv_dt_xscom(chip, fdt, 0, 314 cpu_to_be64(PNV9_XSCOM_BASE(chip)), 315 cpu_to_be64(PNV9_XSCOM_SIZE), 316 compat, sizeof(compat)); 317 318 for (i = 0; i < chip->nr_cores; i++) { 319 PnvCore *pnv_core = chip->cores[i]; 320 321 pnv_dt_core(chip, pnv_core, fdt); 322 } 323 324 if (chip->ram_size) { 325 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 326 } 327 328 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE); 329 } 330 331 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt) 332 { 333 static const char compat[] = "ibm,power10-xscom\0ibm,xscom"; 334 int i; 335 336 pnv_dt_xscom(chip, fdt, 0, 337 cpu_to_be64(PNV10_XSCOM_BASE(chip)), 338 cpu_to_be64(PNV10_XSCOM_SIZE), 339 compat, sizeof(compat)); 340 341 for (i = 0; i < chip->nr_cores; i++) { 342 PnvCore *pnv_core = chip->cores[i]; 343 344 pnv_dt_core(chip, pnv_core, fdt); 345 } 346 347 if (chip->ram_size) { 348 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size); 349 } 350 351 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE); 352 } 353 354 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off) 355 { 356 uint32_t io_base = d->ioport_id; 357 uint32_t io_regs[] = { 358 cpu_to_be32(1), 359 cpu_to_be32(io_base), 360 cpu_to_be32(2) 361 }; 362 char *name; 363 int node; 364 365 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 366 node = fdt_add_subnode(fdt, lpc_off, name); 367 _FDT(node); 368 g_free(name); 369 370 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 371 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00"))); 372 } 373 374 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off) 375 { 376 const char compatible[] = "ns16550\0pnpPNP,501"; 377 uint32_t io_base = d->ioport_id; 378 uint32_t io_regs[] = { 379 cpu_to_be32(1), 380 cpu_to_be32(io_base), 381 cpu_to_be32(8) 382 }; 383 char *name; 384 int node; 385 386 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 387 node = fdt_add_subnode(fdt, lpc_off, name); 388 _FDT(node); 389 g_free(name); 390 391 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 392 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 393 sizeof(compatible)))); 394 395 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200))); 396 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200))); 397 _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0]))); 398 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 399 fdt_get_phandle(fdt, lpc_off)))); 400 401 /* This is needed by Linux */ 402 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial"))); 403 } 404 405 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off) 406 { 407 const char compatible[] = "bt\0ipmi-bt"; 408 uint32_t io_base; 409 uint32_t io_regs[] = { 410 cpu_to_be32(1), 411 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */ 412 cpu_to_be32(3) 413 }; 414 uint32_t irq; 415 char *name; 416 int node; 417 418 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal); 419 io_regs[1] = cpu_to_be32(io_base); 420 421 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal); 422 423 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base); 424 node = fdt_add_subnode(fdt, lpc_off, name); 425 _FDT(node); 426 g_free(name); 427 428 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs)))); 429 _FDT((fdt_setprop(fdt, node, "compatible", compatible, 430 sizeof(compatible)))); 431 432 /* Mark it as reserved to avoid Linux trying to claim it */ 433 _FDT((fdt_setprop_string(fdt, node, "status", "reserved"))); 434 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq))); 435 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent", 436 fdt_get_phandle(fdt, lpc_off)))); 437 } 438 439 typedef struct ForeachPopulateArgs { 440 void *fdt; 441 int offset; 442 } ForeachPopulateArgs; 443 444 static int pnv_dt_isa_device(DeviceState *dev, void *opaque) 445 { 446 ForeachPopulateArgs *args = opaque; 447 ISADevice *d = ISA_DEVICE(dev); 448 449 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) { 450 pnv_dt_rtc(d, args->fdt, args->offset); 451 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) { 452 pnv_dt_serial(d, args->fdt, args->offset); 453 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) { 454 pnv_dt_ipmi_bt(d, args->fdt, args->offset); 455 } else { 456 error_report("unknown isa device %s@i%x", qdev_fw_name(dev), 457 d->ioport_id); 458 } 459 460 return 0; 461 } 462 463 /* 464 * The default LPC bus of a multichip system is on chip 0. It's 465 * recognized by the firmware (skiboot) using a "primary" property. 466 */ 467 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt) 468 { 469 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename); 470 ForeachPopulateArgs args = { 471 .fdt = fdt, 472 .offset = isa_offset, 473 }; 474 uint32_t phandle; 475 476 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0))); 477 478 phandle = qemu_fdt_alloc_phandle(fdt); 479 assert(phandle > 0); 480 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle))); 481 482 /* 483 * ISA devices are not necessarily parented to the ISA bus so we 484 * can not use object_child_foreach() 485 */ 486 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL, 487 &args); 488 } 489 490 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt) 491 { 492 int off; 493 494 off = fdt_add_subnode(fdt, 0, "ibm,opal"); 495 off = fdt_add_subnode(fdt, off, "power-mgt"); 496 497 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000)); 498 } 499 500 static void *pnv_dt_create(MachineState *machine) 501 { 502 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine); 503 PnvMachineState *pnv = PNV_MACHINE(machine); 504 void *fdt; 505 char *buf; 506 int off; 507 int i; 508 509 fdt = g_malloc0(FDT_MAX_SIZE); 510 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 511 512 /* /qemu node */ 513 _FDT((fdt_add_subnode(fdt, 0, "qemu"))); 514 515 /* Root node */ 516 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2))); 517 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2))); 518 _FDT((fdt_setprop_string(fdt, 0, "model", 519 "IBM PowerNV (emulated by qemu)"))); 520 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size))); 521 522 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 523 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf))); 524 if (qemu_uuid_set) { 525 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf))); 526 } 527 g_free(buf); 528 529 off = fdt_add_subnode(fdt, 0, "chosen"); 530 if (machine->kernel_cmdline) { 531 _FDT((fdt_setprop_string(fdt, off, "bootargs", 532 machine->kernel_cmdline))); 533 } 534 535 if (pnv->initrd_size) { 536 uint32_t start_prop = cpu_to_be32(pnv->initrd_base); 537 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size); 538 539 _FDT((fdt_setprop(fdt, off, "linux,initrd-start", 540 &start_prop, sizeof(start_prop)))); 541 _FDT((fdt_setprop(fdt, off, "linux,initrd-end", 542 &end_prop, sizeof(end_prop)))); 543 } 544 545 /* Populate device tree for each chip */ 546 for (i = 0; i < pnv->num_chips; i++) { 547 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt); 548 } 549 550 /* Populate ISA devices on chip 0 */ 551 pnv_dt_isa(pnv, fdt); 552 553 if (pnv->bmc) { 554 pnv_dt_bmc_sensors(pnv->bmc, fdt); 555 } 556 557 /* Create an extra node for power management on machines that support it */ 558 if (pmc->dt_power_mgt) { 559 pmc->dt_power_mgt(pnv, fdt); 560 } 561 562 return fdt; 563 } 564 565 static void pnv_powerdown_notify(Notifier *n, void *opaque) 566 { 567 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier); 568 569 if (pnv->bmc) { 570 pnv_bmc_powerdown(pnv->bmc); 571 } 572 } 573 574 static void pnv_reset(MachineState *machine) 575 { 576 PnvMachineState *pnv = PNV_MACHINE(machine); 577 IPMIBmc *bmc; 578 void *fdt; 579 580 qemu_devices_reset(); 581 582 /* 583 * The machine should provide by default an internal BMC simulator. 584 * If not, try to use the BMC device that was provided on the command 585 * line. 586 */ 587 bmc = pnv_bmc_find(&error_fatal); 588 if (!pnv->bmc) { 589 if (!bmc) { 590 if (!qtest_enabled()) { 591 warn_report("machine has no BMC device. Use '-device " 592 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' " 593 "to define one"); 594 } 595 } else { 596 pnv_bmc_set_pnor(bmc, pnv->pnor); 597 pnv->bmc = bmc; 598 } 599 } 600 601 fdt = pnv_dt_create(machine); 602 603 /* Pack resulting tree */ 604 _FDT((fdt_pack(fdt))); 605 606 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 607 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt)); 608 609 g_free(fdt); 610 } 611 612 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp) 613 { 614 Pnv8Chip *chip8 = PNV8_CHIP(chip); 615 return pnv_lpc_isa_create(&chip8->lpc, true, errp); 616 } 617 618 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp) 619 { 620 Pnv8Chip *chip8 = PNV8_CHIP(chip); 621 return pnv_lpc_isa_create(&chip8->lpc, false, errp); 622 } 623 624 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp) 625 { 626 Pnv9Chip *chip9 = PNV9_CHIP(chip); 627 return pnv_lpc_isa_create(&chip9->lpc, false, errp); 628 } 629 630 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp) 631 { 632 Pnv10Chip *chip10 = PNV10_CHIP(chip); 633 return pnv_lpc_isa_create(&chip10->lpc, false, errp); 634 } 635 636 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp) 637 { 638 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp); 639 } 640 641 static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque) 642 { 643 Monitor *mon = opaque; 644 PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3); 645 646 if (phb3) { 647 pnv_phb3_msi_pic_print_info(&phb3->msis, mon); 648 ics_pic_print_info(&phb3->lsis, mon); 649 } 650 return 0; 651 } 652 653 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon) 654 { 655 Pnv8Chip *chip8 = PNV8_CHIP(chip); 656 657 ics_pic_print_info(&chip8->psi.ics, mon); 658 object_child_foreach(OBJECT(chip), 659 pnv_chip_power8_pic_print_info_child, mon); 660 } 661 662 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque) 663 { 664 Monitor *mon = opaque; 665 PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4); 666 667 if (phb4) { 668 pnv_phb4_pic_print_info(phb4, mon); 669 } 670 return 0; 671 } 672 673 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon) 674 { 675 Pnv9Chip *chip9 = PNV9_CHIP(chip); 676 677 pnv_xive_pic_print_info(&chip9->xive, mon); 678 pnv_psi_pic_print_info(&chip9->psi, mon); 679 680 object_child_foreach_recursive(OBJECT(chip), 681 pnv_chip_power9_pic_print_info_child, mon); 682 } 683 684 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip, 685 uint32_t core_id) 686 { 687 return PNV_XSCOM_EX_BASE(core_id); 688 } 689 690 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip, 691 uint32_t core_id) 692 { 693 return PNV9_XSCOM_EC_BASE(core_id); 694 } 695 696 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip, 697 uint32_t core_id) 698 { 699 return PNV10_XSCOM_EC_BASE(core_id); 700 } 701 702 static bool pnv_match_cpu(const char *default_type, const char *cpu_type) 703 { 704 PowerPCCPUClass *ppc_default = 705 POWERPC_CPU_CLASS(object_class_by_name(default_type)); 706 PowerPCCPUClass *ppc = 707 POWERPC_CPU_CLASS(object_class_by_name(cpu_type)); 708 709 return ppc_default->pvr_match(ppc_default, ppc->pvr); 710 } 711 712 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq) 713 { 714 ISADevice *dev = isa_new("isa-ipmi-bt"); 715 716 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal); 717 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal); 718 isa_realize_and_unref(dev, bus, &error_fatal); 719 } 720 721 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon) 722 { 723 Pnv10Chip *chip10 = PNV10_CHIP(chip); 724 725 pnv_psi_pic_print_info(&chip10->psi, mon); 726 } 727 728 /* Always give the first 1GB to chip 0 else we won't boot */ 729 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id) 730 { 731 MachineState *machine = MACHINE(pnv); 732 uint64_t ram_per_chip; 733 734 assert(machine->ram_size >= 1 * GiB); 735 736 ram_per_chip = machine->ram_size / pnv->num_chips; 737 if (ram_per_chip >= 1 * GiB) { 738 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 739 } 740 741 assert(pnv->num_chips > 1); 742 743 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1); 744 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB); 745 } 746 747 static void pnv_init(MachineState *machine) 748 { 749 const char *bios_name = machine->firmware ?: FW_FILE_NAME; 750 PnvMachineState *pnv = PNV_MACHINE(machine); 751 MachineClass *mc = MACHINE_GET_CLASS(machine); 752 char *fw_filename; 753 long fw_size; 754 uint64_t chip_ram_start = 0; 755 int i; 756 char *chip_typename; 757 DriveInfo *pnor = drive_get(IF_MTD, 0, 0); 758 DeviceState *dev; 759 760 if (kvm_enabled()) { 761 error_report("The powernv machine does not work with KVM acceleration"); 762 exit(EXIT_FAILURE); 763 } 764 765 /* allocate RAM */ 766 if (machine->ram_size < mc->default_ram_size) { 767 char *sz = size_to_str(mc->default_ram_size); 768 error_report("Invalid RAM size, should be bigger than %s", sz); 769 g_free(sz); 770 exit(EXIT_FAILURE); 771 } 772 memory_region_add_subregion(get_system_memory(), 0, machine->ram); 773 774 /* 775 * Create our simple PNOR device 776 */ 777 dev = qdev_new(TYPE_PNV_PNOR); 778 if (pnor) { 779 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor)); 780 } 781 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 782 pnv->pnor = PNV_PNOR(dev); 783 784 /* load skiboot firmware */ 785 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 786 if (!fw_filename) { 787 error_report("Could not find OPAL firmware '%s'", bios_name); 788 exit(1); 789 } 790 791 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE); 792 if (fw_size < 0) { 793 error_report("Could not load OPAL firmware '%s'", fw_filename); 794 exit(1); 795 } 796 g_free(fw_filename); 797 798 /* load kernel */ 799 if (machine->kernel_filename) { 800 long kernel_size; 801 802 kernel_size = load_image_targphys(machine->kernel_filename, 803 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE); 804 if (kernel_size < 0) { 805 error_report("Could not load kernel '%s'", 806 machine->kernel_filename); 807 exit(1); 808 } 809 } 810 811 /* load initrd */ 812 if (machine->initrd_filename) { 813 pnv->initrd_base = INITRD_LOAD_ADDR; 814 pnv->initrd_size = load_image_targphys(machine->initrd_filename, 815 pnv->initrd_base, INITRD_MAX_SIZE); 816 if (pnv->initrd_size < 0) { 817 error_report("Could not load initial ram disk '%s'", 818 machine->initrd_filename); 819 exit(1); 820 } 821 } 822 823 /* MSIs are supported on this platform */ 824 msi_nonbroken = true; 825 826 /* 827 * Check compatibility of the specified CPU with the machine 828 * default. 829 */ 830 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) { 831 error_report("invalid CPU model '%s' for %s machine", 832 machine->cpu_type, mc->name); 833 exit(1); 834 } 835 836 /* Create the processor chips */ 837 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 838 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"), 839 i, machine->cpu_type); 840 if (!object_class_by_name(chip_typename)) { 841 error_report("invalid chip model '%.*s' for %s machine", 842 i, machine->cpu_type, mc->name); 843 exit(1); 844 } 845 846 pnv->num_chips = 847 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads); 848 /* 849 * TODO: should we decide on how many chips we can create based 850 * on #cores and Venice vs. Murano vs. Naples chip type etc..., 851 */ 852 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) { 853 error_report("invalid number of chips: '%d'", pnv->num_chips); 854 error_printf( 855 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n"); 856 exit(1); 857 } 858 859 pnv->chips = g_new0(PnvChip *, pnv->num_chips); 860 for (i = 0; i < pnv->num_chips; i++) { 861 char chip_name[32]; 862 Object *chip = OBJECT(qdev_new(chip_typename)); 863 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i); 864 865 pnv->chips[i] = PNV_CHIP(chip); 866 867 /* Distribute RAM among the chips */ 868 object_property_set_int(chip, "ram-start", chip_ram_start, 869 &error_fatal); 870 object_property_set_int(chip, "ram-size", chip_ram_size, 871 &error_fatal); 872 chip_ram_start += chip_ram_size; 873 874 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i); 875 object_property_add_child(OBJECT(pnv), chip_name, chip); 876 object_property_set_int(chip, "chip-id", i, &error_fatal); 877 object_property_set_int(chip, "nr-cores", machine->smp.cores, 878 &error_fatal); 879 object_property_set_int(chip, "nr-threads", machine->smp.threads, 880 &error_fatal); 881 /* 882 * The POWER8 machine use the XICS interrupt interface. 883 * Propagate the XICS fabric to the chip and its controllers. 884 */ 885 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) { 886 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort); 887 } 888 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) { 889 object_property_set_link(chip, "xive-fabric", OBJECT(pnv), 890 &error_abort); 891 } 892 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal); 893 } 894 g_free(chip_typename); 895 896 /* Instantiate ISA bus on chip 0 */ 897 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal); 898 899 /* Create serial port */ 900 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS); 901 902 /* Create an RTC ISA device too */ 903 mc146818_rtc_init(pnv->isa_bus, 2000, NULL); 904 905 /* 906 * Create the machine BMC simulator and the IPMI BT device for 907 * communication with the BMC 908 */ 909 if (defaults_enabled()) { 910 pnv->bmc = pnv_bmc_create(pnv->pnor); 911 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10); 912 } 913 914 /* 915 * The PNOR is mapped on the LPC FW address space by the BMC. 916 * Since we can not reach the remote BMC machine with LPC memops, 917 * map it always for now. 918 */ 919 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET, 920 &pnv->pnor->mmio); 921 922 /* 923 * OpenPOWER systems use a IPMI SEL Event message to notify the 924 * host to powerdown 925 */ 926 pnv->powerdown_notifier.notify = pnv_powerdown_notify; 927 qemu_register_powerdown_notifier(&pnv->powerdown_notifier); 928 } 929 930 /* 931 * 0:21 Reserved - Read as zeros 932 * 22:24 Chip ID 933 * 25:28 Core number 934 * 29:31 Thread ID 935 */ 936 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id) 937 { 938 return (chip->chip_id << 7) | (core_id << 3); 939 } 940 941 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu, 942 Error **errp) 943 { 944 Pnv8Chip *chip8 = PNV8_CHIP(chip); 945 Error *local_err = NULL; 946 Object *obj; 947 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 948 949 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err); 950 if (local_err) { 951 error_propagate(errp, local_err); 952 return; 953 } 954 955 pnv_cpu->intc = obj; 956 } 957 958 959 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 960 { 961 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 962 963 icp_reset(ICP(pnv_cpu->intc)); 964 } 965 966 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 967 { 968 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 969 970 icp_destroy(ICP(pnv_cpu->intc)); 971 pnv_cpu->intc = NULL; 972 } 973 974 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 975 Monitor *mon) 976 { 977 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon); 978 } 979 980 /* 981 * 0:48 Reserved - Read as zeroes 982 * 49:52 Node ID 983 * 53:55 Chip ID 984 * 56 Reserved - Read as zero 985 * 57:61 Core number 986 * 62:63 Thread ID 987 * 988 * We only care about the lower bits. uint32_t is fine for the moment. 989 */ 990 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id) 991 { 992 return (chip->chip_id << 8) | (core_id << 2); 993 } 994 995 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id) 996 { 997 return (chip->chip_id << 8) | (core_id << 2); 998 } 999 1000 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1001 Error **errp) 1002 { 1003 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1004 Error *local_err = NULL; 1005 Object *obj; 1006 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1007 1008 /* 1009 * The core creates its interrupt presenter but the XIVE interrupt 1010 * controller object is initialized afterwards. Hopefully, it's 1011 * only used at runtime. 1012 */ 1013 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive), 1014 &local_err); 1015 if (local_err) { 1016 error_propagate(errp, local_err); 1017 return; 1018 } 1019 1020 pnv_cpu->intc = obj; 1021 } 1022 1023 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1024 { 1025 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1026 1027 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc)); 1028 } 1029 1030 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1031 { 1032 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1033 1034 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc)); 1035 pnv_cpu->intc = NULL; 1036 } 1037 1038 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1039 Monitor *mon) 1040 { 1041 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon); 1042 } 1043 1044 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu, 1045 Error **errp) 1046 { 1047 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1048 1049 /* Will be defined when the interrupt controller is */ 1050 pnv_cpu->intc = NULL; 1051 } 1052 1053 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu) 1054 { 1055 ; 1056 } 1057 1058 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu) 1059 { 1060 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu); 1061 1062 pnv_cpu->intc = NULL; 1063 } 1064 1065 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu, 1066 Monitor *mon) 1067 { 1068 } 1069 1070 /* 1071 * Allowed core identifiers on a POWER8 Processor Chip : 1072 * 1073 * <EX0 reserved> 1074 * EX1 - Venice only 1075 * EX2 - Venice only 1076 * EX3 - Venice only 1077 * EX4 1078 * EX5 1079 * EX6 1080 * <EX7,8 reserved> <reserved> 1081 * EX9 - Venice only 1082 * EX10 - Venice only 1083 * EX11 - Venice only 1084 * EX12 1085 * EX13 1086 * EX14 1087 * <EX15 reserved> 1088 */ 1089 #define POWER8E_CORE_MASK (0x7070ull) 1090 #define POWER8_CORE_MASK (0x7e7eull) 1091 1092 /* 1093 * POWER9 has 24 cores, ids starting at 0x0 1094 */ 1095 #define POWER9_CORE_MASK (0xffffffffffffffull) 1096 1097 1098 #define POWER10_CORE_MASK (0xffffffffffffffull) 1099 1100 static void pnv_chip_power8_instance_init(Object *obj) 1101 { 1102 PnvChip *chip = PNV_CHIP(obj); 1103 Pnv8Chip *chip8 = PNV8_CHIP(obj); 1104 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1105 int i; 1106 1107 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC, 1108 (Object **)&chip8->xics, 1109 object_property_allow_set_link, 1110 OBJ_PROP_LINK_STRONG); 1111 1112 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI); 1113 1114 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC); 1115 1116 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC); 1117 1118 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER); 1119 1120 for (i = 0; i < pcc->num_phbs; i++) { 1121 object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3); 1122 } 1123 1124 /* 1125 * Number of PHBs is the chip default 1126 */ 1127 chip->num_phbs = pcc->num_phbs; 1128 } 1129 1130 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp) 1131 { 1132 PnvChip *chip = PNV_CHIP(chip8); 1133 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1134 int i, j; 1135 char *name; 1136 1137 name = g_strdup_printf("icp-%x", chip->chip_id); 1138 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE); 1139 sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio); 1140 g_free(name); 1141 1142 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip)); 1143 1144 /* Map the ICP registers for each thread */ 1145 for (i = 0; i < chip->nr_cores; i++) { 1146 PnvCore *pnv_core = chip->cores[i]; 1147 int core_hwid = CPU_CORE(pnv_core)->core_id; 1148 1149 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) { 1150 uint32_t pir = pcc->core_pir(chip, core_hwid) + j; 1151 PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir)); 1152 1153 memory_region_add_subregion(&chip8->icp_mmio, pir << 12, 1154 &icp->mmio); 1155 } 1156 } 1157 } 1158 1159 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp) 1160 { 1161 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1162 PnvChip *chip = PNV_CHIP(dev); 1163 Pnv8Chip *chip8 = PNV8_CHIP(dev); 1164 Pnv8Psi *psi8 = &chip8->psi; 1165 Error *local_err = NULL; 1166 int i; 1167 1168 assert(chip8->xics); 1169 1170 /* XSCOM bridge is first */ 1171 pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err); 1172 if (local_err) { 1173 error_propagate(errp, local_err); 1174 return; 1175 } 1176 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip)); 1177 1178 pcc->parent_realize(dev, &local_err); 1179 if (local_err) { 1180 error_propagate(errp, local_err); 1181 return; 1182 } 1183 1184 /* Processor Service Interface (PSI) Host Bridge */ 1185 object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip), 1186 &error_fatal); 1187 object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS, 1188 OBJECT(chip8->xics), &error_abort); 1189 if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) { 1190 return; 1191 } 1192 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE, 1193 &PNV_PSI(psi8)->xscom_regs); 1194 1195 /* Create LPC controller */ 1196 object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi), 1197 &error_abort); 1198 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal); 1199 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs); 1200 1201 chip->fw_mr = &chip8->lpc.isa_fw; 1202 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x", 1203 (uint64_t) PNV_XSCOM_BASE(chip), 1204 PNV_XSCOM_LPC_BASE); 1205 1206 /* 1207 * Interrupt Management Area. This is the memory region holding 1208 * all the Interrupt Control Presenter (ICP) registers 1209 */ 1210 pnv_chip_icp_realize(chip8, &local_err); 1211 if (local_err) { 1212 error_propagate(errp, local_err); 1213 return; 1214 } 1215 1216 /* Create the simplified OCC model */ 1217 object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi), 1218 &error_abort); 1219 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) { 1220 return; 1221 } 1222 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs); 1223 1224 /* OCC SRAM model */ 1225 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip), 1226 &chip8->occ.sram_regs); 1227 1228 /* HOMER */ 1229 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip), 1230 &error_abort); 1231 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) { 1232 return; 1233 } 1234 /* Homer Xscom region */ 1235 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs); 1236 1237 /* Homer mmio region */ 1238 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip), 1239 &chip8->homer.regs); 1240 1241 /* PHB3 controllers */ 1242 for (i = 0; i < chip->num_phbs; i++) { 1243 PnvPHB3 *phb = &chip8->phbs[i]; 1244 1245 object_property_set_int(OBJECT(phb), "index", i, &error_fatal); 1246 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id, 1247 &error_fatal); 1248 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip), 1249 &error_fatal); 1250 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) { 1251 return; 1252 } 1253 } 1254 } 1255 1256 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr) 1257 { 1258 addr &= (PNV_XSCOM_SIZE - 1); 1259 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf); 1260 } 1261 1262 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data) 1263 { 1264 DeviceClass *dc = DEVICE_CLASS(klass); 1265 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1266 1267 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */ 1268 k->cores_mask = POWER8E_CORE_MASK; 1269 k->num_phbs = 3; 1270 k->core_pir = pnv_chip_core_pir_p8; 1271 k->intc_create = pnv_chip_power8_intc_create; 1272 k->intc_reset = pnv_chip_power8_intc_reset; 1273 k->intc_destroy = pnv_chip_power8_intc_destroy; 1274 k->intc_print_info = pnv_chip_power8_intc_print_info; 1275 k->isa_create = pnv_chip_power8_isa_create; 1276 k->dt_populate = pnv_chip_power8_dt_populate; 1277 k->pic_print_info = pnv_chip_power8_pic_print_info; 1278 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1279 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1280 dc->desc = "PowerNV Chip POWER8E"; 1281 1282 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1283 &k->parent_realize); 1284 } 1285 1286 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data) 1287 { 1288 DeviceClass *dc = DEVICE_CLASS(klass); 1289 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1290 1291 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */ 1292 k->cores_mask = POWER8_CORE_MASK; 1293 k->num_phbs = 3; 1294 k->core_pir = pnv_chip_core_pir_p8; 1295 k->intc_create = pnv_chip_power8_intc_create; 1296 k->intc_reset = pnv_chip_power8_intc_reset; 1297 k->intc_destroy = pnv_chip_power8_intc_destroy; 1298 k->intc_print_info = pnv_chip_power8_intc_print_info; 1299 k->isa_create = pnv_chip_power8_isa_create; 1300 k->dt_populate = pnv_chip_power8_dt_populate; 1301 k->pic_print_info = pnv_chip_power8_pic_print_info; 1302 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1303 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1304 dc->desc = "PowerNV Chip POWER8"; 1305 1306 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1307 &k->parent_realize); 1308 } 1309 1310 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data) 1311 { 1312 DeviceClass *dc = DEVICE_CLASS(klass); 1313 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1314 1315 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */ 1316 k->cores_mask = POWER8_CORE_MASK; 1317 k->num_phbs = 4; 1318 k->core_pir = pnv_chip_core_pir_p8; 1319 k->intc_create = pnv_chip_power8_intc_create; 1320 k->intc_reset = pnv_chip_power8_intc_reset; 1321 k->intc_destroy = pnv_chip_power8_intc_destroy; 1322 k->intc_print_info = pnv_chip_power8_intc_print_info; 1323 k->isa_create = pnv_chip_power8nvl_isa_create; 1324 k->dt_populate = pnv_chip_power8_dt_populate; 1325 k->pic_print_info = pnv_chip_power8_pic_print_info; 1326 k->xscom_core_base = pnv_chip_power8_xscom_core_base; 1327 k->xscom_pcba = pnv_chip_power8_xscom_pcba; 1328 dc->desc = "PowerNV Chip POWER8NVL"; 1329 1330 device_class_set_parent_realize(dc, pnv_chip_power8_realize, 1331 &k->parent_realize); 1332 } 1333 1334 static void pnv_chip_power9_instance_init(Object *obj) 1335 { 1336 PnvChip *chip = PNV_CHIP(obj); 1337 Pnv9Chip *chip9 = PNV9_CHIP(obj); 1338 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj); 1339 int i; 1340 1341 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE); 1342 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive), 1343 "xive-fabric"); 1344 1345 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI); 1346 1347 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC); 1348 1349 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC); 1350 1351 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER); 1352 1353 /* Number of PECs is the chip default */ 1354 chip->num_pecs = pcc->num_pecs; 1355 1356 for (i = 0; i < chip->num_pecs; i++) { 1357 object_initialize_child(obj, "pec[*]", &chip9->pecs[i], 1358 TYPE_PNV_PHB4_PEC); 1359 } 1360 } 1361 1362 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp) 1363 { 1364 PnvChip *chip = PNV_CHIP(chip9); 1365 int i; 1366 1367 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4); 1368 chip9->quads = g_new0(PnvQuad, chip9->nr_quads); 1369 1370 for (i = 0; i < chip9->nr_quads; i++) { 1371 char eq_name[32]; 1372 PnvQuad *eq = &chip9->quads[i]; 1373 PnvCore *pnv_core = chip->cores[i * 4]; 1374 int core_id = CPU_CORE(pnv_core)->core_id; 1375 1376 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id); 1377 object_initialize_child_with_props(OBJECT(chip), eq_name, eq, 1378 sizeof(*eq), TYPE_PNV_QUAD, 1379 &error_fatal, NULL); 1380 1381 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal); 1382 qdev_realize(DEVICE(eq), NULL, &error_fatal); 1383 1384 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id), 1385 &eq->xscom_regs); 1386 } 1387 } 1388 1389 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp) 1390 { 1391 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1392 int i; 1393 1394 for (i = 0; i < chip->num_pecs; i++) { 1395 PnvPhb4PecState *pec = &chip9->pecs[i]; 1396 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1397 uint32_t pec_nest_base; 1398 uint32_t pec_pci_base; 1399 1400 object_property_set_int(OBJECT(pec), "index", i, &error_fatal); 1401 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id, 1402 &error_fatal); 1403 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip), 1404 &error_fatal); 1405 if (!qdev_realize(DEVICE(pec), NULL, errp)) { 1406 return; 1407 } 1408 1409 pec_nest_base = pecc->xscom_nest_base(pec); 1410 pec_pci_base = pecc->xscom_pci_base(pec); 1411 1412 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr); 1413 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr); 1414 } 1415 } 1416 1417 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp) 1418 { 1419 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1420 Pnv9Chip *chip9 = PNV9_CHIP(dev); 1421 PnvChip *chip = PNV_CHIP(dev); 1422 Pnv9Psi *psi9 = &chip9->psi; 1423 Error *local_err = NULL; 1424 1425 /* XSCOM bridge is first */ 1426 pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err); 1427 if (local_err) { 1428 error_propagate(errp, local_err); 1429 return; 1430 } 1431 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip)); 1432 1433 pcc->parent_realize(dev, &local_err); 1434 if (local_err) { 1435 error_propagate(errp, local_err); 1436 return; 1437 } 1438 1439 pnv_chip_quad_realize(chip9, &local_err); 1440 if (local_err) { 1441 error_propagate(errp, local_err); 1442 return; 1443 } 1444 1445 /* XIVE interrupt controller (POWER9) */ 1446 object_property_set_int(OBJECT(&chip9->xive), "ic-bar", 1447 PNV9_XIVE_IC_BASE(chip), &error_fatal); 1448 object_property_set_int(OBJECT(&chip9->xive), "vc-bar", 1449 PNV9_XIVE_VC_BASE(chip), &error_fatal); 1450 object_property_set_int(OBJECT(&chip9->xive), "pc-bar", 1451 PNV9_XIVE_PC_BASE(chip), &error_fatal); 1452 object_property_set_int(OBJECT(&chip9->xive), "tm-bar", 1453 PNV9_XIVE_TM_BASE(chip), &error_fatal); 1454 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip), 1455 &error_abort); 1456 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) { 1457 return; 1458 } 1459 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE, 1460 &chip9->xive.xscom_regs); 1461 1462 /* Processor Service Interface (PSI) Host Bridge */ 1463 object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip), 1464 &error_fatal); 1465 if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) { 1466 return; 1467 } 1468 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE, 1469 &PNV_PSI(psi9)->xscom_regs); 1470 1471 /* LPC */ 1472 object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi), 1473 &error_abort); 1474 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) { 1475 return; 1476 } 1477 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip), 1478 &chip9->lpc.xscom_regs); 1479 1480 chip->fw_mr = &chip9->lpc.isa_fw; 1481 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1482 (uint64_t) PNV9_LPCM_BASE(chip)); 1483 1484 /* Create the simplified OCC model */ 1485 object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi), 1486 &error_abort); 1487 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) { 1488 return; 1489 } 1490 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs); 1491 1492 /* OCC SRAM model */ 1493 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip), 1494 &chip9->occ.sram_regs); 1495 1496 /* HOMER */ 1497 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip), 1498 &error_abort); 1499 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) { 1500 return; 1501 } 1502 /* Homer Xscom region */ 1503 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs); 1504 1505 /* Homer mmio region */ 1506 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip), 1507 &chip9->homer.regs); 1508 1509 /* PEC PHBs */ 1510 pnv_chip_power9_pec_realize(chip, &local_err); 1511 if (local_err) { 1512 error_propagate(errp, local_err); 1513 return; 1514 } 1515 } 1516 1517 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr) 1518 { 1519 addr &= (PNV9_XSCOM_SIZE - 1); 1520 return addr >> 3; 1521 } 1522 1523 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data) 1524 { 1525 DeviceClass *dc = DEVICE_CLASS(klass); 1526 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1527 1528 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */ 1529 k->cores_mask = POWER9_CORE_MASK; 1530 k->core_pir = pnv_chip_core_pir_p9; 1531 k->intc_create = pnv_chip_power9_intc_create; 1532 k->intc_reset = pnv_chip_power9_intc_reset; 1533 k->intc_destroy = pnv_chip_power9_intc_destroy; 1534 k->intc_print_info = pnv_chip_power9_intc_print_info; 1535 k->isa_create = pnv_chip_power9_isa_create; 1536 k->dt_populate = pnv_chip_power9_dt_populate; 1537 k->pic_print_info = pnv_chip_power9_pic_print_info; 1538 k->xscom_core_base = pnv_chip_power9_xscom_core_base; 1539 k->xscom_pcba = pnv_chip_power9_xscom_pcba; 1540 dc->desc = "PowerNV Chip POWER9"; 1541 k->num_pecs = PNV9_CHIP_MAX_PEC; 1542 1543 device_class_set_parent_realize(dc, pnv_chip_power9_realize, 1544 &k->parent_realize); 1545 } 1546 1547 static void pnv_chip_power10_instance_init(Object *obj) 1548 { 1549 Pnv10Chip *chip10 = PNV10_CHIP(obj); 1550 1551 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI); 1552 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC); 1553 } 1554 1555 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp) 1556 { 1557 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev); 1558 PnvChip *chip = PNV_CHIP(dev); 1559 Pnv10Chip *chip10 = PNV10_CHIP(dev); 1560 Error *local_err = NULL; 1561 1562 /* XSCOM bridge is first */ 1563 pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err); 1564 if (local_err) { 1565 error_propagate(errp, local_err); 1566 return; 1567 } 1568 sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip)); 1569 1570 pcc->parent_realize(dev, &local_err); 1571 if (local_err) { 1572 error_propagate(errp, local_err); 1573 return; 1574 } 1575 1576 /* Processor Service Interface (PSI) Host Bridge */ 1577 object_property_set_int(OBJECT(&chip10->psi), "bar", 1578 PNV10_PSIHB_BASE(chip), &error_fatal); 1579 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) { 1580 return; 1581 } 1582 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE, 1583 &PNV_PSI(&chip10->psi)->xscom_regs); 1584 1585 /* LPC */ 1586 object_property_set_link(OBJECT(&chip10->lpc), "psi", 1587 OBJECT(&chip10->psi), &error_abort); 1588 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) { 1589 return; 1590 } 1591 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip), 1592 &chip10->lpc.xscom_regs); 1593 1594 chip->fw_mr = &chip10->lpc.isa_fw; 1595 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0", 1596 (uint64_t) PNV10_LPCM_BASE(chip)); 1597 } 1598 1599 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr) 1600 { 1601 addr &= (PNV10_XSCOM_SIZE - 1); 1602 return addr >> 3; 1603 } 1604 1605 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data) 1606 { 1607 DeviceClass *dc = DEVICE_CLASS(klass); 1608 PnvChipClass *k = PNV_CHIP_CLASS(klass); 1609 1610 k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */ 1611 k->cores_mask = POWER10_CORE_MASK; 1612 k->core_pir = pnv_chip_core_pir_p10; 1613 k->intc_create = pnv_chip_power10_intc_create; 1614 k->intc_reset = pnv_chip_power10_intc_reset; 1615 k->intc_destroy = pnv_chip_power10_intc_destroy; 1616 k->intc_print_info = pnv_chip_power10_intc_print_info; 1617 k->isa_create = pnv_chip_power10_isa_create; 1618 k->dt_populate = pnv_chip_power10_dt_populate; 1619 k->pic_print_info = pnv_chip_power10_pic_print_info; 1620 k->xscom_core_base = pnv_chip_power10_xscom_core_base; 1621 k->xscom_pcba = pnv_chip_power10_xscom_pcba; 1622 dc->desc = "PowerNV Chip POWER10"; 1623 1624 device_class_set_parent_realize(dc, pnv_chip_power10_realize, 1625 &k->parent_realize); 1626 } 1627 1628 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp) 1629 { 1630 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1631 int cores_max; 1632 1633 /* 1634 * No custom mask for this chip, let's use the default one from * 1635 * the chip class 1636 */ 1637 if (!chip->cores_mask) { 1638 chip->cores_mask = pcc->cores_mask; 1639 } 1640 1641 /* filter alien core ids ! some are reserved */ 1642 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) { 1643 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !", 1644 chip->cores_mask); 1645 return; 1646 } 1647 chip->cores_mask &= pcc->cores_mask; 1648 1649 /* now that we have a sane layout, let check the number of cores */ 1650 cores_max = ctpop64(chip->cores_mask); 1651 if (chip->nr_cores > cores_max) { 1652 error_setg(errp, "warning: too many cores for chip ! Limit is %d", 1653 cores_max); 1654 return; 1655 } 1656 } 1657 1658 static void pnv_chip_core_realize(PnvChip *chip, Error **errp) 1659 { 1660 Error *error = NULL; 1661 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip); 1662 const char *typename = pnv_chip_core_typename(chip); 1663 int i, core_hwid; 1664 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 1665 1666 if (!object_class_by_name(typename)) { 1667 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename); 1668 return; 1669 } 1670 1671 /* Cores */ 1672 pnv_chip_core_sanitize(chip, &error); 1673 if (error) { 1674 error_propagate(errp, error); 1675 return; 1676 } 1677 1678 chip->cores = g_new0(PnvCore *, chip->nr_cores); 1679 1680 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8) 1681 && (i < chip->nr_cores); core_hwid++) { 1682 char core_name[32]; 1683 PnvCore *pnv_core; 1684 uint64_t xscom_core_base; 1685 1686 if (!(chip->cores_mask & (1ull << core_hwid))) { 1687 continue; 1688 } 1689 1690 pnv_core = PNV_CORE(object_new(typename)); 1691 1692 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid); 1693 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core)); 1694 chip->cores[i] = pnv_core; 1695 object_property_set_int(OBJECT(pnv_core), "nr-threads", 1696 chip->nr_threads, &error_fatal); 1697 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID, 1698 core_hwid, &error_fatal); 1699 object_property_set_int(OBJECT(pnv_core), "pir", 1700 pcc->core_pir(chip, core_hwid), &error_fatal); 1701 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr, 1702 &error_fatal); 1703 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip), 1704 &error_abort); 1705 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal); 1706 1707 /* Each core has an XSCOM MMIO region */ 1708 xscom_core_base = pcc->xscom_core_base(chip, core_hwid); 1709 1710 pnv_xscom_add_subregion(chip, xscom_core_base, 1711 &pnv_core->xscom_regs); 1712 i++; 1713 } 1714 } 1715 1716 static void pnv_chip_realize(DeviceState *dev, Error **errp) 1717 { 1718 PnvChip *chip = PNV_CHIP(dev); 1719 Error *error = NULL; 1720 1721 /* Cores */ 1722 pnv_chip_core_realize(chip, &error); 1723 if (error) { 1724 error_propagate(errp, error); 1725 return; 1726 } 1727 } 1728 1729 static Property pnv_chip_properties[] = { 1730 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0), 1731 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0), 1732 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0), 1733 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1), 1734 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0), 1735 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1), 1736 DEFINE_PROP_END_OF_LIST(), 1737 }; 1738 1739 static void pnv_chip_class_init(ObjectClass *klass, void *data) 1740 { 1741 DeviceClass *dc = DEVICE_CLASS(klass); 1742 1743 set_bit(DEVICE_CATEGORY_CPU, dc->categories); 1744 dc->realize = pnv_chip_realize; 1745 device_class_set_props(dc, pnv_chip_properties); 1746 dc->desc = "PowerNV Chip"; 1747 } 1748 1749 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir) 1750 { 1751 int i, j; 1752 1753 for (i = 0; i < chip->nr_cores; i++) { 1754 PnvCore *pc = chip->cores[i]; 1755 CPUCore *cc = CPU_CORE(pc); 1756 1757 for (j = 0; j < cc->nr_threads; j++) { 1758 if (ppc_cpu_pir(pc->threads[j]) == pir) { 1759 return pc->threads[j]; 1760 } 1761 } 1762 } 1763 return NULL; 1764 } 1765 1766 typedef struct ForeachPhb3Args { 1767 int irq; 1768 ICSState *ics; 1769 } ForeachPhb3Args; 1770 1771 static int pnv_ics_get_child(Object *child, void *opaque) 1772 { 1773 ForeachPhb3Args *args = opaque; 1774 PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3); 1775 1776 if (phb3) { 1777 if (ics_valid_irq(&phb3->lsis, args->irq)) { 1778 args->ics = &phb3->lsis; 1779 } 1780 if (ics_valid_irq(ICS(&phb3->msis), args->irq)) { 1781 args->ics = ICS(&phb3->msis); 1782 } 1783 } 1784 return args->ics ? 1 : 0; 1785 } 1786 1787 static ICSState *pnv_ics_get(XICSFabric *xi, int irq) 1788 { 1789 PnvMachineState *pnv = PNV_MACHINE(xi); 1790 ForeachPhb3Args args = { irq, NULL }; 1791 int i; 1792 1793 for (i = 0; i < pnv->num_chips; i++) { 1794 PnvChip *chip = pnv->chips[i]; 1795 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1796 1797 if (ics_valid_irq(&chip8->psi.ics, irq)) { 1798 return &chip8->psi.ics; 1799 } 1800 1801 object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args); 1802 if (args.ics) { 1803 return args.ics; 1804 } 1805 } 1806 return NULL; 1807 } 1808 1809 static int pnv_ics_resend_child(Object *child, void *opaque) 1810 { 1811 PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3); 1812 1813 if (phb3) { 1814 ics_resend(&phb3->lsis); 1815 ics_resend(ICS(&phb3->msis)); 1816 } 1817 return 0; 1818 } 1819 1820 static void pnv_ics_resend(XICSFabric *xi) 1821 { 1822 PnvMachineState *pnv = PNV_MACHINE(xi); 1823 int i; 1824 1825 for (i = 0; i < pnv->num_chips; i++) { 1826 PnvChip *chip = pnv->chips[i]; 1827 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]); 1828 1829 ics_resend(&chip8->psi.ics); 1830 object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL); 1831 } 1832 } 1833 1834 static ICPState *pnv_icp_get(XICSFabric *xi, int pir) 1835 { 1836 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir); 1837 1838 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL; 1839 } 1840 1841 static void pnv_pic_print_info(InterruptStatsProvider *obj, 1842 Monitor *mon) 1843 { 1844 PnvMachineState *pnv = PNV_MACHINE(obj); 1845 int i; 1846 CPUState *cs; 1847 1848 CPU_FOREACH(cs) { 1849 PowerPCCPU *cpu = POWERPC_CPU(cs); 1850 1851 /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */ 1852 PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu, 1853 mon); 1854 } 1855 1856 for (i = 0; i < pnv->num_chips; i++) { 1857 PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon); 1858 } 1859 } 1860 1861 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format, 1862 uint8_t nvt_blk, uint32_t nvt_idx, 1863 bool cam_ignore, uint8_t priority, 1864 uint32_t logic_serv, 1865 XiveTCTXMatch *match) 1866 { 1867 PnvMachineState *pnv = PNV_MACHINE(xfb); 1868 int total_count = 0; 1869 int i; 1870 1871 for (i = 0; i < pnv->num_chips; i++) { 1872 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]); 1873 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive); 1874 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 1875 int count; 1876 1877 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 1878 priority, logic_serv, match); 1879 1880 if (count < 0) { 1881 return count; 1882 } 1883 1884 total_count += count; 1885 } 1886 1887 return total_count; 1888 } 1889 1890 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data) 1891 { 1892 MachineClass *mc = MACHINE_CLASS(oc); 1893 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 1894 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1895 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv"; 1896 1897 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8"; 1898 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 1899 1900 xic->icp_get = pnv_icp_get; 1901 xic->ics_get = pnv_ics_get; 1902 xic->ics_resend = pnv_ics_resend; 1903 1904 pmc->compat = compat; 1905 pmc->compat_size = sizeof(compat); 1906 } 1907 1908 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data) 1909 { 1910 MachineClass *mc = MACHINE_CLASS(oc); 1911 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 1912 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1913 static const char compat[] = "qemu,powernv9\0ibm,powernv"; 1914 1915 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9"; 1916 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 1917 xfc->match_nvt = pnv_match_nvt; 1918 1919 mc->alias = "powernv"; 1920 1921 pmc->compat = compat; 1922 pmc->compat_size = sizeof(compat); 1923 pmc->dt_power_mgt = pnv_dt_power_mgt; 1924 } 1925 1926 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data) 1927 { 1928 MachineClass *mc = MACHINE_CLASS(oc); 1929 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc); 1930 static const char compat[] = "qemu,powernv10\0ibm,powernv"; 1931 1932 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10"; 1933 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 1934 1935 pmc->compat = compat; 1936 pmc->compat_size = sizeof(compat); 1937 pmc->dt_power_mgt = pnv_dt_power_mgt; 1938 } 1939 1940 static bool pnv_machine_get_hb(Object *obj, Error **errp) 1941 { 1942 PnvMachineState *pnv = PNV_MACHINE(obj); 1943 1944 return !!pnv->fw_load_addr; 1945 } 1946 1947 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp) 1948 { 1949 PnvMachineState *pnv = PNV_MACHINE(obj); 1950 1951 if (value) { 1952 pnv->fw_load_addr = 0x8000000; 1953 } 1954 } 1955 1956 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg) 1957 { 1958 PowerPCCPU *cpu = POWERPC_CPU(cs); 1959 CPUPPCState *env = &cpu->env; 1960 1961 cpu_synchronize_state(cs); 1962 ppc_cpu_do_system_reset(cs); 1963 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) { 1964 /* 1965 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the 1966 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100 1967 * (PPC_BIT(43)). 1968 */ 1969 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) { 1970 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason"); 1971 env->spr[SPR_SRR1] |= SRR1_WAKERESET; 1972 } 1973 } else { 1974 /* 1975 * For non-powersave system resets, SRR1[42:45] are defined to be 1976 * implementation-dependent. The POWER9 User Manual specifies that 1977 * an external (SCOM driven, which may come from a BMC nmi command or 1978 * another CPU requesting a NMI IPI) system reset exception should be 1979 * 0b0010 (PPC_BIT(44)). 1980 */ 1981 env->spr[SPR_SRR1] |= SRR1_WAKESCOM; 1982 } 1983 } 1984 1985 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp) 1986 { 1987 CPUState *cs; 1988 1989 CPU_FOREACH(cs) { 1990 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL); 1991 } 1992 } 1993 1994 static void pnv_machine_class_init(ObjectClass *oc, void *data) 1995 { 1996 MachineClass *mc = MACHINE_CLASS(oc); 1997 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 1998 NMIClass *nc = NMI_CLASS(oc); 1999 2000 mc->desc = "IBM PowerNV (Non-Virtualized)"; 2001 mc->init = pnv_init; 2002 mc->reset = pnv_reset; 2003 mc->max_cpus = MAX_CPUS; 2004 /* Pnv provides a AHCI device for storage */ 2005 mc->block_default_type = IF_IDE; 2006 mc->no_parallel = 1; 2007 mc->default_boot_order = NULL; 2008 /* 2009 * RAM defaults to less than 2048 for 32-bit hosts, and large 2010 * enough to fit the maximum initrd size at it's load address 2011 */ 2012 mc->default_ram_size = 1 * GiB; 2013 mc->default_ram_id = "pnv.ram"; 2014 ispc->print_info = pnv_pic_print_info; 2015 nc->nmi_monitor_handler = pnv_nmi; 2016 2017 object_class_property_add_bool(oc, "hb-mode", 2018 pnv_machine_get_hb, pnv_machine_set_hb); 2019 object_class_property_set_description(oc, "hb-mode", 2020 "Use a hostboot like boot loader"); 2021 } 2022 2023 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \ 2024 { \ 2025 .name = type, \ 2026 .class_init = class_initfn, \ 2027 .parent = TYPE_PNV8_CHIP, \ 2028 } 2029 2030 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \ 2031 { \ 2032 .name = type, \ 2033 .class_init = class_initfn, \ 2034 .parent = TYPE_PNV9_CHIP, \ 2035 } 2036 2037 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \ 2038 { \ 2039 .name = type, \ 2040 .class_init = class_initfn, \ 2041 .parent = TYPE_PNV10_CHIP, \ 2042 } 2043 2044 static const TypeInfo types[] = { 2045 { 2046 .name = MACHINE_TYPE_NAME("powernv10"), 2047 .parent = TYPE_PNV_MACHINE, 2048 .class_init = pnv_machine_power10_class_init, 2049 }, 2050 { 2051 .name = MACHINE_TYPE_NAME("powernv9"), 2052 .parent = TYPE_PNV_MACHINE, 2053 .class_init = pnv_machine_power9_class_init, 2054 .interfaces = (InterfaceInfo[]) { 2055 { TYPE_XIVE_FABRIC }, 2056 { }, 2057 }, 2058 }, 2059 { 2060 .name = MACHINE_TYPE_NAME("powernv8"), 2061 .parent = TYPE_PNV_MACHINE, 2062 .class_init = pnv_machine_power8_class_init, 2063 .interfaces = (InterfaceInfo[]) { 2064 { TYPE_XICS_FABRIC }, 2065 { }, 2066 }, 2067 }, 2068 { 2069 .name = TYPE_PNV_MACHINE, 2070 .parent = TYPE_MACHINE, 2071 .abstract = true, 2072 .instance_size = sizeof(PnvMachineState), 2073 .class_init = pnv_machine_class_init, 2074 .class_size = sizeof(PnvMachineClass), 2075 .interfaces = (InterfaceInfo[]) { 2076 { TYPE_INTERRUPT_STATS_PROVIDER }, 2077 { TYPE_NMI }, 2078 { }, 2079 }, 2080 }, 2081 { 2082 .name = TYPE_PNV_CHIP, 2083 .parent = TYPE_SYS_BUS_DEVICE, 2084 .class_init = pnv_chip_class_init, 2085 .instance_size = sizeof(PnvChip), 2086 .class_size = sizeof(PnvChipClass), 2087 .abstract = true, 2088 }, 2089 2090 /* 2091 * P10 chip and variants 2092 */ 2093 { 2094 .name = TYPE_PNV10_CHIP, 2095 .parent = TYPE_PNV_CHIP, 2096 .instance_init = pnv_chip_power10_instance_init, 2097 .instance_size = sizeof(Pnv10Chip), 2098 }, 2099 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init), 2100 2101 /* 2102 * P9 chip and variants 2103 */ 2104 { 2105 .name = TYPE_PNV9_CHIP, 2106 .parent = TYPE_PNV_CHIP, 2107 .instance_init = pnv_chip_power9_instance_init, 2108 .instance_size = sizeof(Pnv9Chip), 2109 }, 2110 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init), 2111 2112 /* 2113 * P8 chip and variants 2114 */ 2115 { 2116 .name = TYPE_PNV8_CHIP, 2117 .parent = TYPE_PNV_CHIP, 2118 .instance_init = pnv_chip_power8_instance_init, 2119 .instance_size = sizeof(Pnv8Chip), 2120 }, 2121 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init), 2122 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init), 2123 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL, 2124 pnv_chip_power8nvl_class_init), 2125 }; 2126 2127 DEFINE_TYPES(types) 2128