xref: /openbmc/qemu/hw/ppc/pnv.c (revision 0da41d3c5af7897e742c2fa4f6a5c5609b86c493)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/units.h"
23 #include "qapi/error.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/numa.h"
26 #include "sysemu/reset.h"
27 #include "sysemu/runstate.h"
28 #include "sysemu/cpus.h"
29 #include "sysemu/device_tree.h"
30 #include "target/ppc/cpu.h"
31 #include "qemu/log.h"
32 #include "hw/ppc/fdt.h"
33 #include "hw/ppc/ppc.h"
34 #include "hw/ppc/pnv.h"
35 #include "hw/ppc/pnv_core.h"
36 #include "hw/loader.h"
37 #include "exec/address-spaces.h"
38 #include "qapi/visitor.h"
39 #include "monitor/monitor.h"
40 #include "hw/intc/intc.h"
41 #include "hw/ipmi/ipmi.h"
42 #include "target/ppc/mmu-hash64.h"
43 
44 #include "hw/ppc/xics.h"
45 #include "hw/qdev-properties.h"
46 #include "hw/ppc/pnv_xscom.h"
47 #include "hw/ppc/pnv_pnor.h"
48 
49 #include "hw/isa/isa.h"
50 #include "hw/boards.h"
51 #include "hw/char/serial.h"
52 #include "hw/rtc/mc146818rtc.h"
53 
54 #include <libfdt.h>
55 
56 #define FDT_MAX_SIZE            (1 * MiB)
57 
58 #define FW_FILE_NAME            "skiboot.lid"
59 #define FW_LOAD_ADDR            0x0
60 #define FW_MAX_SIZE             (4 * MiB)
61 
62 #define KERNEL_LOAD_ADDR        0x20000000
63 #define KERNEL_MAX_SIZE         (256 * MiB)
64 #define INITRD_LOAD_ADDR        0x60000000
65 #define INITRD_MAX_SIZE         (256 * MiB)
66 
67 static const char *pnv_chip_core_typename(const PnvChip *o)
68 {
69     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
70     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
71     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
72     const char *core_type = object_class_get_name(object_class_by_name(s));
73     g_free(s);
74     return core_type;
75 }
76 
77 /*
78  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
79  *     4 * 4 sockets * 12 cores * 8 threads = 1536
80  * Let's make it 2^11
81  */
82 #define MAX_CPUS                2048
83 
84 /*
85  * Memory nodes are created by hostboot, one for each range of memory
86  * that has a different "affinity". In practice, it means one range
87  * per chip.
88  */
89 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
90 {
91     char *mem_name;
92     uint64_t mem_reg_property[2];
93     int off;
94 
95     mem_reg_property[0] = cpu_to_be64(start);
96     mem_reg_property[1] = cpu_to_be64(size);
97 
98     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
99     off = fdt_add_subnode(fdt, 0, mem_name);
100     g_free(mem_name);
101 
102     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
103     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
104                        sizeof(mem_reg_property))));
105     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
106 }
107 
108 static int get_cpus_node(void *fdt)
109 {
110     int cpus_offset = fdt_path_offset(fdt, "/cpus");
111 
112     if (cpus_offset < 0) {
113         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
114         if (cpus_offset) {
115             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
116             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
117         }
118     }
119     _FDT(cpus_offset);
120     return cpus_offset;
121 }
122 
123 /*
124  * The PowerNV cores (and threads) need to use real HW ids and not an
125  * incremental index like it has been done on other platforms. This HW
126  * id is stored in the CPU PIR, it is used to create cpu nodes in the
127  * device tree, used in XSCOM to address cores and in interrupt
128  * servers.
129  */
130 static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
131 {
132     PowerPCCPU *cpu = pc->threads[0];
133     CPUState *cs = CPU(cpu);
134     DeviceClass *dc = DEVICE_GET_CLASS(cs);
135     int smt_threads = CPU_CORE(pc)->nr_threads;
136     CPUPPCState *env = &cpu->env;
137     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
138     uint32_t servers_prop[smt_threads];
139     int i;
140     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
141                        0xffffffff, 0xffffffff};
142     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
143     uint32_t cpufreq = 1000000000;
144     uint32_t page_sizes_prop[64];
145     size_t page_sizes_prop_size;
146     const uint8_t pa_features[] = { 24, 0,
147                                     0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
148                                     0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
149                                     0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
150                                     0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
151     int offset;
152     char *nodename;
153     int cpus_offset = get_cpus_node(fdt);
154 
155     nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
156     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
157     _FDT(offset);
158     g_free(nodename);
159 
160     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
161 
162     _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
163     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
164     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
167     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
168                             env->dcache_line_size)));
169     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
170                             env->dcache_line_size)));
171     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
172                             env->icache_line_size)));
173     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
174                             env->icache_line_size)));
175 
176     if (pcc->l1_dcache_size) {
177         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
178                                pcc->l1_dcache_size)));
179     } else {
180         warn_report("Unknown L1 dcache size for cpu");
181     }
182     if (pcc->l1_icache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
184                                pcc->l1_icache_size)));
185     } else {
186         warn_report("Unknown L1 icache size for cpu");
187     }
188 
189     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
190     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
191     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
192                            cpu->hash64_opts->slb_size)));
193     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
194     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
195 
196     if (env->spr_cb[SPR_PURR].oea_read) {
197         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
198     }
199 
200     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
201         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
202                            segs, sizeof(segs))));
203     }
204 
205     /*
206      * Advertise VMX/VSX (vector extensions) if available
207      *   0 / no property == no vector extensions
208      *   1               == VMX / Altivec available
209      *   2               == VSX available
210      */
211     if (env->insns_flags & PPC_ALTIVEC) {
212         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
213 
214         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
215     }
216 
217     /*
218      * Advertise DFP (Decimal Floating Point) if available
219      *   0 / no property == no DFP
220      *   1               == DFP available
221      */
222     if (env->insns_flags2 & PPC2_DFP) {
223         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
224     }
225 
226     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
227                                                       sizeof(page_sizes_prop));
228     if (page_sizes_prop_size) {
229         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
230                            page_sizes_prop, page_sizes_prop_size)));
231     }
232 
233     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
234                        pa_features, sizeof(pa_features))));
235 
236     /* Build interrupt servers properties */
237     for (i = 0; i < smt_threads; i++) {
238         servers_prop[i] = cpu_to_be32(pc->pir + i);
239     }
240     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
241                        servers_prop, sizeof(servers_prop))));
242 }
243 
244 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
245                        uint32_t nr_threads)
246 {
247     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
248     char *name;
249     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
250     uint32_t irange[2], i, rsize;
251     uint64_t *reg;
252     int offset;
253 
254     irange[0] = cpu_to_be32(pir);
255     irange[1] = cpu_to_be32(nr_threads);
256 
257     rsize = sizeof(uint64_t) * 2 * nr_threads;
258     reg = g_malloc(rsize);
259     for (i = 0; i < nr_threads; i++) {
260         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
261         reg[i * 2 + 1] = cpu_to_be64(0x1000);
262     }
263 
264     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
265     offset = fdt_add_subnode(fdt, 0, name);
266     _FDT(offset);
267     g_free(name);
268 
269     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
270     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
271     _FDT((fdt_setprop_string(fdt, offset, "device_type",
272                               "PowerPC-External-Interrupt-Presentation")));
273     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
274     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
275                        irange, sizeof(irange))));
276     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
277     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
278     g_free(reg);
279 }
280 
281 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
282 {
283     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
284     int i;
285 
286     pnv_dt_xscom(chip, fdt, 0,
287                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
288                  cpu_to_be64(PNV_XSCOM_SIZE),
289                  compat, sizeof(compat));
290 
291     for (i = 0; i < chip->nr_cores; i++) {
292         PnvCore *pnv_core = chip->cores[i];
293 
294         pnv_dt_core(chip, pnv_core, fdt);
295 
296         /* Interrupt Control Presenters (ICP). One per core. */
297         pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
298     }
299 
300     if (chip->ram_size) {
301         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
302     }
303 }
304 
305 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
306 {
307     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
308     int i;
309 
310     pnv_dt_xscom(chip, fdt, 0,
311                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
312                  cpu_to_be64(PNV9_XSCOM_SIZE),
313                  compat, sizeof(compat));
314 
315     for (i = 0; i < chip->nr_cores; i++) {
316         PnvCore *pnv_core = chip->cores[i];
317 
318         pnv_dt_core(chip, pnv_core, fdt);
319     }
320 
321     if (chip->ram_size) {
322         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
323     }
324 
325     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
326 }
327 
328 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
329 {
330     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
331     int i;
332 
333     pnv_dt_xscom(chip, fdt, 0,
334                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
335                  cpu_to_be64(PNV10_XSCOM_SIZE),
336                  compat, sizeof(compat));
337 
338     for (i = 0; i < chip->nr_cores; i++) {
339         PnvCore *pnv_core = chip->cores[i];
340 
341         pnv_dt_core(chip, pnv_core, fdt);
342     }
343 
344     if (chip->ram_size) {
345         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
346     }
347 
348     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
349 }
350 
351 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
352 {
353     uint32_t io_base = d->ioport_id;
354     uint32_t io_regs[] = {
355         cpu_to_be32(1),
356         cpu_to_be32(io_base),
357         cpu_to_be32(2)
358     };
359     char *name;
360     int node;
361 
362     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
363     node = fdt_add_subnode(fdt, lpc_off, name);
364     _FDT(node);
365     g_free(name);
366 
367     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
368     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
369 }
370 
371 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
372 {
373     const char compatible[] = "ns16550\0pnpPNP,501";
374     uint32_t io_base = d->ioport_id;
375     uint32_t io_regs[] = {
376         cpu_to_be32(1),
377         cpu_to_be32(io_base),
378         cpu_to_be32(8)
379     };
380     char *name;
381     int node;
382 
383     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
384     node = fdt_add_subnode(fdt, lpc_off, name);
385     _FDT(node);
386     g_free(name);
387 
388     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
389     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
390                       sizeof(compatible))));
391 
392     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
393     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
394     _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
395     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
396                            fdt_get_phandle(fdt, lpc_off))));
397 
398     /* This is needed by Linux */
399     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
400 }
401 
402 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
403 {
404     const char compatible[] = "bt\0ipmi-bt";
405     uint32_t io_base;
406     uint32_t io_regs[] = {
407         cpu_to_be32(1),
408         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
409         cpu_to_be32(3)
410     };
411     uint32_t irq;
412     char *name;
413     int node;
414 
415     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
416     io_regs[1] = cpu_to_be32(io_base);
417 
418     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
419 
420     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
421     node = fdt_add_subnode(fdt, lpc_off, name);
422     _FDT(node);
423     g_free(name);
424 
425     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
426     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
427                       sizeof(compatible))));
428 
429     /* Mark it as reserved to avoid Linux trying to claim it */
430     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
431     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
432     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
433                            fdt_get_phandle(fdt, lpc_off))));
434 }
435 
436 typedef struct ForeachPopulateArgs {
437     void *fdt;
438     int offset;
439 } ForeachPopulateArgs;
440 
441 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
442 {
443     ForeachPopulateArgs *args = opaque;
444     ISADevice *d = ISA_DEVICE(dev);
445 
446     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
447         pnv_dt_rtc(d, args->fdt, args->offset);
448     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
449         pnv_dt_serial(d, args->fdt, args->offset);
450     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
451         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
452     } else {
453         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
454                      d->ioport_id);
455     }
456 
457     return 0;
458 }
459 
460 /*
461  * The default LPC bus of a multichip system is on chip 0. It's
462  * recognized by the firmware (skiboot) using a "primary" property.
463  */
464 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
465 {
466     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
467     ForeachPopulateArgs args = {
468         .fdt = fdt,
469         .offset = isa_offset,
470     };
471     uint32_t phandle;
472 
473     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
474 
475     phandle = qemu_fdt_alloc_phandle(fdt);
476     assert(phandle > 0);
477     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
478 
479     /*
480      * ISA devices are not necessarily parented to the ISA bus so we
481      * can not use object_child_foreach()
482      */
483     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
484                        &args);
485 }
486 
487 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
488 {
489     int off;
490 
491     off = fdt_add_subnode(fdt, 0, "ibm,opal");
492     off = fdt_add_subnode(fdt, off, "power-mgt");
493 
494     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
495 }
496 
497 static void *pnv_dt_create(MachineState *machine)
498 {
499     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
500     PnvMachineState *pnv = PNV_MACHINE(machine);
501     void *fdt;
502     char *buf;
503     int off;
504     int i;
505 
506     fdt = g_malloc0(FDT_MAX_SIZE);
507     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
508 
509     /* /qemu node */
510     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
511 
512     /* Root node */
513     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
514     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
515     _FDT((fdt_setprop_string(fdt, 0, "model",
516                              "IBM PowerNV (emulated by qemu)")));
517     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
518 
519     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
520     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
521     if (qemu_uuid_set) {
522         _FDT((fdt_property_string(fdt, "system-id", buf)));
523     }
524     g_free(buf);
525 
526     off = fdt_add_subnode(fdt, 0, "chosen");
527     if (machine->kernel_cmdline) {
528         _FDT((fdt_setprop_string(fdt, off, "bootargs",
529                                  machine->kernel_cmdline)));
530     }
531 
532     if (pnv->initrd_size) {
533         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
534         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
535 
536         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
537                                &start_prop, sizeof(start_prop))));
538         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
539                                &end_prop, sizeof(end_prop))));
540     }
541 
542     /* Populate device tree for each chip */
543     for (i = 0; i < pnv->num_chips; i++) {
544         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
545     }
546 
547     /* Populate ISA devices on chip 0 */
548     pnv_dt_isa(pnv, fdt);
549 
550     if (pnv->bmc) {
551         pnv_dt_bmc_sensors(pnv->bmc, fdt);
552     }
553 
554     /* Create an extra node for power management on machines that support it */
555     if (pmc->dt_power_mgt) {
556         pmc->dt_power_mgt(pnv, fdt);
557     }
558 
559     return fdt;
560 }
561 
562 static void pnv_powerdown_notify(Notifier *n, void *opaque)
563 {
564     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
565 
566     if (pnv->bmc) {
567         pnv_bmc_powerdown(pnv->bmc);
568     }
569 }
570 
571 static void pnv_reset(MachineState *machine)
572 {
573     void *fdt;
574 
575     qemu_devices_reset();
576 
577     fdt = pnv_dt_create(machine);
578 
579     /* Pack resulting tree */
580     _FDT((fdt_pack(fdt)));
581 
582     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
583     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
584 }
585 
586 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
587 {
588     Pnv8Chip *chip8 = PNV8_CHIP(chip);
589     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
590 }
591 
592 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
593 {
594     Pnv8Chip *chip8 = PNV8_CHIP(chip);
595     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
596 }
597 
598 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
599 {
600     Pnv9Chip *chip9 = PNV9_CHIP(chip);
601     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
602 }
603 
604 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
605 {
606     Pnv10Chip *chip10 = PNV10_CHIP(chip);
607     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
608 }
609 
610 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
611 {
612     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
613 }
614 
615 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
616 {
617     Pnv8Chip *chip8 = PNV8_CHIP(chip);
618 
619     ics_pic_print_info(&chip8->psi.ics, mon);
620 }
621 
622 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
623 {
624     Pnv9Chip *chip9 = PNV9_CHIP(chip);
625 
626     pnv_xive_pic_print_info(&chip9->xive, mon);
627     pnv_psi_pic_print_info(&chip9->psi, mon);
628 }
629 
630 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
631                                                 uint32_t core_id)
632 {
633     return PNV_XSCOM_EX_BASE(core_id);
634 }
635 
636 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
637                                                 uint32_t core_id)
638 {
639     return PNV9_XSCOM_EC_BASE(core_id);
640 }
641 
642 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
643                                                  uint32_t core_id)
644 {
645     return PNV10_XSCOM_EC_BASE(core_id);
646 }
647 
648 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
649 {
650     PowerPCCPUClass *ppc_default =
651         POWERPC_CPU_CLASS(object_class_by_name(default_type));
652     PowerPCCPUClass *ppc =
653         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
654 
655     return ppc_default->pvr_match(ppc_default, ppc->pvr);
656 }
657 
658 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
659 {
660     Object *obj;
661 
662     obj = OBJECT(isa_create(bus, "isa-ipmi-bt"));
663     object_property_set_link(obj, OBJECT(bmc), "bmc", &error_fatal);
664     object_property_set_int(obj, irq, "irq", &error_fatal);
665     object_property_set_bool(obj, true, "realized", &error_fatal);
666 }
667 
668 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
669 {
670     Pnv10Chip *chip10 = PNV10_CHIP(chip);
671 
672     pnv_psi_pic_print_info(&chip10->psi, mon);
673 }
674 
675 static void pnv_init(MachineState *machine)
676 {
677     PnvMachineState *pnv = PNV_MACHINE(machine);
678     MachineClass *mc = MACHINE_GET_CLASS(machine);
679     MemoryRegion *ram;
680     char *fw_filename;
681     long fw_size;
682     int i;
683     char *chip_typename;
684     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
685     DeviceState *dev;
686 
687     /* allocate RAM */
688     if (machine->ram_size < (1 * GiB)) {
689         warn_report("skiboot may not work with < 1GB of RAM");
690     }
691 
692     ram = g_new(MemoryRegion, 1);
693     memory_region_allocate_system_memory(ram, NULL, "pnv.ram",
694                                          machine->ram_size);
695     memory_region_add_subregion(get_system_memory(), 0, ram);
696 
697     /*
698      * Create our simple PNOR device
699      */
700     dev = qdev_create(NULL, TYPE_PNV_PNOR);
701     if (pnor) {
702         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor),
703                             &error_abort);
704     }
705     qdev_init_nofail(dev);
706     pnv->pnor = PNV_PNOR(dev);
707 
708     /* load skiboot firmware  */
709     if (bios_name == NULL) {
710         bios_name = FW_FILE_NAME;
711     }
712 
713     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
714     if (!fw_filename) {
715         error_report("Could not find OPAL firmware '%s'", bios_name);
716         exit(1);
717     }
718 
719     fw_size = load_image_targphys(fw_filename, FW_LOAD_ADDR, FW_MAX_SIZE);
720     if (fw_size < 0) {
721         error_report("Could not load OPAL firmware '%s'", fw_filename);
722         exit(1);
723     }
724     g_free(fw_filename);
725 
726     /* load kernel */
727     if (machine->kernel_filename) {
728         long kernel_size;
729 
730         kernel_size = load_image_targphys(machine->kernel_filename,
731                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
732         if (kernel_size < 0) {
733             error_report("Could not load kernel '%s'",
734                          machine->kernel_filename);
735             exit(1);
736         }
737     }
738 
739     /* load initrd */
740     if (machine->initrd_filename) {
741         pnv->initrd_base = INITRD_LOAD_ADDR;
742         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
743                                   pnv->initrd_base, INITRD_MAX_SIZE);
744         if (pnv->initrd_size < 0) {
745             error_report("Could not load initial ram disk '%s'",
746                          machine->initrd_filename);
747             exit(1);
748         }
749     }
750 
751     /*
752      * Check compatibility of the specified CPU with the machine
753      * default.
754      */
755     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
756         error_report("invalid CPU model '%s' for %s machine",
757                      machine->cpu_type, mc->name);
758         exit(1);
759     }
760 
761     /* Create the processor chips */
762     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
763     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
764                                     i, machine->cpu_type);
765     if (!object_class_by_name(chip_typename)) {
766         error_report("invalid chip model '%.*s' for %s machine",
767                      i, machine->cpu_type, mc->name);
768         exit(1);
769     }
770 
771     pnv->num_chips =
772         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
773     /*
774      * TODO: should we decide on how many chips we can create based
775      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
776      */
777     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 4) {
778         error_report("invalid number of chips: '%d'", pnv->num_chips);
779         error_printf("Try '-smp sockets=N'. Valid values are : 1, 2 or 4.\n");
780         exit(1);
781     }
782 
783     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
784     for (i = 0; i < pnv->num_chips; i++) {
785         char chip_name[32];
786         Object *chip = object_new(chip_typename);
787 
788         pnv->chips[i] = PNV_CHIP(chip);
789 
790         /*
791          * TODO: put all the memory in one node on chip 0 until we find a
792          * way to specify different ranges for each chip
793          */
794         if (i == 0) {
795             object_property_set_int(chip, machine->ram_size, "ram-size",
796                                     &error_fatal);
797         }
798 
799         snprintf(chip_name, sizeof(chip_name), "chip[%d]", PNV_CHIP_HWID(i));
800         object_property_add_child(OBJECT(pnv), chip_name, chip, &error_fatal);
801         object_property_set_int(chip, PNV_CHIP_HWID(i), "chip-id",
802                                 &error_fatal);
803         object_property_set_int(chip, machine->smp.cores,
804                                 "nr-cores", &error_fatal);
805         /*
806          * The POWER8 machine use the XICS interrupt interface.
807          * Propagate the XICS fabric to the chip and its controllers.
808          */
809         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
810             object_property_set_link(chip, OBJECT(pnv), "xics", &error_abort);
811         }
812         object_property_set_bool(chip, true, "realized", &error_fatal);
813     }
814     g_free(chip_typename);
815 
816     /* Create the machine BMC simulator */
817     pnv->bmc = pnv_bmc_create();
818 
819     /* Instantiate ISA bus on chip 0 */
820     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
821 
822     /* Create serial port */
823     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
824 
825     /* Create an RTC ISA device too */
826     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
827 
828     /* Create the IPMI BT device for communication with the BMC */
829     pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
830 
831     /*
832      * OpenPOWER systems use a IPMI SEL Event message to notify the
833      * host to powerdown
834      */
835     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
836     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
837 }
838 
839 /*
840  *    0:21  Reserved - Read as zeros
841  *   22:24  Chip ID
842  *   25:28  Core number
843  *   29:31  Thread ID
844  */
845 static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
846 {
847     return (chip->chip_id << 7) | (core_id << 3);
848 }
849 
850 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
851                                         Error **errp)
852 {
853     Pnv8Chip *chip8 = PNV8_CHIP(chip);
854     Error *local_err = NULL;
855     Object *obj;
856     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
857 
858     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
859     if (local_err) {
860         error_propagate(errp, local_err);
861         return;
862     }
863 
864     pnv_cpu->intc = obj;
865 }
866 
867 
868 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
869 {
870     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
871 
872     icp_reset(ICP(pnv_cpu->intc));
873 }
874 
875 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
876 {
877     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
878 
879     icp_destroy(ICP(pnv_cpu->intc));
880     pnv_cpu->intc = NULL;
881 }
882 
883 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
884                                             Monitor *mon)
885 {
886     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
887 }
888 
889 /*
890  *    0:48  Reserved - Read as zeroes
891  *   49:52  Node ID
892  *   53:55  Chip ID
893  *   56     Reserved - Read as zero
894  *   57:61  Core number
895  *   62:63  Thread ID
896  *
897  * We only care about the lower bits. uint32_t is fine for the moment.
898  */
899 static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
900 {
901     return (chip->chip_id << 8) | (core_id << 2);
902 }
903 
904 static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
905 {
906     return (chip->chip_id << 8) | (core_id << 2);
907 }
908 
909 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
910                                         Error **errp)
911 {
912     Pnv9Chip *chip9 = PNV9_CHIP(chip);
913     Error *local_err = NULL;
914     Object *obj;
915     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
916 
917     /*
918      * The core creates its interrupt presenter but the XIVE interrupt
919      * controller object is initialized afterwards. Hopefully, it's
920      * only used at runtime.
921      */
922     obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(&chip9->xive), &local_err);
923     if (local_err) {
924         error_propagate(errp, local_err);
925         return;
926     }
927 
928     pnv_cpu->intc = obj;
929 }
930 
931 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
932 {
933     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
934 
935     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
936 }
937 
938 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
939 {
940     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
941 
942     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
943     pnv_cpu->intc = NULL;
944 }
945 
946 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
947                                             Monitor *mon)
948 {
949     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
950 }
951 
952 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
953                                         Error **errp)
954 {
955     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
956 
957     /* Will be defined when the interrupt controller is */
958     pnv_cpu->intc = NULL;
959 }
960 
961 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
962 {
963     ;
964 }
965 
966 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
967 {
968     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
969 
970     pnv_cpu->intc = NULL;
971 }
972 
973 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
974                                              Monitor *mon)
975 {
976 }
977 
978 /*
979  * Allowed core identifiers on a POWER8 Processor Chip :
980  *
981  * <EX0 reserved>
982  *  EX1  - Venice only
983  *  EX2  - Venice only
984  *  EX3  - Venice only
985  *  EX4
986  *  EX5
987  *  EX6
988  * <EX7,8 reserved> <reserved>
989  *  EX9  - Venice only
990  *  EX10 - Venice only
991  *  EX11 - Venice only
992  *  EX12
993  *  EX13
994  *  EX14
995  * <EX15 reserved>
996  */
997 #define POWER8E_CORE_MASK  (0x7070ull)
998 #define POWER8_CORE_MASK   (0x7e7eull)
999 
1000 /*
1001  * POWER9 has 24 cores, ids starting at 0x0
1002  */
1003 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1004 
1005 
1006 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1007 
1008 static void pnv_chip_power8_instance_init(Object *obj)
1009 {
1010     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1011 
1012     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1013                              (Object **)&chip8->xics,
1014                              object_property_allow_set_link,
1015                              OBJ_PROP_LINK_STRONG,
1016                              &error_abort);
1017 
1018     object_initialize_child(obj, "psi",  &chip8->psi, sizeof(chip8->psi),
1019                             TYPE_PNV8_PSI, &error_abort, NULL);
1020 
1021     object_initialize_child(obj, "lpc",  &chip8->lpc, sizeof(chip8->lpc),
1022                             TYPE_PNV8_LPC, &error_abort, NULL);
1023 
1024     object_initialize_child(obj, "occ",  &chip8->occ, sizeof(chip8->occ),
1025                             TYPE_PNV8_OCC, &error_abort, NULL);
1026 
1027     object_initialize_child(obj, "homer",  &chip8->homer, sizeof(chip8->homer),
1028                             TYPE_PNV8_HOMER, &error_abort, NULL);
1029 }
1030 
1031 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1032  {
1033     PnvChip *chip = PNV_CHIP(chip8);
1034     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1035     int i, j;
1036     char *name;
1037 
1038     name = g_strdup_printf("icp-%x", chip->chip_id);
1039     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1040     sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1041     g_free(name);
1042 
1043     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1044 
1045     /* Map the ICP registers for each thread */
1046     for (i = 0; i < chip->nr_cores; i++) {
1047         PnvCore *pnv_core = chip->cores[i];
1048         int core_hwid = CPU_CORE(pnv_core)->core_id;
1049 
1050         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1051             uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1052             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1053 
1054             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1055                                         &icp->mmio);
1056         }
1057     }
1058 }
1059 
1060 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1061 {
1062     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1063     PnvChip *chip = PNV_CHIP(dev);
1064     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1065     Pnv8Psi *psi8 = &chip8->psi;
1066     Error *local_err = NULL;
1067 
1068     assert(chip8->xics);
1069 
1070     /* XSCOM bridge is first */
1071     pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1072     if (local_err) {
1073         error_propagate(errp, local_err);
1074         return;
1075     }
1076     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1077 
1078     pcc->parent_realize(dev, &local_err);
1079     if (local_err) {
1080         error_propagate(errp, local_err);
1081         return;
1082     }
1083 
1084     /* Processor Service Interface (PSI) Host Bridge */
1085     object_property_set_int(OBJECT(&chip8->psi), PNV_PSIHB_BASE(chip),
1086                             "bar", &error_fatal);
1087     object_property_set_link(OBJECT(&chip8->psi), OBJECT(chip8->xics),
1088                              ICS_PROP_XICS, &error_abort);
1089     object_property_set_bool(OBJECT(&chip8->psi), true, "realized", &local_err);
1090     if (local_err) {
1091         error_propagate(errp, local_err);
1092         return;
1093     }
1094     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1095                             &PNV_PSI(psi8)->xscom_regs);
1096 
1097     /* Create LPC controller */
1098     object_property_set_link(OBJECT(&chip8->lpc), OBJECT(&chip8->psi), "psi",
1099                              &error_abort);
1100     object_property_set_bool(OBJECT(&chip8->lpc), true, "realized",
1101                              &error_fatal);
1102     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1103 
1104     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1105                                             (uint64_t) PNV_XSCOM_BASE(chip),
1106                                             PNV_XSCOM_LPC_BASE);
1107 
1108     /*
1109      * Interrupt Management Area. This is the memory region holding
1110      * all the Interrupt Control Presenter (ICP) registers
1111      */
1112     pnv_chip_icp_realize(chip8, &local_err);
1113     if (local_err) {
1114         error_propagate(errp, local_err);
1115         return;
1116     }
1117 
1118     /* Create the simplified OCC model */
1119     object_property_set_link(OBJECT(&chip8->occ), OBJECT(&chip8->psi), "psi",
1120                              &error_abort);
1121     object_property_set_bool(OBJECT(&chip8->occ), true, "realized", &local_err);
1122     if (local_err) {
1123         error_propagate(errp, local_err);
1124         return;
1125     }
1126     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1127 
1128     /* OCC SRAM model */
1129     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1130                                 &chip8->occ.sram_regs);
1131 
1132     /* HOMER */
1133     object_property_set_link(OBJECT(&chip8->homer), OBJECT(chip), "chip",
1134                              &error_abort);
1135     object_property_set_bool(OBJECT(&chip8->homer), true, "realized",
1136                              &local_err);
1137     if (local_err) {
1138         error_propagate(errp, local_err);
1139         return;
1140     }
1141     /* Homer Xscom region */
1142     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1143 
1144     /* Homer mmio region */
1145     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1146                                 &chip8->homer.regs);
1147 }
1148 
1149 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1150 {
1151     addr &= (PNV_XSCOM_SIZE - 1);
1152     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1153 }
1154 
1155 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1156 {
1157     DeviceClass *dc = DEVICE_CLASS(klass);
1158     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1159 
1160     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1161     k->cores_mask = POWER8E_CORE_MASK;
1162     k->core_pir = pnv_chip_core_pir_p8;
1163     k->intc_create = pnv_chip_power8_intc_create;
1164     k->intc_reset = pnv_chip_power8_intc_reset;
1165     k->intc_destroy = pnv_chip_power8_intc_destroy;
1166     k->intc_print_info = pnv_chip_power8_intc_print_info;
1167     k->isa_create = pnv_chip_power8_isa_create;
1168     k->dt_populate = pnv_chip_power8_dt_populate;
1169     k->pic_print_info = pnv_chip_power8_pic_print_info;
1170     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1171     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1172     dc->desc = "PowerNV Chip POWER8E";
1173 
1174     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1175                                     &k->parent_realize);
1176 }
1177 
1178 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1179 {
1180     DeviceClass *dc = DEVICE_CLASS(klass);
1181     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1182 
1183     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1184     k->cores_mask = POWER8_CORE_MASK;
1185     k->core_pir = pnv_chip_core_pir_p8;
1186     k->intc_create = pnv_chip_power8_intc_create;
1187     k->intc_reset = pnv_chip_power8_intc_reset;
1188     k->intc_destroy = pnv_chip_power8_intc_destroy;
1189     k->intc_print_info = pnv_chip_power8_intc_print_info;
1190     k->isa_create = pnv_chip_power8_isa_create;
1191     k->dt_populate = pnv_chip_power8_dt_populate;
1192     k->pic_print_info = pnv_chip_power8_pic_print_info;
1193     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1194     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1195     dc->desc = "PowerNV Chip POWER8";
1196 
1197     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1198                                     &k->parent_realize);
1199 }
1200 
1201 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1202 {
1203     DeviceClass *dc = DEVICE_CLASS(klass);
1204     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1205 
1206     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1207     k->cores_mask = POWER8_CORE_MASK;
1208     k->core_pir = pnv_chip_core_pir_p8;
1209     k->intc_create = pnv_chip_power8_intc_create;
1210     k->intc_reset = pnv_chip_power8_intc_reset;
1211     k->intc_destroy = pnv_chip_power8_intc_destroy;
1212     k->intc_print_info = pnv_chip_power8_intc_print_info;
1213     k->isa_create = pnv_chip_power8nvl_isa_create;
1214     k->dt_populate = pnv_chip_power8_dt_populate;
1215     k->pic_print_info = pnv_chip_power8_pic_print_info;
1216     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1217     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1218     dc->desc = "PowerNV Chip POWER8NVL";
1219 
1220     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1221                                     &k->parent_realize);
1222 }
1223 
1224 static void pnv_chip_power9_instance_init(Object *obj)
1225 {
1226     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1227 
1228     object_initialize_child(obj, "xive", &chip9->xive, sizeof(chip9->xive),
1229                             TYPE_PNV_XIVE, &error_abort, NULL);
1230 
1231     object_initialize_child(obj, "psi",  &chip9->psi, sizeof(chip9->psi),
1232                             TYPE_PNV9_PSI, &error_abort, NULL);
1233 
1234     object_initialize_child(obj, "lpc",  &chip9->lpc, sizeof(chip9->lpc),
1235                             TYPE_PNV9_LPC, &error_abort, NULL);
1236 
1237     object_initialize_child(obj, "occ",  &chip9->occ, sizeof(chip9->occ),
1238                             TYPE_PNV9_OCC, &error_abort, NULL);
1239 
1240     object_initialize_child(obj, "homer",  &chip9->homer, sizeof(chip9->homer),
1241                             TYPE_PNV9_HOMER, &error_abort, NULL);
1242 }
1243 
1244 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1245 {
1246     PnvChip *chip = PNV_CHIP(chip9);
1247     int i;
1248 
1249     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1250     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1251 
1252     for (i = 0; i < chip9->nr_quads; i++) {
1253         char eq_name[32];
1254         PnvQuad *eq = &chip9->quads[i];
1255         PnvCore *pnv_core = chip->cores[i * 4];
1256         int core_id = CPU_CORE(pnv_core)->core_id;
1257 
1258         snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1259         object_initialize_child(OBJECT(chip), eq_name, eq, sizeof(*eq),
1260                                 TYPE_PNV_QUAD, &error_fatal, NULL);
1261 
1262         object_property_set_int(OBJECT(eq), core_id, "id", &error_fatal);
1263         object_property_set_bool(OBJECT(eq), true, "realized", &error_fatal);
1264 
1265         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->id),
1266                                 &eq->xscom_regs);
1267     }
1268 }
1269 
1270 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1271 {
1272     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1273     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1274     PnvChip *chip = PNV_CHIP(dev);
1275     Pnv9Psi *psi9 = &chip9->psi;
1276     Error *local_err = NULL;
1277 
1278     /* XSCOM bridge is first */
1279     pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1280     if (local_err) {
1281         error_propagate(errp, local_err);
1282         return;
1283     }
1284     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1285 
1286     pcc->parent_realize(dev, &local_err);
1287     if (local_err) {
1288         error_propagate(errp, local_err);
1289         return;
1290     }
1291 
1292     pnv_chip_quad_realize(chip9, &local_err);
1293     if (local_err) {
1294         error_propagate(errp, local_err);
1295         return;
1296     }
1297 
1298     /* XIVE interrupt controller (POWER9) */
1299     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_IC_BASE(chip),
1300                             "ic-bar", &error_fatal);
1301     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_VC_BASE(chip),
1302                             "vc-bar", &error_fatal);
1303     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_PC_BASE(chip),
1304                             "pc-bar", &error_fatal);
1305     object_property_set_int(OBJECT(&chip9->xive), PNV9_XIVE_TM_BASE(chip),
1306                             "tm-bar", &error_fatal);
1307     object_property_set_link(OBJECT(&chip9->xive), OBJECT(chip), "chip",
1308                              &error_abort);
1309     object_property_set_bool(OBJECT(&chip9->xive), true, "realized",
1310                              &local_err);
1311     if (local_err) {
1312         error_propagate(errp, local_err);
1313         return;
1314     }
1315     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1316                             &chip9->xive.xscom_regs);
1317 
1318     /* Processor Service Interface (PSI) Host Bridge */
1319     object_property_set_int(OBJECT(&chip9->psi), PNV9_PSIHB_BASE(chip),
1320                             "bar", &error_fatal);
1321     object_property_set_bool(OBJECT(&chip9->psi), true, "realized", &local_err);
1322     if (local_err) {
1323         error_propagate(errp, local_err);
1324         return;
1325     }
1326     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1327                             &PNV_PSI(psi9)->xscom_regs);
1328 
1329     /* LPC */
1330     object_property_set_link(OBJECT(&chip9->lpc), OBJECT(&chip9->psi), "psi",
1331                              &error_abort);
1332     object_property_set_bool(OBJECT(&chip9->lpc), true, "realized", &local_err);
1333     if (local_err) {
1334         error_propagate(errp, local_err);
1335         return;
1336     }
1337     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1338                                 &chip9->lpc.xscom_regs);
1339 
1340     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1341                                             (uint64_t) PNV9_LPCM_BASE(chip));
1342 
1343     /* Create the simplified OCC model */
1344     object_property_set_link(OBJECT(&chip9->occ), OBJECT(&chip9->psi), "psi",
1345                              &error_abort);
1346     object_property_set_bool(OBJECT(&chip9->occ), true, "realized", &local_err);
1347     if (local_err) {
1348         error_propagate(errp, local_err);
1349         return;
1350     }
1351     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1352 
1353     /* OCC SRAM model */
1354     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1355                                 &chip9->occ.sram_regs);
1356 
1357     /* HOMER */
1358     object_property_set_link(OBJECT(&chip9->homer), OBJECT(chip), "chip",
1359                              &error_abort);
1360     object_property_set_bool(OBJECT(&chip9->homer), true, "realized",
1361                              &local_err);
1362     if (local_err) {
1363         error_propagate(errp, local_err);
1364         return;
1365     }
1366     /* Homer Xscom region */
1367     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1368 
1369     /* Homer mmio region */
1370     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1371                                 &chip9->homer.regs);
1372 }
1373 
1374 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1375 {
1376     addr &= (PNV9_XSCOM_SIZE - 1);
1377     return addr >> 3;
1378 }
1379 
1380 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1381 {
1382     DeviceClass *dc = DEVICE_CLASS(klass);
1383     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1384 
1385     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1386     k->cores_mask = POWER9_CORE_MASK;
1387     k->core_pir = pnv_chip_core_pir_p9;
1388     k->intc_create = pnv_chip_power9_intc_create;
1389     k->intc_reset = pnv_chip_power9_intc_reset;
1390     k->intc_destroy = pnv_chip_power9_intc_destroy;
1391     k->intc_print_info = pnv_chip_power9_intc_print_info;
1392     k->isa_create = pnv_chip_power9_isa_create;
1393     k->dt_populate = pnv_chip_power9_dt_populate;
1394     k->pic_print_info = pnv_chip_power9_pic_print_info;
1395     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1396     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1397     dc->desc = "PowerNV Chip POWER9";
1398 
1399     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1400                                     &k->parent_realize);
1401 }
1402 
1403 static void pnv_chip_power10_instance_init(Object *obj)
1404 {
1405     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1406 
1407     object_initialize_child(obj, "psi",  &chip10->psi, sizeof(chip10->psi),
1408                             TYPE_PNV10_PSI, &error_abort, NULL);
1409     object_initialize_child(obj, "lpc",  &chip10->lpc, sizeof(chip10->lpc),
1410                             TYPE_PNV10_LPC, &error_abort, NULL);
1411 }
1412 
1413 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1414 {
1415     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1416     PnvChip *chip = PNV_CHIP(dev);
1417     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1418     Error *local_err = NULL;
1419 
1420     /* XSCOM bridge is first */
1421     pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1422     if (local_err) {
1423         error_propagate(errp, local_err);
1424         return;
1425     }
1426     sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1427 
1428     pcc->parent_realize(dev, &local_err);
1429     if (local_err) {
1430         error_propagate(errp, local_err);
1431         return;
1432     }
1433 
1434     /* Processor Service Interface (PSI) Host Bridge */
1435     object_property_set_int(OBJECT(&chip10->psi), PNV10_PSIHB_BASE(chip),
1436                             "bar", &error_fatal);
1437     object_property_set_bool(OBJECT(&chip10->psi), true, "realized",
1438                              &local_err);
1439     if (local_err) {
1440         error_propagate(errp, local_err);
1441         return;
1442     }
1443     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1444                             &PNV_PSI(&chip10->psi)->xscom_regs);
1445 
1446     /* LPC */
1447     object_property_set_link(OBJECT(&chip10->lpc), OBJECT(&chip10->psi), "psi",
1448                              &error_abort);
1449     object_property_set_bool(OBJECT(&chip10->lpc), true, "realized",
1450                              &local_err);
1451     if (local_err) {
1452         error_propagate(errp, local_err);
1453         return;
1454     }
1455     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1456                                 &chip10->lpc.xscom_regs);
1457 
1458     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1459                                             (uint64_t) PNV10_LPCM_BASE(chip));
1460 }
1461 
1462 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1463 {
1464     addr &= (PNV10_XSCOM_SIZE - 1);
1465     return addr >> 3;
1466 }
1467 
1468 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1469 {
1470     DeviceClass *dc = DEVICE_CLASS(klass);
1471     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1472 
1473     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1474     k->cores_mask = POWER10_CORE_MASK;
1475     k->core_pir = pnv_chip_core_pir_p10;
1476     k->intc_create = pnv_chip_power10_intc_create;
1477     k->intc_reset = pnv_chip_power10_intc_reset;
1478     k->intc_destroy = pnv_chip_power10_intc_destroy;
1479     k->intc_print_info = pnv_chip_power10_intc_print_info;
1480     k->isa_create = pnv_chip_power10_isa_create;
1481     k->dt_populate = pnv_chip_power10_dt_populate;
1482     k->pic_print_info = pnv_chip_power10_pic_print_info;
1483     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1484     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1485     dc->desc = "PowerNV Chip POWER10";
1486 
1487     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1488                                     &k->parent_realize);
1489 }
1490 
1491 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1492 {
1493     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1494     int cores_max;
1495 
1496     /*
1497      * No custom mask for this chip, let's use the default one from *
1498      * the chip class
1499      */
1500     if (!chip->cores_mask) {
1501         chip->cores_mask = pcc->cores_mask;
1502     }
1503 
1504     /* filter alien core ids ! some are reserved */
1505     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1506         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1507                    chip->cores_mask);
1508         return;
1509     }
1510     chip->cores_mask &= pcc->cores_mask;
1511 
1512     /* now that we have a sane layout, let check the number of cores */
1513     cores_max = ctpop64(chip->cores_mask);
1514     if (chip->nr_cores > cores_max) {
1515         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1516                    cores_max);
1517         return;
1518     }
1519 }
1520 
1521 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1522 {
1523     MachineState *ms = MACHINE(qdev_get_machine());
1524     Error *error = NULL;
1525     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1526     const char *typename = pnv_chip_core_typename(chip);
1527     int i, core_hwid;
1528 
1529     if (!object_class_by_name(typename)) {
1530         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1531         return;
1532     }
1533 
1534     /* Cores */
1535     pnv_chip_core_sanitize(chip, &error);
1536     if (error) {
1537         error_propagate(errp, error);
1538         return;
1539     }
1540 
1541     chip->cores = g_new0(PnvCore *, chip->nr_cores);
1542 
1543     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1544              && (i < chip->nr_cores); core_hwid++) {
1545         char core_name[32];
1546         PnvCore *pnv_core;
1547         uint64_t xscom_core_base;
1548 
1549         if (!(chip->cores_mask & (1ull << core_hwid))) {
1550             continue;
1551         }
1552 
1553         pnv_core = PNV_CORE(object_new(typename));
1554 
1555         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1556         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core),
1557                                   &error_abort);
1558         chip->cores[i] = pnv_core;
1559         object_property_set_int(OBJECT(pnv_core), ms->smp.threads, "nr-threads",
1560                                 &error_fatal);
1561         object_property_set_int(OBJECT(pnv_core), core_hwid,
1562                                 CPU_CORE_PROP_CORE_ID, &error_fatal);
1563         object_property_set_int(OBJECT(pnv_core),
1564                                 pcc->core_pir(chip, core_hwid),
1565                                 "pir", &error_fatal);
1566         object_property_set_link(OBJECT(pnv_core), OBJECT(chip), "chip",
1567                                  &error_abort);
1568         object_property_set_bool(OBJECT(pnv_core), true, "realized",
1569                                  &error_fatal);
1570 
1571         /* Each core has an XSCOM MMIO region */
1572         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1573 
1574         pnv_xscom_add_subregion(chip, xscom_core_base,
1575                                 &pnv_core->xscom_regs);
1576         i++;
1577     }
1578 }
1579 
1580 static void pnv_chip_realize(DeviceState *dev, Error **errp)
1581 {
1582     PnvChip *chip = PNV_CHIP(dev);
1583     Error *error = NULL;
1584 
1585     /* Cores */
1586     pnv_chip_core_realize(chip, &error);
1587     if (error) {
1588         error_propagate(errp, error);
1589         return;
1590     }
1591 }
1592 
1593 static Property pnv_chip_properties[] = {
1594     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1595     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1596     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1597     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1598     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1599     DEFINE_PROP_END_OF_LIST(),
1600 };
1601 
1602 static void pnv_chip_class_init(ObjectClass *klass, void *data)
1603 {
1604     DeviceClass *dc = DEVICE_CLASS(klass);
1605 
1606     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1607     dc->realize = pnv_chip_realize;
1608     dc->props = pnv_chip_properties;
1609     dc->desc = "PowerNV Chip";
1610 }
1611 
1612 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1613 {
1614     int i, j;
1615 
1616     for (i = 0; i < chip->nr_cores; i++) {
1617         PnvCore *pc = chip->cores[i];
1618         CPUCore *cc = CPU_CORE(pc);
1619 
1620         for (j = 0; j < cc->nr_threads; j++) {
1621             if (ppc_cpu_pir(pc->threads[j]) == pir) {
1622                 return pc->threads[j];
1623             }
1624         }
1625     }
1626     return NULL;
1627 }
1628 
1629 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1630 {
1631     PnvMachineState *pnv = PNV_MACHINE(xi);
1632     int i;
1633 
1634     for (i = 0; i < pnv->num_chips; i++) {
1635         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1636 
1637         if (ics_valid_irq(&chip8->psi.ics, irq)) {
1638             return &chip8->psi.ics;
1639         }
1640     }
1641     return NULL;
1642 }
1643 
1644 static void pnv_ics_resend(XICSFabric *xi)
1645 {
1646     PnvMachineState *pnv = PNV_MACHINE(xi);
1647     int i;
1648 
1649     for (i = 0; i < pnv->num_chips; i++) {
1650         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1651         ics_resend(&chip8->psi.ics);
1652     }
1653 }
1654 
1655 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1656 {
1657     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1658 
1659     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1660 }
1661 
1662 static void pnv_pic_print_info(InterruptStatsProvider *obj,
1663                                Monitor *mon)
1664 {
1665     PnvMachineState *pnv = PNV_MACHINE(obj);
1666     int i;
1667     CPUState *cs;
1668 
1669     CPU_FOREACH(cs) {
1670         PowerPCCPU *cpu = POWERPC_CPU(cs);
1671 
1672         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1673         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1674                                                            mon);
1675     }
1676 
1677     for (i = 0; i < pnv->num_chips; i++) {
1678         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1679     }
1680 }
1681 
1682 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1683                          uint8_t nvt_blk, uint32_t nvt_idx,
1684                          bool cam_ignore, uint8_t priority,
1685                          uint32_t logic_serv,
1686                          XiveTCTXMatch *match)
1687 {
1688     PnvMachineState *pnv = PNV_MACHINE(xfb);
1689     int total_count = 0;
1690     int i;
1691 
1692     for (i = 0; i < pnv->num_chips; i++) {
1693         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1694         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1695         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1696         int count;
1697 
1698         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1699                                priority, logic_serv, match);
1700 
1701         if (count < 0) {
1702             return count;
1703         }
1704 
1705         total_count += count;
1706     }
1707 
1708     return total_count;
1709 }
1710 
1711 PnvChip *pnv_get_chip(uint32_t chip_id)
1712 {
1713     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1714     int i;
1715 
1716     for (i = 0; i < pnv->num_chips; i++) {
1717         PnvChip *chip = pnv->chips[i];
1718         if (chip->chip_id == chip_id) {
1719             return chip;
1720         }
1721     }
1722     return NULL;
1723 }
1724 
1725 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1726 {
1727     MachineClass *mc = MACHINE_CLASS(oc);
1728     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1729     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1730     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1731 
1732     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1733     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1734 
1735     xic->icp_get = pnv_icp_get;
1736     xic->ics_get = pnv_ics_get;
1737     xic->ics_resend = pnv_ics_resend;
1738 
1739     pmc->compat = compat;
1740     pmc->compat_size = sizeof(compat);
1741 }
1742 
1743 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1744 {
1745     MachineClass *mc = MACHINE_CLASS(oc);
1746     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1747     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1748     static const char compat[] = "qemu,powernv9\0ibm,powernv";
1749 
1750     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1751     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1752     xfc->match_nvt = pnv_match_nvt;
1753 
1754     mc->alias = "powernv";
1755 
1756     pmc->compat = compat;
1757     pmc->compat_size = sizeof(compat);
1758     pmc->dt_power_mgt = pnv_dt_power_mgt;
1759 }
1760 
1761 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1762 {
1763     MachineClass *mc = MACHINE_CLASS(oc);
1764     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1765     static const char compat[] = "qemu,powernv10\0ibm,powernv";
1766 
1767     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1768     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v1.0");
1769 
1770     pmc->compat = compat;
1771     pmc->compat_size = sizeof(compat);
1772     pmc->dt_power_mgt = pnv_dt_power_mgt;
1773 }
1774 
1775 static void pnv_machine_class_init(ObjectClass *oc, void *data)
1776 {
1777     MachineClass *mc = MACHINE_CLASS(oc);
1778     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1779 
1780     mc->desc = "IBM PowerNV (Non-Virtualized)";
1781     mc->init = pnv_init;
1782     mc->reset = pnv_reset;
1783     mc->max_cpus = MAX_CPUS;
1784     /* Pnv provides a AHCI device for storage */
1785     mc->block_default_type = IF_IDE;
1786     mc->no_parallel = 1;
1787     mc->default_boot_order = NULL;
1788     /*
1789      * RAM defaults to less than 2048 for 32-bit hosts, and large
1790      * enough to fit the maximum initrd size at it's load address
1791      */
1792     mc->default_ram_size = INITRD_LOAD_ADDR + INITRD_MAX_SIZE;
1793     ispc->print_info = pnv_pic_print_info;
1794 }
1795 
1796 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
1797     {                                             \
1798         .name          = type,                    \
1799         .class_init    = class_initfn,            \
1800         .parent        = TYPE_PNV8_CHIP,          \
1801     }
1802 
1803 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
1804     {                                             \
1805         .name          = type,                    \
1806         .class_init    = class_initfn,            \
1807         .parent        = TYPE_PNV9_CHIP,          \
1808     }
1809 
1810 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
1811     {                                              \
1812         .name          = type,                     \
1813         .class_init    = class_initfn,             \
1814         .parent        = TYPE_PNV10_CHIP,          \
1815     }
1816 
1817 static const TypeInfo types[] = {
1818     {
1819         .name          = MACHINE_TYPE_NAME("powernv10"),
1820         .parent        = TYPE_PNV_MACHINE,
1821         .class_init    = pnv_machine_power10_class_init,
1822     },
1823     {
1824         .name          = MACHINE_TYPE_NAME("powernv9"),
1825         .parent        = TYPE_PNV_MACHINE,
1826         .class_init    = pnv_machine_power9_class_init,
1827         .interfaces = (InterfaceInfo[]) {
1828             { TYPE_XIVE_FABRIC },
1829             { },
1830         },
1831     },
1832     {
1833         .name          = MACHINE_TYPE_NAME("powernv8"),
1834         .parent        = TYPE_PNV_MACHINE,
1835         .class_init    = pnv_machine_power8_class_init,
1836         .interfaces = (InterfaceInfo[]) {
1837             { TYPE_XICS_FABRIC },
1838             { },
1839         },
1840     },
1841     {
1842         .name          = TYPE_PNV_MACHINE,
1843         .parent        = TYPE_MACHINE,
1844         .abstract       = true,
1845         .instance_size = sizeof(PnvMachineState),
1846         .class_init    = pnv_machine_class_init,
1847         .class_size    = sizeof(PnvMachineClass),
1848         .interfaces = (InterfaceInfo[]) {
1849             { TYPE_INTERRUPT_STATS_PROVIDER },
1850             { },
1851         },
1852     },
1853     {
1854         .name          = TYPE_PNV_CHIP,
1855         .parent        = TYPE_SYS_BUS_DEVICE,
1856         .class_init    = pnv_chip_class_init,
1857         .instance_size = sizeof(PnvChip),
1858         .class_size    = sizeof(PnvChipClass),
1859         .abstract      = true,
1860     },
1861 
1862     /*
1863      * P10 chip and variants
1864      */
1865     {
1866         .name          = TYPE_PNV10_CHIP,
1867         .parent        = TYPE_PNV_CHIP,
1868         .instance_init = pnv_chip_power10_instance_init,
1869         .instance_size = sizeof(Pnv10Chip),
1870     },
1871     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
1872 
1873     /*
1874      * P9 chip and variants
1875      */
1876     {
1877         .name          = TYPE_PNV9_CHIP,
1878         .parent        = TYPE_PNV_CHIP,
1879         .instance_init = pnv_chip_power9_instance_init,
1880         .instance_size = sizeof(Pnv9Chip),
1881     },
1882     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
1883 
1884     /*
1885      * P8 chip and variants
1886      */
1887     {
1888         .name          = TYPE_PNV8_CHIP,
1889         .parent        = TYPE_PNV_CHIP,
1890         .instance_init = pnv_chip_power8_instance_init,
1891         .instance_size = sizeof(Pnv8Chip),
1892     },
1893     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
1894     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
1895     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
1896                           pnv_chip_power8nvl_class_init),
1897 };
1898 
1899 DEFINE_TYPES(types)
1900