xref: /openbmc/qemu/hw/ppc/pnv.c (revision 0527563a47fbccdf0b35c4c021cbf58d2c421777)
1 /*
2  * QEMU PowerPC PowerNV machine model
3  *
4  * Copyright (c) 2016, IBM Corporation.
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "qapi/type-helpers.h"
42 #include "monitor/monitor.h"
43 #include "hw/intc/intc.h"
44 #include "hw/ipmi/ipmi.h"
45 #include "target/ppc/mmu-hash64.h"
46 #include "hw/pci/msi.h"
47 #include "hw/pci-host/pnv_phb.h"
48 #include "hw/pci-host/pnv_phb3.h"
49 #include "hw/pci-host/pnv_phb4.h"
50 
51 #include "hw/ppc/xics.h"
52 #include "hw/qdev-properties.h"
53 #include "hw/ppc/pnv_chip.h"
54 #include "hw/ppc/pnv_xscom.h"
55 #include "hw/ppc/pnv_pnor.h"
56 
57 #include "hw/isa/isa.h"
58 #include "hw/char/serial.h"
59 #include "hw/rtc/mc146818rtc.h"
60 
61 #include <libfdt.h>
62 
63 #define FDT_MAX_SIZE            (1 * MiB)
64 
65 #define FW_FILE_NAME            "skiboot.lid"
66 #define FW_LOAD_ADDR            0x0
67 #define FW_MAX_SIZE             (16 * MiB)
68 
69 #define KERNEL_LOAD_ADDR        0x20000000
70 #define KERNEL_MAX_SIZE         (128 * MiB)
71 #define INITRD_LOAD_ADDR        0x28000000
72 #define INITRD_MAX_SIZE         (128 * MiB)
73 
74 static const char *pnv_chip_core_typename(const PnvChip *o)
75 {
76     const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
77     int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
78     char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
79     const char *core_type = object_class_get_name(object_class_by_name(s));
80     g_free(s);
81     return core_type;
82 }
83 
84 /*
85  * On Power Systems E880 (POWER8), the max cpus (threads) should be :
86  *     4 * 4 sockets * 12 cores * 8 threads = 1536
87  * Let's make it 2^11
88  */
89 #define MAX_CPUS                2048
90 
91 /*
92  * Memory nodes are created by hostboot, one for each range of memory
93  * that has a different "affinity". In practice, it means one range
94  * per chip.
95  */
96 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
97 {
98     char *mem_name;
99     uint64_t mem_reg_property[2];
100     int off;
101 
102     mem_reg_property[0] = cpu_to_be64(start);
103     mem_reg_property[1] = cpu_to_be64(size);
104 
105     mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
106     off = fdt_add_subnode(fdt, 0, mem_name);
107     g_free(mem_name);
108 
109     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
110     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
111                        sizeof(mem_reg_property))));
112     _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
113 }
114 
115 static int get_cpus_node(void *fdt)
116 {
117     int cpus_offset = fdt_path_offset(fdt, "/cpus");
118 
119     if (cpus_offset < 0) {
120         cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
121         if (cpus_offset) {
122             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
123             _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
124         }
125     }
126     _FDT(cpus_offset);
127     return cpus_offset;
128 }
129 
130 /*
131  * The PowerNV cores (and threads) need to use real HW ids and not an
132  * incremental index like it has been done on other platforms. This HW
133  * id is stored in the CPU PIR, it is used to create cpu nodes in the
134  * device tree, used in XSCOM to address cores and in interrupt
135  * servers.
136  */
137 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
138 {
139     PowerPCCPU *cpu = pc->threads[0];
140     CPUState *cs = CPU(cpu);
141     DeviceClass *dc = DEVICE_GET_CLASS(cs);
142     int smt_threads = CPU_CORE(pc)->nr_threads;
143     CPUPPCState *env = &cpu->env;
144     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
145     PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
146     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
147     int i;
148     uint32_t pir;
149     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
150                        0xffffffff, 0xffffffff};
151     uint32_t tbfreq = PNV_TIMEBASE_FREQ;
152     uint32_t cpufreq = 1000000000;
153     uint32_t page_sizes_prop[64];
154     size_t page_sizes_prop_size;
155     int offset;
156     char *nodename;
157     int cpus_offset = get_cpus_node(fdt);
158 
159     pir = pnv_cc->chip_pir(chip, pc->hwid, 0);
160 
161     nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
162     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
163     _FDT(offset);
164     g_free(nodename);
165 
166     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
167 
168     _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
169     _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
170     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
171 
172     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
173     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
174                             env->dcache_line_size)));
175     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
176                             env->dcache_line_size)));
177     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
178                             env->icache_line_size)));
179     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
180                             env->icache_line_size)));
181 
182     if (pcc->l1_dcache_size) {
183         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
184                                pcc->l1_dcache_size)));
185     } else {
186         warn_report("Unknown L1 dcache size for cpu");
187     }
188     if (pcc->l1_icache_size) {
189         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
190                                pcc->l1_icache_size)));
191     } else {
192         warn_report("Unknown L1 icache size for cpu");
193     }
194 
195     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
196     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
197     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
198                            cpu->hash64_opts->slb_size)));
199     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
200     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
201 
202     if (ppc_has_spr(cpu, SPR_PURR)) {
203         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
204     }
205 
206     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
207         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
208                            segs, sizeof(segs))));
209     }
210 
211     /*
212      * Advertise VMX/VSX (vector extensions) if available
213      *   0 / no property == no vector extensions
214      *   1               == VMX / Altivec available
215      *   2               == VSX available
216      */
217     if (env->insns_flags & PPC_ALTIVEC) {
218         uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
219 
220         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
221     }
222 
223     /*
224      * Advertise DFP (Decimal Floating Point) if available
225      *   0 / no property == no DFP
226      *   1               == DFP available
227      */
228     if (env->insns_flags2 & PPC2_DFP) {
229         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
230     }
231 
232     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
233                                                       sizeof(page_sizes_prop));
234     if (page_sizes_prop_size) {
235         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
236                            page_sizes_prop, page_sizes_prop_size)));
237     }
238 
239     /* Build interrupt servers properties */
240     for (i = 0; i < smt_threads; i++) {
241         servers_prop[i] = cpu_to_be32(pnv_cc->chip_pir(chip, pc->hwid, i));
242     }
243     _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                        servers_prop, sizeof(*servers_prop) * smt_threads)));
245 
246     return offset;
247 }
248 
249 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
250                        uint32_t nr_threads)
251 {
252     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
253     uint32_t pir = pcc->chip_pir(chip, hwid, 0);
254     uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
255     char *name;
256     const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
257     uint32_t irange[2], i, rsize;
258     uint64_t *reg;
259     int offset;
260 
261     irange[0] = cpu_to_be32(pir);
262     irange[1] = cpu_to_be32(nr_threads);
263 
264     rsize = sizeof(uint64_t) * 2 * nr_threads;
265     reg = g_malloc(rsize);
266     for (i = 0; i < nr_threads; i++) {
267         /* We know P8 PIR is linear with thread id */
268         reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
269         reg[i * 2 + 1] = cpu_to_be64(0x1000);
270     }
271 
272     name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
273     offset = fdt_add_subnode(fdt, 0, name);
274     _FDT(offset);
275     g_free(name);
276 
277     _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
278     _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
279     _FDT((fdt_setprop_string(fdt, offset, "device_type",
280                               "PowerPC-External-Interrupt-Presentation")));
281     _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
282     _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
283                        irange, sizeof(irange))));
284     _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
285     _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
286     g_free(reg);
287 }
288 
289 /*
290  * Adds a PnvPHB to the chip on P8.
291  * Implemented here, like for defaults PHBs
292  */
293 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
294 {
295     Pnv8Chip *chip8 = PNV8_CHIP(chip);
296 
297     phb->chip = chip;
298 
299     chip8->phbs[chip8->num_phbs] = phb;
300     chip8->num_phbs++;
301     return chip;
302 }
303 
304 /*
305  * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
306  * HTM is always enabled because TCG does implement HTM, it's just a
307  * degenerate implementation.
308  */
309 static const uint8_t pa_features_207[] = { 24, 0,
310                  0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
311                  0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
312                  0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
313                  0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
314 
315 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
316 {
317     static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
318     int i;
319 
320     pnv_dt_xscom(chip, fdt, 0,
321                  cpu_to_be64(PNV_XSCOM_BASE(chip)),
322                  cpu_to_be64(PNV_XSCOM_SIZE),
323                  compat, sizeof(compat));
324 
325     for (i = 0; i < chip->nr_cores; i++) {
326         PnvCore *pnv_core = chip->cores[i];
327         int offset;
328 
329         offset = pnv_dt_core(chip, pnv_core, fdt);
330 
331         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
332                            pa_features_207, sizeof(pa_features_207))));
333 
334         /* Interrupt Control Presenters (ICP). One per core. */
335         pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
336     }
337 
338     if (chip->ram_size) {
339         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
340     }
341 }
342 
343 /*
344  * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
345  */
346 static const uint8_t pa_features_300[] = { 66, 0,
347     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
348     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
349     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
350     /* 6: DS207 */
351     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
352     /* 16: Vector */
353     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
354     /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
355     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
356     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
357     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
358     /* 32: LE atomic, 34: EBB + ext EBB */
359     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
360     /* 40: Radix MMU */
361     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
362     /* 42: PM, 44: PC RA, 46: SC vec'd */
363     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
364     /* 48: SIMD, 50: QP BFP, 52: String */
365     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
366     /* 54: DecFP, 56: DecI, 58: SHA */
367     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
368     /* 60: NM atomic, 62: RNG */
369     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
370 };
371 
372 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
373 {
374     static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
375     int i;
376 
377     pnv_dt_xscom(chip, fdt, 0,
378                  cpu_to_be64(PNV9_XSCOM_BASE(chip)),
379                  cpu_to_be64(PNV9_XSCOM_SIZE),
380                  compat, sizeof(compat));
381 
382     for (i = 0; i < chip->nr_cores; i++) {
383         PnvCore *pnv_core = chip->cores[i];
384         int offset;
385 
386         offset = pnv_dt_core(chip, pnv_core, fdt);
387 
388         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
389                            pa_features_300, sizeof(pa_features_300))));
390     }
391 
392     if (chip->ram_size) {
393         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
394     }
395 
396     pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
397 }
398 
399 /*
400  * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
401  * always disables copy/paste.
402  */
403 static const uint8_t pa_features_31[] = { 74, 0,
404     /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
405     /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
406     0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
407     /* 6: DS207 */
408     0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
409     /* 16: Vector */
410     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
411     /* 18: Vec. Scalar, 20: Vec. XOR */
412     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
413     /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
414     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
415     /* 32: LE atomic, 34: EBB + ext EBB */
416     0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
417     /* 40: Radix MMU */
418     0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
419     /* 42: PM, 44: PC RA, 46: SC vec'd */
420     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
421     /* 48: SIMD, 50: QP BFP, 52: String */
422     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
423     /* 54: DecFP, 56: DecI, 58: SHA */
424     0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
425     /* 60: NM atomic, 62: RNG */
426     0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
427     /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
428     0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
429     /* 72: [P]HASHST/[P]HASHCHK */
430     0x80, 0x00,                         /* 72 - 73 */
431 };
432 
433 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
434 {
435     static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
436     int i;
437 
438     pnv_dt_xscom(chip, fdt, 0,
439                  cpu_to_be64(PNV10_XSCOM_BASE(chip)),
440                  cpu_to_be64(PNV10_XSCOM_SIZE),
441                  compat, sizeof(compat));
442 
443     for (i = 0; i < chip->nr_cores; i++) {
444         PnvCore *pnv_core = chip->cores[i];
445         int offset;
446 
447         offset = pnv_dt_core(chip, pnv_core, fdt);
448 
449         _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
450                            pa_features_31, sizeof(pa_features_31))));
451     }
452 
453     if (chip->ram_size) {
454         pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
455     }
456 
457     pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
458 }
459 
460 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
461 {
462     uint32_t io_base = d->ioport_id;
463     uint32_t io_regs[] = {
464         cpu_to_be32(1),
465         cpu_to_be32(io_base),
466         cpu_to_be32(2)
467     };
468     char *name;
469     int node;
470 
471     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
472     node = fdt_add_subnode(fdt, lpc_off, name);
473     _FDT(node);
474     g_free(name);
475 
476     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
477     _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
478 }
479 
480 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
481 {
482     const char compatible[] = "ns16550\0pnpPNP,501";
483     uint32_t io_base = d->ioport_id;
484     uint32_t io_regs[] = {
485         cpu_to_be32(1),
486         cpu_to_be32(io_base),
487         cpu_to_be32(8)
488     };
489     uint32_t irq;
490     char *name;
491     int node;
492 
493     irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
494 
495     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
496     node = fdt_add_subnode(fdt, lpc_off, name);
497     _FDT(node);
498     g_free(name);
499 
500     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
501     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
502                       sizeof(compatible))));
503 
504     _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
505     _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
506     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
507     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
508                            fdt_get_phandle(fdt, lpc_off))));
509 
510     /* This is needed by Linux */
511     _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
512 }
513 
514 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
515 {
516     const char compatible[] = "bt\0ipmi-bt";
517     uint32_t io_base;
518     uint32_t io_regs[] = {
519         cpu_to_be32(1),
520         0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
521         cpu_to_be32(3)
522     };
523     uint32_t irq;
524     char *name;
525     int node;
526 
527     io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
528     io_regs[1] = cpu_to_be32(io_base);
529 
530     irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
531 
532     name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
533     node = fdt_add_subnode(fdt, lpc_off, name);
534     _FDT(node);
535     g_free(name);
536 
537     _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
538     _FDT((fdt_setprop(fdt, node, "compatible", compatible,
539                       sizeof(compatible))));
540 
541     /* Mark it as reserved to avoid Linux trying to claim it */
542     _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
543     _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
544     _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
545                            fdt_get_phandle(fdt, lpc_off))));
546 }
547 
548 typedef struct ForeachPopulateArgs {
549     void *fdt;
550     int offset;
551 } ForeachPopulateArgs;
552 
553 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
554 {
555     ForeachPopulateArgs *args = opaque;
556     ISADevice *d = ISA_DEVICE(dev);
557 
558     if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
559         pnv_dt_rtc(d, args->fdt, args->offset);
560     } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
561         pnv_dt_serial(d, args->fdt, args->offset);
562     } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
563         pnv_dt_ipmi_bt(d, args->fdt, args->offset);
564     } else {
565         error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
566                      d->ioport_id);
567     }
568 
569     return 0;
570 }
571 
572 /*
573  * The default LPC bus of a multichip system is on chip 0. It's
574  * recognized by the firmware (skiboot) using a "primary" property.
575  */
576 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
577 {
578     int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
579     ForeachPopulateArgs args = {
580         .fdt = fdt,
581         .offset = isa_offset,
582     };
583     uint32_t phandle;
584 
585     _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
586 
587     phandle = qemu_fdt_alloc_phandle(fdt);
588     assert(phandle > 0);
589     _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
590 
591     /*
592      * ISA devices are not necessarily parented to the ISA bus so we
593      * can not use object_child_foreach()
594      */
595     qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
596                        &args);
597 }
598 
599 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
600 {
601     int off;
602 
603     off = fdt_add_subnode(fdt, 0, "ibm,opal");
604     off = fdt_add_subnode(fdt, off, "power-mgt");
605 
606     _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
607 }
608 
609 static void *pnv_dt_create(MachineState *machine)
610 {
611     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
612     PnvMachineState *pnv = PNV_MACHINE(machine);
613     void *fdt;
614     char *buf;
615     int off;
616     int i;
617 
618     fdt = g_malloc0(FDT_MAX_SIZE);
619     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
620 
621     /* /qemu node */
622     _FDT((fdt_add_subnode(fdt, 0, "qemu")));
623 
624     /* Root node */
625     _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
626     _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
627     _FDT((fdt_setprop_string(fdt, 0, "model",
628                              "IBM PowerNV (emulated by qemu)")));
629     _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
630 
631     buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
632     _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
633     if (qemu_uuid_set) {
634         _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
635     }
636     g_free(buf);
637 
638     off = fdt_add_subnode(fdt, 0, "chosen");
639     if (machine->kernel_cmdline) {
640         _FDT((fdt_setprop_string(fdt, off, "bootargs",
641                                  machine->kernel_cmdline)));
642     }
643 
644     if (pnv->initrd_size) {
645         uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
646         uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
647 
648         _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
649                                &start_prop, sizeof(start_prop))));
650         _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
651                                &end_prop, sizeof(end_prop))));
652     }
653 
654     /* Populate device tree for each chip */
655     for (i = 0; i < pnv->num_chips; i++) {
656         PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
657     }
658 
659     /* Populate ISA devices on chip 0 */
660     pnv_dt_isa(pnv, fdt);
661 
662     if (pnv->bmc) {
663         pnv_dt_bmc_sensors(pnv->bmc, fdt);
664     }
665 
666     /* Create an extra node for power management on machines that support it */
667     if (pmc->dt_power_mgt) {
668         pmc->dt_power_mgt(pnv, fdt);
669     }
670 
671     return fdt;
672 }
673 
674 static void pnv_powerdown_notify(Notifier *n, void *opaque)
675 {
676     PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
677 
678     if (pnv->bmc) {
679         pnv_bmc_powerdown(pnv->bmc);
680     }
681 }
682 
683 static void pnv_reset(MachineState *machine, ShutdownCause reason)
684 {
685     PnvMachineState *pnv = PNV_MACHINE(machine);
686     IPMIBmc *bmc;
687     void *fdt;
688 
689     qemu_devices_reset(reason);
690 
691     /*
692      * The machine should provide by default an internal BMC simulator.
693      * If not, try to use the BMC device that was provided on the command
694      * line.
695      */
696     bmc = pnv_bmc_find(&error_fatal);
697     if (!pnv->bmc) {
698         if (!bmc) {
699             if (!qtest_enabled()) {
700                 warn_report("machine has no BMC device. Use '-device "
701                             "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
702                             "to define one");
703             }
704         } else {
705             pnv_bmc_set_pnor(bmc, pnv->pnor);
706             pnv->bmc = bmc;
707         }
708     }
709 
710     fdt = pnv_dt_create(machine);
711 
712     /* Pack resulting tree */
713     _FDT((fdt_pack(fdt)));
714 
715     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
716     cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
717 
718     /*
719      * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
720      * the existing machine->fdt to avoid leaking it during
721      * a reset.
722      */
723     g_free(machine->fdt);
724     machine->fdt = fdt;
725 }
726 
727 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
728 {
729     Pnv8Chip *chip8 = PNV8_CHIP(chip);
730     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
731 
732     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
733     return pnv_lpc_isa_create(&chip8->lpc, true, errp);
734 }
735 
736 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
737 {
738     Pnv8Chip *chip8 = PNV8_CHIP(chip);
739     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
740 
741     qdev_connect_gpio_out(DEVICE(&chip8->lpc), 0, irq);
742     return pnv_lpc_isa_create(&chip8->lpc, false, errp);
743 }
744 
745 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
746 {
747     Pnv9Chip *chip9 = PNV9_CHIP(chip);
748     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
749 
750     qdev_connect_gpio_out(DEVICE(&chip9->lpc), 0, irq);
751     return pnv_lpc_isa_create(&chip9->lpc, false, errp);
752 }
753 
754 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
755 {
756     Pnv10Chip *chip10 = PNV10_CHIP(chip);
757     qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
758 
759     qdev_connect_gpio_out(DEVICE(&chip10->lpc), 0, irq);
760     return pnv_lpc_isa_create(&chip10->lpc, false, errp);
761 }
762 
763 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
764 {
765     return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
766 }
767 
768 static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
769 {
770     Pnv8Chip *chip8 = PNV8_CHIP(chip);
771     int i;
772 
773     g_autoptr(GString) buf = g_string_new("");
774     g_autoptr(HumanReadableText) info = NULL;
775 
776     ics_pic_print_info(&chip8->psi.ics, buf);
777 
778     for (i = 0; i < chip8->num_phbs; i++) {
779         PnvPHB *phb = chip8->phbs[i];
780         PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
781 
782         pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
783         ics_pic_print_info(&phb3->lsis, buf);
784     }
785 
786     info = human_readable_text_from_str(buf);
787     monitor_puts(mon, info->human_readable_text);
788 }
789 
790 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
791 {
792     Monitor *mon = opaque;
793     PnvPHB *phb =  (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
794     g_autoptr(GString) buf = g_string_new("");
795     g_autoptr(HumanReadableText) info = NULL;
796 
797     if (!phb) {
798         return 0;
799     }
800 
801     pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
802     info = human_readable_text_from_str(buf);
803     monitor_puts(mon, info->human_readable_text);
804 
805     return 0;
806 }
807 
808 static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
809 {
810     Pnv9Chip *chip9 = PNV9_CHIP(chip);
811     g_autoptr(GString) buf = g_string_new("");
812     g_autoptr(HumanReadableText) info = NULL;
813 
814     pnv_xive_pic_print_info(&chip9->xive, buf);
815 
816     info = human_readable_text_from_str(buf);
817     monitor_puts(mon, info->human_readable_text);
818 
819     pnv_psi_pic_print_info(&chip9->psi, mon);
820 
821     object_child_foreach_recursive(OBJECT(chip),
822                          pnv_chip_power9_pic_print_info_child, mon);
823 }
824 
825 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
826                                                 uint32_t core_id)
827 {
828     return PNV_XSCOM_EX_BASE(core_id);
829 }
830 
831 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
832                                                 uint32_t core_id)
833 {
834     return PNV9_XSCOM_EC_BASE(core_id);
835 }
836 
837 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
838                                                  uint32_t core_id)
839 {
840     return PNV10_XSCOM_EC_BASE(core_id);
841 }
842 
843 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
844 {
845     PowerPCCPUClass *ppc_default =
846         POWERPC_CPU_CLASS(object_class_by_name(default_type));
847     PowerPCCPUClass *ppc =
848         POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
849 
850     return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
851 }
852 
853 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
854 {
855     ISADevice *dev = isa_new("isa-ipmi-bt");
856 
857     object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
858     object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
859     isa_realize_and_unref(dev, bus, &error_fatal);
860 }
861 
862 static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
863 {
864     Pnv10Chip *chip10 = PNV10_CHIP(chip);
865 
866     pnv_xive2_pic_print_info(&chip10->xive, mon);
867     pnv_psi_pic_print_info(&chip10->psi, mon);
868 
869     object_child_foreach_recursive(OBJECT(chip),
870                          pnv_chip_power9_pic_print_info_child, mon);
871 }
872 
873 /* Always give the first 1GB to chip 0 else we won't boot */
874 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
875 {
876     MachineState *machine = MACHINE(pnv);
877     uint64_t ram_per_chip;
878 
879     assert(machine->ram_size >= 1 * GiB);
880 
881     ram_per_chip = machine->ram_size / pnv->num_chips;
882     if (ram_per_chip >= 1 * GiB) {
883         return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
884     }
885 
886     assert(pnv->num_chips > 1);
887 
888     ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
889     return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
890 }
891 
892 static void pnv_init(MachineState *machine)
893 {
894     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
895     PnvMachineState *pnv = PNV_MACHINE(machine);
896     MachineClass *mc = MACHINE_GET_CLASS(machine);
897     PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
898     char *fw_filename;
899     long fw_size;
900     uint64_t chip_ram_start = 0;
901     int i;
902     char *chip_typename;
903     DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
904     DeviceState *dev;
905 
906     if (kvm_enabled()) {
907         error_report("machine %s does not support the KVM accelerator",
908                      mc->name);
909         exit(EXIT_FAILURE);
910     }
911 
912     /* allocate RAM */
913     if (machine->ram_size < mc->default_ram_size) {
914         char *sz = size_to_str(mc->default_ram_size);
915         error_report("Invalid RAM size, should be bigger than %s", sz);
916         g_free(sz);
917         exit(EXIT_FAILURE);
918     }
919     memory_region_add_subregion(get_system_memory(), 0, machine->ram);
920 
921     /*
922      * Create our simple PNOR device
923      */
924     dev = qdev_new(TYPE_PNV_PNOR);
925     if (pnor) {
926         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
927     }
928     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
929     pnv->pnor = PNV_PNOR(dev);
930 
931     /* load skiboot firmware  */
932     fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
933     if (!fw_filename) {
934         error_report("Could not find OPAL firmware '%s'", bios_name);
935         exit(1);
936     }
937 
938     fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
939     if (fw_size < 0) {
940         error_report("Could not load OPAL firmware '%s'", fw_filename);
941         exit(1);
942     }
943     g_free(fw_filename);
944 
945     /* load kernel */
946     if (machine->kernel_filename) {
947         long kernel_size;
948 
949         kernel_size = load_image_targphys(machine->kernel_filename,
950                                           KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
951         if (kernel_size < 0) {
952             error_report("Could not load kernel '%s'",
953                          machine->kernel_filename);
954             exit(1);
955         }
956     }
957 
958     /* load initrd */
959     if (machine->initrd_filename) {
960         pnv->initrd_base = INITRD_LOAD_ADDR;
961         pnv->initrd_size = load_image_targphys(machine->initrd_filename,
962                                   pnv->initrd_base, INITRD_MAX_SIZE);
963         if (pnv->initrd_size < 0) {
964             error_report("Could not load initial ram disk '%s'",
965                          machine->initrd_filename);
966             exit(1);
967         }
968     }
969 
970     /* MSIs are supported on this platform */
971     msi_nonbroken = true;
972 
973     /*
974      * Check compatibility of the specified CPU with the machine
975      * default.
976      */
977     if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
978         error_report("invalid CPU model '%s' for %s machine",
979                      machine->cpu_type, mc->name);
980         exit(1);
981     }
982 
983     /* Create the processor chips */
984     i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
985     chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
986                                     i, machine->cpu_type);
987     if (!object_class_by_name(chip_typename)) {
988         error_report("invalid chip model '%.*s' for %s machine",
989                      i, machine->cpu_type, mc->name);
990         exit(1);
991     }
992 
993     pnv->num_chips =
994         machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
995 
996     if (machine->smp.threads > 8) {
997         error_report("Cannot support more than 8 threads/core "
998                      "on a powernv machine");
999         exit(1);
1000     }
1001     if (!is_power_of_2(machine->smp.threads)) {
1002         error_report("Cannot support %d threads/core on a powernv"
1003                      "machine because it must be a power of 2",
1004                      machine->smp.threads);
1005         exit(1);
1006     }
1007     /*
1008      * TODO: should we decide on how many chips we can create based
1009      * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1010      */
1011     if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1012         error_report("invalid number of chips: '%d'", pnv->num_chips);
1013         error_printf(
1014             "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1015         exit(1);
1016     }
1017 
1018     pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1019     for (i = 0; i < pnv->num_chips; i++) {
1020         char chip_name[32];
1021         Object *chip = OBJECT(qdev_new(chip_typename));
1022         uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
1023 
1024         pnv->chips[i] = PNV_CHIP(chip);
1025 
1026         /* Distribute RAM among the chips  */
1027         object_property_set_int(chip, "ram-start", chip_ram_start,
1028                                 &error_fatal);
1029         object_property_set_int(chip, "ram-size", chip_ram_size,
1030                                 &error_fatal);
1031         chip_ram_start += chip_ram_size;
1032 
1033         snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1034         object_property_add_child(OBJECT(pnv), chip_name, chip);
1035         object_property_set_int(chip, "chip-id", i, &error_fatal);
1036         object_property_set_int(chip, "nr-cores", machine->smp.cores,
1037                                 &error_fatal);
1038         object_property_set_int(chip, "nr-threads", machine->smp.threads,
1039                                 &error_fatal);
1040         /*
1041          * The POWER8 machine use the XICS interrupt interface.
1042          * Propagate the XICS fabric to the chip and its controllers.
1043          */
1044         if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1045             object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1046         }
1047         if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1048             object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1049                                      &error_abort);
1050         }
1051         sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1052     }
1053     g_free(chip_typename);
1054 
1055     /* Instantiate ISA bus on chip 0 */
1056     pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1057 
1058     /* Create serial port */
1059     serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1060 
1061     /* Create an RTC ISA device too */
1062     mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1063 
1064     /*
1065      * Create the machine BMC simulator and the IPMI BT device for
1066      * communication with the BMC
1067      */
1068     if (defaults_enabled()) {
1069         pnv->bmc = pnv_bmc_create(pnv->pnor);
1070         pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1071     }
1072 
1073     /*
1074      * The PNOR is mapped on the LPC FW address space by the BMC.
1075      * Since we can not reach the remote BMC machine with LPC memops,
1076      * map it always for now.
1077      */
1078     memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1079                                 &pnv->pnor->mmio);
1080 
1081     /*
1082      * OpenPOWER systems use a IPMI SEL Event message to notify the
1083      * host to powerdown
1084      */
1085     pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1086     qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1087 
1088     /*
1089      * Create/Connect any machine-specific I2C devices
1090      */
1091     if (pmc->i2c_init) {
1092         pmc->i2c_init(pnv);
1093     }
1094 }
1095 
1096 /*
1097  *    0:21  Reserved - Read as zeros
1098  *   22:24  Chip ID
1099  *   25:28  Core number
1100  *   29:31  Thread ID
1101  */
1102 static uint32_t pnv_chip_pir_p8(PnvChip *chip, uint32_t core_id,
1103                                 uint32_t thread_id)
1104 {
1105     return (chip->chip_id << 7) | (core_id << 3) | thread_id;
1106 }
1107 
1108 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1109                                         Error **errp)
1110 {
1111     Pnv8Chip *chip8 = PNV8_CHIP(chip);
1112     Error *local_err = NULL;
1113     Object *obj;
1114     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1115 
1116     obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1117     if (local_err) {
1118         error_propagate(errp, local_err);
1119         return;
1120     }
1121 
1122     pnv_cpu->intc = obj;
1123 }
1124 
1125 
1126 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1127 {
1128     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1129 
1130     icp_reset(ICP(pnv_cpu->intc));
1131 }
1132 
1133 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1134 {
1135     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1136 
1137     icp_destroy(ICP(pnv_cpu->intc));
1138     pnv_cpu->intc = NULL;
1139 }
1140 
1141 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1142                                             GString *buf)
1143 {
1144     icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1145 }
1146 
1147 /*
1148  *    0:48  Reserved - Read as zeroes
1149  *   49:52  Node ID
1150  *   53:55  Chip ID
1151  *   56     Reserved - Read as zero
1152  *   57:61  Core number
1153  *   62:63  Thread ID
1154  *
1155  * We only care about the lower bits. uint32_t is fine for the moment.
1156  */
1157 static uint32_t pnv_chip_pir_p9(PnvChip *chip, uint32_t core_id,
1158                                 uint32_t thread_id)
1159 {
1160     if (chip->nr_threads == 8) {
1161         return (chip->chip_id << 8) | ((thread_id & 1) << 2) | (core_id << 3) |
1162                (thread_id >> 1);
1163     } else {
1164         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1165     }
1166 }
1167 
1168 /*
1169  *    0:48  Reserved - Read as zeroes
1170  *   49:52  Node ID
1171  *   53:55  Chip ID
1172  *   56     Reserved - Read as zero
1173  *   57:59  Quad ID
1174  *   60     Core Chiplet Pair ID
1175  *   61:63  Thread/Core Chiplet ID t0-t2
1176  *
1177  * We only care about the lower bits. uint32_t is fine for the moment.
1178  */
1179 static uint32_t pnv_chip_pir_p10(PnvChip *chip, uint32_t core_id,
1180                                  uint32_t thread_id)
1181 {
1182     if (chip->nr_threads == 8) {
1183         return (chip->chip_id << 8) | ((core_id / 4) << 4) |
1184                ((core_id % 2) << 3) | thread_id;
1185     } else {
1186         return (chip->chip_id << 8) | (core_id << 2) | thread_id;
1187     }
1188 }
1189 
1190 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1191                                         Error **errp)
1192 {
1193     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1194     Error *local_err = NULL;
1195     Object *obj;
1196     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1197 
1198     /*
1199      * The core creates its interrupt presenter but the XIVE interrupt
1200      * controller object is initialized afterwards. Hopefully, it's
1201      * only used at runtime.
1202      */
1203     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1204                            &local_err);
1205     if (local_err) {
1206         error_propagate(errp, local_err);
1207         return;
1208     }
1209 
1210     pnv_cpu->intc = obj;
1211 }
1212 
1213 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1214 {
1215     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1216 
1217     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1218 }
1219 
1220 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1221 {
1222     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1223 
1224     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1225     pnv_cpu->intc = NULL;
1226 }
1227 
1228 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1229                                             GString *buf)
1230 {
1231     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1232 }
1233 
1234 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1235                                         Error **errp)
1236 {
1237     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1238     Error *local_err = NULL;
1239     Object *obj;
1240     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1241 
1242     /*
1243      * The core creates its interrupt presenter but the XIVE2 interrupt
1244      * controller object is initialized afterwards. Hopefully, it's
1245      * only used at runtime.
1246      */
1247     obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1248                            &local_err);
1249     if (local_err) {
1250         error_propagate(errp, local_err);
1251         return;
1252     }
1253 
1254     pnv_cpu->intc = obj;
1255 }
1256 
1257 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1258 {
1259     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1260 
1261     xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1262 }
1263 
1264 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1265 {
1266     PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1267 
1268     xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1269     pnv_cpu->intc = NULL;
1270 }
1271 
1272 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1273                                              GString *buf)
1274 {
1275     xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1276 }
1277 
1278 /*
1279  * Allowed core identifiers on a POWER8 Processor Chip :
1280  *
1281  * <EX0 reserved>
1282  *  EX1  - Venice only
1283  *  EX2  - Venice only
1284  *  EX3  - Venice only
1285  *  EX4
1286  *  EX5
1287  *  EX6
1288  * <EX7,8 reserved> <reserved>
1289  *  EX9  - Venice only
1290  *  EX10 - Venice only
1291  *  EX11 - Venice only
1292  *  EX12
1293  *  EX13
1294  *  EX14
1295  * <EX15 reserved>
1296  */
1297 #define POWER8E_CORE_MASK  (0x7070ull)
1298 #define POWER8_CORE_MASK   (0x7e7eull)
1299 
1300 /*
1301  * POWER9 has 24 cores, ids starting at 0x0
1302  */
1303 #define POWER9_CORE_MASK   (0xffffffffffffffull)
1304 
1305 
1306 #define POWER10_CORE_MASK  (0xffffffffffffffull)
1307 
1308 static void pnv_chip_power8_instance_init(Object *obj)
1309 {
1310     Pnv8Chip *chip8 = PNV8_CHIP(obj);
1311     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1312     int i;
1313 
1314     object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1315                              (Object **)&chip8->xics,
1316                              object_property_allow_set_link,
1317                              OBJ_PROP_LINK_STRONG);
1318 
1319     object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1320 
1321     object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1322 
1323     object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1324 
1325     object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1326 
1327     if (defaults_enabled()) {
1328         chip8->num_phbs = pcc->num_phbs;
1329 
1330         for (i = 0; i < chip8->num_phbs; i++) {
1331             Object *phb = object_new(TYPE_PNV_PHB);
1332 
1333             /*
1334              * We need the chip to parent the PHB to allow the DT
1335              * to build correctly (via pnv_xscom_dt()).
1336              *
1337              * TODO: the PHB should be parented by a PEC device that, at
1338              * this moment, is not modelled powernv8/phb3.
1339              */
1340             object_property_add_child(obj, "phb[*]", phb);
1341             chip8->phbs[i] = PNV_PHB(phb);
1342         }
1343     }
1344 
1345 }
1346 
1347 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1348  {
1349     PnvChip *chip = PNV_CHIP(chip8);
1350     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1351     int i, j;
1352     char *name;
1353 
1354     name = g_strdup_printf("icp-%x", chip->chip_id);
1355     memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1356     g_free(name);
1357     memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1358                                 &chip8->icp_mmio);
1359 
1360     /* Map the ICP registers for each thread */
1361     for (i = 0; i < chip->nr_cores; i++) {
1362         PnvCore *pnv_core = chip->cores[i];
1363         int core_hwid = CPU_CORE(pnv_core)->core_id;
1364 
1365         for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1366             uint32_t pir = pcc->chip_pir(chip, core_hwid, j);
1367             PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1368 
1369             memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1370                                         &icp->mmio);
1371         }
1372     }
1373 }
1374 
1375 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1376 {
1377     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1378     PnvChip *chip = PNV_CHIP(dev);
1379     Pnv8Chip *chip8 = PNV8_CHIP(dev);
1380     Pnv8Psi *psi8 = &chip8->psi;
1381     Error *local_err = NULL;
1382     int i;
1383 
1384     assert(chip8->xics);
1385 
1386     /* XSCOM bridge is first */
1387     pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1388 
1389     pcc->parent_realize(dev, &local_err);
1390     if (local_err) {
1391         error_propagate(errp, local_err);
1392         return;
1393     }
1394 
1395     /* Processor Service Interface (PSI) Host Bridge */
1396     object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1397                             &error_fatal);
1398     object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1399                              OBJECT(chip8->xics), &error_abort);
1400     if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1401         return;
1402     }
1403     pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1404                             &PNV_PSI(psi8)->xscom_regs);
1405 
1406     /* Create LPC controller */
1407     qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1408     pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1409 
1410     chip->fw_mr = &chip8->lpc.isa_fw;
1411     chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1412                                             (uint64_t) PNV_XSCOM_BASE(chip),
1413                                             PNV_XSCOM_LPC_BASE);
1414 
1415     /*
1416      * Interrupt Management Area. This is the memory region holding
1417      * all the Interrupt Control Presenter (ICP) registers
1418      */
1419     pnv_chip_icp_realize(chip8, &local_err);
1420     if (local_err) {
1421         error_propagate(errp, local_err);
1422         return;
1423     }
1424 
1425     /* Create the simplified OCC model */
1426     if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1427         return;
1428     }
1429     pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1430     qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1431                           qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1432 
1433     /* OCC SRAM model */
1434     memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1435                                 &chip8->occ.sram_regs);
1436 
1437     /* HOMER */
1438     object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1439                              &error_abort);
1440     if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1441         return;
1442     }
1443     /* Homer Xscom region */
1444     pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1445 
1446     /* Homer mmio region */
1447     memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1448                                 &chip8->homer.regs);
1449 
1450     /* PHB controllers */
1451     for (i = 0; i < chip8->num_phbs; i++) {
1452         PnvPHB *phb = chip8->phbs[i];
1453 
1454         object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1455         object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1456                                 &error_fatal);
1457         object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1458                                  &error_fatal);
1459         if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1460             return;
1461         }
1462     }
1463 }
1464 
1465 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1466 {
1467     addr &= (PNV_XSCOM_SIZE - 1);
1468     return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1469 }
1470 
1471 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1472 {
1473     DeviceClass *dc = DEVICE_CLASS(klass);
1474     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1475 
1476     k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1477     k->cores_mask = POWER8E_CORE_MASK;
1478     k->num_phbs = 3;
1479     k->chip_pir = pnv_chip_pir_p8;
1480     k->intc_create = pnv_chip_power8_intc_create;
1481     k->intc_reset = pnv_chip_power8_intc_reset;
1482     k->intc_destroy = pnv_chip_power8_intc_destroy;
1483     k->intc_print_info = pnv_chip_power8_intc_print_info;
1484     k->isa_create = pnv_chip_power8_isa_create;
1485     k->dt_populate = pnv_chip_power8_dt_populate;
1486     k->pic_print_info = pnv_chip_power8_pic_print_info;
1487     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1488     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1489     dc->desc = "PowerNV Chip POWER8E";
1490 
1491     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1492                                     &k->parent_realize);
1493 }
1494 
1495 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1496 {
1497     DeviceClass *dc = DEVICE_CLASS(klass);
1498     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1499 
1500     k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1501     k->cores_mask = POWER8_CORE_MASK;
1502     k->num_phbs = 3;
1503     k->chip_pir = pnv_chip_pir_p8;
1504     k->intc_create = pnv_chip_power8_intc_create;
1505     k->intc_reset = pnv_chip_power8_intc_reset;
1506     k->intc_destroy = pnv_chip_power8_intc_destroy;
1507     k->intc_print_info = pnv_chip_power8_intc_print_info;
1508     k->isa_create = pnv_chip_power8_isa_create;
1509     k->dt_populate = pnv_chip_power8_dt_populate;
1510     k->pic_print_info = pnv_chip_power8_pic_print_info;
1511     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1512     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1513     dc->desc = "PowerNV Chip POWER8";
1514 
1515     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1516                                     &k->parent_realize);
1517 }
1518 
1519 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1520 {
1521     DeviceClass *dc = DEVICE_CLASS(klass);
1522     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1523 
1524     k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1525     k->cores_mask = POWER8_CORE_MASK;
1526     k->num_phbs = 4;
1527     k->chip_pir = pnv_chip_pir_p8;
1528     k->intc_create = pnv_chip_power8_intc_create;
1529     k->intc_reset = pnv_chip_power8_intc_reset;
1530     k->intc_destroy = pnv_chip_power8_intc_destroy;
1531     k->intc_print_info = pnv_chip_power8_intc_print_info;
1532     k->isa_create = pnv_chip_power8nvl_isa_create;
1533     k->dt_populate = pnv_chip_power8_dt_populate;
1534     k->pic_print_info = pnv_chip_power8_pic_print_info;
1535     k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1536     k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1537     dc->desc = "PowerNV Chip POWER8NVL";
1538 
1539     device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1540                                     &k->parent_realize);
1541 }
1542 
1543 static void pnv_chip_power9_instance_init(Object *obj)
1544 {
1545     PnvChip *chip = PNV_CHIP(obj);
1546     Pnv9Chip *chip9 = PNV9_CHIP(obj);
1547     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1548     int i;
1549 
1550     object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1551     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1552                               "xive-fabric");
1553 
1554     object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1555 
1556     object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1557 
1558     object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1559 
1560     object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1561 
1562     object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1563 
1564     object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1565 
1566     /* Number of PECs is the chip default */
1567     chip->num_pecs = pcc->num_pecs;
1568 
1569     for (i = 0; i < chip->num_pecs; i++) {
1570         object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1571                                 TYPE_PNV_PHB4_PEC);
1572     }
1573 
1574     for (i = 0; i < pcc->i2c_num_engines; i++) {
1575         object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1576     }
1577 }
1578 
1579 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1580                                       PnvCore *pnv_core,
1581                                       const char *type)
1582 {
1583     char eq_name[32];
1584     int core_id = CPU_CORE(pnv_core)->core_id;
1585 
1586     snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1587     object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1588                                        sizeof(*eq), type,
1589                                        &error_fatal, NULL);
1590 
1591     object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1592     qdev_realize(DEVICE(eq), NULL, &error_fatal);
1593 }
1594 
1595 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1596 {
1597     PnvChip *chip = PNV_CHIP(chip9);
1598     int i;
1599 
1600     chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1601     chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1602 
1603     for (i = 0; i < chip9->nr_quads; i++) {
1604         PnvQuad *eq = &chip9->quads[i];
1605 
1606         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1607                                   PNV_QUAD_TYPE_NAME("power9"));
1608 
1609         pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1610                                 &eq->xscom_regs);
1611     }
1612 }
1613 
1614 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1615 {
1616     Pnv9Chip *chip9 = PNV9_CHIP(chip);
1617     int i;
1618 
1619     for (i = 0; i < chip->num_pecs; i++) {
1620         PnvPhb4PecState *pec = &chip9->pecs[i];
1621         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1622         uint32_t pec_nest_base;
1623         uint32_t pec_pci_base;
1624 
1625         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1626         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1627                                 &error_fatal);
1628         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1629                                  &error_fatal);
1630         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1631             return;
1632         }
1633 
1634         pec_nest_base = pecc->xscom_nest_base(pec);
1635         pec_pci_base = pecc->xscom_pci_base(pec);
1636 
1637         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1638         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1639     }
1640 }
1641 
1642 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1643 {
1644     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1645     Pnv9Chip *chip9 = PNV9_CHIP(dev);
1646     PnvChip *chip = PNV_CHIP(dev);
1647     Pnv9Psi *psi9 = &chip9->psi;
1648     Error *local_err = NULL;
1649     int i;
1650 
1651     /* XSCOM bridge is first */
1652     pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1653 
1654     pcc->parent_realize(dev, &local_err);
1655     if (local_err) {
1656         error_propagate(errp, local_err);
1657         return;
1658     }
1659 
1660     pnv_chip_quad_realize(chip9, &local_err);
1661     if (local_err) {
1662         error_propagate(errp, local_err);
1663         return;
1664     }
1665 
1666     /* XIVE interrupt controller (POWER9) */
1667     object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1668                             PNV9_XIVE_IC_BASE(chip), &error_fatal);
1669     object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1670                             PNV9_XIVE_VC_BASE(chip), &error_fatal);
1671     object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1672                             PNV9_XIVE_PC_BASE(chip), &error_fatal);
1673     object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1674                             PNV9_XIVE_TM_BASE(chip), &error_fatal);
1675     object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1676                              &error_abort);
1677     if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1678         return;
1679     }
1680     pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1681                             &chip9->xive.xscom_regs);
1682 
1683     /* Processor Service Interface (PSI) Host Bridge */
1684     object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1685                             &error_fatal);
1686     /* This is the only device with 4k ESB pages */
1687     object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1688                             &error_fatal);
1689     if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1690         return;
1691     }
1692     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1693                             &PNV_PSI(psi9)->xscom_regs);
1694 
1695     /* LPC */
1696     if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1697         return;
1698     }
1699     memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1700                                 &chip9->lpc.xscom_regs);
1701 
1702     chip->fw_mr = &chip9->lpc.isa_fw;
1703     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1704                                             (uint64_t) PNV9_LPCM_BASE(chip));
1705 
1706     /* ChipTOD */
1707     object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1708                              chip->chip_id == 0, &error_abort);
1709     object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1710                              chip->chip_id == 1, &error_abort);
1711     object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1712                              &error_abort);
1713     if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1714         return;
1715     }
1716     pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1717                             &chip9->chiptod.xscom_regs);
1718 
1719     /* Create the simplified OCC model */
1720     if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1721         return;
1722     }
1723     pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1724     qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1725                               DEVICE(psi9), PSIHB9_IRQ_OCC));
1726 
1727     /* OCC SRAM model */
1728     memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1729                                 &chip9->occ.sram_regs);
1730 
1731     /* SBE */
1732     if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1733         return;
1734     }
1735     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1736                             &chip9->sbe.xscom_ctrl_regs);
1737     pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1738                             &chip9->sbe.xscom_mbox_regs);
1739     qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1740                               DEVICE(psi9), PSIHB9_IRQ_PSU));
1741 
1742     /* HOMER */
1743     object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1744                              &error_abort);
1745     if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1746         return;
1747     }
1748     /* Homer Xscom region */
1749     pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1750 
1751     /* Homer mmio region */
1752     memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1753                                 &chip9->homer.regs);
1754 
1755     /* PEC PHBs */
1756     pnv_chip_power9_pec_realize(chip, &local_err);
1757     if (local_err) {
1758         error_propagate(errp, local_err);
1759         return;
1760     }
1761 
1762     /*
1763      * I2C
1764      */
1765     for (i = 0; i < pcc->i2c_num_engines; i++) {
1766         Object *obj =  OBJECT(&chip9->i2c[i]);
1767 
1768         object_property_set_int(obj, "engine", i + 1, &error_fatal);
1769         object_property_set_int(obj, "num-busses",
1770                                 pcc->i2c_ports_per_engine[i],
1771                                 &error_fatal);
1772         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1773         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1774             return;
1775         }
1776         pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1777                                 (chip9->i2c[i].engine - 1) *
1778                                         PNV9_XSCOM_I2CM_SIZE,
1779                                 &chip9->i2c[i].xscom_regs);
1780         qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1781                               qdev_get_gpio_in(DEVICE(psi9),
1782                                                PSIHB9_IRQ_SBE_I2C));
1783     }
1784 }
1785 
1786 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1787 {
1788     addr &= (PNV9_XSCOM_SIZE - 1);
1789     return addr >> 3;
1790 }
1791 
1792 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1793 {
1794     DeviceClass *dc = DEVICE_CLASS(klass);
1795     PnvChipClass *k = PNV_CHIP_CLASS(klass);
1796     static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1797 
1798     k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1799     k->cores_mask = POWER9_CORE_MASK;
1800     k->chip_pir = pnv_chip_pir_p9;
1801     k->intc_create = pnv_chip_power9_intc_create;
1802     k->intc_reset = pnv_chip_power9_intc_reset;
1803     k->intc_destroy = pnv_chip_power9_intc_destroy;
1804     k->intc_print_info = pnv_chip_power9_intc_print_info;
1805     k->isa_create = pnv_chip_power9_isa_create;
1806     k->dt_populate = pnv_chip_power9_dt_populate;
1807     k->pic_print_info = pnv_chip_power9_pic_print_info;
1808     k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1809     k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1810     dc->desc = "PowerNV Chip POWER9";
1811     k->num_pecs = PNV9_CHIP_MAX_PEC;
1812     k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1813     k->i2c_ports_per_engine = i2c_ports_per_engine;
1814 
1815     device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1816                                     &k->parent_realize);
1817 }
1818 
1819 static void pnv_chip_power10_instance_init(Object *obj)
1820 {
1821     PnvChip *chip = PNV_CHIP(obj);
1822     Pnv10Chip *chip10 = PNV10_CHIP(obj);
1823     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1824     int i;
1825 
1826     object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1827     object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1828                               "xive-fabric");
1829     object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1830     object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1831     object_initialize_child(obj, "chiptod", &chip10->chiptod,
1832                             TYPE_PNV10_CHIPTOD);
1833     object_initialize_child(obj, "occ",  &chip10->occ, TYPE_PNV10_OCC);
1834     object_initialize_child(obj, "sbe",  &chip10->sbe, TYPE_PNV10_SBE);
1835     object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1836     object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1837                             TYPE_PNV_N1_CHIPLET);
1838 
1839     chip->num_pecs = pcc->num_pecs;
1840 
1841     for (i = 0; i < chip->num_pecs; i++) {
1842         object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1843                                 TYPE_PNV_PHB5_PEC);
1844     }
1845 
1846     for (i = 0; i < pcc->i2c_num_engines; i++) {
1847         object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1848     }
1849 }
1850 
1851 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1852 {
1853     PnvChip *chip = PNV_CHIP(chip10);
1854     int i;
1855 
1856     chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1857     chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1858 
1859     for (i = 0; i < chip10->nr_quads; i++) {
1860         PnvQuad *eq = &chip10->quads[i];
1861 
1862         pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1863                                   PNV_QUAD_TYPE_NAME("power10"));
1864 
1865         pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1866                                 &eq->xscom_regs);
1867 
1868         pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1869                                 &eq->xscom_qme_regs);
1870     }
1871 }
1872 
1873 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1874 {
1875     Pnv10Chip *chip10 = PNV10_CHIP(chip);
1876     int i;
1877 
1878     for (i = 0; i < chip->num_pecs; i++) {
1879         PnvPhb4PecState *pec = &chip10->pecs[i];
1880         PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1881         uint32_t pec_nest_base;
1882         uint32_t pec_pci_base;
1883 
1884         object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1885         object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1886                                 &error_fatal);
1887         object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1888                                  &error_fatal);
1889         if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1890             return;
1891         }
1892 
1893         pec_nest_base = pecc->xscom_nest_base(pec);
1894         pec_pci_base = pecc->xscom_pci_base(pec);
1895 
1896         pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1897         pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1898     }
1899 }
1900 
1901 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1902 {
1903     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1904     PnvChip *chip = PNV_CHIP(dev);
1905     Pnv10Chip *chip10 = PNV10_CHIP(dev);
1906     Error *local_err = NULL;
1907     int i;
1908 
1909     /* XSCOM bridge is first */
1910     pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
1911 
1912     pcc->parent_realize(dev, &local_err);
1913     if (local_err) {
1914         error_propagate(errp, local_err);
1915         return;
1916     }
1917 
1918     pnv_chip_power10_quad_realize(chip10, &local_err);
1919     if (local_err) {
1920         error_propagate(errp, local_err);
1921         return;
1922     }
1923 
1924     /* XIVE2 interrupt controller (POWER10) */
1925     object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
1926                             PNV10_XIVE2_IC_BASE(chip), &error_fatal);
1927     object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
1928                             PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
1929     object_property_set_int(OBJECT(&chip10->xive), "end-bar",
1930                             PNV10_XIVE2_END_BASE(chip), &error_fatal);
1931     object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
1932                             PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
1933     object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
1934                             PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
1935     object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
1936                             PNV10_XIVE2_TM_BASE(chip), &error_fatal);
1937     object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
1938                              &error_abort);
1939     if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
1940         return;
1941     }
1942     pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
1943                             &chip10->xive.xscom_regs);
1944 
1945     /* Processor Service Interface (PSI) Host Bridge */
1946     object_property_set_int(OBJECT(&chip10->psi), "bar",
1947                             PNV10_PSIHB_BASE(chip), &error_fatal);
1948     /* PSI can now be configured to use 64k ESB pages on POWER10 */
1949     object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
1950                             &error_fatal);
1951     if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1952         return;
1953     }
1954     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1955                             &PNV_PSI(&chip10->psi)->xscom_regs);
1956 
1957     /* LPC */
1958     if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1959         return;
1960     }
1961     memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1962                                 &chip10->lpc.xscom_regs);
1963 
1964     chip->fw_mr = &chip10->lpc.isa_fw;
1965     chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1966                                             (uint64_t) PNV10_LPCM_BASE(chip));
1967 
1968     /* ChipTOD */
1969     object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
1970                              chip->chip_id == 0, &error_abort);
1971     object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
1972                              chip->chip_id == 1, &error_abort);
1973     object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
1974                              &error_abort);
1975     if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
1976         return;
1977     }
1978     pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
1979                             &chip10->chiptod.xscom_regs);
1980 
1981     /* Create the simplified OCC model */
1982     if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
1983         return;
1984     }
1985     pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
1986                             &chip10->occ.xscom_regs);
1987     qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
1988                               DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
1989 
1990     /* OCC SRAM model */
1991     memory_region_add_subregion(get_system_memory(),
1992                                 PNV10_OCC_SENSOR_BASE(chip),
1993                                 &chip10->occ.sram_regs);
1994 
1995     /* SBE */
1996     if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
1997         return;
1998     }
1999     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2000                             &chip10->sbe.xscom_ctrl_regs);
2001     pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2002                             &chip10->sbe.xscom_mbox_regs);
2003     qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2004                               DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2005 
2006     /* HOMER */
2007     object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2008                              &error_abort);
2009     if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2010         return;
2011     }
2012     /* Homer Xscom region */
2013     pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2014                             &chip10->homer.pba_regs);
2015 
2016     /* Homer mmio region */
2017     memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2018                                 &chip10->homer.regs);
2019 
2020     /* N1 chiplet */
2021     if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2022         return;
2023     }
2024     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2025              &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2026 
2027     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2028                            &chip10->n1_chiplet.xscom_pb_eq_mr);
2029 
2030     pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2031                            &chip10->n1_chiplet.xscom_pb_es_mr);
2032 
2033     /* PHBs */
2034     pnv_chip_power10_phb_realize(chip, &local_err);
2035     if (local_err) {
2036         error_propagate(errp, local_err);
2037         return;
2038     }
2039 
2040 
2041     /*
2042      * I2C
2043      */
2044     for (i = 0; i < pcc->i2c_num_engines; i++) {
2045         Object *obj =  OBJECT(&chip10->i2c[i]);
2046 
2047         object_property_set_int(obj, "engine", i + 1, &error_fatal);
2048         object_property_set_int(obj, "num-busses",
2049                                 pcc->i2c_ports_per_engine[i],
2050                                 &error_fatal);
2051         object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2052         if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2053             return;
2054         }
2055         pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2056                                 (chip10->i2c[i].engine - 1) *
2057                                         PNV10_XSCOM_I2CM_SIZE,
2058                                 &chip10->i2c[i].xscom_regs);
2059         qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2060                               qdev_get_gpio_in(DEVICE(&chip10->psi),
2061                                                PSIHB9_IRQ_SBE_I2C));
2062     }
2063 
2064 }
2065 
2066 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2067 {
2068     int i;
2069     for (i = 0; i < pnv->num_chips; i++) {
2070         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2071 
2072         /*
2073          * Add a PCA9552 I2C device for PCIe hotplug control
2074          * to engine 2, bus 1, address 0x63
2075          */
2076         I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2077                                                 "pca9552", 0x63);
2078 
2079         /*
2080          * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2081          * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2082          * after hypervisor code sets a SLOTx_EN pin high.
2083          */
2084         qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2085         qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2086         qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2087         qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2088         qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2089 
2090         /*
2091          * Add a PCA9554 I2C device for cable card presence detection
2092          * to engine 2, bus 1, address 0x25
2093          */
2094         i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2095     }
2096 }
2097 
2098 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2099 {
2100     addr &= (PNV10_XSCOM_SIZE - 1);
2101     return addr >> 3;
2102 }
2103 
2104 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2105 {
2106     DeviceClass *dc = DEVICE_CLASS(klass);
2107     PnvChipClass *k = PNV_CHIP_CLASS(klass);
2108     static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2109 
2110     k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
2111     k->cores_mask = POWER10_CORE_MASK;
2112     k->chip_pir = pnv_chip_pir_p10;
2113     k->intc_create = pnv_chip_power10_intc_create;
2114     k->intc_reset = pnv_chip_power10_intc_reset;
2115     k->intc_destroy = pnv_chip_power10_intc_destroy;
2116     k->intc_print_info = pnv_chip_power10_intc_print_info;
2117     k->isa_create = pnv_chip_power10_isa_create;
2118     k->dt_populate = pnv_chip_power10_dt_populate;
2119     k->pic_print_info = pnv_chip_power10_pic_print_info;
2120     k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2121     k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2122     dc->desc = "PowerNV Chip POWER10";
2123     k->num_pecs = PNV10_CHIP_MAX_PEC;
2124     k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2125     k->i2c_ports_per_engine = i2c_ports_per_engine;
2126 
2127     device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2128                                     &k->parent_realize);
2129 }
2130 
2131 static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
2132 {
2133     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2134     int cores_max;
2135 
2136     /*
2137      * No custom mask for this chip, let's use the default one from *
2138      * the chip class
2139      */
2140     if (!chip->cores_mask) {
2141         chip->cores_mask = pcc->cores_mask;
2142     }
2143 
2144     /* filter alien core ids ! some are reserved */
2145     if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2146         error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2147                    chip->cores_mask);
2148         return;
2149     }
2150     chip->cores_mask &= pcc->cores_mask;
2151 
2152     /* now that we have a sane layout, let check the number of cores */
2153     cores_max = ctpop64(chip->cores_mask);
2154     if (chip->nr_cores > cores_max) {
2155         error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2156                    cores_max);
2157         return;
2158     }
2159 }
2160 
2161 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2162 {
2163     Error *error = NULL;
2164     PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2165     const char *typename = pnv_chip_core_typename(chip);
2166     int i, core_hwid;
2167     PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2168 
2169     if (!object_class_by_name(typename)) {
2170         error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2171         return;
2172     }
2173 
2174     /* Cores */
2175     pnv_chip_core_sanitize(chip, &error);
2176     if (error) {
2177         error_propagate(errp, error);
2178         return;
2179     }
2180 
2181     chip->cores = g_new0(PnvCore *, chip->nr_cores);
2182 
2183     for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2184              && (i < chip->nr_cores); core_hwid++) {
2185         char core_name[32];
2186         PnvCore *pnv_core;
2187         uint64_t xscom_core_base;
2188 
2189         if (!(chip->cores_mask & (1ull << core_hwid))) {
2190             continue;
2191         }
2192 
2193         pnv_core = PNV_CORE(object_new(typename));
2194 
2195         snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2196         object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2197         chip->cores[i] = pnv_core;
2198         object_property_set_int(OBJECT(pnv_core), "nr-threads",
2199                                 chip->nr_threads, &error_fatal);
2200         object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2201                                 core_hwid, &error_fatal);
2202         object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2203                                 &error_fatal);
2204         object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2205                                 &error_fatal);
2206         object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2207                                  &error_abort);
2208         qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2209 
2210         /* Each core has an XSCOM MMIO region */
2211         xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2212 
2213         pnv_xscom_add_subregion(chip, xscom_core_base,
2214                                 &pnv_core->xscom_regs);
2215         i++;
2216     }
2217 }
2218 
2219 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2220 {
2221     PnvChip *chip = PNV_CHIP(dev);
2222     Error *error = NULL;
2223 
2224     /* Cores */
2225     pnv_chip_core_realize(chip, &error);
2226     if (error) {
2227         error_propagate(errp, error);
2228         return;
2229     }
2230 }
2231 
2232 static Property pnv_chip_properties[] = {
2233     DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2234     DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2235     DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2236     DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2237     DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2238     DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2239     DEFINE_PROP_END_OF_LIST(),
2240 };
2241 
2242 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2243 {
2244     DeviceClass *dc = DEVICE_CLASS(klass);
2245 
2246     set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2247     dc->realize = pnv_chip_realize;
2248     device_class_set_props(dc, pnv_chip_properties);
2249     dc->desc = "PowerNV Chip";
2250 }
2251 
2252 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2253 {
2254     int i;
2255 
2256     for (i = 0; i < chip->nr_cores; i++) {
2257         PnvCore *pc = chip->cores[i];
2258         CPUCore *cc = CPU_CORE(pc);
2259 
2260         if (cc->core_id == core_id) {
2261             return pc;
2262         }
2263     }
2264     return NULL;
2265 }
2266 
2267 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2268 {
2269     int i, j;
2270 
2271     for (i = 0; i < chip->nr_cores; i++) {
2272         PnvCore *pc = chip->cores[i];
2273         CPUCore *cc = CPU_CORE(pc);
2274 
2275         for (j = 0; j < cc->nr_threads; j++) {
2276             if (ppc_cpu_pir(pc->threads[j]) == pir) {
2277                 return pc->threads[j];
2278             }
2279         }
2280     }
2281     return NULL;
2282 }
2283 
2284 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2285 {
2286     PnvMachineState *pnv = PNV_MACHINE(xi);
2287     int i, j;
2288 
2289     for (i = 0; i < pnv->num_chips; i++) {
2290         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2291 
2292         if (ics_valid_irq(&chip8->psi.ics, irq)) {
2293             return &chip8->psi.ics;
2294         }
2295 
2296         for (j = 0; j < chip8->num_phbs; j++) {
2297             PnvPHB *phb = chip8->phbs[j];
2298             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2299 
2300             if (ics_valid_irq(&phb3->lsis, irq)) {
2301                 return &phb3->lsis;
2302             }
2303 
2304             if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2305                 return ICS(&phb3->msis);
2306             }
2307         }
2308     }
2309     return NULL;
2310 }
2311 
2312 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2313 {
2314     int i;
2315 
2316     for (i = 0; i < pnv->num_chips; i++) {
2317         PnvChip *chip = pnv->chips[i];
2318         if (chip->chip_id == chip_id) {
2319             return chip;
2320         }
2321     }
2322     return NULL;
2323 }
2324 
2325 static void pnv_ics_resend(XICSFabric *xi)
2326 {
2327     PnvMachineState *pnv = PNV_MACHINE(xi);
2328     int i, j;
2329 
2330     for (i = 0; i < pnv->num_chips; i++) {
2331         Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2332 
2333         ics_resend(&chip8->psi.ics);
2334 
2335         for (j = 0; j < chip8->num_phbs; j++) {
2336             PnvPHB *phb = chip8->phbs[j];
2337             PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2338 
2339             ics_resend(&phb3->lsis);
2340             ics_resend(ICS(&phb3->msis));
2341         }
2342     }
2343 }
2344 
2345 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2346 {
2347     PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2348 
2349     return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2350 }
2351 
2352 static void pnv_pic_print_info(InterruptStatsProvider *obj,
2353                                Monitor *mon)
2354 {
2355     PnvMachineState *pnv = PNV_MACHINE(obj);
2356     int i;
2357     CPUState *cs;
2358     g_autoptr(GString) buf = g_string_new("");
2359     g_autoptr(HumanReadableText) info = NULL;
2360 
2361     CPU_FOREACH(cs) {
2362         PowerPCCPU *cpu = POWERPC_CPU(cs);
2363 
2364         /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
2365         PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
2366                                                            buf);
2367     }
2368     info = human_readable_text_from_str(buf);
2369     monitor_puts(mon, info->human_readable_text);
2370 
2371     for (i = 0; i < pnv->num_chips; i++) {
2372         PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
2373     }
2374 }
2375 
2376 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2377                          uint8_t nvt_blk, uint32_t nvt_idx,
2378                          bool cam_ignore, uint8_t priority,
2379                          uint32_t logic_serv,
2380                          XiveTCTXMatch *match)
2381 {
2382     PnvMachineState *pnv = PNV_MACHINE(xfb);
2383     int total_count = 0;
2384     int i;
2385 
2386     for (i = 0; i < pnv->num_chips; i++) {
2387         Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2388         XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2389         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2390         int count;
2391 
2392         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2393                                priority, logic_serv, match);
2394 
2395         if (count < 0) {
2396             return count;
2397         }
2398 
2399         total_count += count;
2400     }
2401 
2402     return total_count;
2403 }
2404 
2405 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2406                                 uint8_t nvt_blk, uint32_t nvt_idx,
2407                                 bool cam_ignore, uint8_t priority,
2408                                 uint32_t logic_serv,
2409                                 XiveTCTXMatch *match)
2410 {
2411     PnvMachineState *pnv = PNV_MACHINE(xfb);
2412     int total_count = 0;
2413     int i;
2414 
2415     for (i = 0; i < pnv->num_chips; i++) {
2416         Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2417         XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2418         XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2419         int count;
2420 
2421         count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2422                                priority, logic_serv, match);
2423 
2424         if (count < 0) {
2425             return count;
2426         }
2427 
2428         total_count += count;
2429     }
2430 
2431     return total_count;
2432 }
2433 
2434 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2435 {
2436     MachineClass *mc = MACHINE_CLASS(oc);
2437     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2438     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2439     static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2440 
2441     static GlobalProperty phb_compat[] = {
2442         { TYPE_PNV_PHB, "version", "3" },
2443         { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2444     };
2445 
2446     mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2447     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2448     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2449 
2450     xic->icp_get = pnv_icp_get;
2451     xic->ics_get = pnv_ics_get;
2452     xic->ics_resend = pnv_ics_resend;
2453 
2454     pmc->compat = compat;
2455     pmc->compat_size = sizeof(compat);
2456 
2457     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2458 }
2459 
2460 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2461 {
2462     MachineClass *mc = MACHINE_CLASS(oc);
2463     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2464     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2465     static const char compat[] = "qemu,powernv9\0ibm,powernv";
2466 
2467     static GlobalProperty phb_compat[] = {
2468         { TYPE_PNV_PHB, "version", "4" },
2469         { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2470     };
2471 
2472     mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2473     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2474     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2475 
2476     xfc->match_nvt = pnv_match_nvt;
2477 
2478     pmc->compat = compat;
2479     pmc->compat_size = sizeof(compat);
2480     pmc->dt_power_mgt = pnv_dt_power_mgt;
2481 
2482     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2483 }
2484 
2485 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2486 {
2487     MachineClass *mc = MACHINE_CLASS(oc);
2488     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2489     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2490     static const char compat[] = "qemu,powernv10\0ibm,powernv";
2491 
2492     static GlobalProperty phb_compat[] = {
2493         { TYPE_PNV_PHB, "version", "5" },
2494         { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2495     };
2496 
2497     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2498     compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2499 
2500     mc->alias = "powernv";
2501 
2502     pmc->compat = compat;
2503     pmc->compat_size = sizeof(compat);
2504     pmc->dt_power_mgt = pnv_dt_power_mgt;
2505 
2506     xfc->match_nvt = pnv10_xive_match_nvt;
2507 
2508     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2509 }
2510 
2511 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2512 {
2513     MachineClass *mc = MACHINE_CLASS(oc);
2514 
2515     pnv_machine_p10_common_class_init(oc, data);
2516     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2517 }
2518 
2519 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2520 {
2521     MachineClass *mc = MACHINE_CLASS(oc);
2522     PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2523 
2524     pnv_machine_p10_common_class_init(oc, data);
2525     mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2526     pmc->i2c_init = pnv_rainier_i2c_init;
2527 }
2528 
2529 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2530 {
2531     PnvMachineState *pnv = PNV_MACHINE(obj);
2532 
2533     return !!pnv->fw_load_addr;
2534 }
2535 
2536 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2537 {
2538     PnvMachineState *pnv = PNV_MACHINE(obj);
2539 
2540     if (value) {
2541         pnv->fw_load_addr = 0x8000000;
2542     }
2543 }
2544 
2545 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2546 {
2547     CPUPPCState *env = cpu_env(cs);
2548 
2549     cpu_synchronize_state(cs);
2550     ppc_cpu_do_system_reset(cs);
2551     if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2552         /*
2553          * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2554          * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2555          * (PPC_BIT(43)).
2556          */
2557         if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2558             warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2559             env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2560         }
2561     } else {
2562         /*
2563          * For non-powersave system resets, SRR1[42:45] are defined to be
2564          * implementation-dependent. The POWER9 User Manual specifies that
2565          * an external (SCOM driven, which may come from a BMC nmi command or
2566          * another CPU requesting a NMI IPI) system reset exception should be
2567          * 0b0010 (PPC_BIT(44)).
2568          */
2569         env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2570     }
2571 }
2572 
2573 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2574 {
2575     CPUState *cs;
2576 
2577     CPU_FOREACH(cs) {
2578         async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2579     }
2580 }
2581 
2582 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2583 {
2584     MachineClass *mc = MACHINE_CLASS(oc);
2585     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2586     NMIClass *nc = NMI_CLASS(oc);
2587 
2588     mc->desc = "IBM PowerNV (Non-Virtualized)";
2589     mc->init = pnv_init;
2590     mc->reset = pnv_reset;
2591     mc->max_cpus = MAX_CPUS;
2592     /* Pnv provides a AHCI device for storage */
2593     mc->block_default_type = IF_IDE;
2594     mc->no_parallel = 1;
2595     mc->default_boot_order = NULL;
2596     /*
2597      * RAM defaults to less than 2048 for 32-bit hosts, and large
2598      * enough to fit the maximum initrd size at it's load address
2599      */
2600     mc->default_ram_size = 1 * GiB;
2601     mc->default_ram_id = "pnv.ram";
2602     ispc->print_info = pnv_pic_print_info;
2603     nc->nmi_monitor_handler = pnv_nmi;
2604 
2605     object_class_property_add_bool(oc, "hb-mode",
2606                                    pnv_machine_get_hb, pnv_machine_set_hb);
2607     object_class_property_set_description(oc, "hb-mode",
2608                               "Use a hostboot like boot loader");
2609 }
2610 
2611 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2612     {                                             \
2613         .name          = type,                    \
2614         .class_init    = class_initfn,            \
2615         .parent        = TYPE_PNV8_CHIP,          \
2616     }
2617 
2618 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2619     {                                             \
2620         .name          = type,                    \
2621         .class_init    = class_initfn,            \
2622         .parent        = TYPE_PNV9_CHIP,          \
2623     }
2624 
2625 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2626     {                                              \
2627         .name          = type,                     \
2628         .class_init    = class_initfn,             \
2629         .parent        = TYPE_PNV10_CHIP,          \
2630     }
2631 
2632 static const TypeInfo types[] = {
2633     {
2634         .name          = MACHINE_TYPE_NAME("powernv10-rainier"),
2635         .parent        = MACHINE_TYPE_NAME("powernv10"),
2636         .class_init    = pnv_machine_p10_rainier_class_init,
2637     },
2638     {
2639         .name          = MACHINE_TYPE_NAME("powernv10"),
2640         .parent        = TYPE_PNV_MACHINE,
2641         .class_init    = pnv_machine_power10_class_init,
2642         .interfaces = (InterfaceInfo[]) {
2643             { TYPE_XIVE_FABRIC },
2644             { },
2645         },
2646     },
2647     {
2648         .name          = MACHINE_TYPE_NAME("powernv9"),
2649         .parent        = TYPE_PNV_MACHINE,
2650         .class_init    = pnv_machine_power9_class_init,
2651         .interfaces = (InterfaceInfo[]) {
2652             { TYPE_XIVE_FABRIC },
2653             { },
2654         },
2655     },
2656     {
2657         .name          = MACHINE_TYPE_NAME("powernv8"),
2658         .parent        = TYPE_PNV_MACHINE,
2659         .class_init    = pnv_machine_power8_class_init,
2660         .interfaces = (InterfaceInfo[]) {
2661             { TYPE_XICS_FABRIC },
2662             { },
2663         },
2664     },
2665     {
2666         .name          = TYPE_PNV_MACHINE,
2667         .parent        = TYPE_MACHINE,
2668         .abstract       = true,
2669         .instance_size = sizeof(PnvMachineState),
2670         .class_init    = pnv_machine_class_init,
2671         .class_size    = sizeof(PnvMachineClass),
2672         .interfaces = (InterfaceInfo[]) {
2673             { TYPE_INTERRUPT_STATS_PROVIDER },
2674             { TYPE_NMI },
2675             { },
2676         },
2677     },
2678     {
2679         .name          = TYPE_PNV_CHIP,
2680         .parent        = TYPE_SYS_BUS_DEVICE,
2681         .class_init    = pnv_chip_class_init,
2682         .instance_size = sizeof(PnvChip),
2683         .class_size    = sizeof(PnvChipClass),
2684         .abstract      = true,
2685     },
2686 
2687     /*
2688      * P10 chip and variants
2689      */
2690     {
2691         .name          = TYPE_PNV10_CHIP,
2692         .parent        = TYPE_PNV_CHIP,
2693         .instance_init = pnv_chip_power10_instance_init,
2694         .instance_size = sizeof(Pnv10Chip),
2695     },
2696     DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2697 
2698     /*
2699      * P9 chip and variants
2700      */
2701     {
2702         .name          = TYPE_PNV9_CHIP,
2703         .parent        = TYPE_PNV_CHIP,
2704         .instance_init = pnv_chip_power9_instance_init,
2705         .instance_size = sizeof(Pnv9Chip),
2706     },
2707     DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2708 
2709     /*
2710      * P8 chip and variants
2711      */
2712     {
2713         .name          = TYPE_PNV8_CHIP,
2714         .parent        = TYPE_PNV_CHIP,
2715         .instance_init = pnv_chip_power8_instance_init,
2716         .instance_size = sizeof(Pnv8Chip),
2717     },
2718     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2719     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2720     DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2721                           pnv_chip_power8nvl_class_init),
2722 };
2723 
2724 DEFINE_TYPES(types)
2725