1 /*
2 * QEMU PowerPC PowerNV machine model
3 *
4 * Copyright (c) 2016, IBM Corporation.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "qemu/osdep.h"
21 #include "qemu/datadir.h"
22 #include "qemu/units.h"
23 #include "qemu/cutils.h"
24 #include "qapi/error.h"
25 #include "sysemu/qtest.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/numa.h"
28 #include "sysemu/reset.h"
29 #include "sysemu/runstate.h"
30 #include "sysemu/cpus.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/hw_accel.h"
33 #include "target/ppc/cpu.h"
34 #include "hw/ppc/fdt.h"
35 #include "hw/ppc/ppc.h"
36 #include "hw/ppc/pnv.h"
37 #include "hw/ppc/pnv_core.h"
38 #include "hw/loader.h"
39 #include "hw/nmi.h"
40 #include "qapi/visitor.h"
41 #include "hw/intc/intc.h"
42 #include "hw/ipmi/ipmi.h"
43 #include "target/ppc/mmu-hash64.h"
44 #include "hw/pci/msi.h"
45 #include "hw/pci-host/pnv_phb.h"
46 #include "hw/pci-host/pnv_phb3.h"
47 #include "hw/pci-host/pnv_phb4.h"
48
49 #include "hw/ppc/xics.h"
50 #include "hw/qdev-properties.h"
51 #include "hw/ppc/pnv_chip.h"
52 #include "hw/ppc/pnv_xscom.h"
53 #include "hw/ppc/pnv_pnor.h"
54
55 #include "hw/isa/isa.h"
56 #include "hw/char/serial.h"
57 #include "hw/rtc/mc146818rtc.h"
58
59 #include <libfdt.h>
60
61 #define FDT_MAX_SIZE (1 * MiB)
62
63 #define FW_FILE_NAME "skiboot.lid"
64 #define FW_LOAD_ADDR 0x0
65 #define FW_MAX_SIZE (16 * MiB)
66
67 #define KERNEL_LOAD_ADDR 0x20000000
68 #define KERNEL_MAX_SIZE (128 * MiB)
69 #define INITRD_LOAD_ADDR 0x28000000
70 #define INITRD_MAX_SIZE (128 * MiB)
71
pnv_chip_core_typename(const PnvChip * o)72 static const char *pnv_chip_core_typename(const PnvChip *o)
73 {
74 const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
75 int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
76 char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
77 const char *core_type = object_class_get_name(object_class_by_name(s));
78 g_free(s);
79 return core_type;
80 }
81
82 /*
83 * On Power Systems E880 (POWER8), the max cpus (threads) should be :
84 * 4 * 4 sockets * 12 cores * 8 threads = 1536
85 * Let's make it 2^11
86 */
87 #define MAX_CPUS 2048
88
89 /*
90 * Memory nodes are created by hostboot, one for each range of memory
91 * that has a different "affinity". In practice, it means one range
92 * per chip.
93 */
pnv_dt_memory(void * fdt,int chip_id,hwaddr start,hwaddr size)94 static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
95 {
96 char *mem_name;
97 uint64_t mem_reg_property[2];
98 int off;
99
100 mem_reg_property[0] = cpu_to_be64(start);
101 mem_reg_property[1] = cpu_to_be64(size);
102
103 mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
104 off = fdt_add_subnode(fdt, 0, mem_name);
105 g_free(mem_name);
106
107 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
108 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
109 sizeof(mem_reg_property))));
110 _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
111 }
112
get_cpus_node(void * fdt)113 static int get_cpus_node(void *fdt)
114 {
115 int cpus_offset = fdt_path_offset(fdt, "/cpus");
116
117 if (cpus_offset < 0) {
118 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
119 if (cpus_offset) {
120 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
121 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
122 }
123 }
124 _FDT(cpus_offset);
125 return cpus_offset;
126 }
127
128 /*
129 * The PowerNV cores (and threads) need to use real HW ids and not an
130 * incremental index like it has been done on other platforms. This HW
131 * id is stored in the CPU PIR, it is used to create cpu nodes in the
132 * device tree, used in XSCOM to address cores and in interrupt
133 * servers.
134 */
pnv_dt_core(PnvChip * chip,PnvCore * pc,void * fdt)135 static int pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
136 {
137 PowerPCCPU *cpu = pc->threads[0];
138 CPUState *cs = CPU(cpu);
139 DeviceClass *dc = DEVICE_GET_CLASS(cs);
140 int smt_threads = CPU_CORE(pc)->nr_threads;
141 CPUPPCState *env = &cpu->env;
142 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
143 PnvChipClass *pnv_cc = PNV_CHIP_GET_CLASS(chip);
144 uint32_t *servers_prop;
145 int i;
146 uint32_t pir, tir;
147 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
148 0xffffffff, 0xffffffff};
149 uint32_t tbfreq = PNV_TIMEBASE_FREQ;
150 uint32_t cpufreq = 1000000000;
151 uint32_t page_sizes_prop[64];
152 size_t page_sizes_prop_size;
153 int offset;
154 char *nodename;
155 int cpus_offset = get_cpus_node(fdt);
156
157 pnv_cc->get_pir_tir(chip, pc->hwid, 0, &pir, &tir);
158
159 /* Only one DT node per (big) core */
160 g_assert(tir == 0);
161
162 nodename = g_strdup_printf("%s@%x", dc->fw_name, pir);
163 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
164 _FDT(offset);
165 g_free(nodename);
166
167 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
168
169 _FDT((fdt_setprop_cell(fdt, offset, "reg", pir)));
170 _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pir)));
171 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
172
173 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
174 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
175 env->dcache_line_size)));
176 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
177 env->dcache_line_size)));
178 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
179 env->icache_line_size)));
180 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
181 env->icache_line_size)));
182
183 if (pcc->l1_dcache_size) {
184 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
185 pcc->l1_dcache_size)));
186 } else {
187 warn_report("Unknown L1 dcache size for cpu");
188 }
189 if (pcc->l1_icache_size) {
190 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
191 pcc->l1_icache_size)));
192 } else {
193 warn_report("Unknown L1 icache size for cpu");
194 }
195
196 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
197 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
198 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
199 cpu->hash64_opts->slb_size)));
200 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
201 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
202
203 if (ppc_has_spr(cpu, SPR_PURR)) {
204 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
205 }
206
207 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
208 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
209 segs, sizeof(segs))));
210 }
211
212 /*
213 * Advertise VMX/VSX (vector extensions) if available
214 * 0 / no property == no vector extensions
215 * 1 == VMX / Altivec available
216 * 2 == VSX available
217 */
218 if (env->insns_flags & PPC_ALTIVEC) {
219 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
220
221 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
222 }
223
224 /*
225 * Advertise DFP (Decimal Floating Point) if available
226 * 0 / no property == no DFP
227 * 1 == DFP available
228 */
229 if (env->insns_flags2 & PPC2_DFP) {
230 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
231 }
232
233 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
234 sizeof(page_sizes_prop));
235 if (page_sizes_prop_size) {
236 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
237 page_sizes_prop, page_sizes_prop_size)));
238 }
239
240 /* Build interrupt servers properties */
241 if (pc->big_core) {
242 servers_prop = g_new(uint32_t, smt_threads * 2);
243 for (i = 0; i < smt_threads; i++) {
244 pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
245 servers_prop[i * 2] = cpu_to_be32(pir);
246
247 pnv_cc->get_pir_tir(chip, pc->hwid + 1, i, &pir, NULL);
248 servers_prop[i * 2 + 1] = cpu_to_be32(pir);
249 }
250 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
251 servers_prop, sizeof(*servers_prop) * smt_threads
252 * 2)));
253 } else {
254 servers_prop = g_new(uint32_t, smt_threads);
255 for (i = 0; i < smt_threads; i++) {
256 pnv_cc->get_pir_tir(chip, pc->hwid, i, &pir, NULL);
257 servers_prop[i] = cpu_to_be32(pir);
258 }
259 _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
260 servers_prop, sizeof(*servers_prop) * smt_threads)));
261 }
262 g_free(servers_prop);
263
264 return offset;
265 }
266
pnv_dt_icp(PnvChip * chip,void * fdt,uint32_t hwid,uint32_t nr_threads)267 static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t hwid,
268 uint32_t nr_threads)
269 {
270 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
271 uint32_t pir;
272 uint64_t addr;
273 char *name;
274 const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
275 uint32_t irange[2], i, rsize;
276 uint64_t *reg;
277 int offset;
278
279 pcc->get_pir_tir(chip, hwid, 0, &pir, NULL);
280 addr = PNV_ICP_BASE(chip) | (pir << 12);
281
282 irange[0] = cpu_to_be32(pir);
283 irange[1] = cpu_to_be32(nr_threads);
284
285 rsize = sizeof(uint64_t) * 2 * nr_threads;
286 reg = g_malloc(rsize);
287 for (i = 0; i < nr_threads; i++) {
288 /* We know P8 PIR is linear with thread id */
289 reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
290 reg[i * 2 + 1] = cpu_to_be64(0x1000);
291 }
292
293 name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
294 offset = fdt_add_subnode(fdt, 0, name);
295 _FDT(offset);
296 g_free(name);
297
298 _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
299 _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
300 _FDT((fdt_setprop_string(fdt, offset, "device_type",
301 "PowerPC-External-Interrupt-Presentation")));
302 _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
303 _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
304 irange, sizeof(irange))));
305 _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
306 _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
307 g_free(reg);
308 }
309
310 /*
311 * Adds a PnvPHB to the chip on P8.
312 * Implemented here, like for defaults PHBs
313 */
pnv_chip_add_phb(PnvChip * chip,PnvPHB * phb)314 PnvChip *pnv_chip_add_phb(PnvChip *chip, PnvPHB *phb)
315 {
316 Pnv8Chip *chip8 = PNV8_CHIP(chip);
317
318 phb->chip = chip;
319
320 chip8->phbs[chip8->num_phbs] = phb;
321 chip8->num_phbs++;
322 return chip;
323 }
324
325 /*
326 * Same as spapr pa_features_207 except pnv always enables CI largepages bit.
327 * HTM is always enabled because TCG does implement HTM, it's just a
328 * degenerate implementation.
329 */
330 static const uint8_t pa_features_207[] = { 24, 0,
331 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0,
332 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
333 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
334 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
335
pnv_chip_power8_dt_populate(PnvChip * chip,void * fdt)336 static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
337 {
338 static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
339 int i;
340
341 pnv_dt_xscom(chip, fdt, 0,
342 cpu_to_be64(PNV_XSCOM_BASE(chip)),
343 cpu_to_be64(PNV_XSCOM_SIZE),
344 compat, sizeof(compat));
345
346 for (i = 0; i < chip->nr_cores; i++) {
347 PnvCore *pnv_core = chip->cores[i];
348 int offset;
349
350 offset = pnv_dt_core(chip, pnv_core, fdt);
351
352 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
353 pa_features_207, sizeof(pa_features_207))));
354
355 /* Interrupt Control Presenters (ICP). One per core. */
356 pnv_dt_icp(chip, fdt, pnv_core->hwid, CPU_CORE(pnv_core)->nr_threads);
357 }
358
359 if (chip->ram_size) {
360 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
361 }
362 }
363
364 /*
365 * Same as spapr pa_features_300 except pnv always enables CI largepages bit.
366 */
367 static const uint8_t pa_features_300[] = { 66, 0,
368 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
369 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
370 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
371 /* 6: DS207 */
372 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
373 /* 16: Vector */
374 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
375 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
376 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
377 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
378 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
379 /* 32: LE atomic, 34: EBB + ext EBB */
380 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
381 /* 40: Radix MMU */
382 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
383 /* 42: PM, 44: PC RA, 46: SC vec'd */
384 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
385 /* 48: SIMD, 50: QP BFP, 52: String */
386 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
387 /* 54: DecFP, 56: DecI, 58: SHA */
388 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
389 /* 60: NM atomic, 62: RNG */
390 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
391 };
392
pnv_chip_power9_dt_populate(PnvChip * chip,void * fdt)393 static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
394 {
395 static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
396 int i;
397
398 pnv_dt_xscom(chip, fdt, 0,
399 cpu_to_be64(PNV9_XSCOM_BASE(chip)),
400 cpu_to_be64(PNV9_XSCOM_SIZE),
401 compat, sizeof(compat));
402
403 for (i = 0; i < chip->nr_cores; i++) {
404 PnvCore *pnv_core = chip->cores[i];
405 int offset;
406
407 offset = pnv_dt_core(chip, pnv_core, fdt);
408
409 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
410 pa_features_300, sizeof(pa_features_300))));
411
412 if (pnv_core->big_core) {
413 i++; /* Big-core groups two QEMU cores */
414 }
415 }
416
417 if (chip->ram_size) {
418 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
419 }
420
421 pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
422 }
423
424 /*
425 * Same as spapr pa_features_31 except pnv always enables CI largepages bit,
426 * always disables copy/paste.
427 */
428 static const uint8_t pa_features_31[] = { 74, 0,
429 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: CILRG|fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
430 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
431 0xf6, 0x3f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
432 /* 6: DS207 */
433 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
434 /* 16: Vector */
435 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
436 /* 18: Vec. Scalar, 20: Vec. XOR */
437 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
438 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
439 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
440 /* 32: LE atomic, 34: EBB + ext EBB */
441 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
442 /* 40: Radix MMU */
443 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
444 /* 42: PM, 44: PC RA, 46: SC vec'd */
445 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
446 /* 48: SIMD, 50: QP BFP, 52: String */
447 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
448 /* 54: DecFP, 56: DecI, 58: SHA */
449 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
450 /* 60: NM atomic, 62: RNG */
451 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
452 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
453 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
454 /* 72: [P]HASHST/[P]HASHCHK */
455 0x80, 0x00, /* 72 - 73 */
456 };
457
pnv_chip_power10_dt_populate(PnvChip * chip,void * fdt)458 static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
459 {
460 static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
461 int i;
462
463 pnv_dt_xscom(chip, fdt, 0,
464 cpu_to_be64(PNV10_XSCOM_BASE(chip)),
465 cpu_to_be64(PNV10_XSCOM_SIZE),
466 compat, sizeof(compat));
467
468 for (i = 0; i < chip->nr_cores; i++) {
469 PnvCore *pnv_core = chip->cores[i];
470 int offset;
471
472 offset = pnv_dt_core(chip, pnv_core, fdt);
473
474 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
475 pa_features_31, sizeof(pa_features_31))));
476
477 if (pnv_core->big_core) {
478 i++; /* Big-core groups two QEMU cores */
479 }
480 }
481
482 if (chip->ram_size) {
483 pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
484 }
485
486 pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
487 }
488
pnv_dt_rtc(ISADevice * d,void * fdt,int lpc_off)489 static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
490 {
491 uint32_t io_base = d->ioport_id;
492 uint32_t io_regs[] = {
493 cpu_to_be32(1),
494 cpu_to_be32(io_base),
495 cpu_to_be32(2)
496 };
497 char *name;
498 int node;
499
500 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
501 node = fdt_add_subnode(fdt, lpc_off, name);
502 _FDT(node);
503 g_free(name);
504
505 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
506 _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
507 }
508
pnv_dt_serial(ISADevice * d,void * fdt,int lpc_off)509 static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
510 {
511 const char compatible[] = "ns16550\0pnpPNP,501";
512 uint32_t io_base = d->ioport_id;
513 uint32_t io_regs[] = {
514 cpu_to_be32(1),
515 cpu_to_be32(io_base),
516 cpu_to_be32(8)
517 };
518 uint32_t irq;
519 char *name;
520 int node;
521
522 irq = object_property_get_uint(OBJECT(d), "irq", &error_fatal);
523
524 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
525 node = fdt_add_subnode(fdt, lpc_off, name);
526 _FDT(node);
527 g_free(name);
528
529 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
530 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
531 sizeof(compatible))));
532
533 _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
534 _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
535 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
536 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
537 fdt_get_phandle(fdt, lpc_off))));
538
539 /* This is needed by Linux */
540 _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
541 }
542
pnv_dt_ipmi_bt(ISADevice * d,void * fdt,int lpc_off)543 static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
544 {
545 const char compatible[] = "bt\0ipmi-bt";
546 uint32_t io_base;
547 uint32_t io_regs[] = {
548 cpu_to_be32(1),
549 0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
550 cpu_to_be32(3)
551 };
552 uint32_t irq;
553 char *name;
554 int node;
555
556 io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
557 io_regs[1] = cpu_to_be32(io_base);
558
559 irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
560
561 name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
562 node = fdt_add_subnode(fdt, lpc_off, name);
563 _FDT(node);
564 g_free(name);
565
566 _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
567 _FDT((fdt_setprop(fdt, node, "compatible", compatible,
568 sizeof(compatible))));
569
570 /* Mark it as reserved to avoid Linux trying to claim it */
571 _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
572 _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
573 _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
574 fdt_get_phandle(fdt, lpc_off))));
575 }
576
577 typedef struct ForeachPopulateArgs {
578 void *fdt;
579 int offset;
580 } ForeachPopulateArgs;
581
pnv_dt_isa_device(DeviceState * dev,void * opaque)582 static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
583 {
584 ForeachPopulateArgs *args = opaque;
585 ISADevice *d = ISA_DEVICE(dev);
586
587 if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
588 pnv_dt_rtc(d, args->fdt, args->offset);
589 } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
590 pnv_dt_serial(d, args->fdt, args->offset);
591 } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
592 pnv_dt_ipmi_bt(d, args->fdt, args->offset);
593 } else {
594 error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
595 d->ioport_id);
596 }
597
598 return 0;
599 }
600
601 /*
602 * The default LPC bus of a multichip system is on chip 0. It's
603 * recognized by the firmware (skiboot) using a "primary" property.
604 */
pnv_dt_isa(PnvMachineState * pnv,void * fdt)605 static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
606 {
607 int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
608 ForeachPopulateArgs args = {
609 .fdt = fdt,
610 .offset = isa_offset,
611 };
612 uint32_t phandle;
613
614 _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
615
616 phandle = qemu_fdt_alloc_phandle(fdt);
617 assert(phandle > 0);
618 _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
619
620 /*
621 * ISA devices are not necessarily parented to the ISA bus so we
622 * can not use object_child_foreach()
623 */
624 qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
625 &args);
626 }
627
pnv_dt_power_mgt(PnvMachineState * pnv,void * fdt)628 static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
629 {
630 int off;
631
632 off = fdt_add_subnode(fdt, 0, "ibm,opal");
633 off = fdt_add_subnode(fdt, off, "power-mgt");
634
635 _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
636 }
637
pnv_dt_create(MachineState * machine)638 static void *pnv_dt_create(MachineState *machine)
639 {
640 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
641 PnvMachineState *pnv = PNV_MACHINE(machine);
642 void *fdt;
643 char *buf;
644 int off;
645 int i;
646
647 fdt = g_malloc0(FDT_MAX_SIZE);
648 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
649
650 /* /qemu node */
651 _FDT((fdt_add_subnode(fdt, 0, "qemu")));
652
653 /* Root node */
654 _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
655 _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
656 _FDT((fdt_setprop_string(fdt, 0, "model",
657 "IBM PowerNV (emulated by qemu)")));
658 _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
659
660 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
661 _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
662 if (qemu_uuid_set) {
663 _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
664 }
665 g_free(buf);
666
667 off = fdt_add_subnode(fdt, 0, "chosen");
668 if (machine->kernel_cmdline) {
669 _FDT((fdt_setprop_string(fdt, off, "bootargs",
670 machine->kernel_cmdline)));
671 }
672
673 if (pnv->initrd_size) {
674 uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
675 uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
676
677 _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
678 &start_prop, sizeof(start_prop))));
679 _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
680 &end_prop, sizeof(end_prop))));
681 }
682
683 /* Populate device tree for each chip */
684 for (i = 0; i < pnv->num_chips; i++) {
685 PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
686 }
687
688 /* Populate ISA devices on chip 0 */
689 pnv_dt_isa(pnv, fdt);
690
691 if (pnv->bmc) {
692 pnv_dt_bmc_sensors(pnv->bmc, fdt);
693 }
694
695 /* Create an extra node for power management on machines that support it */
696 if (pmc->dt_power_mgt) {
697 pmc->dt_power_mgt(pnv, fdt);
698 }
699
700 return fdt;
701 }
702
pnv_powerdown_notify(Notifier * n,void * opaque)703 static void pnv_powerdown_notify(Notifier *n, void *opaque)
704 {
705 PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
706
707 if (pnv->bmc) {
708 pnv_bmc_powerdown(pnv->bmc);
709 }
710 }
711
pnv_reset(MachineState * machine,ShutdownCause reason)712 static void pnv_reset(MachineState *machine, ShutdownCause reason)
713 {
714 PnvMachineState *pnv = PNV_MACHINE(machine);
715 IPMIBmc *bmc;
716 void *fdt;
717
718 qemu_devices_reset(reason);
719
720 /*
721 * The machine should provide by default an internal BMC simulator.
722 * If not, try to use the BMC device that was provided on the command
723 * line.
724 */
725 bmc = pnv_bmc_find(&error_fatal);
726 if (!pnv->bmc) {
727 if (!bmc) {
728 if (!qtest_enabled()) {
729 warn_report("machine has no BMC device. Use '-device "
730 "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
731 "to define one");
732 }
733 } else {
734 pnv_bmc_set_pnor(bmc, pnv->pnor);
735 pnv->bmc = bmc;
736 }
737 }
738
739 fdt = pnv_dt_create(machine);
740
741 /* Pack resulting tree */
742 _FDT((fdt_pack(fdt)));
743
744 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
745 cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
746
747 /*
748 * Set machine->fdt for 'dumpdtb' QMP/HMP command. Free
749 * the existing machine->fdt to avoid leaking it during
750 * a reset.
751 */
752 g_free(machine->fdt);
753 machine->fdt = fdt;
754 }
755
pnv_chip_power8_isa_create(PnvChip * chip,Error ** errp)756 static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
757 {
758 Pnv8Chip *chip8 = PNV8_CHIP(chip);
759 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_EXTERNAL);
760
761 qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
762
763 return pnv_lpc_isa_create(&chip8->lpc, true, errp);
764 }
765
pnv_chip_power8nvl_isa_create(PnvChip * chip,Error ** errp)766 static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
767 {
768 Pnv8Chip *chip8 = PNV8_CHIP(chip);
769 qemu_irq irq = qdev_get_gpio_in(DEVICE(&chip8->psi), PSIHB_IRQ_LPC_I2C);
770
771 qdev_connect_gpio_out_named(DEVICE(&chip8->lpc), "LPCHC", 0, irq);
772
773 return pnv_lpc_isa_create(&chip8->lpc, false, errp);
774 }
775
pnv_chip_power9_isa_create(PnvChip * chip,Error ** errp)776 static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
777 {
778 Pnv9Chip *chip9 = PNV9_CHIP(chip);
779 qemu_irq irq;
780
781 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPCHC);
782 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "LPCHC", 0, irq);
783
784 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ0);
785 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 0, irq);
786 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ1);
787 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 1, irq);
788 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ2);
789 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 2, irq);
790 irq = qdev_get_gpio_in(DEVICE(&chip9->psi), PSIHB9_IRQ_LPC_SIRQ3);
791 qdev_connect_gpio_out_named(DEVICE(&chip9->lpc), "SERIRQ", 3, irq);
792
793 return pnv_lpc_isa_create(&chip9->lpc, false, errp);
794 }
795
pnv_chip_power10_isa_create(PnvChip * chip,Error ** errp)796 static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
797 {
798 Pnv10Chip *chip10 = PNV10_CHIP(chip);
799 qemu_irq irq;
800
801 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPCHC);
802 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "LPCHC", 0, irq);
803
804 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ0);
805 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 0, irq);
806 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ1);
807 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 1, irq);
808 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ2);
809 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 2, irq);
810 irq = qdev_get_gpio_in(DEVICE(&chip10->psi), PSIHB9_IRQ_LPC_SIRQ3);
811 qdev_connect_gpio_out_named(DEVICE(&chip10->lpc), "SERIRQ", 3, irq);
812
813 return pnv_lpc_isa_create(&chip10->lpc, false, errp);
814 }
815
pnv_isa_create(PnvChip * chip,Error ** errp)816 static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
817 {
818 return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
819 }
820
pnv_chip_power8_pic_print_info(PnvChip * chip,GString * buf)821 static void pnv_chip_power8_pic_print_info(PnvChip *chip, GString *buf)
822 {
823 Pnv8Chip *chip8 = PNV8_CHIP(chip);
824 int i;
825
826 ics_pic_print_info(&chip8->psi.ics, buf);
827
828 for (i = 0; i < chip8->num_phbs; i++) {
829 PnvPHB *phb = chip8->phbs[i];
830 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
831
832 pnv_phb3_msi_pic_print_info(&phb3->msis, buf);
833 ics_pic_print_info(&phb3->lsis, buf);
834 }
835 }
836
pnv_chip_power9_pic_print_info_child(Object * child,void * opaque)837 static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
838 {
839 GString *buf = opaque;
840 PnvPHB *phb = (PnvPHB *) object_dynamic_cast(child, TYPE_PNV_PHB);
841
842 if (!phb) {
843 return 0;
844 }
845
846 pnv_phb4_pic_print_info(PNV_PHB4(phb->backend), buf);
847
848 return 0;
849 }
850
pnv_chip_power9_pic_print_info(PnvChip * chip,GString * buf)851 static void pnv_chip_power9_pic_print_info(PnvChip *chip, GString *buf)
852 {
853 Pnv9Chip *chip9 = PNV9_CHIP(chip);
854
855 pnv_xive_pic_print_info(&chip9->xive, buf);
856 pnv_psi_pic_print_info(&chip9->psi, buf);
857 object_child_foreach_recursive(OBJECT(chip),
858 pnv_chip_power9_pic_print_info_child, buf);
859 }
860
pnv_chip_power8_xscom_core_base(PnvChip * chip,uint32_t core_id)861 static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
862 uint32_t core_id)
863 {
864 return PNV_XSCOM_EX_BASE(core_id);
865 }
866
pnv_chip_power9_xscom_core_base(PnvChip * chip,uint32_t core_id)867 static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
868 uint32_t core_id)
869 {
870 return PNV9_XSCOM_EC_BASE(core_id);
871 }
872
pnv_chip_power10_xscom_core_base(PnvChip * chip,uint32_t core_id)873 static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
874 uint32_t core_id)
875 {
876 return PNV10_XSCOM_EC_BASE(core_id);
877 }
878
pnv_match_cpu(const char * default_type,const char * cpu_type)879 static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
880 {
881 PowerPCCPUClass *ppc_default =
882 POWERPC_CPU_CLASS(object_class_by_name(default_type));
883 PowerPCCPUClass *ppc =
884 POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
885
886 return ppc_default->pvr_match(ppc_default, ppc->pvr, false);
887 }
888
pnv_ipmi_bt_init(ISABus * bus,IPMIBmc * bmc,uint32_t irq)889 static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
890 {
891 ISADevice *dev = isa_new("isa-ipmi-bt");
892
893 object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
894 object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
895 isa_realize_and_unref(dev, bus, &error_fatal);
896 }
897
pnv_chip_power10_pic_print_info(PnvChip * chip,GString * buf)898 static void pnv_chip_power10_pic_print_info(PnvChip *chip, GString *buf)
899 {
900 Pnv10Chip *chip10 = PNV10_CHIP(chip);
901
902 pnv_xive2_pic_print_info(&chip10->xive, buf);
903 pnv_psi_pic_print_info(&chip10->psi, buf);
904 object_child_foreach_recursive(OBJECT(chip),
905 pnv_chip_power9_pic_print_info_child, buf);
906 }
907
908 /* Always give the first 1GB to chip 0 else we won't boot */
pnv_chip_get_ram_size(PnvMachineState * pnv,int chip_id)909 static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
910 {
911 MachineState *machine = MACHINE(pnv);
912 uint64_t ram_per_chip;
913
914 assert(machine->ram_size >= 1 * GiB);
915
916 ram_per_chip = machine->ram_size / pnv->num_chips;
917 if (ram_per_chip >= 1 * GiB) {
918 return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
919 }
920
921 assert(pnv->num_chips > 1);
922
923 ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
924 return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
925 }
926
pnv_init(MachineState * machine)927 static void pnv_init(MachineState *machine)
928 {
929 const char *bios_name = machine->firmware ?: FW_FILE_NAME;
930 PnvMachineState *pnv = PNV_MACHINE(machine);
931 MachineClass *mc = MACHINE_GET_CLASS(machine);
932 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
933 int max_smt_threads = pmc->max_smt_threads;
934 char *fw_filename;
935 long fw_size;
936 uint64_t chip_ram_start = 0;
937 int i;
938 char *chip_typename;
939 DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
940 DeviceState *dev;
941
942 if (kvm_enabled()) {
943 error_report("machine %s does not support the KVM accelerator",
944 mc->name);
945 exit(EXIT_FAILURE);
946 }
947
948 /* allocate RAM */
949 if (machine->ram_size < mc->default_ram_size) {
950 char *sz = size_to_str(mc->default_ram_size);
951 error_report("Invalid RAM size, should be bigger than %s", sz);
952 g_free(sz);
953 exit(EXIT_FAILURE);
954 }
955 memory_region_add_subregion(get_system_memory(), 0, machine->ram);
956
957 /*
958 * Create our simple PNOR device
959 */
960 dev = qdev_new(TYPE_PNV_PNOR);
961 if (pnor) {
962 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
963 }
964 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
965 pnv->pnor = PNV_PNOR(dev);
966
967 /* load skiboot firmware */
968 fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
969 if (!fw_filename) {
970 error_report("Could not find OPAL firmware '%s'", bios_name);
971 exit(1);
972 }
973
974 fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
975 if (fw_size < 0) {
976 error_report("Could not load OPAL firmware '%s'", fw_filename);
977 exit(1);
978 }
979 g_free(fw_filename);
980
981 /* load kernel */
982 if (machine->kernel_filename) {
983 long kernel_size;
984
985 kernel_size = load_image_targphys(machine->kernel_filename,
986 KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
987 if (kernel_size < 0) {
988 error_report("Could not load kernel '%s'",
989 machine->kernel_filename);
990 exit(1);
991 }
992 }
993
994 /* load initrd */
995 if (machine->initrd_filename) {
996 pnv->initrd_base = INITRD_LOAD_ADDR;
997 pnv->initrd_size = load_image_targphys(machine->initrd_filename,
998 pnv->initrd_base, INITRD_MAX_SIZE);
999 if (pnv->initrd_size < 0) {
1000 error_report("Could not load initial ram disk '%s'",
1001 machine->initrd_filename);
1002 exit(1);
1003 }
1004 }
1005
1006 /* MSIs are supported on this platform */
1007 msi_nonbroken = true;
1008
1009 /*
1010 * Check compatibility of the specified CPU with the machine
1011 * default.
1012 */
1013 if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
1014 error_report("invalid CPU model '%s' for %s machine",
1015 machine->cpu_type, mc->name);
1016 exit(1);
1017 }
1018
1019 /* Create the processor chips */
1020 i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
1021 chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
1022 i, machine->cpu_type);
1023 if (!object_class_by_name(chip_typename)) {
1024 error_report("invalid chip model '%.*s' for %s machine",
1025 i, machine->cpu_type, mc->name);
1026 exit(1);
1027 }
1028
1029 /* Set lpar-per-core mode if lpar-per-thread is not supported */
1030 if (!pmc->has_lpar_per_thread) {
1031 pnv->lpar_per_core = true;
1032 }
1033
1034 pnv->num_chips =
1035 machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
1036
1037 if (pnv->big_core) {
1038 if (machine->smp.threads % 2 == 1) {
1039 error_report("Cannot support %d threads with big-core option "
1040 "because it must be an even number",
1041 machine->smp.threads);
1042 exit(1);
1043 }
1044 max_smt_threads *= 2;
1045 }
1046
1047 if (machine->smp.threads > max_smt_threads) {
1048 error_report("Cannot support more than %d threads/core "
1049 "on %s machine", max_smt_threads, mc->desc);
1050 if (pmc->max_smt_threads == 4) {
1051 error_report("(use big-core=on for 8 threads per core)");
1052 }
1053 exit(1);
1054 }
1055
1056 if (pnv->big_core) {
1057 /*
1058 * powernv models PnvCore as a SMT4 core. Big-core requires 2xPnvCore
1059 * per core, so adjust topology here. pnv_dt_core() processor
1060 * device-tree and TCG SMT code make the 2 cores appear as one big core
1061 * from software point of view. pnv pervasive models and xscoms tend to
1062 * see the big core as 2 small core halves.
1063 */
1064 machine->smp.cores *= 2;
1065 machine->smp.threads /= 2;
1066 }
1067
1068 if (!is_power_of_2(machine->smp.threads)) {
1069 error_report("Cannot support %d threads/core on a powernv "
1070 "machine because it must be a power of 2",
1071 machine->smp.threads);
1072 exit(1);
1073 }
1074
1075 /*
1076 * TODO: should we decide on how many chips we can create based
1077 * on #cores and Venice vs. Murano vs. Naples chip type etc...,
1078 */
1079 if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
1080 error_report("invalid number of chips: '%d'", pnv->num_chips);
1081 error_printf(
1082 "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
1083 exit(1);
1084 }
1085
1086 pnv->chips = g_new0(PnvChip *, pnv->num_chips);
1087 for (i = 0; i < pnv->num_chips; i++) {
1088 char chip_name[32];
1089 Object *chip = OBJECT(qdev_new(chip_typename));
1090 uint64_t chip_ram_size = pnv_chip_get_ram_size(pnv, i);
1091
1092 pnv->chips[i] = PNV_CHIP(chip);
1093
1094 /* Distribute RAM among the chips */
1095 object_property_set_int(chip, "ram-start", chip_ram_start,
1096 &error_fatal);
1097 object_property_set_int(chip, "ram-size", chip_ram_size,
1098 &error_fatal);
1099 chip_ram_start += chip_ram_size;
1100
1101 snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
1102 object_property_add_child(OBJECT(pnv), chip_name, chip);
1103 object_property_set_int(chip, "chip-id", i, &error_fatal);
1104 object_property_set_int(chip, "nr-cores", machine->smp.cores,
1105 &error_fatal);
1106 object_property_set_int(chip, "nr-threads", machine->smp.threads,
1107 &error_fatal);
1108 object_property_set_bool(chip, "big-core", pnv->big_core,
1109 &error_fatal);
1110 object_property_set_bool(chip, "lpar-per-core", pnv->lpar_per_core,
1111 &error_fatal);
1112 /*
1113 * The POWER8 machine use the XICS interrupt interface.
1114 * Propagate the XICS fabric to the chip and its controllers.
1115 */
1116 if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
1117 object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
1118 }
1119 if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
1120 object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
1121 &error_abort);
1122 }
1123 sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
1124 }
1125 g_free(chip_typename);
1126
1127 /* Instantiate ISA bus on chip 0 */
1128 pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
1129
1130 /* Create serial port */
1131 serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
1132
1133 /* Create an RTC ISA device too */
1134 mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
1135
1136 /*
1137 * Create the machine BMC simulator and the IPMI BT device for
1138 * communication with the BMC
1139 */
1140 if (defaults_enabled()) {
1141 pnv->bmc = pnv_bmc_create(pnv->pnor);
1142 pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
1143 }
1144
1145 /*
1146 * The PNOR is mapped on the LPC FW address space by the BMC.
1147 * Since we can not reach the remote BMC machine with LPC memops,
1148 * map it always for now.
1149 */
1150 memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
1151 &pnv->pnor->mmio);
1152
1153 /*
1154 * OpenPOWER systems use a IPMI SEL Event message to notify the
1155 * host to powerdown
1156 */
1157 pnv->powerdown_notifier.notify = pnv_powerdown_notify;
1158 qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
1159
1160 /*
1161 * Create/Connect any machine-specific I2C devices
1162 */
1163 if (pmc->i2c_init) {
1164 pmc->i2c_init(pnv);
1165 }
1166 }
1167
1168 /*
1169 * 0:21 Reserved - Read as zeros
1170 * 22:24 Chip ID
1171 * 25:28 Core number
1172 * 29:31 Thread ID
1173 */
pnv_get_pir_tir_p8(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1174 static void pnv_get_pir_tir_p8(PnvChip *chip,
1175 uint32_t core_id, uint32_t thread_id,
1176 uint32_t *pir, uint32_t *tir)
1177 {
1178 if (pir) {
1179 *pir = (chip->chip_id << 7) | (core_id << 3) | thread_id;
1180 }
1181 if (tir) {
1182 *tir = thread_id;
1183 }
1184 }
1185
pnv_chip_power8_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1186 static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1187 Error **errp)
1188 {
1189 Pnv8Chip *chip8 = PNV8_CHIP(chip);
1190 Error *local_err = NULL;
1191 Object *obj;
1192 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1193
1194 obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
1195 if (local_err) {
1196 error_propagate(errp, local_err);
1197 return;
1198 }
1199
1200 pnv_cpu->intc = obj;
1201 }
1202
1203
pnv_chip_power8_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1204 static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1205 {
1206 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1207
1208 icp_reset(ICP(pnv_cpu->intc));
1209 }
1210
pnv_chip_power8_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1211 static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1212 {
1213 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1214
1215 icp_destroy(ICP(pnv_cpu->intc));
1216 pnv_cpu->intc = NULL;
1217 }
1218
pnv_chip_power8_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1219 static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1220 GString *buf)
1221 {
1222 icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), buf);
1223 }
1224
1225 /*
1226 * 0:48 Reserved - Read as zeroes
1227 * 49:52 Node ID
1228 * 53:55 Chip ID
1229 * 56 Reserved - Read as zero
1230 * 57:61 Core number
1231 * 62:63 Thread ID
1232 *
1233 * We only care about the lower bits. uint32_t is fine for the moment.
1234 */
pnv_get_pir_tir_p9(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1235 static void pnv_get_pir_tir_p9(PnvChip *chip,
1236 uint32_t core_id, uint32_t thread_id,
1237 uint32_t *pir, uint32_t *tir)
1238 {
1239 if (chip->big_core) {
1240 /* Big-core interleaves thread ID between small-cores */
1241 thread_id <<= 1;
1242 thread_id |= core_id & 1;
1243 core_id >>= 1;
1244
1245 if (pir) {
1246 *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1247 }
1248 } else {
1249 if (pir) {
1250 *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1251 }
1252 }
1253 if (tir) {
1254 *tir = thread_id;
1255 }
1256 }
1257
1258 /*
1259 * 0:48 Reserved - Read as zeroes
1260 * 49:52 Node ID
1261 * 53:55 Chip ID
1262 * 56 Reserved - Read as zero
1263 * 57:59 Quad ID
1264 * 60 Core Chiplet Pair ID
1265 * 61:63 Thread/Core Chiplet ID t0-t2
1266 *
1267 * We only care about the lower bits. uint32_t is fine for the moment.
1268 */
pnv_get_pir_tir_p10(PnvChip * chip,uint32_t core_id,uint32_t thread_id,uint32_t * pir,uint32_t * tir)1269 static void pnv_get_pir_tir_p10(PnvChip *chip,
1270 uint32_t core_id, uint32_t thread_id,
1271 uint32_t *pir, uint32_t *tir)
1272 {
1273 if (chip->big_core) {
1274 /* Big-core interleaves thread ID between small-cores */
1275 thread_id <<= 1;
1276 thread_id |= core_id & 1;
1277 core_id >>= 1;
1278
1279 if (pir) {
1280 *pir = (chip->chip_id << 8) | (core_id << 3) | thread_id;
1281 }
1282 } else {
1283 if (pir) {
1284 *pir = (chip->chip_id << 8) | (core_id << 2) | thread_id;
1285 }
1286 }
1287 if (tir) {
1288 *tir = thread_id;
1289 }
1290 }
1291
pnv_chip_power9_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1292 static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1293 Error **errp)
1294 {
1295 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1296 Error *local_err = NULL;
1297 Object *obj;
1298 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1299
1300 /*
1301 * The core creates its interrupt presenter but the XIVE interrupt
1302 * controller object is initialized afterwards. Hopefully, it's
1303 * only used at runtime.
1304 */
1305 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1306 &local_err);
1307 if (local_err) {
1308 error_propagate(errp, local_err);
1309 return;
1310 }
1311
1312 pnv_cpu->intc = obj;
1313 }
1314
pnv_chip_power9_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1315 static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1316 {
1317 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1318
1319 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1320 }
1321
pnv_chip_power9_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1322 static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1323 {
1324 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1325
1326 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1327 pnv_cpu->intc = NULL;
1328 }
1329
pnv_chip_power9_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1330 static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1331 GString *buf)
1332 {
1333 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1334 }
1335
pnv_chip_power10_intc_create(PnvChip * chip,PowerPCCPU * cpu,Error ** errp)1336 static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1337 Error **errp)
1338 {
1339 Pnv10Chip *chip10 = PNV10_CHIP(chip);
1340 Error *local_err = NULL;
1341 Object *obj;
1342 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1343
1344 /*
1345 * The core creates its interrupt presenter but the XIVE2 interrupt
1346 * controller object is initialized afterwards. Hopefully, it's
1347 * only used at runtime.
1348 */
1349 obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip10->xive),
1350 &local_err);
1351 if (local_err) {
1352 error_propagate(errp, local_err);
1353 return;
1354 }
1355
1356 pnv_cpu->intc = obj;
1357 }
1358
pnv_chip_power10_intc_reset(PnvChip * chip,PowerPCCPU * cpu)1359 static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1360 {
1361 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1362
1363 xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1364 }
1365
pnv_chip_power10_intc_destroy(PnvChip * chip,PowerPCCPU * cpu)1366 static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1367 {
1368 PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1369
1370 xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1371 pnv_cpu->intc = NULL;
1372 }
1373
pnv_chip_power10_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,GString * buf)1374 static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1375 GString *buf)
1376 {
1377 xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), buf);
1378 }
1379
1380 /*
1381 * Allowed core identifiers on a POWER8 Processor Chip :
1382 *
1383 * <EX0 reserved>
1384 * EX1 - Venice only
1385 * EX2 - Venice only
1386 * EX3 - Venice only
1387 * EX4
1388 * EX5
1389 * EX6
1390 * <EX7,8 reserved> <reserved>
1391 * EX9 - Venice only
1392 * EX10 - Venice only
1393 * EX11 - Venice only
1394 * EX12
1395 * EX13
1396 * EX14
1397 * <EX15 reserved>
1398 */
1399 #define POWER8E_CORE_MASK (0x7070ull)
1400 #define POWER8_CORE_MASK (0x7e7eull)
1401
1402 /*
1403 * POWER9 has 24 cores, ids starting at 0x0
1404 */
1405 #define POWER9_CORE_MASK (0xffffffffffffffull)
1406
1407
1408 #define POWER10_CORE_MASK (0xffffffffffffffull)
1409
pnv_chip_power8_instance_init(Object * obj)1410 static void pnv_chip_power8_instance_init(Object *obj)
1411 {
1412 Pnv8Chip *chip8 = PNV8_CHIP(obj);
1413 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1414 int i;
1415
1416 object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1417 (Object **)&chip8->xics,
1418 object_property_allow_set_link,
1419 OBJ_PROP_LINK_STRONG);
1420
1421 object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1422
1423 object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1424
1425 object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1426
1427 object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1428
1429 if (defaults_enabled()) {
1430 chip8->num_phbs = pcc->num_phbs;
1431
1432 for (i = 0; i < chip8->num_phbs; i++) {
1433 Object *phb = object_new(TYPE_PNV_PHB);
1434
1435 /*
1436 * We need the chip to parent the PHB to allow the DT
1437 * to build correctly (via pnv_xscom_dt()).
1438 *
1439 * TODO: the PHB should be parented by a PEC device that, at
1440 * this moment, is not modelled powernv8/phb3.
1441 */
1442 object_property_add_child(obj, "phb[*]", phb);
1443 chip8->phbs[i] = PNV_PHB(phb);
1444 }
1445 }
1446
1447 }
1448
pnv_chip_icp_realize(Pnv8Chip * chip8,Error ** errp)1449 static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1450 {
1451 PnvChip *chip = PNV_CHIP(chip8);
1452 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1453 int i, j;
1454 char *name;
1455
1456 name = g_strdup_printf("icp-%x", chip->chip_id);
1457 memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1458 g_free(name);
1459 memory_region_add_subregion(get_system_memory(), PNV_ICP_BASE(chip),
1460 &chip8->icp_mmio);
1461
1462 /* Map the ICP registers for each thread */
1463 for (i = 0; i < chip->nr_cores; i++) {
1464 PnvCore *pnv_core = chip->cores[i];
1465 int core_hwid = CPU_CORE(pnv_core)->core_id;
1466
1467 for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1468 uint32_t pir;
1469 PnvICPState *icp;
1470
1471 pcc->get_pir_tir(chip, core_hwid, j, &pir, NULL);
1472 icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1473
1474 memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1475 &icp->mmio);
1476 }
1477 }
1478 }
1479
pnv_chip_power8_realize(DeviceState * dev,Error ** errp)1480 static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1481 {
1482 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1483 PnvChip *chip = PNV_CHIP(dev);
1484 Pnv8Chip *chip8 = PNV8_CHIP(dev);
1485 Pnv8Psi *psi8 = &chip8->psi;
1486 Error *local_err = NULL;
1487 int i;
1488
1489 assert(chip8->xics);
1490
1491 /* XSCOM bridge is first */
1492 pnv_xscom_init(chip, PNV_XSCOM_SIZE, PNV_XSCOM_BASE(chip));
1493
1494 pcc->parent_realize(dev, &local_err);
1495 if (local_err) {
1496 error_propagate(errp, local_err);
1497 return;
1498 }
1499
1500 /* Processor Service Interface (PSI) Host Bridge */
1501 object_property_set_int(OBJECT(psi8), "bar", PNV_PSIHB_BASE(chip),
1502 &error_fatal);
1503 object_property_set_link(OBJECT(psi8), ICS_PROP_XICS,
1504 OBJECT(chip8->xics), &error_abort);
1505 if (!qdev_realize(DEVICE(psi8), NULL, errp)) {
1506 return;
1507 }
1508 pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1509 &PNV_PSI(psi8)->xscom_regs);
1510
1511 /* Create LPC controller */
1512 qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1513 pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1514
1515 chip->fw_mr = &chip8->lpc.isa_fw;
1516 chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1517 (uint64_t) PNV_XSCOM_BASE(chip),
1518 PNV_XSCOM_LPC_BASE);
1519
1520 /*
1521 * Interrupt Management Area. This is the memory region holding
1522 * all the Interrupt Control Presenter (ICP) registers
1523 */
1524 pnv_chip_icp_realize(chip8, &local_err);
1525 if (local_err) {
1526 error_propagate(errp, local_err);
1527 return;
1528 }
1529
1530 /* Create the simplified OCC model */
1531 if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1532 return;
1533 }
1534 pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1535 qdev_connect_gpio_out(DEVICE(&chip8->occ), 0,
1536 qdev_get_gpio_in(DEVICE(psi8), PSIHB_IRQ_OCC));
1537
1538 /* OCC SRAM model */
1539 memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1540 &chip8->occ.sram_regs);
1541
1542 /* HOMER */
1543 object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1544 &error_abort);
1545 if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1546 return;
1547 }
1548 /* Homer Xscom region */
1549 pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1550
1551 /* Homer mmio region */
1552 memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1553 &chip8->homer.regs);
1554
1555 /* PHB controllers */
1556 for (i = 0; i < chip8->num_phbs; i++) {
1557 PnvPHB *phb = chip8->phbs[i];
1558
1559 object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1560 object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1561 &error_fatal);
1562 object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1563 &error_fatal);
1564 if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1565 return;
1566 }
1567 }
1568 }
1569
pnv_chip_power8_xscom_pcba(PnvChip * chip,uint64_t addr)1570 static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1571 {
1572 addr &= (PNV_XSCOM_SIZE - 1);
1573 return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1574 }
1575
pnv_chip_power8e_class_init(ObjectClass * klass,void * data)1576 static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1577 {
1578 DeviceClass *dc = DEVICE_CLASS(klass);
1579 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1580
1581 k->chip_cfam_id = 0x221ef04980000000ull; /* P8 Murano DD2.1 */
1582 k->cores_mask = POWER8E_CORE_MASK;
1583 k->num_phbs = 3;
1584 k->get_pir_tir = pnv_get_pir_tir_p8;
1585 k->intc_create = pnv_chip_power8_intc_create;
1586 k->intc_reset = pnv_chip_power8_intc_reset;
1587 k->intc_destroy = pnv_chip_power8_intc_destroy;
1588 k->intc_print_info = pnv_chip_power8_intc_print_info;
1589 k->isa_create = pnv_chip_power8_isa_create;
1590 k->dt_populate = pnv_chip_power8_dt_populate;
1591 k->pic_print_info = pnv_chip_power8_pic_print_info;
1592 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1593 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1594 dc->desc = "PowerNV Chip POWER8E";
1595
1596 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1597 &k->parent_realize);
1598 }
1599
pnv_chip_power8_class_init(ObjectClass * klass,void * data)1600 static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1601 {
1602 DeviceClass *dc = DEVICE_CLASS(klass);
1603 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1604
1605 k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1606 k->cores_mask = POWER8_CORE_MASK;
1607 k->num_phbs = 3;
1608 k->get_pir_tir = pnv_get_pir_tir_p8;
1609 k->intc_create = pnv_chip_power8_intc_create;
1610 k->intc_reset = pnv_chip_power8_intc_reset;
1611 k->intc_destroy = pnv_chip_power8_intc_destroy;
1612 k->intc_print_info = pnv_chip_power8_intc_print_info;
1613 k->isa_create = pnv_chip_power8_isa_create;
1614 k->dt_populate = pnv_chip_power8_dt_populate;
1615 k->pic_print_info = pnv_chip_power8_pic_print_info;
1616 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1617 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1618 dc->desc = "PowerNV Chip POWER8";
1619
1620 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1621 &k->parent_realize);
1622 }
1623
pnv_chip_power8nvl_class_init(ObjectClass * klass,void * data)1624 static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1625 {
1626 DeviceClass *dc = DEVICE_CLASS(klass);
1627 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1628
1629 k->chip_cfam_id = 0x120d304980000000ull; /* P8 Naples DD1.0 */
1630 k->cores_mask = POWER8_CORE_MASK;
1631 k->num_phbs = 4;
1632 k->get_pir_tir = pnv_get_pir_tir_p8;
1633 k->intc_create = pnv_chip_power8_intc_create;
1634 k->intc_reset = pnv_chip_power8_intc_reset;
1635 k->intc_destroy = pnv_chip_power8_intc_destroy;
1636 k->intc_print_info = pnv_chip_power8_intc_print_info;
1637 k->isa_create = pnv_chip_power8nvl_isa_create;
1638 k->dt_populate = pnv_chip_power8_dt_populate;
1639 k->pic_print_info = pnv_chip_power8_pic_print_info;
1640 k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1641 k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1642 dc->desc = "PowerNV Chip POWER8NVL";
1643
1644 device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1645 &k->parent_realize);
1646 }
1647
pnv_chip_power9_instance_init(Object * obj)1648 static void pnv_chip_power9_instance_init(Object *obj)
1649 {
1650 PnvChip *chip = PNV_CHIP(obj);
1651 Pnv9Chip *chip9 = PNV9_CHIP(obj);
1652 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1653 int i;
1654
1655 object_initialize_child(obj, "adu", &chip9->adu, TYPE_PNV_ADU);
1656 object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1657 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1658 "xive-fabric");
1659
1660 object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1661
1662 object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1663
1664 object_initialize_child(obj, "chiptod", &chip9->chiptod, TYPE_PNV9_CHIPTOD);
1665
1666 object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1667
1668 object_initialize_child(obj, "sbe", &chip9->sbe, TYPE_PNV9_SBE);
1669
1670 object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1671
1672 /* Number of PECs is the chip default */
1673 chip->num_pecs = pcc->num_pecs;
1674
1675 for (i = 0; i < chip->num_pecs; i++) {
1676 object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1677 TYPE_PNV_PHB4_PEC);
1678 }
1679
1680 for (i = 0; i < pcc->i2c_num_engines; i++) {
1681 object_initialize_child(obj, "i2c[*]", &chip9->i2c[i], TYPE_PNV_I2C);
1682 }
1683 }
1684
pnv_chip_quad_realize_one(PnvChip * chip,PnvQuad * eq,PnvCore * pnv_core,const char * type)1685 static void pnv_chip_quad_realize_one(PnvChip *chip, PnvQuad *eq,
1686 PnvCore *pnv_core,
1687 const char *type)
1688 {
1689 char eq_name[32];
1690 int core_id = CPU_CORE(pnv_core)->core_id;
1691
1692 snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1693 object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1694 sizeof(*eq), type,
1695 &error_fatal, NULL);
1696
1697 object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1698 qdev_realize(DEVICE(eq), NULL, &error_fatal);
1699 }
1700
pnv_chip_quad_realize(Pnv9Chip * chip9,Error ** errp)1701 static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1702 {
1703 PnvChip *chip = PNV_CHIP(chip9);
1704 int i;
1705
1706 chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1707 chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1708
1709 for (i = 0; i < chip9->nr_quads; i++) {
1710 PnvQuad *eq = &chip9->quads[i];
1711
1712 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1713 PNV_QUAD_TYPE_NAME("power9"));
1714
1715 pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1716 &eq->xscom_regs);
1717 }
1718 }
1719
pnv_chip_power9_pec_realize(PnvChip * chip,Error ** errp)1720 static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1721 {
1722 Pnv9Chip *chip9 = PNV9_CHIP(chip);
1723 int i;
1724
1725 for (i = 0; i < chip->num_pecs; i++) {
1726 PnvPhb4PecState *pec = &chip9->pecs[i];
1727 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1728 uint32_t pec_nest_base;
1729 uint32_t pec_pci_base;
1730
1731 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1732 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1733 &error_fatal);
1734 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1735 &error_fatal);
1736 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1737 return;
1738 }
1739
1740 pec_nest_base = pecc->xscom_nest_base(pec);
1741 pec_pci_base = pecc->xscom_pci_base(pec);
1742
1743 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1744 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1745 }
1746 }
1747
pnv_chip_power9_realize(DeviceState * dev,Error ** errp)1748 static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1749 {
1750 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1751 Pnv9Chip *chip9 = PNV9_CHIP(dev);
1752 PnvChip *chip = PNV_CHIP(dev);
1753 Pnv9Psi *psi9 = &chip9->psi;
1754 Error *local_err = NULL;
1755 int i;
1756
1757 /* XSCOM bridge is first */
1758 pnv_xscom_init(chip, PNV9_XSCOM_SIZE, PNV9_XSCOM_BASE(chip));
1759
1760 pcc->parent_realize(dev, &local_err);
1761 if (local_err) {
1762 error_propagate(errp, local_err);
1763 return;
1764 }
1765
1766 /* ADU */
1767 object_property_set_link(OBJECT(&chip9->adu), "lpc", OBJECT(&chip9->lpc),
1768 &error_abort);
1769 if (!qdev_realize(DEVICE(&chip9->adu), NULL, errp)) {
1770 return;
1771 }
1772 pnv_xscom_add_subregion(chip, PNV9_XSCOM_ADU_BASE,
1773 &chip9->adu.xscom_regs);
1774
1775 pnv_chip_quad_realize(chip9, &local_err);
1776 if (local_err) {
1777 error_propagate(errp, local_err);
1778 return;
1779 }
1780
1781 /* XIVE interrupt controller (POWER9) */
1782 object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1783 PNV9_XIVE_IC_BASE(chip), &error_fatal);
1784 object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1785 PNV9_XIVE_VC_BASE(chip), &error_fatal);
1786 object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1787 PNV9_XIVE_PC_BASE(chip), &error_fatal);
1788 object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1789 PNV9_XIVE_TM_BASE(chip), &error_fatal);
1790 object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1791 &error_abort);
1792 if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1793 return;
1794 }
1795 pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1796 &chip9->xive.xscom_regs);
1797
1798 /* Processor Service Interface (PSI) Host Bridge */
1799 object_property_set_int(OBJECT(psi9), "bar", PNV9_PSIHB_BASE(chip),
1800 &error_fatal);
1801 /* This is the only device with 4k ESB pages */
1802 object_property_set_int(OBJECT(psi9), "shift", XIVE_ESB_4K,
1803 &error_fatal);
1804 if (!qdev_realize(DEVICE(psi9), NULL, errp)) {
1805 return;
1806 }
1807 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1808 &PNV_PSI(psi9)->xscom_regs);
1809
1810 /* LPC */
1811 if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1812 return;
1813 }
1814 memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1815 &chip9->lpc.xscom_regs);
1816
1817 chip->fw_mr = &chip9->lpc.isa_fw;
1818 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1819 (uint64_t) PNV9_LPCM_BASE(chip));
1820
1821 /* ChipTOD */
1822 object_property_set_bool(OBJECT(&chip9->chiptod), "primary",
1823 chip->chip_id == 0, &error_abort);
1824 object_property_set_bool(OBJECT(&chip9->chiptod), "secondary",
1825 chip->chip_id == 1, &error_abort);
1826 object_property_set_link(OBJECT(&chip9->chiptod), "chip", OBJECT(chip),
1827 &error_abort);
1828 if (!qdev_realize(DEVICE(&chip9->chiptod), NULL, errp)) {
1829 return;
1830 }
1831 pnv_xscom_add_subregion(chip, PNV9_XSCOM_CHIPTOD_BASE,
1832 &chip9->chiptod.xscom_regs);
1833
1834 /* Create the simplified OCC model */
1835 if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1836 return;
1837 }
1838 pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1839 qdev_connect_gpio_out(DEVICE(&chip9->occ), 0, qdev_get_gpio_in(
1840 DEVICE(psi9), PSIHB9_IRQ_OCC));
1841
1842 /* OCC SRAM model */
1843 memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1844 &chip9->occ.sram_regs);
1845
1846 /* SBE */
1847 if (!qdev_realize(DEVICE(&chip9->sbe), NULL, errp)) {
1848 return;
1849 }
1850 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_CTRL_BASE,
1851 &chip9->sbe.xscom_ctrl_regs);
1852 pnv_xscom_add_subregion(chip, PNV9_XSCOM_SBE_MBOX_BASE,
1853 &chip9->sbe.xscom_mbox_regs);
1854 qdev_connect_gpio_out(DEVICE(&chip9->sbe), 0, qdev_get_gpio_in(
1855 DEVICE(psi9), PSIHB9_IRQ_PSU));
1856
1857 /* HOMER */
1858 object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1859 &error_abort);
1860 if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1861 return;
1862 }
1863 /* Homer Xscom region */
1864 pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1865
1866 /* Homer mmio region */
1867 memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1868 &chip9->homer.regs);
1869
1870 /* PEC PHBs */
1871 pnv_chip_power9_pec_realize(chip, &local_err);
1872 if (local_err) {
1873 error_propagate(errp, local_err);
1874 return;
1875 }
1876
1877 /*
1878 * I2C
1879 */
1880 for (i = 0; i < pcc->i2c_num_engines; i++) {
1881 Object *obj = OBJECT(&chip9->i2c[i]);
1882
1883 object_property_set_int(obj, "engine", i + 1, &error_fatal);
1884 object_property_set_int(obj, "num-busses",
1885 pcc->i2c_ports_per_engine[i],
1886 &error_fatal);
1887 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
1888 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
1889 return;
1890 }
1891 pnv_xscom_add_subregion(chip, PNV9_XSCOM_I2CM_BASE +
1892 (chip9->i2c[i].engine - 1) *
1893 PNV9_XSCOM_I2CM_SIZE,
1894 &chip9->i2c[i].xscom_regs);
1895 qdev_connect_gpio_out(DEVICE(&chip9->i2c[i]), 0,
1896 qdev_get_gpio_in(DEVICE(psi9),
1897 PSIHB9_IRQ_SBE_I2C));
1898 }
1899 }
1900
pnv_chip_power9_xscom_pcba(PnvChip * chip,uint64_t addr)1901 static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1902 {
1903 addr &= (PNV9_XSCOM_SIZE - 1);
1904 return addr >> 3;
1905 }
1906
pnv_chip_power9_class_init(ObjectClass * klass,void * data)1907 static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1908 {
1909 DeviceClass *dc = DEVICE_CLASS(klass);
1910 PnvChipClass *k = PNV_CHIP_CLASS(klass);
1911 static const int i2c_ports_per_engine[PNV9_CHIP_MAX_I2C] = {2, 13, 2, 2};
1912
1913 k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1914 k->cores_mask = POWER9_CORE_MASK;
1915 k->get_pir_tir = pnv_get_pir_tir_p9;
1916 k->intc_create = pnv_chip_power9_intc_create;
1917 k->intc_reset = pnv_chip_power9_intc_reset;
1918 k->intc_destroy = pnv_chip_power9_intc_destroy;
1919 k->intc_print_info = pnv_chip_power9_intc_print_info;
1920 k->isa_create = pnv_chip_power9_isa_create;
1921 k->dt_populate = pnv_chip_power9_dt_populate;
1922 k->pic_print_info = pnv_chip_power9_pic_print_info;
1923 k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1924 k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1925 dc->desc = "PowerNV Chip POWER9";
1926 k->num_pecs = PNV9_CHIP_MAX_PEC;
1927 k->i2c_num_engines = PNV9_CHIP_MAX_I2C;
1928 k->i2c_ports_per_engine = i2c_ports_per_engine;
1929
1930 device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1931 &k->parent_realize);
1932 }
1933
pnv_chip_power10_instance_init(Object * obj)1934 static void pnv_chip_power10_instance_init(Object *obj)
1935 {
1936 PnvChip *chip = PNV_CHIP(obj);
1937 Pnv10Chip *chip10 = PNV10_CHIP(obj);
1938 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1939 int i;
1940
1941 object_initialize_child(obj, "adu", &chip10->adu, TYPE_PNV_ADU);
1942 object_initialize_child(obj, "xive", &chip10->xive, TYPE_PNV_XIVE2);
1943 object_property_add_alias(obj, "xive-fabric", OBJECT(&chip10->xive),
1944 "xive-fabric");
1945 object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1946 object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1947 object_initialize_child(obj, "chiptod", &chip10->chiptod,
1948 TYPE_PNV10_CHIPTOD);
1949 object_initialize_child(obj, "occ", &chip10->occ, TYPE_PNV10_OCC);
1950 object_initialize_child(obj, "sbe", &chip10->sbe, TYPE_PNV10_SBE);
1951 object_initialize_child(obj, "homer", &chip10->homer, TYPE_PNV10_HOMER);
1952 object_initialize_child(obj, "n1-chiplet", &chip10->n1_chiplet,
1953 TYPE_PNV_N1_CHIPLET);
1954
1955 chip->num_pecs = pcc->num_pecs;
1956
1957 for (i = 0; i < chip->num_pecs; i++) {
1958 object_initialize_child(obj, "pec[*]", &chip10->pecs[i],
1959 TYPE_PNV_PHB5_PEC);
1960 }
1961
1962 for (i = 0; i < pcc->i2c_num_engines; i++) {
1963 object_initialize_child(obj, "i2c[*]", &chip10->i2c[i], TYPE_PNV_I2C);
1964 }
1965
1966 for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
1967 object_initialize_child(obj, "pib_spic[*]", &chip10->pib_spic[i],
1968 TYPE_PNV_SPI);
1969 }
1970 }
1971
pnv_chip_power10_quad_realize(Pnv10Chip * chip10,Error ** errp)1972 static void pnv_chip_power10_quad_realize(Pnv10Chip *chip10, Error **errp)
1973 {
1974 PnvChip *chip = PNV_CHIP(chip10);
1975 int i;
1976
1977 chip10->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1978 chip10->quads = g_new0(PnvQuad, chip10->nr_quads);
1979
1980 for (i = 0; i < chip10->nr_quads; i++) {
1981 PnvQuad *eq = &chip10->quads[i];
1982
1983 pnv_chip_quad_realize_one(chip, eq, chip->cores[i * 4],
1984 PNV_QUAD_TYPE_NAME("power10"));
1985
1986 pnv_xscom_add_subregion(chip, PNV10_XSCOM_EQ_BASE(eq->quad_id),
1987 &eq->xscom_regs);
1988
1989 pnv_xscom_add_subregion(chip, PNV10_XSCOM_QME_BASE(eq->quad_id),
1990 &eq->xscom_qme_regs);
1991 }
1992 }
1993
pnv_chip_power10_phb_realize(PnvChip * chip,Error ** errp)1994 static void pnv_chip_power10_phb_realize(PnvChip *chip, Error **errp)
1995 {
1996 Pnv10Chip *chip10 = PNV10_CHIP(chip);
1997 int i;
1998
1999 for (i = 0; i < chip->num_pecs; i++) {
2000 PnvPhb4PecState *pec = &chip10->pecs[i];
2001 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
2002 uint32_t pec_nest_base;
2003 uint32_t pec_pci_base;
2004
2005 object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
2006 object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
2007 &error_fatal);
2008 object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
2009 &error_fatal);
2010 if (!qdev_realize(DEVICE(pec), NULL, errp)) {
2011 return;
2012 }
2013
2014 pec_nest_base = pecc->xscom_nest_base(pec);
2015 pec_pci_base = pecc->xscom_pci_base(pec);
2016
2017 pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
2018 pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
2019 }
2020 }
2021
pnv_chip_power10_realize(DeviceState * dev,Error ** errp)2022 static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
2023 {
2024 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
2025 PnvChip *chip = PNV_CHIP(dev);
2026 Pnv10Chip *chip10 = PNV10_CHIP(dev);
2027 Error *local_err = NULL;
2028 int i;
2029
2030 /* XSCOM bridge is first */
2031 pnv_xscom_init(chip, PNV10_XSCOM_SIZE, PNV10_XSCOM_BASE(chip));
2032
2033 pcc->parent_realize(dev, &local_err);
2034 if (local_err) {
2035 error_propagate(errp, local_err);
2036 return;
2037 }
2038
2039 /* ADU */
2040 object_property_set_link(OBJECT(&chip10->adu), "lpc", OBJECT(&chip10->lpc),
2041 &error_abort);
2042 if (!qdev_realize(DEVICE(&chip10->adu), NULL, errp)) {
2043 return;
2044 }
2045 pnv_xscom_add_subregion(chip, PNV10_XSCOM_ADU_BASE,
2046 &chip10->adu.xscom_regs);
2047
2048 pnv_chip_power10_quad_realize(chip10, &local_err);
2049 if (local_err) {
2050 error_propagate(errp, local_err);
2051 return;
2052 }
2053
2054 /* XIVE2 interrupt controller (POWER10) */
2055 object_property_set_int(OBJECT(&chip10->xive), "ic-bar",
2056 PNV10_XIVE2_IC_BASE(chip), &error_fatal);
2057 object_property_set_int(OBJECT(&chip10->xive), "esb-bar",
2058 PNV10_XIVE2_ESB_BASE(chip), &error_fatal);
2059 object_property_set_int(OBJECT(&chip10->xive), "end-bar",
2060 PNV10_XIVE2_END_BASE(chip), &error_fatal);
2061 object_property_set_int(OBJECT(&chip10->xive), "nvpg-bar",
2062 PNV10_XIVE2_NVPG_BASE(chip), &error_fatal);
2063 object_property_set_int(OBJECT(&chip10->xive), "nvc-bar",
2064 PNV10_XIVE2_NVC_BASE(chip), &error_fatal);
2065 object_property_set_int(OBJECT(&chip10->xive), "tm-bar",
2066 PNV10_XIVE2_TM_BASE(chip), &error_fatal);
2067 object_property_set_link(OBJECT(&chip10->xive), "chip", OBJECT(chip),
2068 &error_abort);
2069 if (!sysbus_realize(SYS_BUS_DEVICE(&chip10->xive), errp)) {
2070 return;
2071 }
2072 pnv_xscom_add_subregion(chip, PNV10_XSCOM_XIVE2_BASE,
2073 &chip10->xive.xscom_regs);
2074
2075 /* Processor Service Interface (PSI) Host Bridge */
2076 object_property_set_int(OBJECT(&chip10->psi), "bar",
2077 PNV10_PSIHB_BASE(chip), &error_fatal);
2078 /* PSI can now be configured to use 64k ESB pages on POWER10 */
2079 object_property_set_int(OBJECT(&chip10->psi), "shift", XIVE_ESB_64K,
2080 &error_fatal);
2081 if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
2082 return;
2083 }
2084 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
2085 &PNV_PSI(&chip10->psi)->xscom_regs);
2086
2087 /* LPC */
2088 if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
2089 return;
2090 }
2091 memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
2092 &chip10->lpc.xscom_regs);
2093
2094 chip->fw_mr = &chip10->lpc.isa_fw;
2095 chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
2096 (uint64_t) PNV10_LPCM_BASE(chip));
2097
2098 /* ChipTOD */
2099 object_property_set_bool(OBJECT(&chip10->chiptod), "primary",
2100 chip->chip_id == 0, &error_abort);
2101 object_property_set_bool(OBJECT(&chip10->chiptod), "secondary",
2102 chip->chip_id == 1, &error_abort);
2103 object_property_set_link(OBJECT(&chip10->chiptod), "chip", OBJECT(chip),
2104 &error_abort);
2105 if (!qdev_realize(DEVICE(&chip10->chiptod), NULL, errp)) {
2106 return;
2107 }
2108 pnv_xscom_add_subregion(chip, PNV10_XSCOM_CHIPTOD_BASE,
2109 &chip10->chiptod.xscom_regs);
2110
2111 /* Create the simplified OCC model */
2112 if (!qdev_realize(DEVICE(&chip10->occ), NULL, errp)) {
2113 return;
2114 }
2115 pnv_xscom_add_subregion(chip, PNV10_XSCOM_OCC_BASE,
2116 &chip10->occ.xscom_regs);
2117 qdev_connect_gpio_out(DEVICE(&chip10->occ), 0, qdev_get_gpio_in(
2118 DEVICE(&chip10->psi), PSIHB9_IRQ_OCC));
2119
2120 /* OCC SRAM model */
2121 memory_region_add_subregion(get_system_memory(),
2122 PNV10_OCC_SENSOR_BASE(chip),
2123 &chip10->occ.sram_regs);
2124
2125 /* SBE */
2126 if (!qdev_realize(DEVICE(&chip10->sbe), NULL, errp)) {
2127 return;
2128 }
2129 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_CTRL_BASE,
2130 &chip10->sbe.xscom_ctrl_regs);
2131 pnv_xscom_add_subregion(chip, PNV10_XSCOM_SBE_MBOX_BASE,
2132 &chip10->sbe.xscom_mbox_regs);
2133 qdev_connect_gpio_out(DEVICE(&chip10->sbe), 0, qdev_get_gpio_in(
2134 DEVICE(&chip10->psi), PSIHB9_IRQ_PSU));
2135
2136 /* HOMER */
2137 object_property_set_link(OBJECT(&chip10->homer), "chip", OBJECT(chip),
2138 &error_abort);
2139 if (!qdev_realize(DEVICE(&chip10->homer), NULL, errp)) {
2140 return;
2141 }
2142 /* Homer Xscom region */
2143 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PBA_BASE,
2144 &chip10->homer.pba_regs);
2145
2146 /* Homer mmio region */
2147 memory_region_add_subregion(get_system_memory(), PNV10_HOMER_BASE(chip),
2148 &chip10->homer.regs);
2149
2150 /* N1 chiplet */
2151 if (!qdev_realize(DEVICE(&chip10->n1_chiplet), NULL, errp)) {
2152 return;
2153 }
2154 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_CHIPLET_CTRL_REGS_BASE,
2155 &chip10->n1_chiplet.nest_pervasive.xscom_ctrl_regs_mr);
2156
2157 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_EQ_BASE,
2158 &chip10->n1_chiplet.xscom_pb_eq_mr);
2159
2160 pnv_xscom_add_subregion(chip, PNV10_XSCOM_N1_PB_SCOM_ES_BASE,
2161 &chip10->n1_chiplet.xscom_pb_es_mr);
2162
2163 /* PHBs */
2164 pnv_chip_power10_phb_realize(chip, &local_err);
2165 if (local_err) {
2166 error_propagate(errp, local_err);
2167 return;
2168 }
2169
2170
2171 /*
2172 * I2C
2173 */
2174 for (i = 0; i < pcc->i2c_num_engines; i++) {
2175 Object *obj = OBJECT(&chip10->i2c[i]);
2176
2177 object_property_set_int(obj, "engine", i + 1, &error_fatal);
2178 object_property_set_int(obj, "num-busses",
2179 pcc->i2c_ports_per_engine[i],
2180 &error_fatal);
2181 object_property_set_link(obj, "chip", OBJECT(chip), &error_abort);
2182 if (!qdev_realize(DEVICE(obj), NULL, errp)) {
2183 return;
2184 }
2185 pnv_xscom_add_subregion(chip, PNV10_XSCOM_I2CM_BASE +
2186 (chip10->i2c[i].engine - 1) *
2187 PNV10_XSCOM_I2CM_SIZE,
2188 &chip10->i2c[i].xscom_regs);
2189 qdev_connect_gpio_out(DEVICE(&chip10->i2c[i]), 0,
2190 qdev_get_gpio_in(DEVICE(&chip10->psi),
2191 PSIHB9_IRQ_SBE_I2C));
2192 }
2193 /* PIB SPI Controller */
2194 for (i = 0; i < PNV10_CHIP_MAX_PIB_SPIC; i++) {
2195 object_property_set_int(OBJECT(&chip10->pib_spic[i]), "spic_num",
2196 i, &error_fatal);
2197 /* pib_spic[2] connected to 25csm04 which implements 1 byte transfer */
2198 object_property_set_int(OBJECT(&chip10->pib_spic[i]), "transfer_len",
2199 (i == 2) ? 1 : 4, &error_fatal);
2200 if (!sysbus_realize(SYS_BUS_DEVICE(OBJECT
2201 (&chip10->pib_spic[i])), errp)) {
2202 return;
2203 }
2204 pnv_xscom_add_subregion(chip, PNV10_XSCOM_PIB_SPIC_BASE +
2205 i * PNV10_XSCOM_PIB_SPIC_SIZE,
2206 &chip10->pib_spic[i].xscom_spic_regs);
2207 }
2208 }
2209
pnv_rainier_i2c_init(PnvMachineState * pnv)2210 static void pnv_rainier_i2c_init(PnvMachineState *pnv)
2211 {
2212 int i;
2213 for (i = 0; i < pnv->num_chips; i++) {
2214 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2215
2216 /*
2217 * Add a PCA9552 I2C device for PCIe hotplug control
2218 * to engine 2, bus 1, address 0x63
2219 */
2220 I2CSlave *dev = i2c_slave_create_simple(chip10->i2c[2].busses[1],
2221 "pca9552", 0x63);
2222
2223 /*
2224 * Connect PCA9552 GPIO pins 0-4 (SLOTx_EN) outputs to GPIO pins 5-9
2225 * (SLOTx_PG) inputs in order to fake the pgood state of PCIe slots
2226 * after hypervisor code sets a SLOTx_EN pin high.
2227 */
2228 qdev_connect_gpio_out(DEVICE(dev), 0, qdev_get_gpio_in(DEVICE(dev), 5));
2229 qdev_connect_gpio_out(DEVICE(dev), 1, qdev_get_gpio_in(DEVICE(dev), 6));
2230 qdev_connect_gpio_out(DEVICE(dev), 2, qdev_get_gpio_in(DEVICE(dev), 7));
2231 qdev_connect_gpio_out(DEVICE(dev), 3, qdev_get_gpio_in(DEVICE(dev), 8));
2232 qdev_connect_gpio_out(DEVICE(dev), 4, qdev_get_gpio_in(DEVICE(dev), 9));
2233
2234 /*
2235 * Add a PCA9554 I2C device for cable card presence detection
2236 * to engine 2, bus 1, address 0x25
2237 */
2238 i2c_slave_create_simple(chip10->i2c[2].busses[1], "pca9554", 0x25);
2239 }
2240 }
2241
pnv_chip_power10_xscom_pcba(PnvChip * chip,uint64_t addr)2242 static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
2243 {
2244 addr &= (PNV10_XSCOM_SIZE - 1);
2245 return addr >> 3;
2246 }
2247
pnv_chip_power10_class_init(ObjectClass * klass,void * data)2248 static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
2249 {
2250 DeviceClass *dc = DEVICE_CLASS(klass);
2251 PnvChipClass *k = PNV_CHIP_CLASS(klass);
2252 static const int i2c_ports_per_engine[PNV10_CHIP_MAX_I2C] = {14, 14, 2, 16};
2253
2254 k->chip_cfam_id = 0x220da04980000000ull; /* P10 DD2.0 (with NX) */
2255 k->cores_mask = POWER10_CORE_MASK;
2256 k->get_pir_tir = pnv_get_pir_tir_p10;
2257 k->intc_create = pnv_chip_power10_intc_create;
2258 k->intc_reset = pnv_chip_power10_intc_reset;
2259 k->intc_destroy = pnv_chip_power10_intc_destroy;
2260 k->intc_print_info = pnv_chip_power10_intc_print_info;
2261 k->isa_create = pnv_chip_power10_isa_create;
2262 k->dt_populate = pnv_chip_power10_dt_populate;
2263 k->pic_print_info = pnv_chip_power10_pic_print_info;
2264 k->xscom_core_base = pnv_chip_power10_xscom_core_base;
2265 k->xscom_pcba = pnv_chip_power10_xscom_pcba;
2266 dc->desc = "PowerNV Chip POWER10";
2267 k->num_pecs = PNV10_CHIP_MAX_PEC;
2268 k->i2c_num_engines = PNV10_CHIP_MAX_I2C;
2269 k->i2c_ports_per_engine = i2c_ports_per_engine;
2270
2271 device_class_set_parent_realize(dc, pnv_chip_power10_realize,
2272 &k->parent_realize);
2273 }
2274
pnv_chip_core_sanitize(PnvMachineState * pnv,PnvChip * chip,Error ** errp)2275 static void pnv_chip_core_sanitize(PnvMachineState *pnv, PnvChip *chip,
2276 Error **errp)
2277 {
2278 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2279 int cores_max;
2280
2281 /*
2282 * No custom mask for this chip, let's use the default one from *
2283 * the chip class
2284 */
2285 if (!chip->cores_mask) {
2286 chip->cores_mask = pcc->cores_mask;
2287 }
2288
2289 /* filter alien core ids ! some are reserved */
2290 if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
2291 error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
2292 chip->cores_mask);
2293 return;
2294 }
2295 chip->cores_mask &= pcc->cores_mask;
2296
2297 /* Ensure small-cores a paired up in big-core mode */
2298 if (pnv->big_core) {
2299 uint64_t even_cores = chip->cores_mask & 0x5555555555555555ULL;
2300 uint64_t odd_cores = chip->cores_mask & 0xaaaaaaaaaaaaaaaaULL;
2301
2302 if (even_cores ^ (odd_cores >> 1)) {
2303 error_setg(errp, "warning: unpaired cores in big-core mode !");
2304 return;
2305 }
2306 }
2307
2308 /* now that we have a sane layout, let check the number of cores */
2309 cores_max = ctpop64(chip->cores_mask);
2310 if (chip->nr_cores > cores_max) {
2311 error_setg(errp, "warning: too many cores for chip ! Limit is %d",
2312 cores_max);
2313 return;
2314 }
2315 }
2316
pnv_chip_core_realize(PnvChip * chip,Error ** errp)2317 static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
2318 {
2319 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2320 PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(pnv);
2321 Error *error = NULL;
2322 PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
2323 const char *typename = pnv_chip_core_typename(chip);
2324 int i, core_hwid;
2325
2326 if (!object_class_by_name(typename)) {
2327 error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
2328 return;
2329 }
2330
2331 /* Cores */
2332 pnv_chip_core_sanitize(pnv, chip, &error);
2333 if (error) {
2334 error_propagate(errp, error);
2335 return;
2336 }
2337
2338 chip->cores = g_new0(PnvCore *, chip->nr_cores);
2339
2340 for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
2341 && (i < chip->nr_cores); core_hwid++) {
2342 char core_name[32];
2343 PnvCore *pnv_core;
2344 uint64_t xscom_core_base;
2345
2346 if (!(chip->cores_mask & (1ull << core_hwid))) {
2347 continue;
2348 }
2349
2350 pnv_core = PNV_CORE(object_new(typename));
2351
2352 snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
2353 object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
2354 chip->cores[i] = pnv_core;
2355 object_property_set_int(OBJECT(pnv_core), "nr-threads",
2356 chip->nr_threads, &error_fatal);
2357 object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
2358 core_hwid, &error_fatal);
2359 object_property_set_int(OBJECT(pnv_core), "hwid", core_hwid,
2360 &error_fatal);
2361 object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
2362 &error_fatal);
2363 object_property_set_bool(OBJECT(pnv_core), "big-core", chip->big_core,
2364 &error_fatal);
2365 object_property_set_bool(OBJECT(pnv_core), "quirk-tb-big-core",
2366 pmc->quirk_tb_big_core, &error_fatal);
2367 object_property_set_bool(OBJECT(pnv_core), "lpar-per-core",
2368 chip->lpar_per_core, &error_fatal);
2369 object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
2370 &error_abort);
2371
2372 qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
2373
2374 /* Each core has an XSCOM MMIO region */
2375 xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
2376
2377 pnv_xscom_add_subregion(chip, xscom_core_base,
2378 &pnv_core->xscom_regs);
2379 i++;
2380 }
2381 }
2382
pnv_chip_realize(DeviceState * dev,Error ** errp)2383 static void pnv_chip_realize(DeviceState *dev, Error **errp)
2384 {
2385 PnvChip *chip = PNV_CHIP(dev);
2386 Error *error = NULL;
2387
2388 /* Cores */
2389 pnv_chip_core_realize(chip, &error);
2390 if (error) {
2391 error_propagate(errp, error);
2392 return;
2393 }
2394 }
2395
2396 static Property pnv_chip_properties[] = {
2397 DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
2398 DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
2399 DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
2400 DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
2401 DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
2402 DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
2403 DEFINE_PROP_BOOL("big-core", PnvChip, big_core, false),
2404 DEFINE_PROP_BOOL("lpar-per-core", PnvChip, lpar_per_core, false),
2405 DEFINE_PROP_END_OF_LIST(),
2406 };
2407
pnv_chip_class_init(ObjectClass * klass,void * data)2408 static void pnv_chip_class_init(ObjectClass *klass, void *data)
2409 {
2410 DeviceClass *dc = DEVICE_CLASS(klass);
2411
2412 set_bit(DEVICE_CATEGORY_CPU, dc->categories);
2413 dc->realize = pnv_chip_realize;
2414 device_class_set_props(dc, pnv_chip_properties);
2415 dc->desc = "PowerNV Chip";
2416 }
2417
pnv_chip_find_core(PnvChip * chip,uint32_t core_id)2418 PnvCore *pnv_chip_find_core(PnvChip *chip, uint32_t core_id)
2419 {
2420 int i;
2421
2422 for (i = 0; i < chip->nr_cores; i++) {
2423 PnvCore *pc = chip->cores[i];
2424 CPUCore *cc = CPU_CORE(pc);
2425
2426 if (cc->core_id == core_id) {
2427 return pc;
2428 }
2429 }
2430 return NULL;
2431 }
2432
pnv_chip_find_cpu(PnvChip * chip,uint32_t pir)2433 PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
2434 {
2435 int i, j;
2436
2437 for (i = 0; i < chip->nr_cores; i++) {
2438 PnvCore *pc = chip->cores[i];
2439 CPUCore *cc = CPU_CORE(pc);
2440
2441 for (j = 0; j < cc->nr_threads; j++) {
2442 if (ppc_cpu_pir(pc->threads[j]) == pir) {
2443 return pc->threads[j];
2444 }
2445 }
2446 }
2447 return NULL;
2448 }
2449
pnv_chip_foreach_cpu(PnvChip * chip,void (* fn)(PnvChip * chip,PowerPCCPU * cpu,void * opaque),void * opaque)2450 static void pnv_chip_foreach_cpu(PnvChip *chip,
2451 void (*fn)(PnvChip *chip, PowerPCCPU *cpu, void *opaque),
2452 void *opaque)
2453 {
2454 int i, j;
2455
2456 for (i = 0; i < chip->nr_cores; i++) {
2457 PnvCore *pc = chip->cores[i];
2458
2459 for (j = 0; j < CPU_CORE(pc)->nr_threads; j++) {
2460 fn(chip, pc->threads[j], opaque);
2461 }
2462 }
2463 }
2464
pnv_ics_get(XICSFabric * xi,int irq)2465 static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
2466 {
2467 PnvMachineState *pnv = PNV_MACHINE(xi);
2468 int i, j;
2469
2470 for (i = 0; i < pnv->num_chips; i++) {
2471 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2472
2473 if (ics_valid_irq(&chip8->psi.ics, irq)) {
2474 return &chip8->psi.ics;
2475 }
2476
2477 for (j = 0; j < chip8->num_phbs; j++) {
2478 PnvPHB *phb = chip8->phbs[j];
2479 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2480
2481 if (ics_valid_irq(&phb3->lsis, irq)) {
2482 return &phb3->lsis;
2483 }
2484
2485 if (ics_valid_irq(ICS(&phb3->msis), irq)) {
2486 return ICS(&phb3->msis);
2487 }
2488 }
2489 }
2490 return NULL;
2491 }
2492
pnv_get_chip(PnvMachineState * pnv,uint32_t chip_id)2493 PnvChip *pnv_get_chip(PnvMachineState *pnv, uint32_t chip_id)
2494 {
2495 int i;
2496
2497 for (i = 0; i < pnv->num_chips; i++) {
2498 PnvChip *chip = pnv->chips[i];
2499 if (chip->chip_id == chip_id) {
2500 return chip;
2501 }
2502 }
2503 return NULL;
2504 }
2505
pnv_ics_resend(XICSFabric * xi)2506 static void pnv_ics_resend(XICSFabric *xi)
2507 {
2508 PnvMachineState *pnv = PNV_MACHINE(xi);
2509 int i, j;
2510
2511 for (i = 0; i < pnv->num_chips; i++) {
2512 Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
2513
2514 ics_resend(&chip8->psi.ics);
2515
2516 for (j = 0; j < chip8->num_phbs; j++) {
2517 PnvPHB *phb = chip8->phbs[j];
2518 PnvPHB3 *phb3 = PNV_PHB3(phb->backend);
2519
2520 ics_resend(&phb3->lsis);
2521 ics_resend(ICS(&phb3->msis));
2522 }
2523 }
2524 }
2525
pnv_icp_get(XICSFabric * xi,int pir)2526 static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
2527 {
2528 PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
2529
2530 return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
2531 }
2532
pnv_pic_intc_print_info(PnvChip * chip,PowerPCCPU * cpu,void * opaque)2533 static void pnv_pic_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
2534 void *opaque)
2535 {
2536 PNV_CHIP_GET_CLASS(chip)->intc_print_info(chip, cpu, opaque);
2537 }
2538
pnv_pic_print_info(InterruptStatsProvider * obj,GString * buf)2539 static void pnv_pic_print_info(InterruptStatsProvider *obj, GString *buf)
2540 {
2541 PnvMachineState *pnv = PNV_MACHINE(obj);
2542 int i;
2543
2544 for (i = 0; i < pnv->num_chips; i++) {
2545 PnvChip *chip = pnv->chips[i];
2546
2547 /* First CPU presenters */
2548 pnv_chip_foreach_cpu(chip, pnv_pic_intc_print_info, buf);
2549
2550 /* Then other devices, PHB, PSI, XIVE */
2551 PNV_CHIP_GET_CLASS(chip)->pic_print_info(chip, buf);
2552 }
2553 }
2554
pnv_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)2555 static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
2556 uint8_t nvt_blk, uint32_t nvt_idx,
2557 bool cam_ignore, uint8_t priority,
2558 uint32_t logic_serv,
2559 XiveTCTXMatch *match)
2560 {
2561 PnvMachineState *pnv = PNV_MACHINE(xfb);
2562 int total_count = 0;
2563 int i;
2564
2565 for (i = 0; i < pnv->num_chips; i++) {
2566 Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
2567 XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
2568 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2569 int count;
2570
2571 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2572 priority, logic_serv, match);
2573
2574 if (count < 0) {
2575 return count;
2576 }
2577
2578 total_count += count;
2579 }
2580
2581 return total_count;
2582 }
2583
pnv10_xive_match_nvt(XiveFabric * xfb,uint8_t format,uint8_t nvt_blk,uint32_t nvt_idx,bool cam_ignore,uint8_t priority,uint32_t logic_serv,XiveTCTXMatch * match)2584 static int pnv10_xive_match_nvt(XiveFabric *xfb, uint8_t format,
2585 uint8_t nvt_blk, uint32_t nvt_idx,
2586 bool cam_ignore, uint8_t priority,
2587 uint32_t logic_serv,
2588 XiveTCTXMatch *match)
2589 {
2590 PnvMachineState *pnv = PNV_MACHINE(xfb);
2591 int total_count = 0;
2592 int i;
2593
2594 for (i = 0; i < pnv->num_chips; i++) {
2595 Pnv10Chip *chip10 = PNV10_CHIP(pnv->chips[i]);
2596 XivePresenter *xptr = XIVE_PRESENTER(&chip10->xive);
2597 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
2598 int count;
2599
2600 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
2601 priority, logic_serv, match);
2602
2603 if (count < 0) {
2604 return count;
2605 }
2606
2607 total_count += count;
2608 }
2609
2610 return total_count;
2611 }
2612
pnv_machine_get_big_core(Object * obj,Error ** errp)2613 static bool pnv_machine_get_big_core(Object *obj, Error **errp)
2614 {
2615 PnvMachineState *pnv = PNV_MACHINE(obj);
2616 return pnv->big_core;
2617 }
2618
pnv_machine_set_big_core(Object * obj,bool value,Error ** errp)2619 static void pnv_machine_set_big_core(Object *obj, bool value, Error **errp)
2620 {
2621 PnvMachineState *pnv = PNV_MACHINE(obj);
2622 pnv->big_core = value;
2623 }
2624
pnv_machine_get_lpar_per_core(Object * obj,Error ** errp)2625 static bool pnv_machine_get_lpar_per_core(Object *obj, Error **errp)
2626 {
2627 PnvMachineState *pnv = PNV_MACHINE(obj);
2628 return pnv->lpar_per_core;
2629 }
2630
pnv_machine_set_lpar_per_core(Object * obj,bool value,Error ** errp)2631 static void pnv_machine_set_lpar_per_core(Object *obj, bool value, Error **errp)
2632 {
2633 PnvMachineState *pnv = PNV_MACHINE(obj);
2634 pnv->lpar_per_core = value;
2635 }
2636
pnv_machine_get_hb(Object * obj,Error ** errp)2637 static bool pnv_machine_get_hb(Object *obj, Error **errp)
2638 {
2639 PnvMachineState *pnv = PNV_MACHINE(obj);
2640
2641 return !!pnv->fw_load_addr;
2642 }
2643
pnv_machine_set_hb(Object * obj,bool value,Error ** errp)2644 static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
2645 {
2646 PnvMachineState *pnv = PNV_MACHINE(obj);
2647
2648 if (value) {
2649 pnv->fw_load_addr = 0x8000000;
2650 }
2651 }
2652
pnv_machine_power8_class_init(ObjectClass * oc,void * data)2653 static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
2654 {
2655 MachineClass *mc = MACHINE_CLASS(oc);
2656 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
2657 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2658 static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
2659
2660 static GlobalProperty phb_compat[] = {
2661 { TYPE_PNV_PHB, "version", "3" },
2662 { TYPE_PNV_PHB_ROOT_PORT, "version", "3" },
2663 };
2664
2665 mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
2666 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
2667 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2668
2669 xic->icp_get = pnv_icp_get;
2670 xic->ics_get = pnv_ics_get;
2671 xic->ics_resend = pnv_ics_resend;
2672
2673 pmc->compat = compat;
2674 pmc->compat_size = sizeof(compat);
2675 pmc->max_smt_threads = 8;
2676 /* POWER8 is always lpar-per-core mode */
2677 pmc->has_lpar_per_thread = false;
2678
2679 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2680 }
2681
pnv_machine_power9_class_init(ObjectClass * oc,void * data)2682 static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
2683 {
2684 MachineClass *mc = MACHINE_CLASS(oc);
2685 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2686 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2687 static const char compat[] = "qemu,powernv9\0ibm,powernv";
2688
2689 static GlobalProperty phb_compat[] = {
2690 { TYPE_PNV_PHB, "version", "4" },
2691 { TYPE_PNV_PHB_ROOT_PORT, "version", "4" },
2692 };
2693
2694 mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
2695 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
2696 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2697
2698 xfc->match_nvt = pnv_match_nvt;
2699
2700 pmc->compat = compat;
2701 pmc->compat_size = sizeof(compat);
2702 pmc->max_smt_threads = 4;
2703 pmc->has_lpar_per_thread = true;
2704 pmc->dt_power_mgt = pnv_dt_power_mgt;
2705
2706 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2707
2708 object_class_property_add_bool(oc, "big-core",
2709 pnv_machine_get_big_core,
2710 pnv_machine_set_big_core);
2711 object_class_property_set_description(oc, "big-core",
2712 "Use big-core (aka fused-core) mode");
2713
2714 object_class_property_add_bool(oc, "lpar-per-core",
2715 pnv_machine_get_lpar_per_core,
2716 pnv_machine_set_lpar_per_core);
2717 object_class_property_set_description(oc, "lpar-per-core",
2718 "Use 1 LPAR per core mode");
2719 }
2720
pnv_machine_p10_common_class_init(ObjectClass * oc,void * data)2721 static void pnv_machine_p10_common_class_init(ObjectClass *oc, void *data)
2722 {
2723 MachineClass *mc = MACHINE_CLASS(oc);
2724 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2725 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
2726 static const char compat[] = "qemu,powernv10\0ibm,powernv";
2727
2728 static GlobalProperty phb_compat[] = {
2729 { TYPE_PNV_PHB, "version", "5" },
2730 { TYPE_PNV_PHB_ROOT_PORT, "version", "5" },
2731 };
2732
2733 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
2734 compat_props_add(mc->compat_props, phb_compat, G_N_ELEMENTS(phb_compat));
2735
2736 mc->alias = "powernv";
2737
2738 pmc->compat = compat;
2739 pmc->compat_size = sizeof(compat);
2740 pmc->max_smt_threads = 4;
2741 pmc->has_lpar_per_thread = true;
2742 pmc->quirk_tb_big_core = true;
2743 pmc->dt_power_mgt = pnv_dt_power_mgt;
2744
2745 xfc->match_nvt = pnv10_xive_match_nvt;
2746
2747 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_PNV_PHB);
2748 }
2749
pnv_machine_power10_class_init(ObjectClass * oc,void * data)2750 static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
2751 {
2752 MachineClass *mc = MACHINE_CLASS(oc);
2753
2754 pnv_machine_p10_common_class_init(oc, data);
2755 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
2756
2757 /*
2758 * This is the parent of POWER10 Rainier class, so properies go here
2759 * rather than common init (which would add them to both parent and
2760 * child which is invalid).
2761 */
2762 object_class_property_add_bool(oc, "big-core",
2763 pnv_machine_get_big_core,
2764 pnv_machine_set_big_core);
2765 object_class_property_set_description(oc, "big-core",
2766 "Use big-core (aka fused-core) mode");
2767
2768 object_class_property_add_bool(oc, "lpar-per-core",
2769 pnv_machine_get_lpar_per_core,
2770 pnv_machine_set_lpar_per_core);
2771 object_class_property_set_description(oc, "lpar-per-core",
2772 "Use 1 LPAR per core mode");
2773 }
2774
pnv_machine_p10_rainier_class_init(ObjectClass * oc,void * data)2775 static void pnv_machine_p10_rainier_class_init(ObjectClass *oc, void *data)
2776 {
2777 MachineClass *mc = MACHINE_CLASS(oc);
2778 PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
2779
2780 pnv_machine_p10_common_class_init(oc, data);
2781 mc->desc = "IBM PowerNV (Non-Virtualized) POWER10 Rainier";
2782 pmc->i2c_init = pnv_rainier_i2c_init;
2783 }
2784
pnv_cpu_do_nmi_on_cpu(CPUState * cs,run_on_cpu_data arg)2785 static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2786 {
2787 CPUPPCState *env = cpu_env(cs);
2788
2789 cpu_synchronize_state(cs);
2790 ppc_cpu_do_system_reset(cs);
2791 if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
2792 /*
2793 * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
2794 * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
2795 * (PPC_BIT(43)).
2796 */
2797 if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
2798 warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
2799 env->spr[SPR_SRR1] |= SRR1_WAKERESET;
2800 }
2801 } else {
2802 /*
2803 * For non-powersave system resets, SRR1[42:45] are defined to be
2804 * implementation-dependent. The POWER9 User Manual specifies that
2805 * an external (SCOM driven, which may come from a BMC nmi command or
2806 * another CPU requesting a NMI IPI) system reset exception should be
2807 * 0b0010 (PPC_BIT(44)).
2808 */
2809 env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
2810 }
2811 if (arg.host_int == 1) {
2812 cpu_resume(cs);
2813 }
2814 }
2815
2816 /*
2817 * Send a SRESET (NMI) interrupt to the CPU, and resume execution if it was
2818 * paused.
2819 */
pnv_cpu_do_nmi_resume(CPUState * cs)2820 void pnv_cpu_do_nmi_resume(CPUState *cs)
2821 {
2822 async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(1));
2823 }
2824
pnv_cpu_do_nmi(PnvChip * chip,PowerPCCPU * cpu,void * opaque)2825 static void pnv_cpu_do_nmi(PnvChip *chip, PowerPCCPU *cpu, void *opaque)
2826 {
2827 async_run_on_cpu(CPU(cpu), pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_HOST_INT(0));
2828 }
2829
pnv_nmi(NMIState * n,int cpu_index,Error ** errp)2830 static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
2831 {
2832 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
2833 int i;
2834
2835 for (i = 0; i < pnv->num_chips; i++) {
2836 pnv_chip_foreach_cpu(pnv->chips[i], pnv_cpu_do_nmi, NULL);
2837 }
2838 }
2839
pnv_machine_class_init(ObjectClass * oc,void * data)2840 static void pnv_machine_class_init(ObjectClass *oc, void *data)
2841 {
2842 MachineClass *mc = MACHINE_CLASS(oc);
2843 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
2844 NMIClass *nc = NMI_CLASS(oc);
2845
2846 mc->desc = "IBM PowerNV (Non-Virtualized)";
2847 mc->init = pnv_init;
2848 mc->reset = pnv_reset;
2849 mc->max_cpus = MAX_CPUS;
2850 /* Pnv provides a AHCI device for storage */
2851 mc->block_default_type = IF_IDE;
2852 mc->no_parallel = 1;
2853 mc->default_boot_order = NULL;
2854 /*
2855 * RAM defaults to less than 2048 for 32-bit hosts, and large
2856 * enough to fit the maximum initrd size at it's load address
2857 */
2858 mc->default_ram_size = 1 * GiB;
2859 mc->default_ram_id = "pnv.ram";
2860 ispc->print_info = pnv_pic_print_info;
2861 nc->nmi_monitor_handler = pnv_nmi;
2862
2863 object_class_property_add_bool(oc, "hb-mode",
2864 pnv_machine_get_hb, pnv_machine_set_hb);
2865 object_class_property_set_description(oc, "hb-mode",
2866 "Use a hostboot like boot loader");
2867 }
2868
2869 #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2870 { \
2871 .name = type, \
2872 .class_init = class_initfn, \
2873 .parent = TYPE_PNV8_CHIP, \
2874 }
2875
2876 #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2877 { \
2878 .name = type, \
2879 .class_init = class_initfn, \
2880 .parent = TYPE_PNV9_CHIP, \
2881 }
2882
2883 #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2884 { \
2885 .name = type, \
2886 .class_init = class_initfn, \
2887 .parent = TYPE_PNV10_CHIP, \
2888 }
2889
2890 static const TypeInfo types[] = {
2891 {
2892 .name = MACHINE_TYPE_NAME("powernv10-rainier"),
2893 .parent = MACHINE_TYPE_NAME("powernv10"),
2894 .class_init = pnv_machine_p10_rainier_class_init,
2895 },
2896 {
2897 .name = MACHINE_TYPE_NAME("powernv10"),
2898 .parent = TYPE_PNV_MACHINE,
2899 .class_init = pnv_machine_power10_class_init,
2900 .interfaces = (InterfaceInfo[]) {
2901 { TYPE_XIVE_FABRIC },
2902 { },
2903 },
2904 },
2905 {
2906 .name = MACHINE_TYPE_NAME("powernv9"),
2907 .parent = TYPE_PNV_MACHINE,
2908 .class_init = pnv_machine_power9_class_init,
2909 .interfaces = (InterfaceInfo[]) {
2910 { TYPE_XIVE_FABRIC },
2911 { },
2912 },
2913 },
2914 {
2915 .name = MACHINE_TYPE_NAME("powernv8"),
2916 .parent = TYPE_PNV_MACHINE,
2917 .class_init = pnv_machine_power8_class_init,
2918 .interfaces = (InterfaceInfo[]) {
2919 { TYPE_XICS_FABRIC },
2920 { },
2921 },
2922 },
2923 {
2924 .name = TYPE_PNV_MACHINE,
2925 .parent = TYPE_MACHINE,
2926 .abstract = true,
2927 .instance_size = sizeof(PnvMachineState),
2928 .class_init = pnv_machine_class_init,
2929 .class_size = sizeof(PnvMachineClass),
2930 .interfaces = (InterfaceInfo[]) {
2931 { TYPE_INTERRUPT_STATS_PROVIDER },
2932 { TYPE_NMI },
2933 { },
2934 },
2935 },
2936 {
2937 .name = TYPE_PNV_CHIP,
2938 .parent = TYPE_SYS_BUS_DEVICE,
2939 .class_init = pnv_chip_class_init,
2940 .instance_size = sizeof(PnvChip),
2941 .class_size = sizeof(PnvChipClass),
2942 .abstract = true,
2943 },
2944
2945 /*
2946 * P10 chip and variants
2947 */
2948 {
2949 .name = TYPE_PNV10_CHIP,
2950 .parent = TYPE_PNV_CHIP,
2951 .instance_init = pnv_chip_power10_instance_init,
2952 .instance_size = sizeof(Pnv10Chip),
2953 },
2954 DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2955
2956 /*
2957 * P9 chip and variants
2958 */
2959 {
2960 .name = TYPE_PNV9_CHIP,
2961 .parent = TYPE_PNV_CHIP,
2962 .instance_init = pnv_chip_power9_instance_init,
2963 .instance_size = sizeof(Pnv9Chip),
2964 },
2965 DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2966
2967 /*
2968 * P8 chip and variants
2969 */
2970 {
2971 .name = TYPE_PNV8_CHIP,
2972 .parent = TYPE_PNV_CHIP,
2973 .instance_init = pnv_chip_power8_instance_init,
2974 .instance_size = sizeof(Pnv8Chip),
2975 },
2976 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2977 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2978 DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2979 pnv_chip_power8nvl_class_init),
2980 };
2981
2982 DEFINE_TYPES(types)
2983