1 /* 2 * QEMU PCI bus manager 3 * 4 * Copyright (c) 2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/datadir.h" 27 #include "qemu/units.h" 28 #include "hw/irq.h" 29 #include "hw/pci/pci.h" 30 #include "hw/pci/pci_bridge.h" 31 #include "hw/pci/pci_bus.h" 32 #include "hw/pci/pci_host.h" 33 #include "hw/qdev-properties.h" 34 #include "hw/qdev-properties-system.h" 35 #include "migration/qemu-file-types.h" 36 #include "migration/vmstate.h" 37 #include "net/net.h" 38 #include "sysemu/numa.h" 39 #include "sysemu/sysemu.h" 40 #include "hw/loader.h" 41 #include "qemu/error-report.h" 42 #include "qemu/range.h" 43 #include "trace.h" 44 #include "hw/pci/msi.h" 45 #include "hw/pci/msix.h" 46 #include "hw/hotplug.h" 47 #include "hw/boards.h" 48 #include "qapi/error.h" 49 #include "qemu/cutils.h" 50 #include "pci-internal.h" 51 52 #include "hw/xen/xen.h" 53 #include "hw/i386/kvm/xen_evtchn.h" 54 55 //#define DEBUG_PCI 56 #ifdef DEBUG_PCI 57 # define PCI_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) 58 #else 59 # define PCI_DPRINTF(format, ...) do { } while (0) 60 #endif 61 62 bool pci_available = true; 63 64 static char *pcibus_get_dev_path(DeviceState *dev); 65 static char *pcibus_get_fw_dev_path(DeviceState *dev); 66 static void pcibus_reset(BusState *qbus); 67 68 static Property pci_props[] = { 69 DEFINE_PROP_PCI_DEVFN("addr", PCIDevice, devfn, -1), 70 DEFINE_PROP_STRING("romfile", PCIDevice, romfile), 71 DEFINE_PROP_UINT32("romsize", PCIDevice, romsize, -1), 72 DEFINE_PROP_UINT32("rombar", PCIDevice, rom_bar, 1), 73 DEFINE_PROP_BIT("multifunction", PCIDevice, cap_present, 74 QEMU_PCI_CAP_MULTIFUNCTION_BITNR, false), 75 DEFINE_PROP_BIT("x-pcie-lnksta-dllla", PCIDevice, cap_present, 76 QEMU_PCIE_LNKSTA_DLLLA_BITNR, true), 77 DEFINE_PROP_BIT("x-pcie-extcap-init", PCIDevice, cap_present, 78 QEMU_PCIE_EXTCAP_INIT_BITNR, true), 79 DEFINE_PROP_STRING("failover_pair_id", PCIDevice, 80 failover_pair_id), 81 DEFINE_PROP_UINT32("acpi-index", PCIDevice, acpi_index, 0), 82 DEFINE_PROP_END_OF_LIST() 83 }; 84 85 static const VMStateDescription vmstate_pcibus = { 86 .name = "PCIBUS", 87 .version_id = 1, 88 .minimum_version_id = 1, 89 .fields = (VMStateField[]) { 90 VMSTATE_INT32_EQUAL(nirq, PCIBus, NULL), 91 VMSTATE_VARRAY_INT32(irq_count, PCIBus, 92 nirq, 0, vmstate_info_int32, 93 int32_t), 94 VMSTATE_END_OF_LIST() 95 } 96 }; 97 98 static gint g_cmp_uint32(gconstpointer a, gconstpointer b, gpointer user_data) 99 { 100 return a - b; 101 } 102 103 static GSequence *pci_acpi_index_list(void) 104 { 105 static GSequence *used_acpi_index_list; 106 107 if (!used_acpi_index_list) { 108 used_acpi_index_list = g_sequence_new(NULL); 109 } 110 return used_acpi_index_list; 111 } 112 113 static void pci_init_bus_master(PCIDevice *pci_dev) 114 { 115 AddressSpace *dma_as = pci_device_iommu_address_space(pci_dev); 116 117 memory_region_init_alias(&pci_dev->bus_master_enable_region, 118 OBJECT(pci_dev), "bus master", 119 dma_as->root, 0, memory_region_size(dma_as->root)); 120 memory_region_set_enabled(&pci_dev->bus_master_enable_region, false); 121 memory_region_add_subregion(&pci_dev->bus_master_container_region, 0, 122 &pci_dev->bus_master_enable_region); 123 } 124 125 static void pcibus_machine_done(Notifier *notifier, void *data) 126 { 127 PCIBus *bus = container_of(notifier, PCIBus, machine_done); 128 int i; 129 130 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 131 if (bus->devices[i]) { 132 pci_init_bus_master(bus->devices[i]); 133 } 134 } 135 } 136 137 static void pci_bus_realize(BusState *qbus, Error **errp) 138 { 139 PCIBus *bus = PCI_BUS(qbus); 140 141 bus->machine_done.notify = pcibus_machine_done; 142 qemu_add_machine_init_done_notifier(&bus->machine_done); 143 144 vmstate_register(NULL, VMSTATE_INSTANCE_ID_ANY, &vmstate_pcibus, bus); 145 } 146 147 static void pcie_bus_realize(BusState *qbus, Error **errp) 148 { 149 PCIBus *bus = PCI_BUS(qbus); 150 Error *local_err = NULL; 151 152 pci_bus_realize(qbus, &local_err); 153 if (local_err) { 154 error_propagate(errp, local_err); 155 return; 156 } 157 158 /* 159 * A PCI-E bus can support extended config space if it's the root 160 * bus, or if the bus/bridge above it does as well 161 */ 162 if (pci_bus_is_root(bus)) { 163 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 164 } else { 165 PCIBus *parent_bus = pci_get_bus(bus->parent_dev); 166 167 if (pci_bus_allows_extended_config_space(parent_bus)) { 168 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 169 } 170 } 171 } 172 173 static void pci_bus_unrealize(BusState *qbus) 174 { 175 PCIBus *bus = PCI_BUS(qbus); 176 177 qemu_remove_machine_init_done_notifier(&bus->machine_done); 178 179 vmstate_unregister(NULL, &vmstate_pcibus, bus); 180 } 181 182 static int pcibus_num(PCIBus *bus) 183 { 184 if (pci_bus_is_root(bus)) { 185 return 0; /* pci host bridge */ 186 } 187 return bus->parent_dev->config[PCI_SECONDARY_BUS]; 188 } 189 190 static uint16_t pcibus_numa_node(PCIBus *bus) 191 { 192 return NUMA_NODE_UNASSIGNED; 193 } 194 195 static void pci_bus_class_init(ObjectClass *klass, void *data) 196 { 197 BusClass *k = BUS_CLASS(klass); 198 PCIBusClass *pbc = PCI_BUS_CLASS(klass); 199 200 k->print_dev = pcibus_dev_print; 201 k->get_dev_path = pcibus_get_dev_path; 202 k->get_fw_dev_path = pcibus_get_fw_dev_path; 203 k->realize = pci_bus_realize; 204 k->unrealize = pci_bus_unrealize; 205 k->reset = pcibus_reset; 206 207 pbc->bus_num = pcibus_num; 208 pbc->numa_node = pcibus_numa_node; 209 } 210 211 static const TypeInfo pci_bus_info = { 212 .name = TYPE_PCI_BUS, 213 .parent = TYPE_BUS, 214 .instance_size = sizeof(PCIBus), 215 .class_size = sizeof(PCIBusClass), 216 .class_init = pci_bus_class_init, 217 }; 218 219 static const TypeInfo cxl_interface_info = { 220 .name = INTERFACE_CXL_DEVICE, 221 .parent = TYPE_INTERFACE, 222 }; 223 224 static const TypeInfo pcie_interface_info = { 225 .name = INTERFACE_PCIE_DEVICE, 226 .parent = TYPE_INTERFACE, 227 }; 228 229 static const TypeInfo conventional_pci_interface_info = { 230 .name = INTERFACE_CONVENTIONAL_PCI_DEVICE, 231 .parent = TYPE_INTERFACE, 232 }; 233 234 static void pcie_bus_class_init(ObjectClass *klass, void *data) 235 { 236 BusClass *k = BUS_CLASS(klass); 237 238 k->realize = pcie_bus_realize; 239 } 240 241 static const TypeInfo pcie_bus_info = { 242 .name = TYPE_PCIE_BUS, 243 .parent = TYPE_PCI_BUS, 244 .class_init = pcie_bus_class_init, 245 }; 246 247 static const TypeInfo cxl_bus_info = { 248 .name = TYPE_CXL_BUS, 249 .parent = TYPE_PCIE_BUS, 250 .class_init = pcie_bus_class_init, 251 }; 252 253 static void pci_update_mappings(PCIDevice *d); 254 static void pci_irq_handler(void *opaque, int irq_num, int level); 255 static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom, Error **); 256 static void pci_del_option_rom(PCIDevice *pdev); 257 258 static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET; 259 static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU; 260 261 PCIHostStateList pci_host_bridges; 262 263 int pci_bar(PCIDevice *d, int reg) 264 { 265 uint8_t type; 266 267 /* PCIe virtual functions do not have their own BARs */ 268 assert(!pci_is_vf(d)); 269 270 if (reg != PCI_ROM_SLOT) 271 return PCI_BASE_ADDRESS_0 + reg * 4; 272 273 type = d->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; 274 return type == PCI_HEADER_TYPE_BRIDGE ? PCI_ROM_ADDRESS1 : PCI_ROM_ADDRESS; 275 } 276 277 static inline int pci_irq_state(PCIDevice *d, int irq_num) 278 { 279 return (d->irq_state >> irq_num) & 0x1; 280 } 281 282 static inline void pci_set_irq_state(PCIDevice *d, int irq_num, int level) 283 { 284 d->irq_state &= ~(0x1 << irq_num); 285 d->irq_state |= level << irq_num; 286 } 287 288 static void pci_bus_change_irq_level(PCIBus *bus, int irq_num, int change) 289 { 290 assert(irq_num >= 0); 291 assert(irq_num < bus->nirq); 292 bus->irq_count[irq_num] += change; 293 bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0); 294 } 295 296 static void pci_change_irq_level(PCIDevice *pci_dev, int irq_num, int change) 297 { 298 PCIBus *bus; 299 for (;;) { 300 int dev_irq = irq_num; 301 bus = pci_get_bus(pci_dev); 302 assert(bus->map_irq); 303 irq_num = bus->map_irq(pci_dev, irq_num); 304 trace_pci_route_irq(dev_irq, DEVICE(pci_dev)->canonical_path, irq_num, 305 pci_bus_is_root(bus) ? "root-complex" 306 : DEVICE(bus->parent_dev)->canonical_path); 307 if (bus->set_irq) 308 break; 309 pci_dev = bus->parent_dev; 310 } 311 pci_bus_change_irq_level(bus, irq_num, change); 312 } 313 314 int pci_bus_get_irq_level(PCIBus *bus, int irq_num) 315 { 316 assert(irq_num >= 0); 317 assert(irq_num < bus->nirq); 318 return !!bus->irq_count[irq_num]; 319 } 320 321 /* Update interrupt status bit in config space on interrupt 322 * state change. */ 323 static void pci_update_irq_status(PCIDevice *dev) 324 { 325 if (dev->irq_state) { 326 dev->config[PCI_STATUS] |= PCI_STATUS_INTERRUPT; 327 } else { 328 dev->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; 329 } 330 } 331 332 void pci_device_deassert_intx(PCIDevice *dev) 333 { 334 int i; 335 for (i = 0; i < PCI_NUM_PINS; ++i) { 336 pci_irq_handler(dev, i, 0); 337 } 338 } 339 340 static void pci_msi_trigger(PCIDevice *dev, MSIMessage msg) 341 { 342 MemTxAttrs attrs = {}; 343 344 /* 345 * Xen uses the high bits of the address to contain some of the bits 346 * of the PIRQ#. Therefore we can't just send the write cycle and 347 * trust that it's caught by the APIC at 0xfee00000 because the 348 * target of the write might be e.g. 0x0x1000fee46000 for PIRQ#4166. 349 * So we intercept the delivery here instead of in kvm_send_msi(). 350 */ 351 if (xen_mode == XEN_EMULATE && 352 xen_evtchn_deliver_pirq_msi(msg.address, msg.data)) { 353 return; 354 } 355 attrs.requester_id = pci_requester_id(dev); 356 address_space_stl_le(&dev->bus_master_as, msg.address, msg.data, 357 attrs, NULL); 358 } 359 360 static void pci_reset_regions(PCIDevice *dev) 361 { 362 int r; 363 if (pci_is_vf(dev)) { 364 return; 365 } 366 367 for (r = 0; r < PCI_NUM_REGIONS; ++r) { 368 PCIIORegion *region = &dev->io_regions[r]; 369 if (!region->size) { 370 continue; 371 } 372 373 if (!(region->type & PCI_BASE_ADDRESS_SPACE_IO) && 374 region->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 375 pci_set_quad(dev->config + pci_bar(dev, r), region->type); 376 } else { 377 pci_set_long(dev->config + pci_bar(dev, r), region->type); 378 } 379 } 380 } 381 382 static void pci_do_device_reset(PCIDevice *dev) 383 { 384 pci_device_deassert_intx(dev); 385 assert(dev->irq_state == 0); 386 387 /* Clear all writable bits */ 388 pci_word_test_and_clear_mask(dev->config + PCI_COMMAND, 389 pci_get_word(dev->wmask + PCI_COMMAND) | 390 pci_get_word(dev->w1cmask + PCI_COMMAND)); 391 pci_word_test_and_clear_mask(dev->config + PCI_STATUS, 392 pci_get_word(dev->wmask + PCI_STATUS) | 393 pci_get_word(dev->w1cmask + PCI_STATUS)); 394 /* Some devices make bits of PCI_INTERRUPT_LINE read only */ 395 pci_byte_test_and_clear_mask(dev->config + PCI_INTERRUPT_LINE, 396 pci_get_word(dev->wmask + PCI_INTERRUPT_LINE) | 397 pci_get_word(dev->w1cmask + PCI_INTERRUPT_LINE)); 398 dev->config[PCI_CACHE_LINE_SIZE] = 0x0; 399 pci_reset_regions(dev); 400 pci_update_mappings(dev); 401 402 msi_reset(dev); 403 msix_reset(dev); 404 } 405 406 /* 407 * This function is called on #RST and FLR. 408 * FLR if PCI_EXP_DEVCTL_BCR_FLR is set 409 */ 410 void pci_device_reset(PCIDevice *dev) 411 { 412 device_cold_reset(&dev->qdev); 413 pci_do_device_reset(dev); 414 } 415 416 /* 417 * Trigger pci bus reset under a given bus. 418 * Called via bus_cold_reset on RST# assert, after the devices 419 * have been reset device_cold_reset-ed already. 420 */ 421 static void pcibus_reset(BusState *qbus) 422 { 423 PCIBus *bus = DO_UPCAST(PCIBus, qbus, qbus); 424 int i; 425 426 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 427 if (bus->devices[i]) { 428 pci_do_device_reset(bus->devices[i]); 429 } 430 } 431 432 for (i = 0; i < bus->nirq; i++) { 433 assert(bus->irq_count[i] == 0); 434 } 435 } 436 437 static void pci_host_bus_register(DeviceState *host) 438 { 439 PCIHostState *host_bridge = PCI_HOST_BRIDGE(host); 440 441 QLIST_INSERT_HEAD(&pci_host_bridges, host_bridge, next); 442 } 443 444 static void pci_host_bus_unregister(DeviceState *host) 445 { 446 PCIHostState *host_bridge = PCI_HOST_BRIDGE(host); 447 448 QLIST_REMOVE(host_bridge, next); 449 } 450 451 PCIBus *pci_device_root_bus(const PCIDevice *d) 452 { 453 PCIBus *bus = pci_get_bus(d); 454 455 while (!pci_bus_is_root(bus)) { 456 d = bus->parent_dev; 457 assert(d != NULL); 458 459 bus = pci_get_bus(d); 460 } 461 462 return bus; 463 } 464 465 const char *pci_root_bus_path(PCIDevice *dev) 466 { 467 PCIBus *rootbus = pci_device_root_bus(dev); 468 PCIHostState *host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent); 469 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_GET_CLASS(host_bridge); 470 471 assert(host_bridge->bus == rootbus); 472 473 if (hc->root_bus_path) { 474 return (*hc->root_bus_path)(host_bridge, rootbus); 475 } 476 477 return rootbus->qbus.name; 478 } 479 480 bool pci_bus_bypass_iommu(PCIBus *bus) 481 { 482 PCIBus *rootbus = bus; 483 PCIHostState *host_bridge; 484 485 if (!pci_bus_is_root(bus)) { 486 rootbus = pci_device_root_bus(bus->parent_dev); 487 } 488 489 host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent); 490 491 assert(host_bridge->bus == rootbus); 492 493 return host_bridge->bypass_iommu; 494 } 495 496 static void pci_root_bus_internal_init(PCIBus *bus, DeviceState *parent, 497 MemoryRegion *address_space_mem, 498 MemoryRegion *address_space_io, 499 uint8_t devfn_min) 500 { 501 assert(PCI_FUNC(devfn_min) == 0); 502 bus->devfn_min = devfn_min; 503 bus->slot_reserved_mask = 0x0; 504 bus->address_space_mem = address_space_mem; 505 bus->address_space_io = address_space_io; 506 bus->flags |= PCI_BUS_IS_ROOT; 507 508 /* host bridge */ 509 QLIST_INIT(&bus->child); 510 511 pci_host_bus_register(parent); 512 } 513 514 static void pci_bus_uninit(PCIBus *bus) 515 { 516 pci_host_bus_unregister(BUS(bus)->parent); 517 } 518 519 bool pci_bus_is_express(const PCIBus *bus) 520 { 521 return object_dynamic_cast(OBJECT(bus), TYPE_PCIE_BUS); 522 } 523 524 void pci_root_bus_init(PCIBus *bus, size_t bus_size, DeviceState *parent, 525 const char *name, 526 MemoryRegion *address_space_mem, 527 MemoryRegion *address_space_io, 528 uint8_t devfn_min, const char *typename) 529 { 530 qbus_init(bus, bus_size, typename, parent, name); 531 pci_root_bus_internal_init(bus, parent, address_space_mem, 532 address_space_io, devfn_min); 533 } 534 535 PCIBus *pci_root_bus_new(DeviceState *parent, const char *name, 536 MemoryRegion *address_space_mem, 537 MemoryRegion *address_space_io, 538 uint8_t devfn_min, const char *typename) 539 { 540 PCIBus *bus; 541 542 bus = PCI_BUS(qbus_new(typename, parent, name)); 543 pci_root_bus_internal_init(bus, parent, address_space_mem, 544 address_space_io, devfn_min); 545 return bus; 546 } 547 548 void pci_root_bus_cleanup(PCIBus *bus) 549 { 550 pci_bus_uninit(bus); 551 /* the caller of the unplug hotplug handler will delete this device */ 552 qbus_unrealize(BUS(bus)); 553 } 554 555 void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq, 556 void *irq_opaque, int nirq) 557 { 558 bus->set_irq = set_irq; 559 bus->irq_opaque = irq_opaque; 560 bus->nirq = nirq; 561 bus->irq_count = g_malloc0(nirq * sizeof(bus->irq_count[0])); 562 } 563 564 void pci_bus_map_irqs(PCIBus *bus, pci_map_irq_fn map_irq) 565 { 566 bus->map_irq = map_irq; 567 } 568 569 void pci_bus_irqs_cleanup(PCIBus *bus) 570 { 571 bus->set_irq = NULL; 572 bus->map_irq = NULL; 573 bus->irq_opaque = NULL; 574 bus->nirq = 0; 575 g_free(bus->irq_count); 576 } 577 578 PCIBus *pci_register_root_bus(DeviceState *parent, const char *name, 579 pci_set_irq_fn set_irq, pci_map_irq_fn map_irq, 580 void *irq_opaque, 581 MemoryRegion *address_space_mem, 582 MemoryRegion *address_space_io, 583 uint8_t devfn_min, int nirq, 584 const char *typename) 585 { 586 PCIBus *bus; 587 588 bus = pci_root_bus_new(parent, name, address_space_mem, 589 address_space_io, devfn_min, typename); 590 pci_bus_irqs(bus, set_irq, irq_opaque, nirq); 591 pci_bus_map_irqs(bus, map_irq); 592 return bus; 593 } 594 595 void pci_unregister_root_bus(PCIBus *bus) 596 { 597 pci_bus_irqs_cleanup(bus); 598 pci_root_bus_cleanup(bus); 599 } 600 601 int pci_bus_num(PCIBus *s) 602 { 603 return PCI_BUS_GET_CLASS(s)->bus_num(s); 604 } 605 606 /* Returns the min and max bus numbers of a PCI bus hierarchy */ 607 void pci_bus_range(PCIBus *bus, int *min_bus, int *max_bus) 608 { 609 int i; 610 *min_bus = *max_bus = pci_bus_num(bus); 611 612 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 613 PCIDevice *dev = bus->devices[i]; 614 615 if (dev && IS_PCI_BRIDGE(dev)) { 616 *min_bus = MIN(*min_bus, dev->config[PCI_SECONDARY_BUS]); 617 *max_bus = MAX(*max_bus, dev->config[PCI_SUBORDINATE_BUS]); 618 } 619 } 620 } 621 622 int pci_bus_numa_node(PCIBus *bus) 623 { 624 return PCI_BUS_GET_CLASS(bus)->numa_node(bus); 625 } 626 627 static int get_pci_config_device(QEMUFile *f, void *pv, size_t size, 628 const VMStateField *field) 629 { 630 PCIDevice *s = container_of(pv, PCIDevice, config); 631 uint8_t *config; 632 int i; 633 634 assert(size == pci_config_size(s)); 635 config = g_malloc(size); 636 637 qemu_get_buffer(f, config, size); 638 for (i = 0; i < size; ++i) { 639 if ((config[i] ^ s->config[i]) & 640 s->cmask[i] & ~s->wmask[i] & ~s->w1cmask[i]) { 641 error_report("%s: Bad config data: i=0x%x read: %x device: %x " 642 "cmask: %x wmask: %x w1cmask:%x", __func__, 643 i, config[i], s->config[i], 644 s->cmask[i], s->wmask[i], s->w1cmask[i]); 645 g_free(config); 646 return -EINVAL; 647 } 648 } 649 memcpy(s->config, config, size); 650 651 pci_update_mappings(s); 652 if (IS_PCI_BRIDGE(s)) { 653 pci_bridge_update_mappings(PCI_BRIDGE(s)); 654 } 655 656 memory_region_set_enabled(&s->bus_master_enable_region, 657 pci_get_word(s->config + PCI_COMMAND) 658 & PCI_COMMAND_MASTER); 659 660 g_free(config); 661 return 0; 662 } 663 664 /* just put buffer */ 665 static int put_pci_config_device(QEMUFile *f, void *pv, size_t size, 666 const VMStateField *field, JSONWriter *vmdesc) 667 { 668 const uint8_t **v = pv; 669 assert(size == pci_config_size(container_of(pv, PCIDevice, config))); 670 qemu_put_buffer(f, *v, size); 671 672 return 0; 673 } 674 675 static VMStateInfo vmstate_info_pci_config = { 676 .name = "pci config", 677 .get = get_pci_config_device, 678 .put = put_pci_config_device, 679 }; 680 681 static int get_pci_irq_state(QEMUFile *f, void *pv, size_t size, 682 const VMStateField *field) 683 { 684 PCIDevice *s = container_of(pv, PCIDevice, irq_state); 685 uint32_t irq_state[PCI_NUM_PINS]; 686 int i; 687 for (i = 0; i < PCI_NUM_PINS; ++i) { 688 irq_state[i] = qemu_get_be32(f); 689 if (irq_state[i] != 0x1 && irq_state[i] != 0) { 690 fprintf(stderr, "irq state %d: must be 0 or 1.\n", 691 irq_state[i]); 692 return -EINVAL; 693 } 694 } 695 696 for (i = 0; i < PCI_NUM_PINS; ++i) { 697 pci_set_irq_state(s, i, irq_state[i]); 698 } 699 700 return 0; 701 } 702 703 static int put_pci_irq_state(QEMUFile *f, void *pv, size_t size, 704 const VMStateField *field, JSONWriter *vmdesc) 705 { 706 int i; 707 PCIDevice *s = container_of(pv, PCIDevice, irq_state); 708 709 for (i = 0; i < PCI_NUM_PINS; ++i) { 710 qemu_put_be32(f, pci_irq_state(s, i)); 711 } 712 713 return 0; 714 } 715 716 static VMStateInfo vmstate_info_pci_irq_state = { 717 .name = "pci irq state", 718 .get = get_pci_irq_state, 719 .put = put_pci_irq_state, 720 }; 721 722 static bool migrate_is_pcie(void *opaque, int version_id) 723 { 724 return pci_is_express((PCIDevice *)opaque); 725 } 726 727 static bool migrate_is_not_pcie(void *opaque, int version_id) 728 { 729 return !pci_is_express((PCIDevice *)opaque); 730 } 731 732 const VMStateDescription vmstate_pci_device = { 733 .name = "PCIDevice", 734 .version_id = 2, 735 .minimum_version_id = 1, 736 .fields = (VMStateField[]) { 737 VMSTATE_INT32_POSITIVE_LE(version_id, PCIDevice), 738 VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice, 739 migrate_is_not_pcie, 740 0, vmstate_info_pci_config, 741 PCI_CONFIG_SPACE_SIZE), 742 VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice, 743 migrate_is_pcie, 744 0, vmstate_info_pci_config, 745 PCIE_CONFIG_SPACE_SIZE), 746 VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2, 747 vmstate_info_pci_irq_state, 748 PCI_NUM_PINS * sizeof(int32_t)), 749 VMSTATE_END_OF_LIST() 750 } 751 }; 752 753 754 void pci_device_save(PCIDevice *s, QEMUFile *f) 755 { 756 /* Clear interrupt status bit: it is implicit 757 * in irq_state which we are saving. 758 * This makes us compatible with old devices 759 * which never set or clear this bit. */ 760 s->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; 761 vmstate_save_state(f, &vmstate_pci_device, s, NULL); 762 /* Restore the interrupt status bit. */ 763 pci_update_irq_status(s); 764 } 765 766 int pci_device_load(PCIDevice *s, QEMUFile *f) 767 { 768 int ret; 769 ret = vmstate_load_state(f, &vmstate_pci_device, s, s->version_id); 770 /* Restore the interrupt status bit. */ 771 pci_update_irq_status(s); 772 return ret; 773 } 774 775 static void pci_set_default_subsystem_id(PCIDevice *pci_dev) 776 { 777 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, 778 pci_default_sub_vendor_id); 779 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, 780 pci_default_sub_device_id); 781 } 782 783 /* 784 * Parse [[<domain>:]<bus>:]<slot>, return -1 on error if funcp == NULL 785 * [[<domain>:]<bus>:]<slot>.<func>, return -1 on error 786 */ 787 static int pci_parse_devaddr(const char *addr, int *domp, int *busp, 788 unsigned int *slotp, unsigned int *funcp) 789 { 790 const char *p; 791 char *e; 792 unsigned long val; 793 unsigned long dom = 0, bus = 0; 794 unsigned int slot = 0; 795 unsigned int func = 0; 796 797 p = addr; 798 val = strtoul(p, &e, 16); 799 if (e == p) 800 return -1; 801 if (*e == ':') { 802 bus = val; 803 p = e + 1; 804 val = strtoul(p, &e, 16); 805 if (e == p) 806 return -1; 807 if (*e == ':') { 808 dom = bus; 809 bus = val; 810 p = e + 1; 811 val = strtoul(p, &e, 16); 812 if (e == p) 813 return -1; 814 } 815 } 816 817 slot = val; 818 819 if (funcp != NULL) { 820 if (*e != '.') 821 return -1; 822 823 p = e + 1; 824 val = strtoul(p, &e, 16); 825 if (e == p) 826 return -1; 827 828 func = val; 829 } 830 831 /* if funcp == NULL func is 0 */ 832 if (dom > 0xffff || bus > 0xff || slot > 0x1f || func > 7) 833 return -1; 834 835 if (*e) 836 return -1; 837 838 *domp = dom; 839 *busp = bus; 840 *slotp = slot; 841 if (funcp != NULL) 842 *funcp = func; 843 return 0; 844 } 845 846 static void pci_init_cmask(PCIDevice *dev) 847 { 848 pci_set_word(dev->cmask + PCI_VENDOR_ID, 0xffff); 849 pci_set_word(dev->cmask + PCI_DEVICE_ID, 0xffff); 850 dev->cmask[PCI_STATUS] = PCI_STATUS_CAP_LIST; 851 dev->cmask[PCI_REVISION_ID] = 0xff; 852 dev->cmask[PCI_CLASS_PROG] = 0xff; 853 pci_set_word(dev->cmask + PCI_CLASS_DEVICE, 0xffff); 854 dev->cmask[PCI_HEADER_TYPE] = 0xff; 855 dev->cmask[PCI_CAPABILITY_LIST] = 0xff; 856 } 857 858 static void pci_init_wmask(PCIDevice *dev) 859 { 860 int config_size = pci_config_size(dev); 861 862 dev->wmask[PCI_CACHE_LINE_SIZE] = 0xff; 863 dev->wmask[PCI_INTERRUPT_LINE] = 0xff; 864 pci_set_word(dev->wmask + PCI_COMMAND, 865 PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | 866 PCI_COMMAND_INTX_DISABLE); 867 pci_word_test_and_set_mask(dev->wmask + PCI_COMMAND, PCI_COMMAND_SERR); 868 869 memset(dev->wmask + PCI_CONFIG_HEADER_SIZE, 0xff, 870 config_size - PCI_CONFIG_HEADER_SIZE); 871 } 872 873 static void pci_init_w1cmask(PCIDevice *dev) 874 { 875 /* 876 * Note: It's okay to set w1cmask even for readonly bits as 877 * long as their value is hardwired to 0. 878 */ 879 pci_set_word(dev->w1cmask + PCI_STATUS, 880 PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT | 881 PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT | 882 PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY); 883 } 884 885 static void pci_init_mask_bridge(PCIDevice *d) 886 { 887 /* PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS and 888 PCI_SEC_LETENCY_TIMER */ 889 memset(d->wmask + PCI_PRIMARY_BUS, 0xff, 4); 890 891 /* base and limit */ 892 d->wmask[PCI_IO_BASE] = PCI_IO_RANGE_MASK & 0xff; 893 d->wmask[PCI_IO_LIMIT] = PCI_IO_RANGE_MASK & 0xff; 894 pci_set_word(d->wmask + PCI_MEMORY_BASE, 895 PCI_MEMORY_RANGE_MASK & 0xffff); 896 pci_set_word(d->wmask + PCI_MEMORY_LIMIT, 897 PCI_MEMORY_RANGE_MASK & 0xffff); 898 pci_set_word(d->wmask + PCI_PREF_MEMORY_BASE, 899 PCI_PREF_RANGE_MASK & 0xffff); 900 pci_set_word(d->wmask + PCI_PREF_MEMORY_LIMIT, 901 PCI_PREF_RANGE_MASK & 0xffff); 902 903 /* PCI_PREF_BASE_UPPER32 and PCI_PREF_LIMIT_UPPER32 */ 904 memset(d->wmask + PCI_PREF_BASE_UPPER32, 0xff, 8); 905 906 /* Supported memory and i/o types */ 907 d->config[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_16; 908 d->config[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_16; 909 pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_BASE, 910 PCI_PREF_RANGE_TYPE_64); 911 pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_LIMIT, 912 PCI_PREF_RANGE_TYPE_64); 913 914 /* 915 * TODO: Bridges default to 10-bit VGA decoding but we currently only 916 * implement 16-bit decoding (no alias support). 917 */ 918 pci_set_word(d->wmask + PCI_BRIDGE_CONTROL, 919 PCI_BRIDGE_CTL_PARITY | 920 PCI_BRIDGE_CTL_SERR | 921 PCI_BRIDGE_CTL_ISA | 922 PCI_BRIDGE_CTL_VGA | 923 PCI_BRIDGE_CTL_VGA_16BIT | 924 PCI_BRIDGE_CTL_MASTER_ABORT | 925 PCI_BRIDGE_CTL_BUS_RESET | 926 PCI_BRIDGE_CTL_FAST_BACK | 927 PCI_BRIDGE_CTL_DISCARD | 928 PCI_BRIDGE_CTL_SEC_DISCARD | 929 PCI_BRIDGE_CTL_DISCARD_SERR); 930 /* Below does not do anything as we never set this bit, put here for 931 * completeness. */ 932 pci_set_word(d->w1cmask + PCI_BRIDGE_CONTROL, 933 PCI_BRIDGE_CTL_DISCARD_STATUS); 934 d->cmask[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_MASK; 935 d->cmask[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_MASK; 936 pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_BASE, 937 PCI_PREF_RANGE_TYPE_MASK); 938 pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_LIMIT, 939 PCI_PREF_RANGE_TYPE_MASK); 940 } 941 942 static void pci_init_multifunction(PCIBus *bus, PCIDevice *dev, Error **errp) 943 { 944 uint8_t slot = PCI_SLOT(dev->devfn); 945 uint8_t func; 946 947 if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 948 dev->config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; 949 } 950 951 /* 952 * With SR/IOV and ARI, a device at function 0 need not be a multifunction 953 * device, as it may just be a VF that ended up with function 0 in 954 * the legacy PCI interpretation. Avoid failing in such cases: 955 */ 956 if (pci_is_vf(dev) && 957 dev->exp.sriov_vf.pf->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 958 return; 959 } 960 961 /* 962 * multifunction bit is interpreted in two ways as follows. 963 * - all functions must set the bit to 1. 964 * Example: Intel X53 965 * - function 0 must set the bit, but the rest function (> 0) 966 * is allowed to leave the bit to 0. 967 * Example: PIIX3(also in qemu), PIIX4(also in qemu), ICH10, 968 * 969 * So OS (at least Linux) checks the bit of only function 0, 970 * and doesn't see the bit of function > 0. 971 * 972 * The below check allows both interpretation. 973 */ 974 if (PCI_FUNC(dev->devfn)) { 975 PCIDevice *f0 = bus->devices[PCI_DEVFN(slot, 0)]; 976 if (f0 && !(f0->cap_present & QEMU_PCI_CAP_MULTIFUNCTION)) { 977 /* function 0 should set multifunction bit */ 978 error_setg(errp, "PCI: single function device can't be populated " 979 "in function %x.%x", slot, PCI_FUNC(dev->devfn)); 980 return; 981 } 982 return; 983 } 984 985 if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 986 return; 987 } 988 /* function 0 indicates single function, so function > 0 must be NULL */ 989 for (func = 1; func < PCI_FUNC_MAX; ++func) { 990 if (bus->devices[PCI_DEVFN(slot, func)]) { 991 error_setg(errp, "PCI: %x.0 indicates single function, " 992 "but %x.%x is already populated.", 993 slot, slot, func); 994 return; 995 } 996 } 997 } 998 999 static void pci_config_alloc(PCIDevice *pci_dev) 1000 { 1001 int config_size = pci_config_size(pci_dev); 1002 1003 pci_dev->config = g_malloc0(config_size); 1004 pci_dev->cmask = g_malloc0(config_size); 1005 pci_dev->wmask = g_malloc0(config_size); 1006 pci_dev->w1cmask = g_malloc0(config_size); 1007 pci_dev->used = g_malloc0(config_size); 1008 } 1009 1010 static void pci_config_free(PCIDevice *pci_dev) 1011 { 1012 g_free(pci_dev->config); 1013 g_free(pci_dev->cmask); 1014 g_free(pci_dev->wmask); 1015 g_free(pci_dev->w1cmask); 1016 g_free(pci_dev->used); 1017 } 1018 1019 static void do_pci_unregister_device(PCIDevice *pci_dev) 1020 { 1021 pci_get_bus(pci_dev)->devices[pci_dev->devfn] = NULL; 1022 pci_config_free(pci_dev); 1023 1024 if (xen_mode == XEN_EMULATE) { 1025 xen_evtchn_remove_pci_device(pci_dev); 1026 } 1027 if (memory_region_is_mapped(&pci_dev->bus_master_enable_region)) { 1028 memory_region_del_subregion(&pci_dev->bus_master_container_region, 1029 &pci_dev->bus_master_enable_region); 1030 } 1031 address_space_destroy(&pci_dev->bus_master_as); 1032 } 1033 1034 /* Extract PCIReqIDCache into BDF format */ 1035 static uint16_t pci_req_id_cache_extract(PCIReqIDCache *cache) 1036 { 1037 uint8_t bus_n; 1038 uint16_t result; 1039 1040 switch (cache->type) { 1041 case PCI_REQ_ID_BDF: 1042 result = pci_get_bdf(cache->dev); 1043 break; 1044 case PCI_REQ_ID_SECONDARY_BUS: 1045 bus_n = pci_dev_bus_num(cache->dev); 1046 result = PCI_BUILD_BDF(bus_n, 0); 1047 break; 1048 default: 1049 error_report("Invalid PCI requester ID cache type: %d", 1050 cache->type); 1051 exit(1); 1052 break; 1053 } 1054 1055 return result; 1056 } 1057 1058 /* Parse bridges up to the root complex and return requester ID 1059 * cache for specific device. For full PCIe topology, the cache 1060 * result would be exactly the same as getting BDF of the device. 1061 * However, several tricks are required when system mixed up with 1062 * legacy PCI devices and PCIe-to-PCI bridges. 1063 * 1064 * Here we cache the proxy device (and type) not requester ID since 1065 * bus number might change from time to time. 1066 */ 1067 static PCIReqIDCache pci_req_id_cache_get(PCIDevice *dev) 1068 { 1069 PCIDevice *parent; 1070 PCIReqIDCache cache = { 1071 .dev = dev, 1072 .type = PCI_REQ_ID_BDF, 1073 }; 1074 1075 while (!pci_bus_is_root(pci_get_bus(dev))) { 1076 /* We are under PCI/PCIe bridges */ 1077 parent = pci_get_bus(dev)->parent_dev; 1078 if (pci_is_express(parent)) { 1079 if (pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) { 1080 /* When we pass through PCIe-to-PCI/PCIX bridges, we 1081 * override the requester ID using secondary bus 1082 * number of parent bridge with zeroed devfn 1083 * (pcie-to-pci bridge spec chap 2.3). */ 1084 cache.type = PCI_REQ_ID_SECONDARY_BUS; 1085 cache.dev = dev; 1086 } 1087 } else { 1088 /* Legacy PCI, override requester ID with the bridge's 1089 * BDF upstream. When the root complex connects to 1090 * legacy PCI devices (including buses), it can only 1091 * obtain requester ID info from directly attached 1092 * devices. If devices are attached under bridges, only 1093 * the requester ID of the bridge that is directly 1094 * attached to the root complex can be recognized. */ 1095 cache.type = PCI_REQ_ID_BDF; 1096 cache.dev = parent; 1097 } 1098 dev = parent; 1099 } 1100 1101 return cache; 1102 } 1103 1104 uint16_t pci_requester_id(PCIDevice *dev) 1105 { 1106 return pci_req_id_cache_extract(&dev->requester_id_cache); 1107 } 1108 1109 static bool pci_bus_devfn_available(PCIBus *bus, int devfn) 1110 { 1111 return !(bus->devices[devfn]); 1112 } 1113 1114 static bool pci_bus_devfn_reserved(PCIBus *bus, int devfn) 1115 { 1116 return bus->slot_reserved_mask & (1UL << PCI_SLOT(devfn)); 1117 } 1118 1119 /* -1 for devfn means auto assign */ 1120 static PCIDevice *do_pci_register_device(PCIDevice *pci_dev, 1121 const char *name, int devfn, 1122 Error **errp) 1123 { 1124 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); 1125 PCIConfigReadFunc *config_read = pc->config_read; 1126 PCIConfigWriteFunc *config_write = pc->config_write; 1127 Error *local_err = NULL; 1128 DeviceState *dev = DEVICE(pci_dev); 1129 PCIBus *bus = pci_get_bus(pci_dev); 1130 bool is_bridge = IS_PCI_BRIDGE(pci_dev); 1131 1132 /* Only pci bridges can be attached to extra PCI root buses */ 1133 if (pci_bus_is_root(bus) && bus->parent_dev && !is_bridge) { 1134 error_setg(errp, 1135 "PCI: Only PCI/PCIe bridges can be plugged into %s", 1136 bus->parent_dev->name); 1137 return NULL; 1138 } 1139 1140 if (devfn < 0) { 1141 for(devfn = bus->devfn_min ; devfn < ARRAY_SIZE(bus->devices); 1142 devfn += PCI_FUNC_MAX) { 1143 if (pci_bus_devfn_available(bus, devfn) && 1144 !pci_bus_devfn_reserved(bus, devfn)) { 1145 goto found; 1146 } 1147 } 1148 error_setg(errp, "PCI: no slot/function available for %s, all in use " 1149 "or reserved", name); 1150 return NULL; 1151 found: ; 1152 } else if (pci_bus_devfn_reserved(bus, devfn)) { 1153 error_setg(errp, "PCI: slot %d function %d not available for %s," 1154 " reserved", 1155 PCI_SLOT(devfn), PCI_FUNC(devfn), name); 1156 return NULL; 1157 } else if (!pci_bus_devfn_available(bus, devfn)) { 1158 error_setg(errp, "PCI: slot %d function %d not available for %s," 1159 " in use by %s,id=%s", 1160 PCI_SLOT(devfn), PCI_FUNC(devfn), name, 1161 bus->devices[devfn]->name, bus->devices[devfn]->qdev.id); 1162 return NULL; 1163 } else if (dev->hotplugged && 1164 !pci_is_vf(pci_dev) && 1165 pci_get_function_0(pci_dev)) { 1166 error_setg(errp, "PCI: slot %d function 0 already occupied by %s," 1167 " new func %s cannot be exposed to guest.", 1168 PCI_SLOT(pci_get_function_0(pci_dev)->devfn), 1169 pci_get_function_0(pci_dev)->name, 1170 name); 1171 1172 return NULL; 1173 } 1174 1175 pci_dev->devfn = devfn; 1176 pci_dev->requester_id_cache = pci_req_id_cache_get(pci_dev); 1177 pstrcpy(pci_dev->name, sizeof(pci_dev->name), name); 1178 1179 memory_region_init(&pci_dev->bus_master_container_region, OBJECT(pci_dev), 1180 "bus master container", UINT64_MAX); 1181 address_space_init(&pci_dev->bus_master_as, 1182 &pci_dev->bus_master_container_region, pci_dev->name); 1183 1184 if (phase_check(PHASE_MACHINE_READY)) { 1185 pci_init_bus_master(pci_dev); 1186 } 1187 pci_dev->irq_state = 0; 1188 pci_config_alloc(pci_dev); 1189 1190 pci_config_set_vendor_id(pci_dev->config, pc->vendor_id); 1191 pci_config_set_device_id(pci_dev->config, pc->device_id); 1192 pci_config_set_revision(pci_dev->config, pc->revision); 1193 pci_config_set_class(pci_dev->config, pc->class_id); 1194 1195 if (!is_bridge) { 1196 if (pc->subsystem_vendor_id || pc->subsystem_id) { 1197 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, 1198 pc->subsystem_vendor_id); 1199 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, 1200 pc->subsystem_id); 1201 } else { 1202 pci_set_default_subsystem_id(pci_dev); 1203 } 1204 } else { 1205 /* subsystem_vendor_id/subsystem_id are only for header type 0 */ 1206 assert(!pc->subsystem_vendor_id); 1207 assert(!pc->subsystem_id); 1208 } 1209 pci_init_cmask(pci_dev); 1210 pci_init_wmask(pci_dev); 1211 pci_init_w1cmask(pci_dev); 1212 if (is_bridge) { 1213 pci_init_mask_bridge(pci_dev); 1214 } 1215 pci_init_multifunction(bus, pci_dev, &local_err); 1216 if (local_err) { 1217 error_propagate(errp, local_err); 1218 do_pci_unregister_device(pci_dev); 1219 return NULL; 1220 } 1221 1222 if (!config_read) 1223 config_read = pci_default_read_config; 1224 if (!config_write) 1225 config_write = pci_default_write_config; 1226 pci_dev->config_read = config_read; 1227 pci_dev->config_write = config_write; 1228 bus->devices[devfn] = pci_dev; 1229 pci_dev->version_id = 2; /* Current pci device vmstate version */ 1230 return pci_dev; 1231 } 1232 1233 static void pci_unregister_io_regions(PCIDevice *pci_dev) 1234 { 1235 PCIIORegion *r; 1236 int i; 1237 1238 for(i = 0; i < PCI_NUM_REGIONS; i++) { 1239 r = &pci_dev->io_regions[i]; 1240 if (!r->size || r->addr == PCI_BAR_UNMAPPED) 1241 continue; 1242 memory_region_del_subregion(r->address_space, r->memory); 1243 } 1244 1245 pci_unregister_vga(pci_dev); 1246 } 1247 1248 static void pci_qdev_unrealize(DeviceState *dev) 1249 { 1250 PCIDevice *pci_dev = PCI_DEVICE(dev); 1251 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); 1252 1253 pci_unregister_io_regions(pci_dev); 1254 pci_del_option_rom(pci_dev); 1255 1256 if (pc->exit) { 1257 pc->exit(pci_dev); 1258 } 1259 1260 pci_device_deassert_intx(pci_dev); 1261 do_pci_unregister_device(pci_dev); 1262 1263 pci_dev->msi_trigger = NULL; 1264 1265 /* 1266 * clean up acpi-index so it could reused by another device 1267 */ 1268 if (pci_dev->acpi_index) { 1269 GSequence *used_indexes = pci_acpi_index_list(); 1270 1271 g_sequence_remove(g_sequence_lookup(used_indexes, 1272 GINT_TO_POINTER(pci_dev->acpi_index), 1273 g_cmp_uint32, NULL)); 1274 } 1275 } 1276 1277 void pci_register_bar(PCIDevice *pci_dev, int region_num, 1278 uint8_t type, MemoryRegion *memory) 1279 { 1280 PCIIORegion *r; 1281 uint32_t addr; /* offset in pci config space */ 1282 uint64_t wmask; 1283 pcibus_t size = memory_region_size(memory); 1284 uint8_t hdr_type; 1285 1286 assert(!pci_is_vf(pci_dev)); /* VFs must use pcie_sriov_vf_register_bar */ 1287 assert(region_num >= 0); 1288 assert(region_num < PCI_NUM_REGIONS); 1289 assert(is_power_of_2(size)); 1290 1291 /* A PCI bridge device (with Type 1 header) may only have at most 2 BARs */ 1292 hdr_type = 1293 pci_dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; 1294 assert(hdr_type != PCI_HEADER_TYPE_BRIDGE || region_num < 2); 1295 1296 r = &pci_dev->io_regions[region_num]; 1297 r->addr = PCI_BAR_UNMAPPED; 1298 r->size = size; 1299 r->type = type; 1300 r->memory = memory; 1301 r->address_space = type & PCI_BASE_ADDRESS_SPACE_IO 1302 ? pci_get_bus(pci_dev)->address_space_io 1303 : pci_get_bus(pci_dev)->address_space_mem; 1304 1305 wmask = ~(size - 1); 1306 if (region_num == PCI_ROM_SLOT) { 1307 /* ROM enable bit is writable */ 1308 wmask |= PCI_ROM_ADDRESS_ENABLE; 1309 } 1310 1311 addr = pci_bar(pci_dev, region_num); 1312 pci_set_long(pci_dev->config + addr, type); 1313 1314 if (!(r->type & PCI_BASE_ADDRESS_SPACE_IO) && 1315 r->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 1316 pci_set_quad(pci_dev->wmask + addr, wmask); 1317 pci_set_quad(pci_dev->cmask + addr, ~0ULL); 1318 } else { 1319 pci_set_long(pci_dev->wmask + addr, wmask & 0xffffffff); 1320 pci_set_long(pci_dev->cmask + addr, 0xffffffff); 1321 } 1322 } 1323 1324 static void pci_update_vga(PCIDevice *pci_dev) 1325 { 1326 uint16_t cmd; 1327 1328 if (!pci_dev->has_vga) { 1329 return; 1330 } 1331 1332 cmd = pci_get_word(pci_dev->config + PCI_COMMAND); 1333 1334 memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_MEM], 1335 cmd & PCI_COMMAND_MEMORY); 1336 memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO], 1337 cmd & PCI_COMMAND_IO); 1338 memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI], 1339 cmd & PCI_COMMAND_IO); 1340 } 1341 1342 void pci_register_vga(PCIDevice *pci_dev, MemoryRegion *mem, 1343 MemoryRegion *io_lo, MemoryRegion *io_hi) 1344 { 1345 PCIBus *bus = pci_get_bus(pci_dev); 1346 1347 assert(!pci_dev->has_vga); 1348 1349 assert(memory_region_size(mem) == QEMU_PCI_VGA_MEM_SIZE); 1350 pci_dev->vga_regions[QEMU_PCI_VGA_MEM] = mem; 1351 memory_region_add_subregion_overlap(bus->address_space_mem, 1352 QEMU_PCI_VGA_MEM_BASE, mem, 1); 1353 1354 assert(memory_region_size(io_lo) == QEMU_PCI_VGA_IO_LO_SIZE); 1355 pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO] = io_lo; 1356 memory_region_add_subregion_overlap(bus->address_space_io, 1357 QEMU_PCI_VGA_IO_LO_BASE, io_lo, 1); 1358 1359 assert(memory_region_size(io_hi) == QEMU_PCI_VGA_IO_HI_SIZE); 1360 pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI] = io_hi; 1361 memory_region_add_subregion_overlap(bus->address_space_io, 1362 QEMU_PCI_VGA_IO_HI_BASE, io_hi, 1); 1363 pci_dev->has_vga = true; 1364 1365 pci_update_vga(pci_dev); 1366 } 1367 1368 void pci_unregister_vga(PCIDevice *pci_dev) 1369 { 1370 PCIBus *bus = pci_get_bus(pci_dev); 1371 1372 if (!pci_dev->has_vga) { 1373 return; 1374 } 1375 1376 memory_region_del_subregion(bus->address_space_mem, 1377 pci_dev->vga_regions[QEMU_PCI_VGA_MEM]); 1378 memory_region_del_subregion(bus->address_space_io, 1379 pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO]); 1380 memory_region_del_subregion(bus->address_space_io, 1381 pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI]); 1382 pci_dev->has_vga = false; 1383 } 1384 1385 pcibus_t pci_get_bar_addr(PCIDevice *pci_dev, int region_num) 1386 { 1387 return pci_dev->io_regions[region_num].addr; 1388 } 1389 1390 static pcibus_t pci_config_get_bar_addr(PCIDevice *d, int reg, 1391 uint8_t type, pcibus_t size) 1392 { 1393 pcibus_t new_addr; 1394 if (!pci_is_vf(d)) { 1395 int bar = pci_bar(d, reg); 1396 if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 1397 new_addr = pci_get_quad(d->config + bar); 1398 } else { 1399 new_addr = pci_get_long(d->config + bar); 1400 } 1401 } else { 1402 PCIDevice *pf = d->exp.sriov_vf.pf; 1403 uint16_t sriov_cap = pf->exp.sriov_cap; 1404 int bar = sriov_cap + PCI_SRIOV_BAR + reg * 4; 1405 uint16_t vf_offset = 1406 pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_OFFSET); 1407 uint16_t vf_stride = 1408 pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_STRIDE); 1409 uint32_t vf_num = (d->devfn - (pf->devfn + vf_offset)) / vf_stride; 1410 1411 if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 1412 new_addr = pci_get_quad(pf->config + bar); 1413 } else { 1414 new_addr = pci_get_long(pf->config + bar); 1415 } 1416 new_addr += vf_num * size; 1417 } 1418 /* The ROM slot has a specific enable bit, keep it intact */ 1419 if (reg != PCI_ROM_SLOT) { 1420 new_addr &= ~(size - 1); 1421 } 1422 return new_addr; 1423 } 1424 1425 pcibus_t pci_bar_address(PCIDevice *d, 1426 int reg, uint8_t type, pcibus_t size) 1427 { 1428 pcibus_t new_addr, last_addr; 1429 uint16_t cmd = pci_get_word(d->config + PCI_COMMAND); 1430 Object *machine = qdev_get_machine(); 1431 ObjectClass *oc = object_get_class(machine); 1432 MachineClass *mc = MACHINE_CLASS(oc); 1433 bool allow_0_address = mc->pci_allow_0_address; 1434 1435 if (type & PCI_BASE_ADDRESS_SPACE_IO) { 1436 if (!(cmd & PCI_COMMAND_IO)) { 1437 return PCI_BAR_UNMAPPED; 1438 } 1439 new_addr = pci_config_get_bar_addr(d, reg, type, size); 1440 last_addr = new_addr + size - 1; 1441 /* Check if 32 bit BAR wraps around explicitly. 1442 * TODO: make priorities correct and remove this work around. 1443 */ 1444 if (last_addr <= new_addr || last_addr >= UINT32_MAX || 1445 (!allow_0_address && new_addr == 0)) { 1446 return PCI_BAR_UNMAPPED; 1447 } 1448 return new_addr; 1449 } 1450 1451 if (!(cmd & PCI_COMMAND_MEMORY)) { 1452 return PCI_BAR_UNMAPPED; 1453 } 1454 new_addr = pci_config_get_bar_addr(d, reg, type, size); 1455 /* the ROM slot has a specific enable bit */ 1456 if (reg == PCI_ROM_SLOT && !(new_addr & PCI_ROM_ADDRESS_ENABLE)) { 1457 return PCI_BAR_UNMAPPED; 1458 } 1459 new_addr &= ~(size - 1); 1460 last_addr = new_addr + size - 1; 1461 /* NOTE: we do not support wrapping */ 1462 /* XXX: as we cannot support really dynamic 1463 mappings, we handle specific values as invalid 1464 mappings. */ 1465 if (last_addr <= new_addr || last_addr == PCI_BAR_UNMAPPED || 1466 (!allow_0_address && new_addr == 0)) { 1467 return PCI_BAR_UNMAPPED; 1468 } 1469 1470 /* Now pcibus_t is 64bit. 1471 * Check if 32 bit BAR wraps around explicitly. 1472 * Without this, PC ide doesn't work well. 1473 * TODO: remove this work around. 1474 */ 1475 if (!(type & PCI_BASE_ADDRESS_MEM_TYPE_64) && last_addr >= UINT32_MAX) { 1476 return PCI_BAR_UNMAPPED; 1477 } 1478 1479 /* 1480 * OS is allowed to set BAR beyond its addressable 1481 * bits. For example, 32 bit OS can set 64bit bar 1482 * to >4G. Check it. TODO: we might need to support 1483 * it in the future for e.g. PAE. 1484 */ 1485 if (last_addr >= HWADDR_MAX) { 1486 return PCI_BAR_UNMAPPED; 1487 } 1488 1489 return new_addr; 1490 } 1491 1492 static void pci_update_mappings(PCIDevice *d) 1493 { 1494 PCIIORegion *r; 1495 int i; 1496 pcibus_t new_addr; 1497 1498 for(i = 0; i < PCI_NUM_REGIONS; i++) { 1499 r = &d->io_regions[i]; 1500 1501 /* this region isn't registered */ 1502 if (!r->size) 1503 continue; 1504 1505 new_addr = pci_bar_address(d, i, r->type, r->size); 1506 if (!d->has_power) { 1507 new_addr = PCI_BAR_UNMAPPED; 1508 } 1509 1510 /* This bar isn't changed */ 1511 if (new_addr == r->addr) 1512 continue; 1513 1514 /* now do the real mapping */ 1515 if (r->addr != PCI_BAR_UNMAPPED) { 1516 trace_pci_update_mappings_del(d->name, pci_dev_bus_num(d), 1517 PCI_SLOT(d->devfn), 1518 PCI_FUNC(d->devfn), 1519 i, r->addr, r->size); 1520 memory_region_del_subregion(r->address_space, r->memory); 1521 } 1522 r->addr = new_addr; 1523 if (r->addr != PCI_BAR_UNMAPPED) { 1524 trace_pci_update_mappings_add(d->name, pci_dev_bus_num(d), 1525 PCI_SLOT(d->devfn), 1526 PCI_FUNC(d->devfn), 1527 i, r->addr, r->size); 1528 memory_region_add_subregion_overlap(r->address_space, 1529 r->addr, r->memory, 1); 1530 } 1531 } 1532 1533 pci_update_vga(d); 1534 } 1535 1536 static inline int pci_irq_disabled(PCIDevice *d) 1537 { 1538 return pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE; 1539 } 1540 1541 /* Called after interrupt disabled field update in config space, 1542 * assert/deassert interrupts if necessary. 1543 * Gets original interrupt disable bit value (before update). */ 1544 static void pci_update_irq_disabled(PCIDevice *d, int was_irq_disabled) 1545 { 1546 int i, disabled = pci_irq_disabled(d); 1547 if (disabled == was_irq_disabled) 1548 return; 1549 for (i = 0; i < PCI_NUM_PINS; ++i) { 1550 int state = pci_irq_state(d, i); 1551 pci_change_irq_level(d, i, disabled ? -state : state); 1552 } 1553 } 1554 1555 uint32_t pci_default_read_config(PCIDevice *d, 1556 uint32_t address, int len) 1557 { 1558 uint32_t val = 0; 1559 1560 assert(address + len <= pci_config_size(d)); 1561 1562 if (pci_is_express_downstream_port(d) && 1563 ranges_overlap(address, len, d->exp.exp_cap + PCI_EXP_LNKSTA, 2)) { 1564 pcie_sync_bridge_lnk(d); 1565 } 1566 memcpy(&val, d->config + address, len); 1567 return le32_to_cpu(val); 1568 } 1569 1570 void pci_default_write_config(PCIDevice *d, uint32_t addr, uint32_t val_in, int l) 1571 { 1572 int i, was_irq_disabled = pci_irq_disabled(d); 1573 uint32_t val = val_in; 1574 1575 assert(addr + l <= pci_config_size(d)); 1576 1577 for (i = 0; i < l; val >>= 8, ++i) { 1578 uint8_t wmask = d->wmask[addr + i]; 1579 uint8_t w1cmask = d->w1cmask[addr + i]; 1580 assert(!(wmask & w1cmask)); 1581 d->config[addr + i] = (d->config[addr + i] & ~wmask) | (val & wmask); 1582 d->config[addr + i] &= ~(val & w1cmask); /* W1C: Write 1 to Clear */ 1583 } 1584 if (ranges_overlap(addr, l, PCI_BASE_ADDRESS_0, 24) || 1585 ranges_overlap(addr, l, PCI_ROM_ADDRESS, 4) || 1586 ranges_overlap(addr, l, PCI_ROM_ADDRESS1, 4) || 1587 range_covers_byte(addr, l, PCI_COMMAND)) 1588 pci_update_mappings(d); 1589 1590 if (range_covers_byte(addr, l, PCI_COMMAND)) { 1591 pci_update_irq_disabled(d, was_irq_disabled); 1592 memory_region_set_enabled(&d->bus_master_enable_region, 1593 (pci_get_word(d->config + PCI_COMMAND) 1594 & PCI_COMMAND_MASTER) && d->has_power); 1595 } 1596 1597 msi_write_config(d, addr, val_in, l); 1598 msix_write_config(d, addr, val_in, l); 1599 pcie_sriov_config_write(d, addr, val_in, l); 1600 } 1601 1602 /***********************************************************/ 1603 /* generic PCI irq support */ 1604 1605 /* 0 <= irq_num <= 3. level must be 0 or 1 */ 1606 static void pci_irq_handler(void *opaque, int irq_num, int level) 1607 { 1608 PCIDevice *pci_dev = opaque; 1609 int change; 1610 1611 assert(0 <= irq_num && irq_num < PCI_NUM_PINS); 1612 assert(level == 0 || level == 1); 1613 change = level - pci_irq_state(pci_dev, irq_num); 1614 if (!change) 1615 return; 1616 1617 pci_set_irq_state(pci_dev, irq_num, level); 1618 pci_update_irq_status(pci_dev); 1619 if (pci_irq_disabled(pci_dev)) 1620 return; 1621 pci_change_irq_level(pci_dev, irq_num, change); 1622 } 1623 1624 qemu_irq pci_allocate_irq(PCIDevice *pci_dev) 1625 { 1626 int intx = pci_intx(pci_dev); 1627 assert(0 <= intx && intx < PCI_NUM_PINS); 1628 1629 return qemu_allocate_irq(pci_irq_handler, pci_dev, intx); 1630 } 1631 1632 void pci_set_irq(PCIDevice *pci_dev, int level) 1633 { 1634 int intx = pci_intx(pci_dev); 1635 pci_irq_handler(pci_dev, intx, level); 1636 } 1637 1638 /* Special hooks used by device assignment */ 1639 void pci_bus_set_route_irq_fn(PCIBus *bus, pci_route_irq_fn route_intx_to_irq) 1640 { 1641 assert(pci_bus_is_root(bus)); 1642 bus->route_intx_to_irq = route_intx_to_irq; 1643 } 1644 1645 PCIINTxRoute pci_device_route_intx_to_irq(PCIDevice *dev, int pin) 1646 { 1647 PCIBus *bus; 1648 1649 do { 1650 int dev_irq = pin; 1651 bus = pci_get_bus(dev); 1652 pin = bus->map_irq(dev, pin); 1653 trace_pci_route_irq(dev_irq, DEVICE(dev)->canonical_path, pin, 1654 pci_bus_is_root(bus) ? "root-complex" 1655 : DEVICE(bus->parent_dev)->canonical_path); 1656 dev = bus->parent_dev; 1657 } while (dev); 1658 1659 if (!bus->route_intx_to_irq) { 1660 error_report("PCI: Bug - unimplemented PCI INTx routing (%s)", 1661 object_get_typename(OBJECT(bus->qbus.parent))); 1662 return (PCIINTxRoute) { PCI_INTX_DISABLED, -1 }; 1663 } 1664 1665 return bus->route_intx_to_irq(bus->irq_opaque, pin); 1666 } 1667 1668 bool pci_intx_route_changed(PCIINTxRoute *old, PCIINTxRoute *new) 1669 { 1670 return old->mode != new->mode || old->irq != new->irq; 1671 } 1672 1673 void pci_bus_fire_intx_routing_notifier(PCIBus *bus) 1674 { 1675 PCIDevice *dev; 1676 PCIBus *sec; 1677 int i; 1678 1679 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 1680 dev = bus->devices[i]; 1681 if (dev && dev->intx_routing_notifier) { 1682 dev->intx_routing_notifier(dev); 1683 } 1684 } 1685 1686 QLIST_FOREACH(sec, &bus->child, sibling) { 1687 pci_bus_fire_intx_routing_notifier(sec); 1688 } 1689 } 1690 1691 void pci_device_set_intx_routing_notifier(PCIDevice *dev, 1692 PCIINTxRoutingNotifier notifier) 1693 { 1694 dev->intx_routing_notifier = notifier; 1695 } 1696 1697 /* 1698 * PCI-to-PCI bridge specification 1699 * 9.1: Interrupt routing. Table 9-1 1700 * 1701 * the PCI Express Base Specification, Revision 2.1 1702 * 2.2.8.1: INTx interrupt signaling - Rules 1703 * the Implementation Note 1704 * Table 2-20 1705 */ 1706 /* 1707 * 0 <= pin <= 3 0 = INTA, 1 = INTB, 2 = INTC, 3 = INTD 1708 * 0-origin unlike PCI interrupt pin register. 1709 */ 1710 int pci_swizzle_map_irq_fn(PCIDevice *pci_dev, int pin) 1711 { 1712 return pci_swizzle(PCI_SLOT(pci_dev->devfn), pin); 1713 } 1714 1715 /***********************************************************/ 1716 /* monitor info on PCI */ 1717 1718 static const pci_class_desc pci_class_descriptions[] = 1719 { 1720 { 0x0001, "VGA controller", "display"}, 1721 { 0x0100, "SCSI controller", "scsi"}, 1722 { 0x0101, "IDE controller", "ide"}, 1723 { 0x0102, "Floppy controller", "fdc"}, 1724 { 0x0103, "IPI controller", "ipi"}, 1725 { 0x0104, "RAID controller", "raid"}, 1726 { 0x0106, "SATA controller"}, 1727 { 0x0107, "SAS controller"}, 1728 { 0x0180, "Storage controller"}, 1729 { 0x0200, "Ethernet controller", "ethernet"}, 1730 { 0x0201, "Token Ring controller", "token-ring"}, 1731 { 0x0202, "FDDI controller", "fddi"}, 1732 { 0x0203, "ATM controller", "atm"}, 1733 { 0x0280, "Network controller"}, 1734 { 0x0300, "VGA controller", "display", 0x00ff}, 1735 { 0x0301, "XGA controller"}, 1736 { 0x0302, "3D controller"}, 1737 { 0x0380, "Display controller"}, 1738 { 0x0400, "Video controller", "video"}, 1739 { 0x0401, "Audio controller", "sound"}, 1740 { 0x0402, "Phone"}, 1741 { 0x0403, "Audio controller", "sound"}, 1742 { 0x0480, "Multimedia controller"}, 1743 { 0x0500, "RAM controller", "memory"}, 1744 { 0x0501, "Flash controller", "flash"}, 1745 { 0x0580, "Memory controller"}, 1746 { 0x0600, "Host bridge", "host"}, 1747 { 0x0601, "ISA bridge", "isa"}, 1748 { 0x0602, "EISA bridge", "eisa"}, 1749 { 0x0603, "MC bridge", "mca"}, 1750 { 0x0604, "PCI bridge", "pci-bridge"}, 1751 { 0x0605, "PCMCIA bridge", "pcmcia"}, 1752 { 0x0606, "NUBUS bridge", "nubus"}, 1753 { 0x0607, "CARDBUS bridge", "cardbus"}, 1754 { 0x0608, "RACEWAY bridge"}, 1755 { 0x0680, "Bridge"}, 1756 { 0x0700, "Serial port", "serial"}, 1757 { 0x0701, "Parallel port", "parallel"}, 1758 { 0x0800, "Interrupt controller", "interrupt-controller"}, 1759 { 0x0801, "DMA controller", "dma-controller"}, 1760 { 0x0802, "Timer", "timer"}, 1761 { 0x0803, "RTC", "rtc"}, 1762 { 0x0900, "Keyboard", "keyboard"}, 1763 { 0x0901, "Pen", "pen"}, 1764 { 0x0902, "Mouse", "mouse"}, 1765 { 0x0A00, "Dock station", "dock", 0x00ff}, 1766 { 0x0B00, "i386 cpu", "cpu", 0x00ff}, 1767 { 0x0c00, "Firewire controller", "firewire"}, 1768 { 0x0c01, "Access bus controller", "access-bus"}, 1769 { 0x0c02, "SSA controller", "ssa"}, 1770 { 0x0c03, "USB controller", "usb"}, 1771 { 0x0c04, "Fibre channel controller", "fibre-channel"}, 1772 { 0x0c05, "SMBus"}, 1773 { 0, NULL} 1774 }; 1775 1776 void pci_for_each_device_under_bus_reverse(PCIBus *bus, 1777 pci_bus_dev_fn fn, 1778 void *opaque) 1779 { 1780 PCIDevice *d; 1781 int devfn; 1782 1783 for (devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { 1784 d = bus->devices[ARRAY_SIZE(bus->devices) - 1 - devfn]; 1785 if (d) { 1786 fn(bus, d, opaque); 1787 } 1788 } 1789 } 1790 1791 void pci_for_each_device_reverse(PCIBus *bus, int bus_num, 1792 pci_bus_dev_fn fn, void *opaque) 1793 { 1794 bus = pci_find_bus_nr(bus, bus_num); 1795 1796 if (bus) { 1797 pci_for_each_device_under_bus_reverse(bus, fn, opaque); 1798 } 1799 } 1800 1801 void pci_for_each_device_under_bus(PCIBus *bus, 1802 pci_bus_dev_fn fn, void *opaque) 1803 { 1804 PCIDevice *d; 1805 int devfn; 1806 1807 for(devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { 1808 d = bus->devices[devfn]; 1809 if (d) { 1810 fn(bus, d, opaque); 1811 } 1812 } 1813 } 1814 1815 void pci_for_each_device(PCIBus *bus, int bus_num, 1816 pci_bus_dev_fn fn, void *opaque) 1817 { 1818 bus = pci_find_bus_nr(bus, bus_num); 1819 1820 if (bus) { 1821 pci_for_each_device_under_bus(bus, fn, opaque); 1822 } 1823 } 1824 1825 const pci_class_desc *get_class_desc(int class) 1826 { 1827 const pci_class_desc *desc; 1828 1829 desc = pci_class_descriptions; 1830 while (desc->desc && class != desc->class) { 1831 desc++; 1832 } 1833 1834 return desc; 1835 } 1836 1837 /* Initialize a PCI NIC. */ 1838 PCIDevice *pci_nic_init_nofail(NICInfo *nd, PCIBus *rootbus, 1839 const char *default_model, 1840 const char *default_devaddr) 1841 { 1842 const char *devaddr = nd->devaddr ? nd->devaddr : default_devaddr; 1843 GPtrArray *pci_nic_models; 1844 PCIBus *bus; 1845 PCIDevice *pci_dev; 1846 DeviceState *dev; 1847 int devfn; 1848 int i; 1849 int dom, busnr; 1850 unsigned slot; 1851 1852 if (nd->model && !strcmp(nd->model, "virtio")) { 1853 g_free(nd->model); 1854 nd->model = g_strdup("virtio-net-pci"); 1855 } 1856 1857 pci_nic_models = qemu_get_nic_models(TYPE_PCI_DEVICE); 1858 1859 if (qemu_show_nic_models(nd->model, (const char **)pci_nic_models->pdata)) { 1860 exit(0); 1861 } 1862 1863 i = qemu_find_nic_model(nd, (const char **)pci_nic_models->pdata, 1864 default_model); 1865 if (i < 0) { 1866 exit(1); 1867 } 1868 1869 if (!rootbus) { 1870 error_report("No primary PCI bus"); 1871 exit(1); 1872 } 1873 1874 assert(!rootbus->parent_dev); 1875 1876 if (!devaddr) { 1877 devfn = -1; 1878 busnr = 0; 1879 } else { 1880 if (pci_parse_devaddr(devaddr, &dom, &busnr, &slot, NULL) < 0) { 1881 error_report("Invalid PCI device address %s for device %s", 1882 devaddr, nd->model); 1883 exit(1); 1884 } 1885 1886 if (dom != 0) { 1887 error_report("No support for non-zero PCI domains"); 1888 exit(1); 1889 } 1890 1891 devfn = PCI_DEVFN(slot, 0); 1892 } 1893 1894 bus = pci_find_bus_nr(rootbus, busnr); 1895 if (!bus) { 1896 error_report("Invalid PCI device address %s for device %s", 1897 devaddr, nd->model); 1898 exit(1); 1899 } 1900 1901 pci_dev = pci_new(devfn, nd->model); 1902 dev = &pci_dev->qdev; 1903 qdev_set_nic_properties(dev, nd); 1904 pci_realize_and_unref(pci_dev, bus, &error_fatal); 1905 g_ptr_array_free(pci_nic_models, true); 1906 return pci_dev; 1907 } 1908 1909 PCIDevice *pci_vga_init(PCIBus *bus) 1910 { 1911 vga_interface_created = true; 1912 switch (vga_interface_type) { 1913 case VGA_CIRRUS: 1914 return pci_create_simple(bus, -1, "cirrus-vga"); 1915 case VGA_QXL: 1916 return pci_create_simple(bus, -1, "qxl-vga"); 1917 case VGA_STD: 1918 return pci_create_simple(bus, -1, "VGA"); 1919 case VGA_VMWARE: 1920 return pci_create_simple(bus, -1, "vmware-svga"); 1921 case VGA_VIRTIO: 1922 return pci_create_simple(bus, -1, "virtio-vga"); 1923 case VGA_NONE: 1924 default: /* Other non-PCI types. Checking for unsupported types is already 1925 done in vl.c. */ 1926 return NULL; 1927 } 1928 } 1929 1930 /* Whether a given bus number is in range of the secondary 1931 * bus of the given bridge device. */ 1932 static bool pci_secondary_bus_in_range(PCIDevice *dev, int bus_num) 1933 { 1934 return !(pci_get_word(dev->config + PCI_BRIDGE_CONTROL) & 1935 PCI_BRIDGE_CTL_BUS_RESET) /* Don't walk the bus if it's reset. */ && 1936 dev->config[PCI_SECONDARY_BUS] <= bus_num && 1937 bus_num <= dev->config[PCI_SUBORDINATE_BUS]; 1938 } 1939 1940 /* Whether a given bus number is in a range of a root bus */ 1941 static bool pci_root_bus_in_range(PCIBus *bus, int bus_num) 1942 { 1943 int i; 1944 1945 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 1946 PCIDevice *dev = bus->devices[i]; 1947 1948 if (dev && IS_PCI_BRIDGE(dev)) { 1949 if (pci_secondary_bus_in_range(dev, bus_num)) { 1950 return true; 1951 } 1952 } 1953 } 1954 1955 return false; 1956 } 1957 1958 PCIBus *pci_find_bus_nr(PCIBus *bus, int bus_num) 1959 { 1960 PCIBus *sec; 1961 1962 if (!bus) { 1963 return NULL; 1964 } 1965 1966 if (pci_bus_num(bus) == bus_num) { 1967 return bus; 1968 } 1969 1970 /* Consider all bus numbers in range for the host pci bridge. */ 1971 if (!pci_bus_is_root(bus) && 1972 !pci_secondary_bus_in_range(bus->parent_dev, bus_num)) { 1973 return NULL; 1974 } 1975 1976 /* try child bus */ 1977 for (; bus; bus = sec) { 1978 QLIST_FOREACH(sec, &bus->child, sibling) { 1979 if (pci_bus_num(sec) == bus_num) { 1980 return sec; 1981 } 1982 /* PXB buses assumed to be children of bus 0 */ 1983 if (pci_bus_is_root(sec)) { 1984 if (pci_root_bus_in_range(sec, bus_num)) { 1985 break; 1986 } 1987 } else { 1988 if (pci_secondary_bus_in_range(sec->parent_dev, bus_num)) { 1989 break; 1990 } 1991 } 1992 } 1993 } 1994 1995 return NULL; 1996 } 1997 1998 void pci_for_each_bus_depth_first(PCIBus *bus, pci_bus_ret_fn begin, 1999 pci_bus_fn end, void *parent_state) 2000 { 2001 PCIBus *sec; 2002 void *state; 2003 2004 if (!bus) { 2005 return; 2006 } 2007 2008 if (begin) { 2009 state = begin(bus, parent_state); 2010 } else { 2011 state = parent_state; 2012 } 2013 2014 QLIST_FOREACH(sec, &bus->child, sibling) { 2015 pci_for_each_bus_depth_first(sec, begin, end, state); 2016 } 2017 2018 if (end) { 2019 end(bus, state); 2020 } 2021 } 2022 2023 2024 PCIDevice *pci_find_device(PCIBus *bus, int bus_num, uint8_t devfn) 2025 { 2026 bus = pci_find_bus_nr(bus, bus_num); 2027 2028 if (!bus) 2029 return NULL; 2030 2031 return bus->devices[devfn]; 2032 } 2033 2034 #define ONBOARD_INDEX_MAX (16 * 1024 - 1) 2035 2036 static void pci_qdev_realize(DeviceState *qdev, Error **errp) 2037 { 2038 PCIDevice *pci_dev = (PCIDevice *)qdev; 2039 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); 2040 ObjectClass *klass = OBJECT_CLASS(pc); 2041 Error *local_err = NULL; 2042 bool is_default_rom; 2043 uint16_t class_id; 2044 2045 /* 2046 * capped by systemd (see: udev-builtin-net_id.c) 2047 * as it's the only known user honor it to avoid users 2048 * misconfigure QEMU and then wonder why acpi-index doesn't work 2049 */ 2050 if (pci_dev->acpi_index > ONBOARD_INDEX_MAX) { 2051 error_setg(errp, "acpi-index should be less or equal to %u", 2052 ONBOARD_INDEX_MAX); 2053 return; 2054 } 2055 2056 /* 2057 * make sure that acpi-index is unique across all present PCI devices 2058 */ 2059 if (pci_dev->acpi_index) { 2060 GSequence *used_indexes = pci_acpi_index_list(); 2061 2062 if (g_sequence_lookup(used_indexes, 2063 GINT_TO_POINTER(pci_dev->acpi_index), 2064 g_cmp_uint32, NULL)) { 2065 error_setg(errp, "a PCI device with acpi-index = %" PRIu32 2066 " already exist", pci_dev->acpi_index); 2067 return; 2068 } 2069 g_sequence_insert_sorted(used_indexes, 2070 GINT_TO_POINTER(pci_dev->acpi_index), 2071 g_cmp_uint32, NULL); 2072 } 2073 2074 if (pci_dev->romsize != -1 && !is_power_of_2(pci_dev->romsize)) { 2075 error_setg(errp, "ROM size %u is not a power of two", pci_dev->romsize); 2076 return; 2077 } 2078 2079 /* initialize cap_present for pci_is_express() and pci_config_size(), 2080 * Note that hybrid PCIs are not set automatically and need to manage 2081 * QEMU_PCI_CAP_EXPRESS manually */ 2082 if (object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE) && 2083 !object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE)) { 2084 pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; 2085 } 2086 2087 if (object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE)) { 2088 pci_dev->cap_present |= QEMU_PCIE_CAP_CXL; 2089 } 2090 2091 pci_dev = do_pci_register_device(pci_dev, 2092 object_get_typename(OBJECT(qdev)), 2093 pci_dev->devfn, errp); 2094 if (pci_dev == NULL) 2095 return; 2096 2097 if (pc->realize) { 2098 pc->realize(pci_dev, &local_err); 2099 if (local_err) { 2100 error_propagate(errp, local_err); 2101 do_pci_unregister_device(pci_dev); 2102 return; 2103 } 2104 } 2105 2106 if (pci_dev->failover_pair_id) { 2107 if (!pci_bus_is_express(pci_get_bus(pci_dev))) { 2108 error_setg(errp, "failover primary device must be on " 2109 "PCIExpress bus"); 2110 pci_qdev_unrealize(DEVICE(pci_dev)); 2111 return; 2112 } 2113 class_id = pci_get_word(pci_dev->config + PCI_CLASS_DEVICE); 2114 if (class_id != PCI_CLASS_NETWORK_ETHERNET) { 2115 error_setg(errp, "failover primary device is not an " 2116 "Ethernet device"); 2117 pci_qdev_unrealize(DEVICE(pci_dev)); 2118 return; 2119 } 2120 if ((pci_dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) 2121 || (PCI_FUNC(pci_dev->devfn) != 0)) { 2122 error_setg(errp, "failover: primary device must be in its own " 2123 "PCI slot"); 2124 pci_qdev_unrealize(DEVICE(pci_dev)); 2125 return; 2126 } 2127 qdev->allow_unplug_during_migration = true; 2128 } 2129 2130 /* rom loading */ 2131 is_default_rom = false; 2132 if (pci_dev->romfile == NULL && pc->romfile != NULL) { 2133 pci_dev->romfile = g_strdup(pc->romfile); 2134 is_default_rom = true; 2135 } 2136 2137 pci_add_option_rom(pci_dev, is_default_rom, &local_err); 2138 if (local_err) { 2139 error_propagate(errp, local_err); 2140 pci_qdev_unrealize(DEVICE(pci_dev)); 2141 return; 2142 } 2143 2144 pci_set_power(pci_dev, true); 2145 2146 pci_dev->msi_trigger = pci_msi_trigger; 2147 } 2148 2149 PCIDevice *pci_new_multifunction(int devfn, bool multifunction, 2150 const char *name) 2151 { 2152 DeviceState *dev; 2153 2154 dev = qdev_new(name); 2155 qdev_prop_set_int32(dev, "addr", devfn); 2156 qdev_prop_set_bit(dev, "multifunction", multifunction); 2157 return PCI_DEVICE(dev); 2158 } 2159 2160 PCIDevice *pci_new(int devfn, const char *name) 2161 { 2162 return pci_new_multifunction(devfn, false, name); 2163 } 2164 2165 bool pci_realize_and_unref(PCIDevice *dev, PCIBus *bus, Error **errp) 2166 { 2167 return qdev_realize_and_unref(&dev->qdev, &bus->qbus, errp); 2168 } 2169 2170 PCIDevice *pci_create_simple_multifunction(PCIBus *bus, int devfn, 2171 bool multifunction, 2172 const char *name) 2173 { 2174 PCIDevice *dev = pci_new_multifunction(devfn, multifunction, name); 2175 pci_realize_and_unref(dev, bus, &error_fatal); 2176 return dev; 2177 } 2178 2179 PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name) 2180 { 2181 return pci_create_simple_multifunction(bus, devfn, false, name); 2182 } 2183 2184 static uint8_t pci_find_space(PCIDevice *pdev, uint8_t size) 2185 { 2186 int offset = PCI_CONFIG_HEADER_SIZE; 2187 int i; 2188 for (i = PCI_CONFIG_HEADER_SIZE; i < PCI_CONFIG_SPACE_SIZE; ++i) { 2189 if (pdev->used[i]) 2190 offset = i + 1; 2191 else if (i - offset + 1 == size) 2192 return offset; 2193 } 2194 return 0; 2195 } 2196 2197 static uint8_t pci_find_capability_list(PCIDevice *pdev, uint8_t cap_id, 2198 uint8_t *prev_p) 2199 { 2200 uint8_t next, prev; 2201 2202 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST)) 2203 return 0; 2204 2205 for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]); 2206 prev = next + PCI_CAP_LIST_NEXT) 2207 if (pdev->config[next + PCI_CAP_LIST_ID] == cap_id) 2208 break; 2209 2210 if (prev_p) 2211 *prev_p = prev; 2212 return next; 2213 } 2214 2215 static uint8_t pci_find_capability_at_offset(PCIDevice *pdev, uint8_t offset) 2216 { 2217 uint8_t next, prev, found = 0; 2218 2219 if (!(pdev->used[offset])) { 2220 return 0; 2221 } 2222 2223 assert(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST); 2224 2225 for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]); 2226 prev = next + PCI_CAP_LIST_NEXT) { 2227 if (next <= offset && next > found) { 2228 found = next; 2229 } 2230 } 2231 return found; 2232 } 2233 2234 /* Patch the PCI vendor and device ids in a PCI rom image if necessary. 2235 This is needed for an option rom which is used for more than one device. */ 2236 static void pci_patch_ids(PCIDevice *pdev, uint8_t *ptr, uint32_t size) 2237 { 2238 uint16_t vendor_id; 2239 uint16_t device_id; 2240 uint16_t rom_vendor_id; 2241 uint16_t rom_device_id; 2242 uint16_t rom_magic; 2243 uint16_t pcir_offset; 2244 uint8_t checksum; 2245 2246 /* Words in rom data are little endian (like in PCI configuration), 2247 so they can be read / written with pci_get_word / pci_set_word. */ 2248 2249 /* Only a valid rom will be patched. */ 2250 rom_magic = pci_get_word(ptr); 2251 if (rom_magic != 0xaa55) { 2252 PCI_DPRINTF("Bad ROM magic %04x\n", rom_magic); 2253 return; 2254 } 2255 pcir_offset = pci_get_word(ptr + 0x18); 2256 if (pcir_offset + 8 >= size || memcmp(ptr + pcir_offset, "PCIR", 4)) { 2257 PCI_DPRINTF("Bad PCIR offset 0x%x or signature\n", pcir_offset); 2258 return; 2259 } 2260 2261 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); 2262 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); 2263 rom_vendor_id = pci_get_word(ptr + pcir_offset + 4); 2264 rom_device_id = pci_get_word(ptr + pcir_offset + 6); 2265 2266 PCI_DPRINTF("%s: ROM id %04x%04x / PCI id %04x%04x\n", pdev->romfile, 2267 vendor_id, device_id, rom_vendor_id, rom_device_id); 2268 2269 checksum = ptr[6]; 2270 2271 if (vendor_id != rom_vendor_id) { 2272 /* Patch vendor id and checksum (at offset 6 for etherboot roms). */ 2273 checksum += (uint8_t)rom_vendor_id + (uint8_t)(rom_vendor_id >> 8); 2274 checksum -= (uint8_t)vendor_id + (uint8_t)(vendor_id >> 8); 2275 PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum); 2276 ptr[6] = checksum; 2277 pci_set_word(ptr + pcir_offset + 4, vendor_id); 2278 } 2279 2280 if (device_id != rom_device_id) { 2281 /* Patch device id and checksum (at offset 6 for etherboot roms). */ 2282 checksum += (uint8_t)rom_device_id + (uint8_t)(rom_device_id >> 8); 2283 checksum -= (uint8_t)device_id + (uint8_t)(device_id >> 8); 2284 PCI_DPRINTF("ROM checksum %02x / %02x\n", ptr[6], checksum); 2285 ptr[6] = checksum; 2286 pci_set_word(ptr + pcir_offset + 6, device_id); 2287 } 2288 } 2289 2290 /* Add an option rom for the device */ 2291 static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom, 2292 Error **errp) 2293 { 2294 int64_t size; 2295 char *path; 2296 void *ptr; 2297 char name[32]; 2298 const VMStateDescription *vmsd; 2299 2300 if (!pdev->romfile) 2301 return; 2302 if (strlen(pdev->romfile) == 0) 2303 return; 2304 2305 if (!pdev->rom_bar) { 2306 /* 2307 * Load rom via fw_cfg instead of creating a rom bar, 2308 * for 0.11 compatibility. 2309 */ 2310 int class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 2311 2312 /* 2313 * Hot-plugged devices can't use the option ROM 2314 * if the rom bar is disabled. 2315 */ 2316 if (DEVICE(pdev)->hotplugged) { 2317 error_setg(errp, "Hot-plugged device without ROM bar" 2318 " can't have an option ROM"); 2319 return; 2320 } 2321 2322 if (class == 0x0300) { 2323 rom_add_vga(pdev->romfile); 2324 } else { 2325 rom_add_option(pdev->romfile, -1); 2326 } 2327 return; 2328 } 2329 2330 path = qemu_find_file(QEMU_FILE_TYPE_BIOS, pdev->romfile); 2331 if (path == NULL) { 2332 path = g_strdup(pdev->romfile); 2333 } 2334 2335 size = get_image_size(path); 2336 if (size < 0) { 2337 error_setg(errp, "failed to find romfile \"%s\"", pdev->romfile); 2338 g_free(path); 2339 return; 2340 } else if (size == 0) { 2341 error_setg(errp, "romfile \"%s\" is empty", pdev->romfile); 2342 g_free(path); 2343 return; 2344 } else if (size > 2 * GiB) { 2345 error_setg(errp, "romfile \"%s\" too large (size cannot exceed 2 GiB)", 2346 pdev->romfile); 2347 g_free(path); 2348 return; 2349 } 2350 if (pdev->romsize != -1) { 2351 if (size > pdev->romsize) { 2352 error_setg(errp, "romfile \"%s\" (%u bytes) is too large for ROM size %u", 2353 pdev->romfile, (uint32_t)size, pdev->romsize); 2354 g_free(path); 2355 return; 2356 } 2357 } else { 2358 pdev->romsize = pow2ceil(size); 2359 } 2360 2361 vmsd = qdev_get_vmsd(DEVICE(pdev)); 2362 2363 if (vmsd) { 2364 snprintf(name, sizeof(name), "%s.rom", vmsd->name); 2365 } else { 2366 snprintf(name, sizeof(name), "%s.rom", object_get_typename(OBJECT(pdev))); 2367 } 2368 pdev->has_rom = true; 2369 memory_region_init_rom(&pdev->rom, OBJECT(pdev), name, pdev->romsize, &error_fatal); 2370 ptr = memory_region_get_ram_ptr(&pdev->rom); 2371 if (load_image_size(path, ptr, size) < 0) { 2372 error_setg(errp, "failed to load romfile \"%s\"", pdev->romfile); 2373 g_free(path); 2374 return; 2375 } 2376 g_free(path); 2377 2378 if (is_default_rom) { 2379 /* Only the default rom images will be patched (if needed). */ 2380 pci_patch_ids(pdev, ptr, size); 2381 } 2382 2383 pci_register_bar(pdev, PCI_ROM_SLOT, 0, &pdev->rom); 2384 } 2385 2386 static void pci_del_option_rom(PCIDevice *pdev) 2387 { 2388 if (!pdev->has_rom) 2389 return; 2390 2391 vmstate_unregister_ram(&pdev->rom, &pdev->qdev); 2392 pdev->has_rom = false; 2393 } 2394 2395 /* 2396 * On success, pci_add_capability() returns a positive value 2397 * that the offset of the pci capability. 2398 * On failure, it sets an error and returns a negative error 2399 * code. 2400 */ 2401 int pci_add_capability(PCIDevice *pdev, uint8_t cap_id, 2402 uint8_t offset, uint8_t size, 2403 Error **errp) 2404 { 2405 uint8_t *config; 2406 int i, overlapping_cap; 2407 2408 if (!offset) { 2409 offset = pci_find_space(pdev, size); 2410 /* out of PCI config space is programming error */ 2411 assert(offset); 2412 } else { 2413 /* Verify that capabilities don't overlap. Note: device assignment 2414 * depends on this check to verify that the device is not broken. 2415 * Should never trigger for emulated devices, but it's helpful 2416 * for debugging these. */ 2417 for (i = offset; i < offset + size; i++) { 2418 overlapping_cap = pci_find_capability_at_offset(pdev, i); 2419 if (overlapping_cap) { 2420 error_setg(errp, "%s:%02x:%02x.%x " 2421 "Attempt to add PCI capability %x at offset " 2422 "%x overlaps existing capability %x at offset %x", 2423 pci_root_bus_path(pdev), pci_dev_bus_num(pdev), 2424 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 2425 cap_id, offset, overlapping_cap, i); 2426 return -EINVAL; 2427 } 2428 } 2429 } 2430 2431 config = pdev->config + offset; 2432 config[PCI_CAP_LIST_ID] = cap_id; 2433 config[PCI_CAP_LIST_NEXT] = pdev->config[PCI_CAPABILITY_LIST]; 2434 pdev->config[PCI_CAPABILITY_LIST] = offset; 2435 pdev->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST; 2436 memset(pdev->used + offset, 0xFF, QEMU_ALIGN_UP(size, 4)); 2437 /* Make capability read-only by default */ 2438 memset(pdev->wmask + offset, 0, size); 2439 /* Check capability by default */ 2440 memset(pdev->cmask + offset, 0xFF, size); 2441 return offset; 2442 } 2443 2444 /* Unlink capability from the pci config space. */ 2445 void pci_del_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size) 2446 { 2447 uint8_t prev, offset = pci_find_capability_list(pdev, cap_id, &prev); 2448 if (!offset) 2449 return; 2450 pdev->config[prev] = pdev->config[offset + PCI_CAP_LIST_NEXT]; 2451 /* Make capability writable again */ 2452 memset(pdev->wmask + offset, 0xff, size); 2453 memset(pdev->w1cmask + offset, 0, size); 2454 /* Clear cmask as device-specific registers can't be checked */ 2455 memset(pdev->cmask + offset, 0, size); 2456 memset(pdev->used + offset, 0, QEMU_ALIGN_UP(size, 4)); 2457 2458 if (!pdev->config[PCI_CAPABILITY_LIST]) 2459 pdev->config[PCI_STATUS] &= ~PCI_STATUS_CAP_LIST; 2460 } 2461 2462 uint8_t pci_find_capability(PCIDevice *pdev, uint8_t cap_id) 2463 { 2464 return pci_find_capability_list(pdev, cap_id, NULL); 2465 } 2466 2467 static char *pci_dev_fw_name(DeviceState *dev, char *buf, int len) 2468 { 2469 PCIDevice *d = (PCIDevice *)dev; 2470 const char *name = NULL; 2471 const pci_class_desc *desc = pci_class_descriptions; 2472 int class = pci_get_word(d->config + PCI_CLASS_DEVICE); 2473 2474 while (desc->desc && 2475 (class & ~desc->fw_ign_bits) != 2476 (desc->class & ~desc->fw_ign_bits)) { 2477 desc++; 2478 } 2479 2480 if (desc->desc) { 2481 name = desc->fw_name; 2482 } 2483 2484 if (name) { 2485 pstrcpy(buf, len, name); 2486 } else { 2487 snprintf(buf, len, "pci%04x,%04x", 2488 pci_get_word(d->config + PCI_VENDOR_ID), 2489 pci_get_word(d->config + PCI_DEVICE_ID)); 2490 } 2491 2492 return buf; 2493 } 2494 2495 static char *pcibus_get_fw_dev_path(DeviceState *dev) 2496 { 2497 PCIDevice *d = (PCIDevice *)dev; 2498 char name[33]; 2499 int has_func = !!PCI_FUNC(d->devfn); 2500 2501 return g_strdup_printf("%s@%x%s%.*x", 2502 pci_dev_fw_name(dev, name, sizeof(name)), 2503 PCI_SLOT(d->devfn), 2504 has_func ? "," : "", 2505 has_func, 2506 PCI_FUNC(d->devfn)); 2507 } 2508 2509 static char *pcibus_get_dev_path(DeviceState *dev) 2510 { 2511 PCIDevice *d = container_of(dev, PCIDevice, qdev); 2512 PCIDevice *t; 2513 int slot_depth; 2514 /* Path format: Domain:00:Slot.Function:Slot.Function....:Slot.Function. 2515 * 00 is added here to make this format compatible with 2516 * domain:Bus:Slot.Func for systems without nested PCI bridges. 2517 * Slot.Function list specifies the slot and function numbers for all 2518 * devices on the path from root to the specific device. */ 2519 const char *root_bus_path; 2520 int root_bus_len; 2521 char slot[] = ":SS.F"; 2522 int slot_len = sizeof slot - 1 /* For '\0' */; 2523 int path_len; 2524 char *path, *p; 2525 int s; 2526 2527 root_bus_path = pci_root_bus_path(d); 2528 root_bus_len = strlen(root_bus_path); 2529 2530 /* Calculate # of slots on path between device and root. */; 2531 slot_depth = 0; 2532 for (t = d; t; t = pci_get_bus(t)->parent_dev) { 2533 ++slot_depth; 2534 } 2535 2536 path_len = root_bus_len + slot_len * slot_depth; 2537 2538 /* Allocate memory, fill in the terminating null byte. */ 2539 path = g_malloc(path_len + 1 /* For '\0' */); 2540 path[path_len] = '\0'; 2541 2542 memcpy(path, root_bus_path, root_bus_len); 2543 2544 /* Fill in slot numbers. We walk up from device to root, so need to print 2545 * them in the reverse order, last to first. */ 2546 p = path + path_len; 2547 for (t = d; t; t = pci_get_bus(t)->parent_dev) { 2548 p -= slot_len; 2549 s = snprintf(slot, sizeof slot, ":%02x.%x", 2550 PCI_SLOT(t->devfn), PCI_FUNC(t->devfn)); 2551 assert(s == slot_len); 2552 memcpy(p, slot, slot_len); 2553 } 2554 2555 return path; 2556 } 2557 2558 static int pci_qdev_find_recursive(PCIBus *bus, 2559 const char *id, PCIDevice **pdev) 2560 { 2561 DeviceState *qdev = qdev_find_recursive(&bus->qbus, id); 2562 if (!qdev) { 2563 return -ENODEV; 2564 } 2565 2566 /* roughly check if given qdev is pci device */ 2567 if (object_dynamic_cast(OBJECT(qdev), TYPE_PCI_DEVICE)) { 2568 *pdev = PCI_DEVICE(qdev); 2569 return 0; 2570 } 2571 return -EINVAL; 2572 } 2573 2574 int pci_qdev_find_device(const char *id, PCIDevice **pdev) 2575 { 2576 PCIHostState *host_bridge; 2577 int rc = -ENODEV; 2578 2579 QLIST_FOREACH(host_bridge, &pci_host_bridges, next) { 2580 int tmp = pci_qdev_find_recursive(host_bridge->bus, id, pdev); 2581 if (!tmp) { 2582 rc = 0; 2583 break; 2584 } 2585 if (tmp != -ENODEV) { 2586 rc = tmp; 2587 } 2588 } 2589 2590 return rc; 2591 } 2592 2593 MemoryRegion *pci_address_space(PCIDevice *dev) 2594 { 2595 return pci_get_bus(dev)->address_space_mem; 2596 } 2597 2598 MemoryRegion *pci_address_space_io(PCIDevice *dev) 2599 { 2600 return pci_get_bus(dev)->address_space_io; 2601 } 2602 2603 static void pci_device_class_init(ObjectClass *klass, void *data) 2604 { 2605 DeviceClass *k = DEVICE_CLASS(klass); 2606 2607 k->realize = pci_qdev_realize; 2608 k->unrealize = pci_qdev_unrealize; 2609 k->bus_type = TYPE_PCI_BUS; 2610 device_class_set_props(k, pci_props); 2611 } 2612 2613 static void pci_device_class_base_init(ObjectClass *klass, void *data) 2614 { 2615 if (!object_class_is_abstract(klass)) { 2616 ObjectClass *conventional = 2617 object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE); 2618 ObjectClass *pcie = 2619 object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE); 2620 ObjectClass *cxl = 2621 object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE); 2622 assert(conventional || pcie || cxl); 2623 } 2624 } 2625 2626 AddressSpace *pci_device_iommu_address_space(PCIDevice *dev) 2627 { 2628 PCIBus *bus = pci_get_bus(dev); 2629 PCIBus *iommu_bus = bus; 2630 uint8_t devfn = dev->devfn; 2631 2632 while (iommu_bus && !iommu_bus->iommu_fn && iommu_bus->parent_dev) { 2633 PCIBus *parent_bus = pci_get_bus(iommu_bus->parent_dev); 2634 2635 /* 2636 * The requester ID of the provided device may be aliased, as seen from 2637 * the IOMMU, due to topology limitations. The IOMMU relies on a 2638 * requester ID to provide a unique AddressSpace for devices, but 2639 * conventional PCI buses pre-date such concepts. Instead, the PCIe- 2640 * to-PCI bridge creates and accepts transactions on behalf of down- 2641 * stream devices. When doing so, all downstream devices are masked 2642 * (aliased) behind a single requester ID. The requester ID used 2643 * depends on the format of the bridge devices. Proper PCIe-to-PCI 2644 * bridges, with a PCIe capability indicating such, follow the 2645 * guidelines of chapter 2.3 of the PCIe-to-PCI/X bridge specification, 2646 * where the bridge uses the seconary bus as the bridge portion of the 2647 * requester ID and devfn of 00.0. For other bridges, typically those 2648 * found on the root complex such as the dmi-to-pci-bridge, we follow 2649 * the convention of typical bare-metal hardware, which uses the 2650 * requester ID of the bridge itself. There are device specific 2651 * exceptions to these rules, but these are the defaults that the 2652 * Linux kernel uses when determining DMA aliases itself and believed 2653 * to be true for the bare metal equivalents of the devices emulated 2654 * in QEMU. 2655 */ 2656 if (!pci_bus_is_express(iommu_bus)) { 2657 PCIDevice *parent = iommu_bus->parent_dev; 2658 2659 if (pci_is_express(parent) && 2660 pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) { 2661 devfn = PCI_DEVFN(0, 0); 2662 bus = iommu_bus; 2663 } else { 2664 devfn = parent->devfn; 2665 bus = parent_bus; 2666 } 2667 } 2668 2669 iommu_bus = parent_bus; 2670 } 2671 if (!pci_bus_bypass_iommu(bus) && iommu_bus && iommu_bus->iommu_fn) { 2672 return iommu_bus->iommu_fn(bus, iommu_bus->iommu_opaque, devfn); 2673 } 2674 return &address_space_memory; 2675 } 2676 2677 void pci_setup_iommu(PCIBus *bus, PCIIOMMUFunc fn, void *opaque) 2678 { 2679 bus->iommu_fn = fn; 2680 bus->iommu_opaque = opaque; 2681 } 2682 2683 static void pci_dev_get_w64(PCIBus *b, PCIDevice *dev, void *opaque) 2684 { 2685 Range *range = opaque; 2686 uint16_t cmd = pci_get_word(dev->config + PCI_COMMAND); 2687 int i; 2688 2689 if (!(cmd & PCI_COMMAND_MEMORY)) { 2690 return; 2691 } 2692 2693 if (IS_PCI_BRIDGE(dev)) { 2694 pcibus_t base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); 2695 pcibus_t limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); 2696 2697 base = MAX(base, 0x1ULL << 32); 2698 2699 if (limit >= base) { 2700 Range pref_range; 2701 range_set_bounds(&pref_range, base, limit); 2702 range_extend(range, &pref_range); 2703 } 2704 } 2705 for (i = 0; i < PCI_NUM_REGIONS; ++i) { 2706 PCIIORegion *r = &dev->io_regions[i]; 2707 pcibus_t lob, upb; 2708 Range region_range; 2709 2710 if (!r->size || 2711 (r->type & PCI_BASE_ADDRESS_SPACE_IO) || 2712 !(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64)) { 2713 continue; 2714 } 2715 2716 lob = pci_bar_address(dev, i, r->type, r->size); 2717 upb = lob + r->size - 1; 2718 if (lob == PCI_BAR_UNMAPPED) { 2719 continue; 2720 } 2721 2722 lob = MAX(lob, 0x1ULL << 32); 2723 2724 if (upb >= lob) { 2725 range_set_bounds(®ion_range, lob, upb); 2726 range_extend(range, ®ion_range); 2727 } 2728 } 2729 } 2730 2731 void pci_bus_get_w64_range(PCIBus *bus, Range *range) 2732 { 2733 range_make_empty(range); 2734 pci_for_each_device_under_bus(bus, pci_dev_get_w64, range); 2735 } 2736 2737 static bool pcie_has_upstream_port(PCIDevice *dev) 2738 { 2739 PCIDevice *parent_dev = pci_bridge_get_device(pci_get_bus(dev)); 2740 2741 /* Device associated with an upstream port. 2742 * As there are several types of these, it's easier to check the 2743 * parent device: upstream ports are always connected to 2744 * root or downstream ports. 2745 */ 2746 return parent_dev && 2747 pci_is_express(parent_dev) && 2748 parent_dev->exp.exp_cap && 2749 (pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_ROOT_PORT || 2750 pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_DOWNSTREAM); 2751 } 2752 2753 PCIDevice *pci_get_function_0(PCIDevice *pci_dev) 2754 { 2755 PCIBus *bus = pci_get_bus(pci_dev); 2756 2757 if(pcie_has_upstream_port(pci_dev)) { 2758 /* With an upstream PCIe port, we only support 1 device at slot 0 */ 2759 return bus->devices[0]; 2760 } else { 2761 /* Other bus types might support multiple devices at slots 0-31 */ 2762 return bus->devices[PCI_DEVFN(PCI_SLOT(pci_dev->devfn), 0)]; 2763 } 2764 } 2765 2766 MSIMessage pci_get_msi_message(PCIDevice *dev, int vector) 2767 { 2768 MSIMessage msg; 2769 if (msix_enabled(dev)) { 2770 msg = msix_get_message(dev, vector); 2771 } else if (msi_enabled(dev)) { 2772 msg = msi_get_message(dev, vector); 2773 } else { 2774 /* Should never happen */ 2775 error_report("%s: unknown interrupt type", __func__); 2776 abort(); 2777 } 2778 return msg; 2779 } 2780 2781 void pci_set_power(PCIDevice *d, bool state) 2782 { 2783 if (d->has_power == state) { 2784 return; 2785 } 2786 2787 d->has_power = state; 2788 pci_update_mappings(d); 2789 memory_region_set_enabled(&d->bus_master_enable_region, 2790 (pci_get_word(d->config + PCI_COMMAND) 2791 & PCI_COMMAND_MASTER) && d->has_power); 2792 if (!d->has_power) { 2793 pci_device_reset(d); 2794 } 2795 } 2796 2797 static const TypeInfo pci_device_type_info = { 2798 .name = TYPE_PCI_DEVICE, 2799 .parent = TYPE_DEVICE, 2800 .instance_size = sizeof(PCIDevice), 2801 .abstract = true, 2802 .class_size = sizeof(PCIDeviceClass), 2803 .class_init = pci_device_class_init, 2804 .class_base_init = pci_device_class_base_init, 2805 }; 2806 2807 static void pci_register_types(void) 2808 { 2809 type_register_static(&pci_bus_info); 2810 type_register_static(&pcie_bus_info); 2811 type_register_static(&cxl_bus_info); 2812 type_register_static(&conventional_pci_interface_info); 2813 type_register_static(&cxl_interface_info); 2814 type_register_static(&pcie_interface_info); 2815 type_register_static(&pci_device_type_info); 2816 } 2817 2818 type_init(pci_register_types) 2819