xref: /openbmc/qemu/hw/pci/msix.c (revision 7f6c3d1a)
1 /*
2  * MSI-X device support
3  *
4  * This module includes support for MSI-X in pci devices.
5  *
6  * Author: Michael S. Tsirkin <mst@redhat.com>
7  *
8  *  Copyright (c) 2009, Red Hat Inc, Michael S. Tsirkin (mst@redhat.com)
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  * Contributions after 2012-01-13 are licensed under the terms of the
14  * GNU GPL, version 2 or (at your option) any later version.
15  */
16 
17 #include "qemu/osdep.h"
18 #include "hw/pci/msi.h"
19 #include "hw/pci/msix.h"
20 #include "hw/pci/pci.h"
21 #include "hw/xen/xen.h"
22 #include "sysemu/xen.h"
23 #include "migration/qemu-file-types.h"
24 #include "migration/vmstate.h"
25 #include "qemu/range.h"
26 #include "qapi/error.h"
27 #include "trace.h"
28 
29 /* MSI enable bit and maskall bit are in byte 1 in FLAGS register */
30 #define MSIX_CONTROL_OFFSET (PCI_MSIX_FLAGS + 1)
31 #define MSIX_ENABLE_MASK (PCI_MSIX_FLAGS_ENABLE >> 8)
32 #define MSIX_MASKALL_MASK (PCI_MSIX_FLAGS_MASKALL >> 8)
33 
34 MSIMessage msix_get_message(PCIDevice *dev, unsigned vector)
35 {
36     uint8_t *table_entry = dev->msix_table + vector * PCI_MSIX_ENTRY_SIZE;
37     MSIMessage msg;
38 
39     msg.address = pci_get_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR);
40     msg.data = pci_get_long(table_entry + PCI_MSIX_ENTRY_DATA);
41     return msg;
42 }
43 
44 /*
45  * Special API for POWER to configure the vectors through
46  * a side channel. Should never be used by devices.
47  */
48 void msix_set_message(PCIDevice *dev, int vector, struct MSIMessage msg)
49 {
50     uint8_t *table_entry = dev->msix_table + vector * PCI_MSIX_ENTRY_SIZE;
51 
52     pci_set_quad(table_entry + PCI_MSIX_ENTRY_LOWER_ADDR, msg.address);
53     pci_set_long(table_entry + PCI_MSIX_ENTRY_DATA, msg.data);
54     table_entry[PCI_MSIX_ENTRY_VECTOR_CTRL] &= ~PCI_MSIX_ENTRY_CTRL_MASKBIT;
55 }
56 
57 static uint8_t msix_pending_mask(int vector)
58 {
59     return 1 << (vector % 8);
60 }
61 
62 static uint8_t *msix_pending_byte(PCIDevice *dev, int vector)
63 {
64     return dev->msix_pba + vector / 8;
65 }
66 
67 static int msix_is_pending(PCIDevice *dev, int vector)
68 {
69     return *msix_pending_byte(dev, vector) & msix_pending_mask(vector);
70 }
71 
72 void msix_set_pending(PCIDevice *dev, unsigned int vector)
73 {
74     *msix_pending_byte(dev, vector) |= msix_pending_mask(vector);
75 }
76 
77 void msix_clr_pending(PCIDevice *dev, int vector)
78 {
79     *msix_pending_byte(dev, vector) &= ~msix_pending_mask(vector);
80 }
81 
82 static bool msix_vector_masked(PCIDevice *dev, unsigned int vector, bool fmask)
83 {
84     unsigned offset = vector * PCI_MSIX_ENTRY_SIZE;
85     uint8_t *data = &dev->msix_table[offset + PCI_MSIX_ENTRY_DATA];
86     /* MSIs on Xen can be remapped into pirqs. In those cases, masking
87      * and unmasking go through the PV evtchn path. */
88     if (xen_enabled() && xen_is_pirq_msi(pci_get_long(data))) {
89         return false;
90     }
91     return fmask || dev->msix_table[offset + PCI_MSIX_ENTRY_VECTOR_CTRL] &
92         PCI_MSIX_ENTRY_CTRL_MASKBIT;
93 }
94 
95 bool msix_is_masked(PCIDevice *dev, unsigned int vector)
96 {
97     return msix_vector_masked(dev, vector, dev->msix_function_masked);
98 }
99 
100 static void msix_fire_vector_notifier(PCIDevice *dev,
101                                       unsigned int vector, bool is_masked)
102 {
103     MSIMessage msg;
104     int ret;
105 
106     if (!dev->msix_vector_use_notifier) {
107         return;
108     }
109     if (is_masked) {
110         dev->msix_vector_release_notifier(dev, vector);
111     } else {
112         msg = msix_get_message(dev, vector);
113         ret = dev->msix_vector_use_notifier(dev, vector, msg);
114         assert(ret >= 0);
115     }
116 }
117 
118 static void msix_handle_mask_update(PCIDevice *dev, int vector, bool was_masked)
119 {
120     bool is_masked = msix_is_masked(dev, vector);
121 
122     if (is_masked == was_masked) {
123         return;
124     }
125 
126     msix_fire_vector_notifier(dev, vector, is_masked);
127 
128     if (!is_masked && msix_is_pending(dev, vector)) {
129         msix_clr_pending(dev, vector);
130         msix_notify(dev, vector);
131     }
132 }
133 
134 static bool msix_masked(PCIDevice *dev)
135 {
136     return dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] & MSIX_MASKALL_MASK;
137 }
138 
139 static void msix_update_function_masked(PCIDevice *dev)
140 {
141     dev->msix_function_masked = !msix_enabled(dev) || msix_masked(dev);
142 }
143 
144 /* Handle MSI-X capability config write. */
145 void msix_write_config(PCIDevice *dev, uint32_t addr,
146                        uint32_t val, int len)
147 {
148     unsigned enable_pos = dev->msix_cap + MSIX_CONTROL_OFFSET;
149     int vector;
150     bool was_masked;
151 
152     if (!msix_present(dev) || !range_covers_byte(addr, len, enable_pos)) {
153         return;
154     }
155 
156     trace_msix_write_config(dev->name, msix_enabled(dev), msix_masked(dev));
157 
158     was_masked = dev->msix_function_masked;
159     msix_update_function_masked(dev);
160 
161     if (!msix_enabled(dev)) {
162         return;
163     }
164 
165     pci_device_deassert_intx(dev);
166 
167     if (dev->msix_function_masked == was_masked) {
168         return;
169     }
170 
171     for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
172         msix_handle_mask_update(dev, vector,
173                                 msix_vector_masked(dev, vector, was_masked));
174     }
175 }
176 
177 static uint64_t msix_table_mmio_read(void *opaque, hwaddr addr,
178                                      unsigned size)
179 {
180     PCIDevice *dev = opaque;
181 
182     return pci_get_long(dev->msix_table + addr);
183 }
184 
185 static void msix_table_mmio_write(void *opaque, hwaddr addr,
186                                   uint64_t val, unsigned size)
187 {
188     PCIDevice *dev = opaque;
189     int vector = addr / PCI_MSIX_ENTRY_SIZE;
190     bool was_masked;
191 
192     was_masked = msix_is_masked(dev, vector);
193     pci_set_long(dev->msix_table + addr, val);
194     msix_handle_mask_update(dev, vector, was_masked);
195 }
196 
197 static const MemoryRegionOps msix_table_mmio_ops = {
198     .read = msix_table_mmio_read,
199     .write = msix_table_mmio_write,
200     .endianness = DEVICE_LITTLE_ENDIAN,
201     .valid = {
202         .min_access_size = 4,
203         .max_access_size = 8,
204     },
205     .impl = {
206         .max_access_size = 4,
207     },
208 };
209 
210 static uint64_t msix_pba_mmio_read(void *opaque, hwaddr addr,
211                                    unsigned size)
212 {
213     PCIDevice *dev = opaque;
214     if (dev->msix_vector_poll_notifier) {
215         unsigned vector_start = addr * 8;
216         unsigned vector_end = MIN(addr + size * 8, dev->msix_entries_nr);
217         dev->msix_vector_poll_notifier(dev, vector_start, vector_end);
218     }
219 
220     return pci_get_long(dev->msix_pba + addr);
221 }
222 
223 static void msix_pba_mmio_write(void *opaque, hwaddr addr,
224                                 uint64_t val, unsigned size)
225 {
226 }
227 
228 static const MemoryRegionOps msix_pba_mmio_ops = {
229     .read = msix_pba_mmio_read,
230     .write = msix_pba_mmio_write,
231     .endianness = DEVICE_LITTLE_ENDIAN,
232     .valid = {
233         .min_access_size = 4,
234         .max_access_size = 8,
235     },
236     .impl = {
237         .max_access_size = 4,
238     },
239 };
240 
241 static void msix_mask_all(struct PCIDevice *dev, unsigned nentries)
242 {
243     int vector;
244 
245     for (vector = 0; vector < nentries; ++vector) {
246         unsigned offset =
247             vector * PCI_MSIX_ENTRY_SIZE + PCI_MSIX_ENTRY_VECTOR_CTRL;
248         bool was_masked = msix_is_masked(dev, vector);
249 
250         dev->msix_table[offset] |= PCI_MSIX_ENTRY_CTRL_MASKBIT;
251         msix_handle_mask_update(dev, vector, was_masked);
252     }
253 }
254 
255 /*
256  * Make PCI device @dev MSI-X capable
257  * @nentries is the max number of MSI-X vectors that the device support.
258  * @table_bar is the MemoryRegion that MSI-X table structure resides.
259  * @table_bar_nr is number of base address register corresponding to @table_bar.
260  * @table_offset indicates the offset that the MSI-X table structure starts with
261  * in @table_bar.
262  * @pba_bar is the MemoryRegion that the Pending Bit Array structure resides.
263  * @pba_bar_nr is number of base address register corresponding to @pba_bar.
264  * @pba_offset indicates the offset that the Pending Bit Array structure
265  * starts with in @pba_bar.
266  * Non-zero @cap_pos puts capability MSI-X at that offset in PCI config space.
267  * @errp is for returning errors.
268  *
269  * Return 0 on success; set @errp and return -errno on error:
270  * -ENOTSUP means lacking msi support for a msi-capable platform.
271  * -EINVAL means capability overlap, happens when @cap_pos is non-zero,
272  * also means a programming error, except device assignment, which can check
273  * if a real HW is broken.
274  */
275 int msix_init(struct PCIDevice *dev, unsigned short nentries,
276               MemoryRegion *table_bar, uint8_t table_bar_nr,
277               unsigned table_offset, MemoryRegion *pba_bar,
278               uint8_t pba_bar_nr, unsigned pba_offset, uint8_t cap_pos,
279               Error **errp)
280 {
281     int cap;
282     unsigned table_size, pba_size;
283     uint8_t *config;
284 
285     /* Nothing to do if MSI is not supported by interrupt controller */
286     if (!msi_nonbroken) {
287         error_setg(errp, "MSI-X is not supported by interrupt controller");
288         return -ENOTSUP;
289     }
290 
291     if (nentries < 1 || nentries > PCI_MSIX_FLAGS_QSIZE + 1) {
292         error_setg(errp, "The number of MSI-X vectors is invalid");
293         return -EINVAL;
294     }
295 
296     table_size = nentries * PCI_MSIX_ENTRY_SIZE;
297     pba_size = QEMU_ALIGN_UP(nentries, 64) / 8;
298 
299     /* Sanity test: table & pba don't overlap, fit within BARs, min aligned */
300     if ((table_bar_nr == pba_bar_nr &&
301          ranges_overlap(table_offset, table_size, pba_offset, pba_size)) ||
302         table_offset + table_size > memory_region_size(table_bar) ||
303         pba_offset + pba_size > memory_region_size(pba_bar) ||
304         (table_offset | pba_offset) & PCI_MSIX_FLAGS_BIRMASK) {
305         error_setg(errp, "table & pba overlap, or they don't fit in BARs,"
306                    " or don't align");
307         return -EINVAL;
308     }
309 
310     cap = pci_add_capability(dev, PCI_CAP_ID_MSIX,
311                               cap_pos, MSIX_CAP_LENGTH, errp);
312     if (cap < 0) {
313         return cap;
314     }
315 
316     dev->msix_cap = cap;
317     dev->cap_present |= QEMU_PCI_CAP_MSIX;
318     config = dev->config + cap;
319 
320     pci_set_word(config + PCI_MSIX_FLAGS, nentries - 1);
321     dev->msix_entries_nr = nentries;
322     dev->msix_function_masked = true;
323 
324     pci_set_long(config + PCI_MSIX_TABLE, table_offset | table_bar_nr);
325     pci_set_long(config + PCI_MSIX_PBA, pba_offset | pba_bar_nr);
326 
327     /* Make flags bit writable. */
328     dev->wmask[cap + MSIX_CONTROL_OFFSET] |= MSIX_ENABLE_MASK |
329                                              MSIX_MASKALL_MASK;
330 
331     dev->msix_table = g_malloc0(table_size);
332     dev->msix_pba = g_malloc0(pba_size);
333     dev->msix_entry_used = g_malloc0(nentries * sizeof *dev->msix_entry_used);
334 
335     msix_mask_all(dev, nentries);
336 
337     memory_region_init_io(&dev->msix_table_mmio, OBJECT(dev), &msix_table_mmio_ops, dev,
338                           "msix-table", table_size);
339     memory_region_add_subregion(table_bar, table_offset, &dev->msix_table_mmio);
340     memory_region_init_io(&dev->msix_pba_mmio, OBJECT(dev), &msix_pba_mmio_ops, dev,
341                           "msix-pba", pba_size);
342     memory_region_add_subregion(pba_bar, pba_offset, &dev->msix_pba_mmio);
343 
344     return 0;
345 }
346 
347 int msix_init_exclusive_bar(PCIDevice *dev, unsigned short nentries,
348                             uint8_t bar_nr, Error **errp)
349 {
350     int ret;
351     char *name;
352     uint32_t bar_size = 4096;
353     uint32_t bar_pba_offset = bar_size / 2;
354     uint32_t bar_pba_size = QEMU_ALIGN_UP(nentries, 64) / 8;
355 
356     /*
357      * Migration compatibility dictates that this remains a 4k
358      * BAR with the vector table in the lower half and PBA in
359      * the upper half for nentries which is lower or equal to 128.
360      * No need to care about using more than 65 entries for legacy
361      * machine types who has at most 64 queues.
362      */
363     if (nentries * PCI_MSIX_ENTRY_SIZE > bar_pba_offset) {
364         bar_pba_offset = nentries * PCI_MSIX_ENTRY_SIZE;
365     }
366 
367     if (bar_pba_offset + bar_pba_size > 4096) {
368         bar_size = bar_pba_offset + bar_pba_size;
369     }
370 
371     bar_size = pow2ceil(bar_size);
372 
373     name = g_strdup_printf("%s-msix", dev->name);
374     memory_region_init(&dev->msix_exclusive_bar, OBJECT(dev), name, bar_size);
375     g_free(name);
376 
377     ret = msix_init(dev, nentries, &dev->msix_exclusive_bar, bar_nr,
378                     0, &dev->msix_exclusive_bar,
379                     bar_nr, bar_pba_offset,
380                     0, errp);
381     if (ret) {
382         return ret;
383     }
384 
385     pci_register_bar(dev, bar_nr, PCI_BASE_ADDRESS_SPACE_MEMORY,
386                      &dev->msix_exclusive_bar);
387 
388     return 0;
389 }
390 
391 static void msix_free_irq_entries(PCIDevice *dev)
392 {
393     int vector;
394 
395     for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
396         dev->msix_entry_used[vector] = 0;
397         msix_clr_pending(dev, vector);
398     }
399 }
400 
401 static void msix_clear_all_vectors(PCIDevice *dev)
402 {
403     int vector;
404 
405     for (vector = 0; vector < dev->msix_entries_nr; ++vector) {
406         msix_clr_pending(dev, vector);
407     }
408 }
409 
410 /* Clean up resources for the device. */
411 void msix_uninit(PCIDevice *dev, MemoryRegion *table_bar, MemoryRegion *pba_bar)
412 {
413     if (!msix_present(dev)) {
414         return;
415     }
416     pci_del_capability(dev, PCI_CAP_ID_MSIX, MSIX_CAP_LENGTH);
417     dev->msix_cap = 0;
418     msix_free_irq_entries(dev);
419     dev->msix_entries_nr = 0;
420     memory_region_del_subregion(pba_bar, &dev->msix_pba_mmio);
421     g_free(dev->msix_pba);
422     dev->msix_pba = NULL;
423     memory_region_del_subregion(table_bar, &dev->msix_table_mmio);
424     g_free(dev->msix_table);
425     dev->msix_table = NULL;
426     g_free(dev->msix_entry_used);
427     dev->msix_entry_used = NULL;
428     dev->cap_present &= ~QEMU_PCI_CAP_MSIX;
429 }
430 
431 void msix_uninit_exclusive_bar(PCIDevice *dev)
432 {
433     if (msix_present(dev)) {
434         msix_uninit(dev, &dev->msix_exclusive_bar, &dev->msix_exclusive_bar);
435     }
436 }
437 
438 void msix_save(PCIDevice *dev, QEMUFile *f)
439 {
440     unsigned n = dev->msix_entries_nr;
441 
442     if (!msix_present(dev)) {
443         return;
444     }
445 
446     qemu_put_buffer(f, dev->msix_table, n * PCI_MSIX_ENTRY_SIZE);
447     qemu_put_buffer(f, dev->msix_pba, DIV_ROUND_UP(n, 8));
448 }
449 
450 /* Should be called after restoring the config space. */
451 void msix_load(PCIDevice *dev, QEMUFile *f)
452 {
453     unsigned n = dev->msix_entries_nr;
454     unsigned int vector;
455 
456     if (!msix_present(dev)) {
457         return;
458     }
459 
460     msix_clear_all_vectors(dev);
461     qemu_get_buffer(f, dev->msix_table, n * PCI_MSIX_ENTRY_SIZE);
462     qemu_get_buffer(f, dev->msix_pba, DIV_ROUND_UP(n, 8));
463     msix_update_function_masked(dev);
464 
465     for (vector = 0; vector < n; vector++) {
466         msix_handle_mask_update(dev, vector, true);
467     }
468 }
469 
470 /* Does device support MSI-X? */
471 int msix_present(PCIDevice *dev)
472 {
473     return dev->cap_present & QEMU_PCI_CAP_MSIX;
474 }
475 
476 /* Is MSI-X enabled? */
477 int msix_enabled(PCIDevice *dev)
478 {
479     return (dev->cap_present & QEMU_PCI_CAP_MSIX) &&
480         (dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
481          MSIX_ENABLE_MASK);
482 }
483 
484 /* Send an MSI-X message */
485 void msix_notify(PCIDevice *dev, unsigned vector)
486 {
487     MSIMessage msg;
488 
489     if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector]) {
490         return;
491     }
492 
493     if (msix_is_masked(dev, vector)) {
494         msix_set_pending(dev, vector);
495         return;
496     }
497 
498     msg = msix_get_message(dev, vector);
499 
500     msi_send_message(dev, msg);
501 }
502 
503 void msix_reset(PCIDevice *dev)
504 {
505     if (!msix_present(dev)) {
506         return;
507     }
508     msix_clear_all_vectors(dev);
509     dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &=
510             ~dev->wmask[dev->msix_cap + MSIX_CONTROL_OFFSET];
511     memset(dev->msix_table, 0, dev->msix_entries_nr * PCI_MSIX_ENTRY_SIZE);
512     memset(dev->msix_pba, 0, QEMU_ALIGN_UP(dev->msix_entries_nr, 64) / 8);
513     msix_mask_all(dev, dev->msix_entries_nr);
514 }
515 
516 /* PCI spec suggests that devices make it possible for software to configure
517  * less vectors than supported by the device, but does not specify a standard
518  * mechanism for devices to do so.
519  *
520  * We support this by asking devices to declare vectors software is going to
521  * actually use, and checking this on the notification path. Devices that
522  * don't want to follow the spec suggestion can declare all vectors as used. */
523 
524 /* Mark vector as used. */
525 int msix_vector_use(PCIDevice *dev, unsigned vector)
526 {
527     if (vector >= dev->msix_entries_nr) {
528         return -EINVAL;
529     }
530 
531     dev->msix_entry_used[vector]++;
532     return 0;
533 }
534 
535 /* Mark vector as unused. */
536 void msix_vector_unuse(PCIDevice *dev, unsigned vector)
537 {
538     if (vector >= dev->msix_entries_nr || !dev->msix_entry_used[vector]) {
539         return;
540     }
541     if (--dev->msix_entry_used[vector]) {
542         return;
543     }
544     msix_clr_pending(dev, vector);
545 }
546 
547 void msix_unuse_all_vectors(PCIDevice *dev)
548 {
549     if (!msix_present(dev)) {
550         return;
551     }
552     msix_free_irq_entries(dev);
553 }
554 
555 unsigned int msix_nr_vectors_allocated(const PCIDevice *dev)
556 {
557     return dev->msix_entries_nr;
558 }
559 
560 static int msix_set_notifier_for_vector(PCIDevice *dev, unsigned int vector)
561 {
562     MSIMessage msg;
563 
564     if (msix_is_masked(dev, vector)) {
565         return 0;
566     }
567     msg = msix_get_message(dev, vector);
568     return dev->msix_vector_use_notifier(dev, vector, msg);
569 }
570 
571 static void msix_unset_notifier_for_vector(PCIDevice *dev, unsigned int vector)
572 {
573     if (msix_is_masked(dev, vector)) {
574         return;
575     }
576     dev->msix_vector_release_notifier(dev, vector);
577 }
578 
579 int msix_set_vector_notifiers(PCIDevice *dev,
580                               MSIVectorUseNotifier use_notifier,
581                               MSIVectorReleaseNotifier release_notifier,
582                               MSIVectorPollNotifier poll_notifier)
583 {
584     int vector, ret;
585 
586     assert(use_notifier && release_notifier);
587 
588     dev->msix_vector_use_notifier = use_notifier;
589     dev->msix_vector_release_notifier = release_notifier;
590     dev->msix_vector_poll_notifier = poll_notifier;
591 
592     if ((dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
593         (MSIX_ENABLE_MASK | MSIX_MASKALL_MASK)) == MSIX_ENABLE_MASK) {
594         for (vector = 0; vector < dev->msix_entries_nr; vector++) {
595             ret = msix_set_notifier_for_vector(dev, vector);
596             if (ret < 0) {
597                 goto undo;
598             }
599         }
600     }
601     if (dev->msix_vector_poll_notifier) {
602         dev->msix_vector_poll_notifier(dev, 0, dev->msix_entries_nr);
603     }
604     return 0;
605 
606 undo:
607     while (--vector >= 0) {
608         msix_unset_notifier_for_vector(dev, vector);
609     }
610     dev->msix_vector_use_notifier = NULL;
611     dev->msix_vector_release_notifier = NULL;
612     return ret;
613 }
614 
615 void msix_unset_vector_notifiers(PCIDevice *dev)
616 {
617     int vector;
618 
619     assert(dev->msix_vector_use_notifier &&
620            dev->msix_vector_release_notifier);
621 
622     if ((dev->config[dev->msix_cap + MSIX_CONTROL_OFFSET] &
623         (MSIX_ENABLE_MASK | MSIX_MASKALL_MASK)) == MSIX_ENABLE_MASK) {
624         for (vector = 0; vector < dev->msix_entries_nr; vector++) {
625             msix_unset_notifier_for_vector(dev, vector);
626         }
627     }
628     dev->msix_vector_use_notifier = NULL;
629     dev->msix_vector_release_notifier = NULL;
630     dev->msix_vector_poll_notifier = NULL;
631 }
632 
633 static int put_msix_state(QEMUFile *f, void *pv, size_t size,
634                           const VMStateField *field, QJSON *vmdesc)
635 {
636     msix_save(pv, f);
637 
638     return 0;
639 }
640 
641 static int get_msix_state(QEMUFile *f, void *pv, size_t size,
642                           const VMStateField *field)
643 {
644     msix_load(pv, f);
645     return 0;
646 }
647 
648 static VMStateInfo vmstate_info_msix = {
649     .name = "msix state",
650     .get  = get_msix_state,
651     .put  = put_msix_state,
652 };
653 
654 const VMStateDescription vmstate_msix = {
655     .name = "msix",
656     .fields = (VMStateField[]) {
657         {
658             .name         = "msix",
659             .version_id   = 0,
660             .field_exists = NULL,
661             .size         = 0,   /* ouch */
662             .info         = &vmstate_info_msix,
663             .flags        = VMS_SINGLE,
664             .offset       = 0,
665         },
666         VMSTATE_END_OF_LIST()
667     }
668 };
669