1 /* 2 * QEMU PowerPC PowerNV (POWER9) PHB4 model 3 * 4 * Copyright (c) 2018-2020, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qapi/visitor.h" 12 #include "qapi/error.h" 13 #include "monitor/monitor.h" 14 #include "target/ppc/cpu.h" 15 #include "hw/pci-host/pnv_phb4_regs.h" 16 #include "hw/pci-host/pnv_phb4.h" 17 #include "hw/pci/pcie_host.h" 18 #include "hw/pci/pcie_port.h" 19 #include "hw/ppc/pnv.h" 20 #include "hw/ppc/pnv_xscom.h" 21 #include "hw/irq.h" 22 #include "hw/qdev-properties.h" 23 #include "qom/object.h" 24 #include "trace.h" 25 26 #define phb_error(phb, fmt, ...) \ 27 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \ 28 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__) 29 30 #define phb_pec_error(pec, fmt, ...) \ 31 qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \ 32 (pec)->chip_id, (pec)->index, ## __VA_ARGS__) 33 34 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb) 35 { 36 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); 37 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3]; 38 uint8_t bus, devfn; 39 40 if (!(addr >> 63)) { 41 return NULL; 42 } 43 bus = (addr >> 52) & 0xff; 44 devfn = (addr >> 44) & 0xff; 45 46 /* We don't access the root complex this way */ 47 if (bus == 0 && devfn == 0) { 48 return NULL; 49 } 50 return pci_find_device(pci->bus, bus, devfn); 51 } 52 53 /* 54 * The CONFIG_DATA register expects little endian accesses, but as the 55 * region is big endian, we have to swap the value. 56 */ 57 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off, 58 unsigned size, uint64_t val) 59 { 60 uint32_t cfg_addr, limit; 61 PCIDevice *pdev; 62 63 pdev = pnv_phb4_find_cfg_dev(phb); 64 if (!pdev) { 65 return; 66 } 67 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; 68 cfg_addr |= off; 69 limit = pci_config_size(pdev); 70 if (limit <= cfg_addr) { 71 /* 72 * conventional pci device can be behind pcie-to-pci bridge. 73 * 256 <= addr < 4K has no effects. 74 */ 75 return; 76 } 77 switch (size) { 78 case 1: 79 break; 80 case 2: 81 val = bswap16(val); 82 break; 83 case 4: 84 val = bswap32(val); 85 break; 86 default: 87 g_assert_not_reached(); 88 } 89 pci_host_config_write_common(pdev, cfg_addr, limit, val, size); 90 } 91 92 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off, 93 unsigned size) 94 { 95 uint32_t cfg_addr, limit; 96 PCIDevice *pdev; 97 uint64_t val; 98 99 pdev = pnv_phb4_find_cfg_dev(phb); 100 if (!pdev) { 101 return ~0ull; 102 } 103 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; 104 cfg_addr |= off; 105 limit = pci_config_size(pdev); 106 if (limit <= cfg_addr) { 107 /* 108 * conventional pci device can be behind pcie-to-pci bridge. 109 * 256 <= addr < 4K has no effects. 110 */ 111 return ~0ull; 112 } 113 val = pci_host_config_read_common(pdev, cfg_addr, limit, size); 114 switch (size) { 115 case 1: 116 return val; 117 case 2: 118 return bswap16(val); 119 case 4: 120 return bswap32(val); 121 default: 122 g_assert_not_reached(); 123 } 124 } 125 126 /* 127 * Root complex register accesses are memory mapped. 128 */ 129 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off, 130 unsigned size, uint64_t val) 131 { 132 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); 133 PCIDevice *pdev; 134 135 if (size != 4) { 136 phb_error(phb, "rc_config_write invalid size %d\n", size); 137 return; 138 } 139 140 pdev = pci_find_device(pci->bus, 0, 0); 141 if (!pdev) { 142 phb_error(phb, "rc_config_write device not found\n"); 143 return; 144 } 145 146 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE, 147 bswap32(val), 4); 148 } 149 150 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off, 151 unsigned size) 152 { 153 PCIHostState *pci = PCI_HOST_BRIDGE(phb->phb_base); 154 PCIDevice *pdev; 155 uint64_t val; 156 157 if (size != 4) { 158 phb_error(phb, "rc_config_read invalid size %d\n", size); 159 return ~0ull; 160 } 161 162 pdev = pci_find_device(pci->bus, 0, 0); 163 if (!pdev) { 164 phb_error(phb, "rc_config_read device not found\n"); 165 return ~0ull; 166 } 167 168 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4); 169 return bswap32(val); 170 } 171 172 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index) 173 { 174 uint64_t base, start, size, mbe0, mbe1; 175 MemoryRegion *parent; 176 char name[64]; 177 178 /* Unmap first */ 179 if (memory_region_is_mapped(&phb->mr_mmio[index])) { 180 /* Should we destroy it in RCU friendly way... ? */ 181 memory_region_del_subregion(phb->mr_mmio[index].container, 182 &phb->mr_mmio[index]); 183 } 184 185 /* Get table entry */ 186 mbe0 = phb->ioda_MBT[(index << 1)]; 187 mbe1 = phb->ioda_MBT[(index << 1) + 1]; 188 189 if (!(mbe0 & IODA3_MBT0_ENABLE)) { 190 return; 191 } 192 193 /* Grab geometry from registers */ 194 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12; 195 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12; 196 size |= 0xff00000000000000ull; 197 size = ~size + 1; 198 199 /* Calculate PCI side start address based on M32/M64 window type */ 200 if (mbe0 & IODA3_MBT0_TYPE_M32) { 201 start = phb->regs[PHB_M32_START_ADDR >> 3]; 202 if ((start + size) > 0x100000000ull) { 203 phb_error(phb, "M32 set beyond 4GB boundary !"); 204 size = 0x100000000 - start; 205 } 206 } else { 207 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]); 208 } 209 210 /* TODO: Figure out how to implemet/decode AOMASK */ 211 212 /* Check if it matches an enabled MMIO region in the PEC stack */ 213 if (memory_region_is_mapped(&phb->mmbar0) && 214 base >= phb->mmio0_base && 215 (base + size) <= (phb->mmio0_base + phb->mmio0_size)) { 216 parent = &phb->mmbar0; 217 base -= phb->mmio0_base; 218 } else if (memory_region_is_mapped(&phb->mmbar1) && 219 base >= phb->mmio1_base && 220 (base + size) <= (phb->mmio1_base + phb->mmio1_size)) { 221 parent = &phb->mmbar1; 222 base -= phb->mmio1_base; 223 } else { 224 phb_error(phb, "PHB MBAR %d out of parent bounds", index); 225 return; 226 } 227 228 /* Create alias (better name ?) */ 229 snprintf(name, sizeof(name), "phb4-mbar%d", index); 230 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name, 231 &phb->pci_mmio, start, size); 232 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]); 233 } 234 235 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb) 236 { 237 uint64_t i; 238 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS : 239 PNV_PHB4_MIN_MMIO_WINDOWS; 240 241 for (i = 0; i < num_windows; i++) { 242 pnv_phb4_check_mbt(phb, i); 243 } 244 } 245 246 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb, 247 unsigned *out_table, unsigned *out_idx) 248 { 249 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; 250 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg); 251 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg); 252 unsigned int mask; 253 uint64_t *tptr = NULL; 254 255 switch (table) { 256 case IODA3_TBL_LIST: 257 tptr = phb->ioda_LIST; 258 mask = 7; 259 break; 260 case IODA3_TBL_MIST: 261 tptr = phb->ioda_MIST; 262 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1); 263 mask -= 1; 264 break; 265 case IODA3_TBL_RCAM: 266 mask = phb->big_phb ? 127 : 63; 267 break; 268 case IODA3_TBL_MRT: 269 mask = phb->big_phb ? 15 : 7; 270 break; 271 case IODA3_TBL_PESTA: 272 case IODA3_TBL_PESTB: 273 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 274 mask -= 1; 275 break; 276 case IODA3_TBL_TVT: 277 tptr = phb->ioda_TVT; 278 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1); 279 mask -= 1; 280 break; 281 case IODA3_TBL_TCR: 282 case IODA3_TBL_TDR: 283 mask = phb->big_phb ? 1023 : 511; 284 break; 285 case IODA3_TBL_MBT: 286 tptr = phb->ioda_MBT; 287 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1); 288 mask -= 1; 289 break; 290 case IODA3_TBL_MDT: 291 tptr = phb->ioda_MDT; 292 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 293 mask -= 1; 294 break; 295 case IODA3_TBL_PEEV: 296 tptr = phb->ioda_PEEV; 297 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1); 298 mask -= 1; 299 break; 300 default: 301 phb_error(phb, "invalid IODA table %d", table); 302 return NULL; 303 } 304 index &= mask; 305 if (out_idx) { 306 *out_idx = index; 307 } 308 if (out_table) { 309 *out_table = table; 310 } 311 if (tptr) { 312 tptr += index; 313 } 314 if (adreg & PHB_IODA_AD_AUTOINC) { 315 index = (index + 1) & mask; 316 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index); 317 } 318 319 phb->regs[PHB_IODA_ADDR >> 3] = adreg; 320 return tptr; 321 } 322 323 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb) 324 { 325 unsigned table, idx; 326 uint64_t *tptr; 327 328 tptr = pnv_phb4_ioda_access(phb, &table, &idx); 329 if (!tptr) { 330 /* Special PESTA case */ 331 if (table == IODA3_TBL_PESTA) { 332 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63; 333 } else if (table == IODA3_TBL_PESTB) { 334 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62; 335 } 336 /* Return 0 on unsupported tables, not ff's */ 337 return 0; 338 } 339 return *tptr; 340 } 341 342 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val) 343 { 344 unsigned table, idx; 345 uint64_t *tptr; 346 347 tptr = pnv_phb4_ioda_access(phb, &table, &idx); 348 if (!tptr) { 349 /* Special PESTA case */ 350 if (table == IODA3_TBL_PESTA) { 351 phb->ioda_PEST_AB[idx] &= ~1; 352 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1; 353 } else if (table == IODA3_TBL_PESTB) { 354 phb->ioda_PEST_AB[idx] &= ~2; 355 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2; 356 } 357 return; 358 } 359 360 /* Handle side effects */ 361 switch (table) { 362 case IODA3_TBL_LIST: 363 break; 364 case IODA3_TBL_MIST: { 365 /* Special mask for MIST partial write */ 366 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; 367 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg); 368 uint64_t v = *tptr; 369 if (mmask == 0) { 370 mmask = 0xf; 371 } 372 if (mmask & 8) { 373 v &= 0x0000ffffffffffffull; 374 v |= 0xcfff000000000000ull & val; 375 } 376 if (mmask & 4) { 377 v &= 0xffff0000ffffffffull; 378 v |= 0x0000cfff00000000ull & val; 379 } 380 if (mmask & 2) { 381 v &= 0xffffffff0000ffffull; 382 v |= 0x00000000cfff0000ull & val; 383 } 384 if (mmask & 1) { 385 v &= 0xffffffffffff0000ull; 386 v |= 0x000000000000cfffull & val; 387 } 388 *tptr = v; 389 break; 390 } 391 case IODA3_TBL_MBT: 392 *tptr = val; 393 394 /* Copy accross the valid bit to the other half */ 395 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull; 396 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val; 397 398 /* Update mappings */ 399 pnv_phb4_check_mbt(phb, idx >> 1); 400 break; 401 default: 402 *tptr = val; 403 } 404 } 405 406 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val) 407 { 408 PnvPhb4DMASpace *ds; 409 410 /* Always invalidate all for now ... */ 411 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 412 ds->pe_num = PHB_INVALID_PE; 413 } 414 } 415 416 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds) 417 { 418 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; 419 420 if (cfg & PHB_PHB4C_32BIT_MSI_EN) { 421 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { 422 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 423 0xffff0000, &ds->msi32_mr); 424 } 425 } else { 426 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { 427 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), 428 &ds->msi32_mr); 429 } 430 } 431 432 if (cfg & PHB_PHB4C_64BIT_MSI_EN) { 433 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { 434 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 435 (1ull << 60), &ds->msi64_mr); 436 } 437 } else { 438 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { 439 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), 440 &ds->msi64_mr); 441 } 442 } 443 } 444 445 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb) 446 { 447 PnvPhb4DMASpace *ds; 448 449 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 450 pnv_phb4_update_msi_regions(ds); 451 } 452 } 453 454 static void pnv_phb4_update_xsrc(PnvPHB4 *phb) 455 { 456 int shift, flags, i, lsi_base; 457 XiveSource *xsrc = &phb->xsrc; 458 459 /* The XIVE source characteristics can be set at run time */ 460 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) { 461 shift = XIVE_ESB_64K; 462 } else { 463 shift = XIVE_ESB_4K; 464 } 465 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) { 466 flags = XIVE_SRC_STORE_EOI; 467 } else { 468 flags = 0; 469 } 470 471 /* 472 * When the PQ disable configuration bit is set, the check on the 473 * PQ state bits is disabled on the PHB side (for MSI only) and it 474 * is performed on the IC side instead. 475 */ 476 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) { 477 flags |= XIVE_SRC_PQ_DISABLE; 478 } 479 480 phb->xsrc.esb_shift = shift; 481 phb->xsrc.esb_flags = flags; 482 483 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); 484 lsi_base <<= 3; 485 486 /* TODO: handle reset values of PHB_LSI_SRC_ID */ 487 if (!lsi_base) { 488 return; 489 } 490 491 /* TODO: need a xive_source_irq_reset_lsi() */ 492 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs); 493 494 for (i = 0; i < xsrc->nr_irqs; i++) { 495 bool msi = (i < lsi_base || i >= (lsi_base + 8)); 496 if (!msi) { 497 xive_source_irq_set_lsi(xsrc, i); 498 } 499 } 500 } 501 502 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val, 503 unsigned size) 504 { 505 PnvPHB4 *phb = PNV_PHB4(opaque); 506 bool changed; 507 508 /* Special case outbound configuration data */ 509 if ((off & 0xfffc) == PHB_CONFIG_DATA) { 510 pnv_phb4_config_write(phb, off & 0x3, size, val); 511 return; 512 } 513 514 /* Special case RC configuration space */ 515 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { 516 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val); 517 return; 518 } 519 520 /* Other registers are 64-bit only */ 521 if (size != 8 || off & 0x7) { 522 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", 523 off, size); 524 return; 525 } 526 527 /* Handle masking */ 528 switch (off) { 529 case PHB_LSI_SOURCE_ID: 530 val &= PHB_LSI_SRC_ID; 531 break; 532 case PHB_M64_UPPER_BITS: 533 val &= 0xff00000000000000ull; 534 break; 535 /* TCE Kill */ 536 case PHB_TCE_KILL: 537 /* Clear top 3 bits which HW does to indicate successful queuing */ 538 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE); 539 break; 540 case PHB_Q_DMA_R: 541 /* 542 * This is enough logic to make SW happy but we aren't 543 * actually quiescing the DMAs 544 */ 545 if (val & PHB_Q_DMA_R_AUTORESET) { 546 val = 0; 547 } else { 548 val &= PHB_Q_DMA_R_QUIESCE_DMA; 549 } 550 break; 551 /* LEM stuff */ 552 case PHB_LEM_FIR_AND_MASK: 553 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val; 554 return; 555 case PHB_LEM_FIR_OR_MASK: 556 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val; 557 return; 558 case PHB_LEM_ERROR_AND_MASK: 559 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val; 560 return; 561 case PHB_LEM_ERROR_OR_MASK: 562 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val; 563 return; 564 case PHB_LEM_WOF: 565 val = 0; 566 break; 567 /* TODO: More regs ..., maybe create a table with masks... */ 568 569 /* Read only registers */ 570 case PHB_CPU_LOADSTORE_STATUS: 571 case PHB_ETU_ERR_SUMMARY: 572 case PHB_PHB4_GEN_CAP: 573 case PHB_PHB4_TCE_CAP: 574 case PHB_PHB4_IRQ_CAP: 575 case PHB_PHB4_EEH_CAP: 576 return; 577 } 578 579 /* Record whether it changed */ 580 changed = phb->regs[off >> 3] != val; 581 582 /* Store in register cache first */ 583 phb->regs[off >> 3] = val; 584 585 /* Handle side effects */ 586 switch (off) { 587 case PHB_PHB4_CONFIG: 588 if (changed) { 589 pnv_phb4_update_all_msi_regions(phb); 590 } 591 break; 592 case PHB_M32_START_ADDR: 593 case PHB_M64_UPPER_BITS: 594 if (changed) { 595 pnv_phb4_check_all_mbt(phb); 596 } 597 break; 598 599 /* IODA table accesses */ 600 case PHB_IODA_DATA0: 601 pnv_phb4_ioda_write(phb, val); 602 break; 603 604 /* RTC invalidation */ 605 case PHB_RTC_INVALIDATE: 606 pnv_phb4_rtc_invalidate(phb, val); 607 break; 608 609 /* PHB Control (Affects XIVE source) */ 610 case PHB_CTRLR: 611 case PHB_LSI_SOURCE_ID: 612 pnv_phb4_update_xsrc(phb); 613 break; 614 615 /* Silent simple writes */ 616 case PHB_ASN_CMPM: 617 case PHB_CONFIG_ADDRESS: 618 case PHB_IODA_ADDR: 619 case PHB_TCE_KILL: 620 case PHB_TCE_SPEC_CTL: 621 case PHB_PEST_BAR: 622 case PHB_PELTV_BAR: 623 case PHB_RTT_BAR: 624 case PHB_LEM_FIR_ACCUM: 625 case PHB_LEM_ERROR_MASK: 626 case PHB_LEM_ACTION0: 627 case PHB_LEM_ACTION1: 628 case PHB_TCE_TAG_ENABLE: 629 case PHB_INT_NOTIFY_ADDR: 630 case PHB_INT_NOTIFY_INDEX: 631 case PHB_DMARD_SYNC: 632 break; 633 634 /* Noise on anything else */ 635 default: 636 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n", 637 off, val); 638 } 639 } 640 641 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size) 642 { 643 PnvPHB4 *phb = PNV_PHB4(opaque); 644 uint64_t val; 645 646 if ((off & 0xfffc) == PHB_CONFIG_DATA) { 647 return pnv_phb4_config_read(phb, off & 0x3, size); 648 } 649 650 /* Special case RC configuration space */ 651 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { 652 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size); 653 } 654 655 /* Other registers are 64-bit only */ 656 if (size != 8 || off & 0x7) { 657 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", 658 off, size); 659 return ~0ull; 660 } 661 662 /* Default read from cache */ 663 val = phb->regs[off >> 3]; 664 665 switch (off) { 666 case PHB_VERSION: 667 return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version; 668 669 /* Read-only */ 670 case PHB_PHB4_GEN_CAP: 671 return 0xe4b8000000000000ull; 672 case PHB_PHB4_TCE_CAP: 673 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull; 674 case PHB_PHB4_IRQ_CAP: 675 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull; 676 case PHB_PHB4_EEH_CAP: 677 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull; 678 679 /* IODA table accesses */ 680 case PHB_IODA_DATA0: 681 return pnv_phb4_ioda_read(phb); 682 683 /* Link training always appears trained */ 684 case PHB_PCIE_DLP_TRAIN_CTL: 685 /* TODO: Do something sensible with speed ? */ 686 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT; 687 688 /* DMA read sync: make it look like it's complete */ 689 case PHB_DMARD_SYNC: 690 return PHB_DMARD_SYNC_COMPLETE; 691 692 /* Silent simple reads */ 693 case PHB_LSI_SOURCE_ID: 694 case PHB_CPU_LOADSTORE_STATUS: 695 case PHB_ASN_CMPM: 696 case PHB_PHB4_CONFIG: 697 case PHB_M32_START_ADDR: 698 case PHB_CONFIG_ADDRESS: 699 case PHB_IODA_ADDR: 700 case PHB_RTC_INVALIDATE: 701 case PHB_TCE_KILL: 702 case PHB_TCE_SPEC_CTL: 703 case PHB_PEST_BAR: 704 case PHB_PELTV_BAR: 705 case PHB_RTT_BAR: 706 case PHB_M64_UPPER_BITS: 707 case PHB_CTRLR: 708 case PHB_LEM_FIR_ACCUM: 709 case PHB_LEM_ERROR_MASK: 710 case PHB_LEM_ACTION0: 711 case PHB_LEM_ACTION1: 712 case PHB_TCE_TAG_ENABLE: 713 case PHB_INT_NOTIFY_ADDR: 714 case PHB_INT_NOTIFY_INDEX: 715 case PHB_Q_DMA_R: 716 case PHB_ETU_ERR_SUMMARY: 717 break; 718 719 /* Noise on anything else */ 720 default: 721 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n", 722 off, val); 723 } 724 return val; 725 } 726 727 static const MemoryRegionOps pnv_phb4_reg_ops = { 728 .read = pnv_phb4_reg_read, 729 .write = pnv_phb4_reg_write, 730 .valid.min_access_size = 1, 731 .valid.max_access_size = 8, 732 .impl.min_access_size = 1, 733 .impl.max_access_size = 8, 734 .endianness = DEVICE_BIG_ENDIAN, 735 }; 736 737 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size) 738 { 739 PnvPHB4 *phb = PNV_PHB4(opaque); 740 uint32_t reg = addr >> 3; 741 uint64_t val; 742 hwaddr offset; 743 744 switch (reg) { 745 case PHB_SCOM_HV_IND_ADDR: 746 return phb->scom_hv_ind_addr_reg; 747 748 case PHB_SCOM_HV_IND_DATA: 749 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { 750 phb_error(phb, "Invalid indirect address"); 751 return ~0ull; 752 } 753 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; 754 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); 755 val = pnv_phb4_reg_read(phb, offset, size); 756 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { 757 offset += size; 758 offset &= 0x3fff; 759 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, 760 phb->scom_hv_ind_addr_reg, 761 offset); 762 } 763 return val; 764 case PHB_SCOM_ETU_LEM_FIR: 765 case PHB_SCOM_ETU_LEM_FIR_AND: 766 case PHB_SCOM_ETU_LEM_FIR_OR: 767 case PHB_SCOM_ETU_LEM_FIR_MSK: 768 case PHB_SCOM_ETU_LEM_ERR_MSK_AND: 769 case PHB_SCOM_ETU_LEM_ERR_MSK_OR: 770 case PHB_SCOM_ETU_LEM_ACT0: 771 case PHB_SCOM_ETU_LEM_ACT1: 772 case PHB_SCOM_ETU_LEM_WOF: 773 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; 774 return pnv_phb4_reg_read(phb, offset, size); 775 case PHB_SCOM_ETU_PMON_CONFIG: 776 case PHB_SCOM_ETU_PMON_CTR0: 777 case PHB_SCOM_ETU_PMON_CTR1: 778 case PHB_SCOM_ETU_PMON_CTR2: 779 case PHB_SCOM_ETU_PMON_CTR3: 780 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; 781 return pnv_phb4_reg_read(phb, offset, size); 782 783 default: 784 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr); 785 return ~0ull; 786 } 787 } 788 789 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr, 790 uint64_t val, unsigned size) 791 { 792 PnvPHB4 *phb = PNV_PHB4(opaque); 793 uint32_t reg = addr >> 3; 794 hwaddr offset; 795 796 switch (reg) { 797 case PHB_SCOM_HV_IND_ADDR: 798 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff; 799 break; 800 case PHB_SCOM_HV_IND_DATA: 801 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { 802 phb_error(phb, "Invalid indirect address"); 803 break; 804 } 805 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; 806 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); 807 pnv_phb4_reg_write(phb, offset, val, size); 808 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { 809 offset += size; 810 offset &= 0x3fff; 811 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, 812 phb->scom_hv_ind_addr_reg, 813 offset); 814 } 815 break; 816 case PHB_SCOM_ETU_LEM_FIR: 817 case PHB_SCOM_ETU_LEM_FIR_AND: 818 case PHB_SCOM_ETU_LEM_FIR_OR: 819 case PHB_SCOM_ETU_LEM_FIR_MSK: 820 case PHB_SCOM_ETU_LEM_ERR_MSK_AND: 821 case PHB_SCOM_ETU_LEM_ERR_MSK_OR: 822 case PHB_SCOM_ETU_LEM_ACT0: 823 case PHB_SCOM_ETU_LEM_ACT1: 824 case PHB_SCOM_ETU_LEM_WOF: 825 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; 826 pnv_phb4_reg_write(phb, offset, val, size); 827 break; 828 case PHB_SCOM_ETU_PMON_CONFIG: 829 case PHB_SCOM_ETU_PMON_CTR0: 830 case PHB_SCOM_ETU_PMON_CTR1: 831 case PHB_SCOM_ETU_PMON_CTR2: 832 case PHB_SCOM_ETU_PMON_CTR3: 833 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; 834 pnv_phb4_reg_write(phb, offset, val, size); 835 break; 836 default: 837 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx 838 "=%"PRIx64"\n", addr, val); 839 } 840 } 841 842 const MemoryRegionOps pnv_phb4_xscom_ops = { 843 .read = pnv_phb4_xscom_read, 844 .write = pnv_phb4_xscom_write, 845 .valid.min_access_size = 8, 846 .valid.max_access_size = 8, 847 .impl.min_access_size = 8, 848 .impl.max_access_size = 8, 849 .endianness = DEVICE_BIG_ENDIAN, 850 }; 851 852 static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr, 853 unsigned size) 854 { 855 PnvPHB4 *phb = PNV_PHB4(opaque); 856 uint32_t reg = addr >> 3; 857 858 /* TODO: add list of allowed registers and error out if not */ 859 return phb->nest_regs[reg]; 860 } 861 862 /* 863 * Return the 'stack_no' of a PHB4. 'stack_no' is the order 864 * the PHB4 occupies in the PEC. This is the reverse of what 865 * pnv_phb4_pec_get_phb_id() does. 866 * 867 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will 868 * be the second phb (stack_no = 1) of the PEC. 869 */ 870 static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb) 871 { 872 PnvPhb4PecState *pec = phb->pec; 873 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 874 int index = pec->index; 875 int stack_no = phb->phb_id; 876 877 while (index--) { 878 stack_no -= pecc->num_phbs[index]; 879 } 880 881 return stack_no; 882 } 883 884 static void pnv_phb4_update_regions(PnvPHB4 *phb) 885 { 886 /* Unmap first always */ 887 if (memory_region_is_mapped(&phb->mr_regs)) { 888 memory_region_del_subregion(&phb->phbbar, &phb->mr_regs); 889 } 890 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) { 891 memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio); 892 } 893 894 /* Map registers if enabled */ 895 if (memory_region_is_mapped(&phb->phbbar)) { 896 memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs); 897 } 898 899 /* Map ESB if enabled */ 900 if (memory_region_is_mapped(&phb->intbar)) { 901 memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio); 902 } 903 904 /* Check/update m32 */ 905 pnv_phb4_check_all_mbt(phb); 906 } 907 908 static void pnv_pec_phb_update_map(PnvPHB4 *phb) 909 { 910 PnvPhb4PecState *pec = phb->pec; 911 MemoryRegion *sysmem = get_system_memory(); 912 uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN]; 913 int stack_no = pnv_phb4_get_phb_stack_no(phb); 914 uint64_t bar, mask, size; 915 char name[64]; 916 917 /* 918 * NOTE: This will really not work well if those are remapped 919 * after the PHB has created its sub regions. We could do better 920 * if we had a way to resize regions but we don't really care 921 * that much in practice as the stuff below really only happens 922 * once early during boot 923 */ 924 925 /* Handle unmaps */ 926 if (memory_region_is_mapped(&phb->mmbar0) && 927 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { 928 memory_region_del_subregion(sysmem, &phb->mmbar0); 929 } 930 if (memory_region_is_mapped(&phb->mmbar1) && 931 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { 932 memory_region_del_subregion(sysmem, &phb->mmbar1); 933 } 934 if (memory_region_is_mapped(&phb->phbbar) && 935 !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) { 936 memory_region_del_subregion(sysmem, &phb->phbbar); 937 } 938 if (memory_region_is_mapped(&phb->intbar) && 939 !(bar_en & PEC_NEST_STK_BAR_EN_INT)) { 940 memory_region_del_subregion(sysmem, &phb->intbar); 941 } 942 943 /* Update PHB */ 944 pnv_phb4_update_regions(phb); 945 946 /* Handle maps */ 947 if (!memory_region_is_mapped(&phb->mmbar0) && 948 (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { 949 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8; 950 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK]; 951 size = ((~mask) >> 8) + 1; 952 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0", 953 pec->chip_id, pec->index, stack_no); 954 memory_region_init(&phb->mmbar0, OBJECT(phb), name, size); 955 memory_region_add_subregion(sysmem, bar, &phb->mmbar0); 956 phb->mmio0_base = bar; 957 phb->mmio0_size = size; 958 } 959 if (!memory_region_is_mapped(&phb->mmbar1) && 960 (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { 961 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8; 962 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK]; 963 size = ((~mask) >> 8) + 1; 964 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1", 965 pec->chip_id, pec->index, stack_no); 966 memory_region_init(&phb->mmbar1, OBJECT(phb), name, size); 967 memory_region_add_subregion(sysmem, bar, &phb->mmbar1); 968 phb->mmio1_base = bar; 969 phb->mmio1_size = size; 970 } 971 if (!memory_region_is_mapped(&phb->phbbar) && 972 (bar_en & PEC_NEST_STK_BAR_EN_PHB)) { 973 bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8; 974 size = PNV_PHB4_NUM_REGS << 3; 975 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d", 976 pec->chip_id, pec->index, stack_no); 977 memory_region_init(&phb->phbbar, OBJECT(phb), name, size); 978 memory_region_add_subregion(sysmem, bar, &phb->phbbar); 979 } 980 if (!memory_region_is_mapped(&phb->intbar) && 981 (bar_en & PEC_NEST_STK_BAR_EN_INT)) { 982 bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8; 983 size = PNV_PHB4_MAX_INTs << 16; 984 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int", 985 phb->pec->chip_id, phb->pec->index, stack_no); 986 memory_region_init(&phb->intbar, OBJECT(phb), name, size); 987 memory_region_add_subregion(sysmem, bar, &phb->intbar); 988 } 989 990 /* Update PHB */ 991 pnv_phb4_update_regions(phb); 992 } 993 994 static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr, 995 uint64_t val, unsigned size) 996 { 997 PnvPHB4 *phb = PNV_PHB4(opaque); 998 PnvPhb4PecState *pec = phb->pec; 999 uint32_t reg = addr >> 3; 1000 1001 switch (reg) { 1002 case PEC_NEST_STK_PCI_NEST_FIR: 1003 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val; 1004 break; 1005 case PEC_NEST_STK_PCI_NEST_FIR_CLR: 1006 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val; 1007 break; 1008 case PEC_NEST_STK_PCI_NEST_FIR_SET: 1009 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val; 1010 break; 1011 case PEC_NEST_STK_PCI_NEST_FIR_MSK: 1012 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val; 1013 break; 1014 case PEC_NEST_STK_PCI_NEST_FIR_MSKC: 1015 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val; 1016 break; 1017 case PEC_NEST_STK_PCI_NEST_FIR_MSKS: 1018 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val; 1019 break; 1020 case PEC_NEST_STK_PCI_NEST_FIR_ACT0: 1021 case PEC_NEST_STK_PCI_NEST_FIR_ACT1: 1022 phb->nest_regs[reg] = val; 1023 break; 1024 case PEC_NEST_STK_PCI_NEST_FIR_WOF: 1025 phb->nest_regs[reg] = 0; 1026 break; 1027 case PEC_NEST_STK_ERR_REPORT_0: 1028 case PEC_NEST_STK_ERR_REPORT_1: 1029 case PEC_NEST_STK_PBCQ_GNRL_STATUS: 1030 /* Flag error ? */ 1031 break; 1032 case PEC_NEST_STK_PBCQ_MODE: 1033 phb->nest_regs[reg] = val & 0xff00000000000000ull; 1034 break; 1035 case PEC_NEST_STK_MMIO_BAR0: 1036 case PEC_NEST_STK_MMIO_BAR0_MASK: 1037 case PEC_NEST_STK_MMIO_BAR1: 1038 case PEC_NEST_STK_MMIO_BAR1_MASK: 1039 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & 1040 (PEC_NEST_STK_BAR_EN_MMIO0 | 1041 PEC_NEST_STK_BAR_EN_MMIO1)) { 1042 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1043 } 1044 phb->nest_regs[reg] = val & 0xffffffffff000000ull; 1045 break; 1046 case PEC_NEST_STK_PHB_REGS_BAR: 1047 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) { 1048 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1049 } 1050 phb->nest_regs[reg] = val & 0xffffffffffc00000ull; 1051 break; 1052 case PEC_NEST_STK_INT_BAR: 1053 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) { 1054 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1055 } 1056 phb->nest_regs[reg] = val & 0xfffffff000000000ull; 1057 break; 1058 case PEC_NEST_STK_BAR_EN: 1059 phb->nest_regs[reg] = val & 0xf000000000000000ull; 1060 pnv_pec_phb_update_map(phb); 1061 break; 1062 case PEC_NEST_STK_DATA_FRZ_TYPE: 1063 case PEC_NEST_STK_PBCQ_TUN_BAR: 1064 /* Not used for now */ 1065 phb->nest_regs[reg] = val; 1066 break; 1067 default: 1068 qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx 1069 "=%"PRIx64"\n", addr, val); 1070 } 1071 } 1072 1073 static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = { 1074 .read = pnv_pec_stk_nest_xscom_read, 1075 .write = pnv_pec_stk_nest_xscom_write, 1076 .valid.min_access_size = 8, 1077 .valid.max_access_size = 8, 1078 .impl.min_access_size = 8, 1079 .impl.max_access_size = 8, 1080 .endianness = DEVICE_BIG_ENDIAN, 1081 }; 1082 1083 static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr, 1084 unsigned size) 1085 { 1086 PnvPHB4 *phb = PNV_PHB4(opaque); 1087 uint32_t reg = addr >> 3; 1088 1089 /* TODO: add list of allowed registers and error out if not */ 1090 return phb->pci_regs[reg]; 1091 } 1092 1093 static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr, 1094 uint64_t val, unsigned size) 1095 { 1096 PnvPHB4 *phb = PNV_PHB4(opaque); 1097 uint32_t reg = addr >> 3; 1098 1099 switch (reg) { 1100 case PEC_PCI_STK_PCI_FIR: 1101 phb->pci_regs[reg] = val; 1102 break; 1103 case PEC_PCI_STK_PCI_FIR_CLR: 1104 phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val; 1105 break; 1106 case PEC_PCI_STK_PCI_FIR_SET: 1107 phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val; 1108 break; 1109 case PEC_PCI_STK_PCI_FIR_MSK: 1110 phb->pci_regs[reg] = val; 1111 break; 1112 case PEC_PCI_STK_PCI_FIR_MSKC: 1113 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val; 1114 break; 1115 case PEC_PCI_STK_PCI_FIR_MSKS: 1116 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val; 1117 break; 1118 case PEC_PCI_STK_PCI_FIR_ACT0: 1119 case PEC_PCI_STK_PCI_FIR_ACT1: 1120 phb->pci_regs[reg] = val; 1121 break; 1122 case PEC_PCI_STK_PCI_FIR_WOF: 1123 phb->pci_regs[reg] = 0; 1124 break; 1125 case PEC_PCI_STK_ETU_RESET: 1126 phb->pci_regs[reg] = val & 0x8000000000000000ull; 1127 /* TODO: Implement reset */ 1128 break; 1129 case PEC_PCI_STK_PBAIB_ERR_REPORT: 1130 break; 1131 case PEC_PCI_STK_PBAIB_TX_CMD_CRED: 1132 case PEC_PCI_STK_PBAIB_TX_DAT_CRED: 1133 phb->pci_regs[reg] = val; 1134 break; 1135 default: 1136 qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx 1137 "=%"PRIx64"\n", addr, val); 1138 } 1139 } 1140 1141 static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = { 1142 .read = pnv_pec_stk_pci_xscom_read, 1143 .write = pnv_pec_stk_pci_xscom_write, 1144 .valid.min_access_size = 8, 1145 .valid.max_access_size = 8, 1146 .impl.min_access_size = 8, 1147 .impl.max_access_size = 8, 1148 .endianness = DEVICE_BIG_ENDIAN, 1149 }; 1150 1151 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num) 1152 { 1153 /* Check that out properly ... */ 1154 return irq_num & 3; 1155 } 1156 1157 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level) 1158 { 1159 PnvPHB4 *phb = PNV_PHB4(opaque); 1160 uint32_t lsi_base; 1161 1162 /* LSI only ... */ 1163 if (irq_num > 3) { 1164 phb_error(phb, "IRQ %x is not an LSI", irq_num); 1165 } 1166 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); 1167 lsi_base <<= 3; 1168 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level); 1169 } 1170 1171 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds) 1172 { 1173 uint64_t rtt, addr; 1174 uint16_t rte; 1175 int bus_num; 1176 int num_PEs; 1177 1178 /* Already resolved ? */ 1179 if (ds->pe_num != PHB_INVALID_PE) { 1180 return true; 1181 } 1182 1183 /* We need to lookup the RTT */ 1184 rtt = ds->phb->regs[PHB_RTT_BAR >> 3]; 1185 if (!(rtt & PHB_RTT_BAR_ENABLE)) { 1186 phb_error(ds->phb, "DMA with RTT BAR disabled !"); 1187 /* Set error bits ? fence ? ... */ 1188 return false; 1189 } 1190 1191 /* Read RTE */ 1192 bus_num = pci_bus_num(ds->bus); 1193 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK; 1194 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn); 1195 if (dma_memory_read(&address_space_memory, addr, &rte, 1196 sizeof(rte), MEMTXATTRS_UNSPECIFIED)) { 1197 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr); 1198 /* Set error bits ? fence ? ... */ 1199 return false; 1200 } 1201 rte = be16_to_cpu(rte); 1202 1203 /* Fail upon reading of invalid PE# */ 1204 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 1205 if (rte >= num_PEs) { 1206 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte); 1207 rte &= num_PEs - 1; 1208 } 1209 ds->pe_num = rte; 1210 return true; 1211 } 1212 1213 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr, 1214 bool is_write, uint64_t tve, 1215 IOMMUTLBEntry *tlb) 1216 { 1217 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve); 1218 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve); 1219 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve); 1220 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve); 1221 1222 /* Invalid levels */ 1223 if (lev > 4) { 1224 phb_error(ds->phb, "Invalid #levels in TVE %d", lev); 1225 return; 1226 } 1227 1228 /* Invalid entry */ 1229 if (tts == 0) { 1230 phb_error(ds->phb, "Access to invalid TVE"); 1231 return; 1232 } 1233 1234 /* IO Page Size of 0 means untranslated, else use TCEs */ 1235 if (tps == 0) { 1236 /* TODO: Handle boundaries */ 1237 1238 /* Use 4k pages like q35 ... for now */ 1239 tlb->iova = addr & 0xfffffffffffff000ull; 1240 tlb->translated_addr = addr & 0x0003fffffffff000ull; 1241 tlb->addr_mask = 0xfffull; 1242 tlb->perm = IOMMU_RW; 1243 } else { 1244 uint32_t tce_shift, tbl_shift, sh; 1245 uint64_t base, taddr, tce, tce_mask; 1246 1247 /* Address bits per bottom level TCE entry */ 1248 tce_shift = tps + 11; 1249 1250 /* Address bits per table level */ 1251 tbl_shift = tts + 8; 1252 1253 /* Top level table base address */ 1254 base = tta << 12; 1255 1256 /* Total shift to first level */ 1257 sh = tbl_shift * lev + tce_shift; 1258 1259 /* TODO: Limit to support IO page sizes */ 1260 1261 /* TODO: Multi-level untested */ 1262 do { 1263 lev--; 1264 1265 /* Grab the TCE address */ 1266 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3); 1267 if (dma_memory_read(&address_space_memory, taddr, &tce, 1268 sizeof(tce), MEMTXATTRS_UNSPECIFIED)) { 1269 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr); 1270 return; 1271 } 1272 tce = be64_to_cpu(tce); 1273 1274 /* Check permission for indirect TCE */ 1275 if ((lev >= 0) && !(tce & 3)) { 1276 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr); 1277 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, 1278 is_write ? 'W' : 'R', tve); 1279 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", 1280 tta, lev, tts, tps); 1281 return; 1282 } 1283 sh -= tbl_shift; 1284 base = tce & ~0xfffull; 1285 } while (lev >= 0); 1286 1287 /* We exit the loop with TCE being the final TCE */ 1288 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) { 1289 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr); 1290 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, 1291 is_write ? 'W' : 'R', tve); 1292 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", 1293 tta, lev, tts, tps); 1294 return; 1295 } 1296 tce_mask = ~((1ull << tce_shift) - 1); 1297 tlb->iova = addr & tce_mask; 1298 tlb->translated_addr = tce & tce_mask; 1299 tlb->addr_mask = ~tce_mask; 1300 tlb->perm = tce & 3; 1301 } 1302 } 1303 1304 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu, 1305 hwaddr addr, 1306 IOMMUAccessFlags flag, 1307 int iommu_idx) 1308 { 1309 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr); 1310 int tve_sel; 1311 uint64_t tve, cfg; 1312 IOMMUTLBEntry ret = { 1313 .target_as = &address_space_memory, 1314 .iova = addr, 1315 .translated_addr = 0, 1316 .addr_mask = ~(hwaddr)0, 1317 .perm = IOMMU_NONE, 1318 }; 1319 1320 /* Resolve PE# */ 1321 if (!pnv_phb4_resolve_pe(ds)) { 1322 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", 1323 ds->bus, pci_bus_num(ds->bus), ds->devfn); 1324 return ret; 1325 } 1326 1327 /* Check top bits */ 1328 switch (addr >> 60) { 1329 case 00: 1330 /* DMA or 32-bit MSI ? */ 1331 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; 1332 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) && 1333 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) { 1334 phb_error(ds->phb, "xlate on 32-bit MSI region"); 1335 return ret; 1336 } 1337 /* Choose TVE XXX Use PHB4 Control Register */ 1338 tve_sel = (addr >> 59) & 1; 1339 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel]; 1340 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret); 1341 break; 1342 case 01: 1343 phb_error(ds->phb, "xlate on 64-bit MSI region"); 1344 break; 1345 default: 1346 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr); 1347 } 1348 return ret; 1349 } 1350 1351 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region" 1352 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION, 1353 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION) 1354 1355 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass, 1356 void *data) 1357 { 1358 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 1359 1360 imrc->translate = pnv_phb4_translate_iommu; 1361 } 1362 1363 static const TypeInfo pnv_phb4_iommu_memory_region_info = { 1364 .parent = TYPE_IOMMU_MEMORY_REGION, 1365 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, 1366 .class_init = pnv_phb4_iommu_memory_region_class_init, 1367 }; 1368 1369 /* 1370 * Return the index/phb-id of a PHB4 that belongs to a 1371 * pec->stacks[stack_index] stack. 1372 */ 1373 int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index) 1374 { 1375 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1376 int index = pec->index; 1377 int offset = 0; 1378 1379 while (index--) { 1380 offset += pecc->num_phbs[index]; 1381 } 1382 1383 return offset + stack_index; 1384 } 1385 1386 /* 1387 * MSI/MSIX memory region implementation. 1388 * The handler handles both MSI and MSIX. 1389 */ 1390 static void pnv_phb4_msi_write(void *opaque, hwaddr addr, 1391 uint64_t data, unsigned size) 1392 { 1393 PnvPhb4DMASpace *ds = opaque; 1394 PnvPHB4 *phb = ds->phb; 1395 1396 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f); 1397 1398 /* Resolve PE# */ 1399 if (!pnv_phb4_resolve_pe(ds)) { 1400 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", 1401 ds->bus, pci_bus_num(ds->bus), ds->devfn); 1402 return; 1403 } 1404 1405 /* TODO: Check it doesn't collide with LSIs */ 1406 if (src >= phb->xsrc.nr_irqs) { 1407 phb_error(phb, "MSI %d out of bounds", src); 1408 return; 1409 } 1410 1411 /* TODO: check PE/MSI assignement */ 1412 1413 qemu_irq_pulse(phb->qirqs[src]); 1414 } 1415 1416 /* There is no .read as the read result is undefined by PCI spec */ 1417 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size) 1418 { 1419 PnvPhb4DMASpace *ds = opaque; 1420 1421 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr); 1422 return -1; 1423 } 1424 1425 static const MemoryRegionOps pnv_phb4_msi_ops = { 1426 .read = pnv_phb4_msi_read, 1427 .write = pnv_phb4_msi_write, 1428 .endianness = DEVICE_LITTLE_ENDIAN 1429 }; 1430 1431 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn) 1432 { 1433 PnvPhb4DMASpace *ds; 1434 1435 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 1436 if (ds->bus == bus && ds->devfn == devfn) { 1437 break; 1438 } 1439 } 1440 return ds; 1441 } 1442 1443 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn) 1444 { 1445 PnvPHB4 *phb = opaque; 1446 PnvPhb4DMASpace *ds; 1447 char name[32]; 1448 1449 ds = pnv_phb4_dma_find(phb, bus, devfn); 1450 1451 if (ds == NULL) { 1452 ds = g_new0(PnvPhb4DMASpace, 1); 1453 ds->bus = bus; 1454 ds->devfn = devfn; 1455 ds->pe_num = PHB_INVALID_PE; 1456 ds->phb = phb; 1457 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id, 1458 phb->phb_id); 1459 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr), 1460 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, 1461 OBJECT(phb), name, UINT64_MAX); 1462 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr), 1463 name); 1464 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops, 1465 ds, "msi32", 0x10000); 1466 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops, 1467 ds, "msi64", 0x100000); 1468 pnv_phb4_update_msi_regions(ds); 1469 1470 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list); 1471 } 1472 return &ds->dma_as; 1473 } 1474 1475 static void pnv_phb4_xscom_realize(PnvPHB4 *phb) 1476 { 1477 PnvPhb4PecState *pec = phb->pec; 1478 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1479 int stack_no = pnv_phb4_get_phb_stack_no(phb); 1480 uint32_t pec_nest_base; 1481 uint32_t pec_pci_base; 1482 char name[64]; 1483 1484 assert(pec); 1485 1486 /* Initialize the XSCOM regions for the stack registers */ 1487 snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d", 1488 pec->chip_id, pec->index, stack_no); 1489 pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb), 1490 &pnv_pec_stk_nest_xscom_ops, phb, name, 1491 PHB4_PEC_NEST_STK_REGS_COUNT); 1492 1493 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", 1494 pec->chip_id, pec->index, stack_no); 1495 pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb), 1496 &pnv_pec_stk_pci_xscom_ops, phb, name, 1497 PHB4_PEC_PCI_STK_REGS_COUNT); 1498 1499 /* PHB pass-through */ 1500 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", 1501 pec->chip_id, pec->index, stack_no); 1502 pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb), 1503 &pnv_phb4_xscom_ops, phb, name, 0x40); 1504 1505 pec_nest_base = pecc->xscom_nest_base(pec); 1506 pec_pci_base = pecc->xscom_pci_base(pec); 1507 1508 /* Populate the XSCOM address space. */ 1509 pnv_xscom_add_subregion(pec->chip, 1510 pec_nest_base + 0x40 * (stack_no + 1), 1511 &phb->nest_regs_mr); 1512 pnv_xscom_add_subregion(pec->chip, 1513 pec_pci_base + 0x40 * (stack_no + 1), 1514 &phb->pci_regs_mr); 1515 pnv_xscom_add_subregion(pec->chip, 1516 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 + 1517 0x40 * stack_no, 1518 &phb->phb_regs_mr); 1519 } 1520 1521 static void pnv_phb4_instance_init(Object *obj) 1522 { 1523 PnvPHB4 *phb = PNV_PHB4(obj); 1524 1525 QLIST_INIT(&phb->dma_spaces); 1526 1527 /* XIVE interrupt source object */ 1528 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE); 1529 } 1530 1531 void pnv_phb4_bus_init(DeviceState *dev, PnvPHB4 *phb) 1532 { 1533 PCIHostState *pci = PCI_HOST_BRIDGE(dev); 1534 char name[32]; 1535 1536 /* 1537 * PHB4 doesn't support IO space. However, qemu gets very upset if 1538 * we don't have an IO region to anchor IO BARs onto so we just 1539 * initialize one which we never hook up to anything 1540 */ 1541 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id, 1542 phb->phb_id); 1543 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000); 1544 1545 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id, 1546 phb->phb_id); 1547 memory_region_init(&phb->pci_mmio, OBJECT(phb), name, 1548 PCI_MMIO_TOTAL_SIZE); 1549 1550 pci->bus = pci_register_root_bus(dev, dev->id ? dev->id : NULL, 1551 pnv_phb4_set_irq, pnv_phb4_map_irq, phb, 1552 &phb->pci_mmio, &phb->pci_io, 1553 0, 4, TYPE_PNV_PHB4_ROOT_BUS); 1554 1555 object_property_set_int(OBJECT(pci->bus), "phb-id", phb->phb_id, 1556 &error_abort); 1557 object_property_set_int(OBJECT(pci->bus), "chip-id", phb->chip_id, 1558 &error_abort); 1559 1560 pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb); 1561 pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 1562 } 1563 1564 static void pnv_phb4_realize(DeviceState *dev, Error **errp) 1565 { 1566 PnvPHB4 *phb = PNV_PHB4(dev); 1567 XiveSource *xsrc = &phb->xsrc; 1568 int nr_irqs; 1569 char name[32]; 1570 1571 /* Set the "big_phb" flag */ 1572 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3; 1573 1574 /* Controller Registers */ 1575 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id, 1576 phb->phb_id); 1577 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb, 1578 name, 0x2000); 1579 1580 /* Setup XIVE Source */ 1581 if (phb->big_phb) { 1582 nr_irqs = PNV_PHB4_MAX_INTs; 1583 } else { 1584 nr_irqs = PNV_PHB4_MAX_INTs >> 1; 1585 } 1586 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal); 1587 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal); 1588 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { 1589 return; 1590 } 1591 1592 pnv_phb4_update_xsrc(phb); 1593 1594 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs); 1595 1596 pnv_phb4_xscom_realize(phb); 1597 } 1598 1599 /* 1600 * Address base trigger mode (POWER10) 1601 * 1602 * Trigger directly the IC ESB page 1603 */ 1604 static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno, 1605 bool pq_checked) 1606 { 1607 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; 1608 uint64_t data = 0; /* trigger data : don't care */ 1609 hwaddr addr; 1610 MemTxResult result; 1611 int esb_shift; 1612 1613 if (notif_port & PHB_INT_NOTIFY_ADDR_64K) { 1614 esb_shift = 16; 1615 } else { 1616 esb_shift = 12; 1617 } 1618 1619 /* Compute the address of the IC ESB management page */ 1620 addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K); 1621 addr |= (1ull << (esb_shift + 1)) * srcno; 1622 addr |= (1ull << esb_shift); 1623 1624 /* 1625 * When the PQ state bits are checked on the PHB, the associated 1626 * PQ state bits on the IC should be ignored. Use the unconditional 1627 * trigger offset to inject a trigger on the IC. This is always 1628 * the case for LSIs 1629 */ 1630 if (pq_checked) { 1631 addr |= XIVE_ESB_INJECT; 1632 } 1633 1634 trace_pnv_phb4_xive_notify_ic(addr, data); 1635 1636 address_space_stq_be(&address_space_memory, addr, data, 1637 MEMTXATTRS_UNSPECIFIED, &result); 1638 if (result != MEMTX_OK) { 1639 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr); 1640 return; 1641 } 1642 } 1643 1644 static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno, 1645 bool pq_checked) 1646 { 1647 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; 1648 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; 1649 uint64_t data = offset | srcno; 1650 MemTxResult result; 1651 1652 if (pq_checked) { 1653 data |= XIVE_TRIGGER_PQ; 1654 } 1655 1656 trace_pnv_phb4_xive_notify_ic(notif_port, data); 1657 1658 address_space_stq_be(&address_space_memory, notif_port, data, 1659 MEMTXATTRS_UNSPECIFIED, &result); 1660 if (result != MEMTX_OK) { 1661 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port); 1662 return; 1663 } 1664 } 1665 1666 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno, 1667 bool pq_checked) 1668 { 1669 PnvPHB4 *phb = PNV_PHB4(xf); 1670 1671 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) { 1672 pnv_phb4_xive_notify_abt(phb, srcno, pq_checked); 1673 } else { 1674 pnv_phb4_xive_notify_ic(phb, srcno, pq_checked); 1675 } 1676 } 1677 1678 static Property pnv_phb4_properties[] = { 1679 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0), 1680 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0), 1681 DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC, 1682 PnvPhb4PecState *), 1683 DEFINE_PROP_LINK("phb-base", PnvPHB4, phb_base, TYPE_PNV_PHB, PnvPHB *), 1684 DEFINE_PROP_END_OF_LIST(), 1685 }; 1686 1687 static void pnv_phb4_class_init(ObjectClass *klass, void *data) 1688 { 1689 DeviceClass *dc = DEVICE_CLASS(klass); 1690 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass); 1691 1692 dc->realize = pnv_phb4_realize; 1693 device_class_set_props(dc, pnv_phb4_properties); 1694 dc->user_creatable = false; 1695 1696 xfc->notify = pnv_phb4_xive_notify; 1697 } 1698 1699 static const TypeInfo pnv_phb4_type_info = { 1700 .name = TYPE_PNV_PHB4, 1701 .parent = TYPE_DEVICE, 1702 .instance_init = pnv_phb4_instance_init, 1703 .instance_size = sizeof(PnvPHB4), 1704 .class_init = pnv_phb4_class_init, 1705 .interfaces = (InterfaceInfo[]) { 1706 { TYPE_XIVE_NOTIFIER }, 1707 { }, 1708 } 1709 }; 1710 1711 static const TypeInfo pnv_phb5_type_info = { 1712 .name = TYPE_PNV_PHB5, 1713 .parent = TYPE_PNV_PHB4, 1714 .instance_size = sizeof(PnvPHB4), 1715 }; 1716 1717 static void pnv_phb4_root_bus_get_prop(Object *obj, Visitor *v, 1718 const char *name, 1719 void *opaque, Error **errp) 1720 { 1721 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj); 1722 uint64_t value = 0; 1723 1724 if (strcmp(name, "phb-id") == 0) { 1725 value = bus->phb_id; 1726 } else { 1727 value = bus->chip_id; 1728 } 1729 1730 visit_type_size(v, name, &value, errp); 1731 } 1732 1733 static void pnv_phb4_root_bus_set_prop(Object *obj, Visitor *v, 1734 const char *name, 1735 void *opaque, Error **errp) 1736 1737 { 1738 PnvPHB4RootBus *bus = PNV_PHB4_ROOT_BUS(obj); 1739 uint64_t value; 1740 1741 if (!visit_type_size(v, name, &value, errp)) { 1742 return; 1743 } 1744 1745 if (strcmp(name, "phb-id") == 0) { 1746 bus->phb_id = value; 1747 } else { 1748 bus->chip_id = value; 1749 } 1750 } 1751 1752 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data) 1753 { 1754 BusClass *k = BUS_CLASS(klass); 1755 1756 object_class_property_add(klass, "phb-id", "int", 1757 pnv_phb4_root_bus_get_prop, 1758 pnv_phb4_root_bus_set_prop, 1759 NULL, NULL); 1760 1761 object_class_property_add(klass, "chip-id", "int", 1762 pnv_phb4_root_bus_get_prop, 1763 pnv_phb4_root_bus_set_prop, 1764 NULL, NULL); 1765 1766 /* 1767 * PHB4 has only a single root complex. Enforce the limit on the 1768 * parent bus 1769 */ 1770 k->max_dev = 1; 1771 } 1772 1773 static const TypeInfo pnv_phb4_root_bus_info = { 1774 .name = TYPE_PNV_PHB4_ROOT_BUS, 1775 .parent = TYPE_PCIE_BUS, 1776 .class_init = pnv_phb4_root_bus_class_init, 1777 }; 1778 1779 static void pnv_phb4_register_types(void) 1780 { 1781 type_register_static(&pnv_phb4_root_bus_info); 1782 type_register_static(&pnv_phb4_type_info); 1783 type_register_static(&pnv_phb5_type_info); 1784 type_register_static(&pnv_phb4_iommu_memory_region_info); 1785 } 1786 1787 type_init(pnv_phb4_register_types); 1788 1789 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon) 1790 { 1791 uint64_t notif_port = 1792 phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K; 1793 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; 1794 bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE); 1795 1796 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n", 1797 phb->chip_id, phb->phb_id, 1798 offset, offset + phb->xsrc.nr_irqs - 1, 1799 abt ? "ABT" : "", 1800 notif_port); 1801 xive_source_pic_print_info(&phb->xsrc, 0, mon); 1802 } 1803