1 /* 2 * QEMU PowerPC PowerNV (POWER9) PHB4 model 3 * 4 * Copyright (c) 2018-2020, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qapi/visitor.h" 12 #include "qapi/error.h" 13 #include "qemu-common.h" 14 #include "monitor/monitor.h" 15 #include "target/ppc/cpu.h" 16 #include "hw/pci-host/pnv_phb4_regs.h" 17 #include "hw/pci-host/pnv_phb4.h" 18 #include "hw/pci/pcie_host.h" 19 #include "hw/pci/pcie_port.h" 20 #include "hw/ppc/pnv.h" 21 #include "hw/ppc/pnv_xscom.h" 22 #include "hw/irq.h" 23 #include "hw/qdev-properties.h" 24 #include "qom/object.h" 25 #include "trace.h" 26 27 #define phb_error(phb, fmt, ...) \ 28 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \ 29 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__) 30 31 #define phb_pec_error(pec, fmt, ...) \ 32 qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \ 33 (pec)->chip_id, (pec)->index, ## __VA_ARGS__) 34 35 /* 36 * QEMU version of the GETFIELD/SETFIELD macros 37 * 38 * These are common with the PnvXive model. 39 */ 40 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word) 41 { 42 return (word & mask) >> ctz64(mask); 43 } 44 45 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word, 46 uint64_t value) 47 { 48 return (word & ~mask) | ((value << ctz64(mask)) & mask); 49 } 50 51 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb) 52 { 53 PCIHostState *pci = PCI_HOST_BRIDGE(phb); 54 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3]; 55 uint8_t bus, devfn; 56 57 if (!(addr >> 63)) { 58 return NULL; 59 } 60 bus = (addr >> 52) & 0xff; 61 devfn = (addr >> 44) & 0xff; 62 63 /* We don't access the root complex this way */ 64 if (bus == 0 && devfn == 0) { 65 return NULL; 66 } 67 return pci_find_device(pci->bus, bus, devfn); 68 } 69 70 /* 71 * The CONFIG_DATA register expects little endian accesses, but as the 72 * region is big endian, we have to swap the value. 73 */ 74 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off, 75 unsigned size, uint64_t val) 76 { 77 uint32_t cfg_addr, limit; 78 PCIDevice *pdev; 79 80 pdev = pnv_phb4_find_cfg_dev(phb); 81 if (!pdev) { 82 return; 83 } 84 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; 85 cfg_addr |= off; 86 limit = pci_config_size(pdev); 87 if (limit <= cfg_addr) { 88 /* 89 * conventional pci device can be behind pcie-to-pci bridge. 90 * 256 <= addr < 4K has no effects. 91 */ 92 return; 93 } 94 switch (size) { 95 case 1: 96 break; 97 case 2: 98 val = bswap16(val); 99 break; 100 case 4: 101 val = bswap32(val); 102 break; 103 default: 104 g_assert_not_reached(); 105 } 106 pci_host_config_write_common(pdev, cfg_addr, limit, val, size); 107 } 108 109 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off, 110 unsigned size) 111 { 112 uint32_t cfg_addr, limit; 113 PCIDevice *pdev; 114 uint64_t val; 115 116 pdev = pnv_phb4_find_cfg_dev(phb); 117 if (!pdev) { 118 return ~0ull; 119 } 120 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; 121 cfg_addr |= off; 122 limit = pci_config_size(pdev); 123 if (limit <= cfg_addr) { 124 /* 125 * conventional pci device can be behind pcie-to-pci bridge. 126 * 256 <= addr < 4K has no effects. 127 */ 128 return ~0ull; 129 } 130 val = pci_host_config_read_common(pdev, cfg_addr, limit, size); 131 switch (size) { 132 case 1: 133 return val; 134 case 2: 135 return bswap16(val); 136 case 4: 137 return bswap32(val); 138 default: 139 g_assert_not_reached(); 140 } 141 } 142 143 /* 144 * Root complex register accesses are memory mapped. 145 */ 146 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off, 147 unsigned size, uint64_t val) 148 { 149 PCIHostState *pci = PCI_HOST_BRIDGE(phb); 150 PCIDevice *pdev; 151 152 if (size != 4) { 153 phb_error(phb, "rc_config_write invalid size %d\n", size); 154 return; 155 } 156 157 pdev = pci_find_device(pci->bus, 0, 0); 158 if (!pdev) { 159 phb_error(phb, "rc_config_write device not found\n"); 160 return; 161 } 162 163 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE, 164 bswap32(val), 4); 165 } 166 167 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off, 168 unsigned size) 169 { 170 PCIHostState *pci = PCI_HOST_BRIDGE(phb); 171 PCIDevice *pdev; 172 uint64_t val; 173 174 if (size != 4) { 175 phb_error(phb, "rc_config_read invalid size %d\n", size); 176 return ~0ull; 177 } 178 179 pdev = pci_find_device(pci->bus, 0, 0); 180 if (!pdev) { 181 phb_error(phb, "rc_config_read device not found\n"); 182 return ~0ull; 183 } 184 185 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4); 186 return bswap32(val); 187 } 188 189 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index) 190 { 191 uint64_t base, start, size, mbe0, mbe1; 192 MemoryRegion *parent; 193 char name[64]; 194 195 /* Unmap first */ 196 if (memory_region_is_mapped(&phb->mr_mmio[index])) { 197 /* Should we destroy it in RCU friendly way... ? */ 198 memory_region_del_subregion(phb->mr_mmio[index].container, 199 &phb->mr_mmio[index]); 200 } 201 202 /* Get table entry */ 203 mbe0 = phb->ioda_MBT[(index << 1)]; 204 mbe1 = phb->ioda_MBT[(index << 1) + 1]; 205 206 if (!(mbe0 & IODA3_MBT0_ENABLE)) { 207 return; 208 } 209 210 /* Grab geometry from registers */ 211 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12; 212 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12; 213 size |= 0xff00000000000000ull; 214 size = ~size + 1; 215 216 /* Calculate PCI side start address based on M32/M64 window type */ 217 if (mbe0 & IODA3_MBT0_TYPE_M32) { 218 start = phb->regs[PHB_M32_START_ADDR >> 3]; 219 if ((start + size) > 0x100000000ull) { 220 phb_error(phb, "M32 set beyond 4GB boundary !"); 221 size = 0x100000000 - start; 222 } 223 } else { 224 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]); 225 } 226 227 /* TODO: Figure out how to implemet/decode AOMASK */ 228 229 /* Check if it matches an enabled MMIO region in the PEC stack */ 230 if (memory_region_is_mapped(&phb->mmbar0) && 231 base >= phb->mmio0_base && 232 (base + size) <= (phb->mmio0_base + phb->mmio0_size)) { 233 parent = &phb->mmbar0; 234 base -= phb->mmio0_base; 235 } else if (memory_region_is_mapped(&phb->mmbar1) && 236 base >= phb->mmio1_base && 237 (base + size) <= (phb->mmio1_base + phb->mmio1_size)) { 238 parent = &phb->mmbar1; 239 base -= phb->mmio1_base; 240 } else { 241 phb_error(phb, "PHB MBAR %d out of parent bounds", index); 242 return; 243 } 244 245 /* Create alias (better name ?) */ 246 snprintf(name, sizeof(name), "phb4-mbar%d", index); 247 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name, 248 &phb->pci_mmio, start, size); 249 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]); 250 } 251 252 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb) 253 { 254 uint64_t i; 255 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS : 256 PNV_PHB4_MIN_MMIO_WINDOWS; 257 258 for (i = 0; i < num_windows; i++) { 259 pnv_phb4_check_mbt(phb, i); 260 } 261 } 262 263 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb, 264 unsigned *out_table, unsigned *out_idx) 265 { 266 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; 267 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg); 268 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg); 269 unsigned int mask; 270 uint64_t *tptr = NULL; 271 272 switch (table) { 273 case IODA3_TBL_LIST: 274 tptr = phb->ioda_LIST; 275 mask = 7; 276 break; 277 case IODA3_TBL_MIST: 278 tptr = phb->ioda_MIST; 279 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1); 280 mask -= 1; 281 break; 282 case IODA3_TBL_RCAM: 283 mask = phb->big_phb ? 127 : 63; 284 break; 285 case IODA3_TBL_MRT: 286 mask = phb->big_phb ? 15 : 7; 287 break; 288 case IODA3_TBL_PESTA: 289 case IODA3_TBL_PESTB: 290 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 291 mask -= 1; 292 break; 293 case IODA3_TBL_TVT: 294 tptr = phb->ioda_TVT; 295 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1); 296 mask -= 1; 297 break; 298 case IODA3_TBL_TCR: 299 case IODA3_TBL_TDR: 300 mask = phb->big_phb ? 1023 : 511; 301 break; 302 case IODA3_TBL_MBT: 303 tptr = phb->ioda_MBT; 304 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1); 305 mask -= 1; 306 break; 307 case IODA3_TBL_MDT: 308 tptr = phb->ioda_MDT; 309 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 310 mask -= 1; 311 break; 312 case IODA3_TBL_PEEV: 313 tptr = phb->ioda_PEEV; 314 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1); 315 mask -= 1; 316 break; 317 default: 318 phb_error(phb, "invalid IODA table %d", table); 319 return NULL; 320 } 321 index &= mask; 322 if (out_idx) { 323 *out_idx = index; 324 } 325 if (out_table) { 326 *out_table = table; 327 } 328 if (tptr) { 329 tptr += index; 330 } 331 if (adreg & PHB_IODA_AD_AUTOINC) { 332 index = (index + 1) & mask; 333 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index); 334 } 335 336 phb->regs[PHB_IODA_ADDR >> 3] = adreg; 337 return tptr; 338 } 339 340 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb) 341 { 342 unsigned table, idx; 343 uint64_t *tptr; 344 345 tptr = pnv_phb4_ioda_access(phb, &table, &idx); 346 if (!tptr) { 347 /* Special PESTA case */ 348 if (table == IODA3_TBL_PESTA) { 349 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63; 350 } else if (table == IODA3_TBL_PESTB) { 351 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62; 352 } 353 /* Return 0 on unsupported tables, not ff's */ 354 return 0; 355 } 356 return *tptr; 357 } 358 359 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val) 360 { 361 unsigned table, idx; 362 uint64_t *tptr; 363 364 tptr = pnv_phb4_ioda_access(phb, &table, &idx); 365 if (!tptr) { 366 /* Special PESTA case */ 367 if (table == IODA3_TBL_PESTA) { 368 phb->ioda_PEST_AB[idx] &= ~1; 369 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1; 370 } else if (table == IODA3_TBL_PESTB) { 371 phb->ioda_PEST_AB[idx] &= ~2; 372 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2; 373 } 374 return; 375 } 376 377 /* Handle side effects */ 378 switch (table) { 379 case IODA3_TBL_LIST: 380 break; 381 case IODA3_TBL_MIST: { 382 /* Special mask for MIST partial write */ 383 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; 384 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg); 385 uint64_t v = *tptr; 386 if (mmask == 0) { 387 mmask = 0xf; 388 } 389 if (mmask & 8) { 390 v &= 0x0000ffffffffffffull; 391 v |= 0xcfff000000000000ull & val; 392 } 393 if (mmask & 4) { 394 v &= 0xffff0000ffffffffull; 395 v |= 0x0000cfff00000000ull & val; 396 } 397 if (mmask & 2) { 398 v &= 0xffffffff0000ffffull; 399 v |= 0x00000000cfff0000ull & val; 400 } 401 if (mmask & 1) { 402 v &= 0xffffffffffff0000ull; 403 v |= 0x000000000000cfffull & val; 404 } 405 *tptr = v; 406 break; 407 } 408 case IODA3_TBL_MBT: 409 *tptr = val; 410 411 /* Copy accross the valid bit to the other half */ 412 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull; 413 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val; 414 415 /* Update mappings */ 416 pnv_phb4_check_mbt(phb, idx >> 1); 417 break; 418 default: 419 *tptr = val; 420 } 421 } 422 423 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val) 424 { 425 PnvPhb4DMASpace *ds; 426 427 /* Always invalidate all for now ... */ 428 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 429 ds->pe_num = PHB_INVALID_PE; 430 } 431 } 432 433 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds) 434 { 435 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; 436 437 if (cfg & PHB_PHB4C_32BIT_MSI_EN) { 438 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { 439 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 440 0xffff0000, &ds->msi32_mr); 441 } 442 } else { 443 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { 444 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), 445 &ds->msi32_mr); 446 } 447 } 448 449 if (cfg & PHB_PHB4C_64BIT_MSI_EN) { 450 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { 451 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 452 (1ull << 60), &ds->msi64_mr); 453 } 454 } else { 455 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { 456 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), 457 &ds->msi64_mr); 458 } 459 } 460 } 461 462 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb) 463 { 464 PnvPhb4DMASpace *ds; 465 466 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 467 pnv_phb4_update_msi_regions(ds); 468 } 469 } 470 471 static void pnv_phb4_update_xsrc(PnvPHB4 *phb) 472 { 473 int shift, flags, i, lsi_base; 474 XiveSource *xsrc = &phb->xsrc; 475 476 /* The XIVE source characteristics can be set at run time */ 477 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) { 478 shift = XIVE_ESB_64K; 479 } else { 480 shift = XIVE_ESB_4K; 481 } 482 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) { 483 flags = XIVE_SRC_STORE_EOI; 484 } else { 485 flags = 0; 486 } 487 488 phb->xsrc.esb_shift = shift; 489 phb->xsrc.esb_flags = flags; 490 491 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); 492 lsi_base <<= 3; 493 494 /* TODO: handle reset values of PHB_LSI_SRC_ID */ 495 if (!lsi_base) { 496 return; 497 } 498 499 /* TODO: need a xive_source_irq_reset_lsi() */ 500 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs); 501 502 for (i = 0; i < xsrc->nr_irqs; i++) { 503 bool msi = (i < lsi_base || i >= (lsi_base + 8)); 504 if (!msi) { 505 xive_source_irq_set_lsi(xsrc, i); 506 } 507 } 508 } 509 510 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val, 511 unsigned size) 512 { 513 PnvPHB4 *phb = PNV_PHB4(opaque); 514 bool changed; 515 516 /* Special case outbound configuration data */ 517 if ((off & 0xfffc) == PHB_CONFIG_DATA) { 518 pnv_phb4_config_write(phb, off & 0x3, size, val); 519 return; 520 } 521 522 /* Special case RC configuration space */ 523 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { 524 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val); 525 return; 526 } 527 528 /* Other registers are 64-bit only */ 529 if (size != 8 || off & 0x7) { 530 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", 531 off, size); 532 return; 533 } 534 535 /* Handle masking */ 536 switch (off) { 537 case PHB_LSI_SOURCE_ID: 538 val &= PHB_LSI_SRC_ID; 539 break; 540 case PHB_M64_UPPER_BITS: 541 val &= 0xff00000000000000ull; 542 break; 543 /* TCE Kill */ 544 case PHB_TCE_KILL: 545 /* Clear top 3 bits which HW does to indicate successful queuing */ 546 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE); 547 break; 548 case PHB_Q_DMA_R: 549 /* 550 * This is enough logic to make SW happy but we aren't 551 * actually quiescing the DMAs 552 */ 553 if (val & PHB_Q_DMA_R_AUTORESET) { 554 val = 0; 555 } else { 556 val &= PHB_Q_DMA_R_QUIESCE_DMA; 557 } 558 break; 559 /* LEM stuff */ 560 case PHB_LEM_FIR_AND_MASK: 561 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val; 562 return; 563 case PHB_LEM_FIR_OR_MASK: 564 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val; 565 return; 566 case PHB_LEM_ERROR_AND_MASK: 567 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val; 568 return; 569 case PHB_LEM_ERROR_OR_MASK: 570 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val; 571 return; 572 case PHB_LEM_WOF: 573 val = 0; 574 break; 575 /* TODO: More regs ..., maybe create a table with masks... */ 576 577 /* Read only registers */ 578 case PHB_CPU_LOADSTORE_STATUS: 579 case PHB_ETU_ERR_SUMMARY: 580 case PHB_PHB4_GEN_CAP: 581 case PHB_PHB4_TCE_CAP: 582 case PHB_PHB4_IRQ_CAP: 583 case PHB_PHB4_EEH_CAP: 584 return; 585 } 586 587 /* Record whether it changed */ 588 changed = phb->regs[off >> 3] != val; 589 590 /* Store in register cache first */ 591 phb->regs[off >> 3] = val; 592 593 /* Handle side effects */ 594 switch (off) { 595 case PHB_PHB4_CONFIG: 596 if (changed) { 597 pnv_phb4_update_all_msi_regions(phb); 598 } 599 break; 600 case PHB_M32_START_ADDR: 601 case PHB_M64_UPPER_BITS: 602 if (changed) { 603 pnv_phb4_check_all_mbt(phb); 604 } 605 break; 606 607 /* IODA table accesses */ 608 case PHB_IODA_DATA0: 609 pnv_phb4_ioda_write(phb, val); 610 break; 611 612 /* RTC invalidation */ 613 case PHB_RTC_INVALIDATE: 614 pnv_phb4_rtc_invalidate(phb, val); 615 break; 616 617 /* PHB Control (Affects XIVE source) */ 618 case PHB_CTRLR: 619 case PHB_LSI_SOURCE_ID: 620 pnv_phb4_update_xsrc(phb); 621 break; 622 623 /* Silent simple writes */ 624 case PHB_ASN_CMPM: 625 case PHB_CONFIG_ADDRESS: 626 case PHB_IODA_ADDR: 627 case PHB_TCE_KILL: 628 case PHB_TCE_SPEC_CTL: 629 case PHB_PEST_BAR: 630 case PHB_PELTV_BAR: 631 case PHB_RTT_BAR: 632 case PHB_LEM_FIR_ACCUM: 633 case PHB_LEM_ERROR_MASK: 634 case PHB_LEM_ACTION0: 635 case PHB_LEM_ACTION1: 636 case PHB_TCE_TAG_ENABLE: 637 case PHB_INT_NOTIFY_ADDR: 638 case PHB_INT_NOTIFY_INDEX: 639 case PHB_DMARD_SYNC: 640 break; 641 642 /* Noise on anything else */ 643 default: 644 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n", 645 off, val); 646 } 647 } 648 649 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size) 650 { 651 PnvPHB4 *phb = PNV_PHB4(opaque); 652 uint64_t val; 653 654 if ((off & 0xfffc) == PHB_CONFIG_DATA) { 655 return pnv_phb4_config_read(phb, off & 0x3, size); 656 } 657 658 /* Special case RC configuration space */ 659 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { 660 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size); 661 } 662 663 /* Other registers are 64-bit only */ 664 if (size != 8 || off & 0x7) { 665 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", 666 off, size); 667 return ~0ull; 668 } 669 670 /* Default read from cache */ 671 val = phb->regs[off >> 3]; 672 673 switch (off) { 674 case PHB_VERSION: 675 return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version; 676 677 /* Read-only */ 678 case PHB_PHB4_GEN_CAP: 679 return 0xe4b8000000000000ull; 680 case PHB_PHB4_TCE_CAP: 681 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull; 682 case PHB_PHB4_IRQ_CAP: 683 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull; 684 case PHB_PHB4_EEH_CAP: 685 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull; 686 687 /* IODA table accesses */ 688 case PHB_IODA_DATA0: 689 return pnv_phb4_ioda_read(phb); 690 691 /* Link training always appears trained */ 692 case PHB_PCIE_DLP_TRAIN_CTL: 693 /* TODO: Do something sensible with speed ? */ 694 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT; 695 696 /* DMA read sync: make it look like it's complete */ 697 case PHB_DMARD_SYNC: 698 return PHB_DMARD_SYNC_COMPLETE; 699 700 /* Silent simple reads */ 701 case PHB_LSI_SOURCE_ID: 702 case PHB_CPU_LOADSTORE_STATUS: 703 case PHB_ASN_CMPM: 704 case PHB_PHB4_CONFIG: 705 case PHB_M32_START_ADDR: 706 case PHB_CONFIG_ADDRESS: 707 case PHB_IODA_ADDR: 708 case PHB_RTC_INVALIDATE: 709 case PHB_TCE_KILL: 710 case PHB_TCE_SPEC_CTL: 711 case PHB_PEST_BAR: 712 case PHB_PELTV_BAR: 713 case PHB_RTT_BAR: 714 case PHB_M64_UPPER_BITS: 715 case PHB_CTRLR: 716 case PHB_LEM_FIR_ACCUM: 717 case PHB_LEM_ERROR_MASK: 718 case PHB_LEM_ACTION0: 719 case PHB_LEM_ACTION1: 720 case PHB_TCE_TAG_ENABLE: 721 case PHB_INT_NOTIFY_ADDR: 722 case PHB_INT_NOTIFY_INDEX: 723 case PHB_Q_DMA_R: 724 case PHB_ETU_ERR_SUMMARY: 725 break; 726 727 /* Noise on anything else */ 728 default: 729 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n", 730 off, val); 731 } 732 return val; 733 } 734 735 static const MemoryRegionOps pnv_phb4_reg_ops = { 736 .read = pnv_phb4_reg_read, 737 .write = pnv_phb4_reg_write, 738 .valid.min_access_size = 1, 739 .valid.max_access_size = 8, 740 .impl.min_access_size = 1, 741 .impl.max_access_size = 8, 742 .endianness = DEVICE_BIG_ENDIAN, 743 }; 744 745 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size) 746 { 747 PnvPHB4 *phb = PNV_PHB4(opaque); 748 uint32_t reg = addr >> 3; 749 uint64_t val; 750 hwaddr offset; 751 752 switch (reg) { 753 case PHB_SCOM_HV_IND_ADDR: 754 return phb->scom_hv_ind_addr_reg; 755 756 case PHB_SCOM_HV_IND_DATA: 757 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { 758 phb_error(phb, "Invalid indirect address"); 759 return ~0ull; 760 } 761 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; 762 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); 763 val = pnv_phb4_reg_read(phb, offset, size); 764 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { 765 offset += size; 766 offset &= 0x3fff; 767 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, 768 phb->scom_hv_ind_addr_reg, 769 offset); 770 } 771 return val; 772 case PHB_SCOM_ETU_LEM_FIR: 773 case PHB_SCOM_ETU_LEM_FIR_AND: 774 case PHB_SCOM_ETU_LEM_FIR_OR: 775 case PHB_SCOM_ETU_LEM_FIR_MSK: 776 case PHB_SCOM_ETU_LEM_ERR_MSK_AND: 777 case PHB_SCOM_ETU_LEM_ERR_MSK_OR: 778 case PHB_SCOM_ETU_LEM_ACT0: 779 case PHB_SCOM_ETU_LEM_ACT1: 780 case PHB_SCOM_ETU_LEM_WOF: 781 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; 782 return pnv_phb4_reg_read(phb, offset, size); 783 case PHB_SCOM_ETU_PMON_CONFIG: 784 case PHB_SCOM_ETU_PMON_CTR0: 785 case PHB_SCOM_ETU_PMON_CTR1: 786 case PHB_SCOM_ETU_PMON_CTR2: 787 case PHB_SCOM_ETU_PMON_CTR3: 788 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; 789 return pnv_phb4_reg_read(phb, offset, size); 790 791 default: 792 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr); 793 return ~0ull; 794 } 795 } 796 797 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr, 798 uint64_t val, unsigned size) 799 { 800 PnvPHB4 *phb = PNV_PHB4(opaque); 801 uint32_t reg = addr >> 3; 802 hwaddr offset; 803 804 switch (reg) { 805 case PHB_SCOM_HV_IND_ADDR: 806 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff; 807 break; 808 case PHB_SCOM_HV_IND_DATA: 809 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { 810 phb_error(phb, "Invalid indirect address"); 811 break; 812 } 813 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; 814 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); 815 pnv_phb4_reg_write(phb, offset, val, size); 816 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { 817 offset += size; 818 offset &= 0x3fff; 819 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, 820 phb->scom_hv_ind_addr_reg, 821 offset); 822 } 823 break; 824 case PHB_SCOM_ETU_LEM_FIR: 825 case PHB_SCOM_ETU_LEM_FIR_AND: 826 case PHB_SCOM_ETU_LEM_FIR_OR: 827 case PHB_SCOM_ETU_LEM_FIR_MSK: 828 case PHB_SCOM_ETU_LEM_ERR_MSK_AND: 829 case PHB_SCOM_ETU_LEM_ERR_MSK_OR: 830 case PHB_SCOM_ETU_LEM_ACT0: 831 case PHB_SCOM_ETU_LEM_ACT1: 832 case PHB_SCOM_ETU_LEM_WOF: 833 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; 834 pnv_phb4_reg_write(phb, offset, val, size); 835 break; 836 case PHB_SCOM_ETU_PMON_CONFIG: 837 case PHB_SCOM_ETU_PMON_CTR0: 838 case PHB_SCOM_ETU_PMON_CTR1: 839 case PHB_SCOM_ETU_PMON_CTR2: 840 case PHB_SCOM_ETU_PMON_CTR3: 841 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; 842 pnv_phb4_reg_write(phb, offset, val, size); 843 break; 844 default: 845 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx 846 "=%"PRIx64"\n", addr, val); 847 } 848 } 849 850 const MemoryRegionOps pnv_phb4_xscom_ops = { 851 .read = pnv_phb4_xscom_read, 852 .write = pnv_phb4_xscom_write, 853 .valid.min_access_size = 8, 854 .valid.max_access_size = 8, 855 .impl.min_access_size = 8, 856 .impl.max_access_size = 8, 857 .endianness = DEVICE_BIG_ENDIAN, 858 }; 859 860 static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr, 861 unsigned size) 862 { 863 PnvPHB4 *phb = PNV_PHB4(opaque); 864 uint32_t reg = addr >> 3; 865 866 /* TODO: add list of allowed registers and error out if not */ 867 return phb->nest_regs[reg]; 868 } 869 870 /* 871 * Return the 'stack_no' of a PHB4. 'stack_no' is the order 872 * the PHB4 occupies in the PEC. This is the reverse of what 873 * pnv_phb4_pec_get_phb_id() does. 874 * 875 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will 876 * be the second phb (stack_no = 1) of the PEC. 877 */ 878 static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb) 879 { 880 PnvPhb4PecState *pec = phb->pec; 881 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 882 int index = pec->index; 883 int stack_no = phb->phb_id; 884 885 while (index--) { 886 stack_no -= pecc->num_phbs[index]; 887 } 888 889 return stack_no; 890 } 891 892 static void pnv_phb4_update_regions(PnvPHB4 *phb) 893 { 894 /* Unmap first always */ 895 if (memory_region_is_mapped(&phb->mr_regs)) { 896 memory_region_del_subregion(&phb->phbbar, &phb->mr_regs); 897 } 898 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) { 899 memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio); 900 } 901 902 /* Map registers if enabled */ 903 if (memory_region_is_mapped(&phb->phbbar)) { 904 memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs); 905 } 906 907 /* Map ESB if enabled */ 908 if (memory_region_is_mapped(&phb->intbar)) { 909 memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio); 910 } 911 912 /* Check/update m32 */ 913 pnv_phb4_check_all_mbt(phb); 914 } 915 916 static void pnv_pec_phb_update_map(PnvPHB4 *phb) 917 { 918 PnvPhb4PecState *pec = phb->pec; 919 MemoryRegion *sysmem = get_system_memory(); 920 uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN]; 921 int stack_no = pnv_phb4_get_phb_stack_no(phb); 922 uint64_t bar, mask, size; 923 char name[64]; 924 925 /* 926 * NOTE: This will really not work well if those are remapped 927 * after the PHB has created its sub regions. We could do better 928 * if we had a way to resize regions but we don't really care 929 * that much in practice as the stuff below really only happens 930 * once early during boot 931 */ 932 933 /* Handle unmaps */ 934 if (memory_region_is_mapped(&phb->mmbar0) && 935 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { 936 memory_region_del_subregion(sysmem, &phb->mmbar0); 937 } 938 if (memory_region_is_mapped(&phb->mmbar1) && 939 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { 940 memory_region_del_subregion(sysmem, &phb->mmbar1); 941 } 942 if (memory_region_is_mapped(&phb->phbbar) && 943 !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) { 944 memory_region_del_subregion(sysmem, &phb->phbbar); 945 } 946 if (memory_region_is_mapped(&phb->intbar) && 947 !(bar_en & PEC_NEST_STK_BAR_EN_INT)) { 948 memory_region_del_subregion(sysmem, &phb->intbar); 949 } 950 951 /* Update PHB */ 952 pnv_phb4_update_regions(phb); 953 954 /* Handle maps */ 955 if (!memory_region_is_mapped(&phb->mmbar0) && 956 (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { 957 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8; 958 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK]; 959 size = ((~mask) >> 8) + 1; 960 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0", 961 pec->chip_id, pec->index, stack_no); 962 memory_region_init(&phb->mmbar0, OBJECT(phb), name, size); 963 memory_region_add_subregion(sysmem, bar, &phb->mmbar0); 964 phb->mmio0_base = bar; 965 phb->mmio0_size = size; 966 } 967 if (!memory_region_is_mapped(&phb->mmbar1) && 968 (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { 969 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8; 970 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK]; 971 size = ((~mask) >> 8) + 1; 972 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1", 973 pec->chip_id, pec->index, stack_no); 974 memory_region_init(&phb->mmbar1, OBJECT(phb), name, size); 975 memory_region_add_subregion(sysmem, bar, &phb->mmbar1); 976 phb->mmio1_base = bar; 977 phb->mmio1_size = size; 978 } 979 if (!memory_region_is_mapped(&phb->phbbar) && 980 (bar_en & PEC_NEST_STK_BAR_EN_PHB)) { 981 bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8; 982 size = PNV_PHB4_NUM_REGS << 3; 983 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d", 984 pec->chip_id, pec->index, stack_no); 985 memory_region_init(&phb->phbbar, OBJECT(phb), name, size); 986 memory_region_add_subregion(sysmem, bar, &phb->phbbar); 987 } 988 if (!memory_region_is_mapped(&phb->intbar) && 989 (bar_en & PEC_NEST_STK_BAR_EN_INT)) { 990 bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8; 991 size = PNV_PHB4_MAX_INTs << 16; 992 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int", 993 phb->pec->chip_id, phb->pec->index, stack_no); 994 memory_region_init(&phb->intbar, OBJECT(phb), name, size); 995 memory_region_add_subregion(sysmem, bar, &phb->intbar); 996 } 997 998 /* Update PHB */ 999 pnv_phb4_update_regions(phb); 1000 } 1001 1002 static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr, 1003 uint64_t val, unsigned size) 1004 { 1005 PnvPHB4 *phb = PNV_PHB4(opaque); 1006 PnvPhb4PecState *pec = phb->pec; 1007 uint32_t reg = addr >> 3; 1008 1009 switch (reg) { 1010 case PEC_NEST_STK_PCI_NEST_FIR: 1011 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val; 1012 break; 1013 case PEC_NEST_STK_PCI_NEST_FIR_CLR: 1014 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val; 1015 break; 1016 case PEC_NEST_STK_PCI_NEST_FIR_SET: 1017 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val; 1018 break; 1019 case PEC_NEST_STK_PCI_NEST_FIR_MSK: 1020 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val; 1021 break; 1022 case PEC_NEST_STK_PCI_NEST_FIR_MSKC: 1023 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val; 1024 break; 1025 case PEC_NEST_STK_PCI_NEST_FIR_MSKS: 1026 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val; 1027 break; 1028 case PEC_NEST_STK_PCI_NEST_FIR_ACT0: 1029 case PEC_NEST_STK_PCI_NEST_FIR_ACT1: 1030 phb->nest_regs[reg] = val; 1031 break; 1032 case PEC_NEST_STK_PCI_NEST_FIR_WOF: 1033 phb->nest_regs[reg] = 0; 1034 break; 1035 case PEC_NEST_STK_ERR_REPORT_0: 1036 case PEC_NEST_STK_ERR_REPORT_1: 1037 case PEC_NEST_STK_PBCQ_GNRL_STATUS: 1038 /* Flag error ? */ 1039 break; 1040 case PEC_NEST_STK_PBCQ_MODE: 1041 phb->nest_regs[reg] = val & 0xff00000000000000ull; 1042 break; 1043 case PEC_NEST_STK_MMIO_BAR0: 1044 case PEC_NEST_STK_MMIO_BAR0_MASK: 1045 case PEC_NEST_STK_MMIO_BAR1: 1046 case PEC_NEST_STK_MMIO_BAR1_MASK: 1047 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & 1048 (PEC_NEST_STK_BAR_EN_MMIO0 | 1049 PEC_NEST_STK_BAR_EN_MMIO1)) { 1050 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1051 } 1052 phb->nest_regs[reg] = val & 0xffffffffff000000ull; 1053 break; 1054 case PEC_NEST_STK_PHB_REGS_BAR: 1055 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) { 1056 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1057 } 1058 phb->nest_regs[reg] = val & 0xffffffffffc00000ull; 1059 break; 1060 case PEC_NEST_STK_INT_BAR: 1061 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) { 1062 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1063 } 1064 phb->nest_regs[reg] = val & 0xfffffff000000000ull; 1065 break; 1066 case PEC_NEST_STK_BAR_EN: 1067 phb->nest_regs[reg] = val & 0xf000000000000000ull; 1068 pnv_pec_phb_update_map(phb); 1069 break; 1070 case PEC_NEST_STK_DATA_FRZ_TYPE: 1071 case PEC_NEST_STK_PBCQ_TUN_BAR: 1072 /* Not used for now */ 1073 phb->nest_regs[reg] = val; 1074 break; 1075 default: 1076 qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx 1077 "=%"PRIx64"\n", addr, val); 1078 } 1079 } 1080 1081 static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = { 1082 .read = pnv_pec_stk_nest_xscom_read, 1083 .write = pnv_pec_stk_nest_xscom_write, 1084 .valid.min_access_size = 8, 1085 .valid.max_access_size = 8, 1086 .impl.min_access_size = 8, 1087 .impl.max_access_size = 8, 1088 .endianness = DEVICE_BIG_ENDIAN, 1089 }; 1090 1091 static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr, 1092 unsigned size) 1093 { 1094 PnvPHB4 *phb = PNV_PHB4(opaque); 1095 uint32_t reg = addr >> 3; 1096 1097 /* TODO: add list of allowed registers and error out if not */ 1098 return phb->pci_regs[reg]; 1099 } 1100 1101 static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr, 1102 uint64_t val, unsigned size) 1103 { 1104 PnvPHB4 *phb = PNV_PHB4(opaque); 1105 uint32_t reg = addr >> 3; 1106 1107 switch (reg) { 1108 case PEC_PCI_STK_PCI_FIR: 1109 phb->pci_regs[reg] = val; 1110 break; 1111 case PEC_PCI_STK_PCI_FIR_CLR: 1112 phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val; 1113 break; 1114 case PEC_PCI_STK_PCI_FIR_SET: 1115 phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val; 1116 break; 1117 case PEC_PCI_STK_PCI_FIR_MSK: 1118 phb->pci_regs[reg] = val; 1119 break; 1120 case PEC_PCI_STK_PCI_FIR_MSKC: 1121 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val; 1122 break; 1123 case PEC_PCI_STK_PCI_FIR_MSKS: 1124 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val; 1125 break; 1126 case PEC_PCI_STK_PCI_FIR_ACT0: 1127 case PEC_PCI_STK_PCI_FIR_ACT1: 1128 phb->pci_regs[reg] = val; 1129 break; 1130 case PEC_PCI_STK_PCI_FIR_WOF: 1131 phb->pci_regs[reg] = 0; 1132 break; 1133 case PEC_PCI_STK_ETU_RESET: 1134 phb->pci_regs[reg] = val & 0x8000000000000000ull; 1135 /* TODO: Implement reset */ 1136 break; 1137 case PEC_PCI_STK_PBAIB_ERR_REPORT: 1138 break; 1139 case PEC_PCI_STK_PBAIB_TX_CMD_CRED: 1140 case PEC_PCI_STK_PBAIB_TX_DAT_CRED: 1141 phb->pci_regs[reg] = val; 1142 break; 1143 default: 1144 qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx 1145 "=%"PRIx64"\n", addr, val); 1146 } 1147 } 1148 1149 static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = { 1150 .read = pnv_pec_stk_pci_xscom_read, 1151 .write = pnv_pec_stk_pci_xscom_write, 1152 .valid.min_access_size = 8, 1153 .valid.max_access_size = 8, 1154 .impl.min_access_size = 8, 1155 .impl.max_access_size = 8, 1156 .endianness = DEVICE_BIG_ENDIAN, 1157 }; 1158 1159 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num) 1160 { 1161 /* Check that out properly ... */ 1162 return irq_num & 3; 1163 } 1164 1165 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level) 1166 { 1167 PnvPHB4 *phb = PNV_PHB4(opaque); 1168 uint32_t lsi_base; 1169 1170 /* LSI only ... */ 1171 if (irq_num > 3) { 1172 phb_error(phb, "IRQ %x is not an LSI", irq_num); 1173 } 1174 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); 1175 lsi_base <<= 3; 1176 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level); 1177 } 1178 1179 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds) 1180 { 1181 uint64_t rtt, addr; 1182 uint16_t rte; 1183 int bus_num; 1184 int num_PEs; 1185 1186 /* Already resolved ? */ 1187 if (ds->pe_num != PHB_INVALID_PE) { 1188 return true; 1189 } 1190 1191 /* We need to lookup the RTT */ 1192 rtt = ds->phb->regs[PHB_RTT_BAR >> 3]; 1193 if (!(rtt & PHB_RTT_BAR_ENABLE)) { 1194 phb_error(ds->phb, "DMA with RTT BAR disabled !"); 1195 /* Set error bits ? fence ? ... */ 1196 return false; 1197 } 1198 1199 /* Read RTE */ 1200 bus_num = pci_bus_num(ds->bus); 1201 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK; 1202 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn); 1203 if (dma_memory_read(&address_space_memory, addr, &rte, 1204 sizeof(rte), MEMTXATTRS_UNSPECIFIED)) { 1205 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr); 1206 /* Set error bits ? fence ? ... */ 1207 return false; 1208 } 1209 rte = be16_to_cpu(rte); 1210 1211 /* Fail upon reading of invalid PE# */ 1212 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 1213 if (rte >= num_PEs) { 1214 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte); 1215 rte &= num_PEs - 1; 1216 } 1217 ds->pe_num = rte; 1218 return true; 1219 } 1220 1221 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr, 1222 bool is_write, uint64_t tve, 1223 IOMMUTLBEntry *tlb) 1224 { 1225 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve); 1226 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve); 1227 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve); 1228 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve); 1229 1230 /* Invalid levels */ 1231 if (lev > 4) { 1232 phb_error(ds->phb, "Invalid #levels in TVE %d", lev); 1233 return; 1234 } 1235 1236 /* Invalid entry */ 1237 if (tts == 0) { 1238 phb_error(ds->phb, "Access to invalid TVE"); 1239 return; 1240 } 1241 1242 /* IO Page Size of 0 means untranslated, else use TCEs */ 1243 if (tps == 0) { 1244 /* TODO: Handle boundaries */ 1245 1246 /* Use 4k pages like q35 ... for now */ 1247 tlb->iova = addr & 0xfffffffffffff000ull; 1248 tlb->translated_addr = addr & 0x0003fffffffff000ull; 1249 tlb->addr_mask = 0xfffull; 1250 tlb->perm = IOMMU_RW; 1251 } else { 1252 uint32_t tce_shift, tbl_shift, sh; 1253 uint64_t base, taddr, tce, tce_mask; 1254 1255 /* Address bits per bottom level TCE entry */ 1256 tce_shift = tps + 11; 1257 1258 /* Address bits per table level */ 1259 tbl_shift = tts + 8; 1260 1261 /* Top level table base address */ 1262 base = tta << 12; 1263 1264 /* Total shift to first level */ 1265 sh = tbl_shift * lev + tce_shift; 1266 1267 /* TODO: Limit to support IO page sizes */ 1268 1269 /* TODO: Multi-level untested */ 1270 while ((lev--) >= 0) { 1271 /* Grab the TCE address */ 1272 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3); 1273 if (dma_memory_read(&address_space_memory, taddr, &tce, 1274 sizeof(tce), MEMTXATTRS_UNSPECIFIED)) { 1275 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr); 1276 return; 1277 } 1278 tce = be64_to_cpu(tce); 1279 1280 /* Check permission for indirect TCE */ 1281 if ((lev >= 0) && !(tce & 3)) { 1282 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr); 1283 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, 1284 is_write ? 'W' : 'R', tve); 1285 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", 1286 tta, lev, tts, tps); 1287 return; 1288 } 1289 sh -= tbl_shift; 1290 base = tce & ~0xfffull; 1291 } 1292 1293 /* We exit the loop with TCE being the final TCE */ 1294 tce_mask = ~((1ull << tce_shift) - 1); 1295 tlb->iova = addr & tce_mask; 1296 tlb->translated_addr = tce & tce_mask; 1297 tlb->addr_mask = ~tce_mask; 1298 tlb->perm = tce & 3; 1299 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) { 1300 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr); 1301 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, 1302 is_write ? 'W' : 'R', tve); 1303 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", 1304 tta, lev, tts, tps); 1305 } 1306 } 1307 } 1308 1309 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu, 1310 hwaddr addr, 1311 IOMMUAccessFlags flag, 1312 int iommu_idx) 1313 { 1314 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr); 1315 int tve_sel; 1316 uint64_t tve, cfg; 1317 IOMMUTLBEntry ret = { 1318 .target_as = &address_space_memory, 1319 .iova = addr, 1320 .translated_addr = 0, 1321 .addr_mask = ~(hwaddr)0, 1322 .perm = IOMMU_NONE, 1323 }; 1324 1325 /* Resolve PE# */ 1326 if (!pnv_phb4_resolve_pe(ds)) { 1327 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", 1328 ds->bus, pci_bus_num(ds->bus), ds->devfn); 1329 return ret; 1330 } 1331 1332 /* Check top bits */ 1333 switch (addr >> 60) { 1334 case 00: 1335 /* DMA or 32-bit MSI ? */ 1336 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; 1337 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) && 1338 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) { 1339 phb_error(ds->phb, "xlate on 32-bit MSI region"); 1340 return ret; 1341 } 1342 /* Choose TVE XXX Use PHB4 Control Register */ 1343 tve_sel = (addr >> 59) & 1; 1344 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel]; 1345 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret); 1346 break; 1347 case 01: 1348 phb_error(ds->phb, "xlate on 64-bit MSI region"); 1349 break; 1350 default: 1351 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr); 1352 } 1353 return ret; 1354 } 1355 1356 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region" 1357 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION, 1358 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION) 1359 1360 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass, 1361 void *data) 1362 { 1363 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 1364 1365 imrc->translate = pnv_phb4_translate_iommu; 1366 } 1367 1368 static const TypeInfo pnv_phb4_iommu_memory_region_info = { 1369 .parent = TYPE_IOMMU_MEMORY_REGION, 1370 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, 1371 .class_init = pnv_phb4_iommu_memory_region_class_init, 1372 }; 1373 1374 /* 1375 * Return the index/phb-id of a PHB4 that belongs to a 1376 * pec->stacks[stack_index] stack. 1377 */ 1378 int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index) 1379 { 1380 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1381 int index = pec->index; 1382 int offset = 0; 1383 1384 while (index--) { 1385 offset += pecc->num_phbs[index]; 1386 } 1387 1388 return offset + stack_index; 1389 } 1390 1391 /* 1392 * MSI/MSIX memory region implementation. 1393 * The handler handles both MSI and MSIX. 1394 */ 1395 static void pnv_phb4_msi_write(void *opaque, hwaddr addr, 1396 uint64_t data, unsigned size) 1397 { 1398 PnvPhb4DMASpace *ds = opaque; 1399 PnvPHB4 *phb = ds->phb; 1400 1401 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f); 1402 1403 /* Resolve PE# */ 1404 if (!pnv_phb4_resolve_pe(ds)) { 1405 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", 1406 ds->bus, pci_bus_num(ds->bus), ds->devfn); 1407 return; 1408 } 1409 1410 /* TODO: Check it doesn't collide with LSIs */ 1411 if (src >= phb->xsrc.nr_irqs) { 1412 phb_error(phb, "MSI %d out of bounds", src); 1413 return; 1414 } 1415 1416 /* TODO: check PE/MSI assignement */ 1417 1418 qemu_irq_pulse(phb->qirqs[src]); 1419 } 1420 1421 /* There is no .read as the read result is undefined by PCI spec */ 1422 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size) 1423 { 1424 PnvPhb4DMASpace *ds = opaque; 1425 1426 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr); 1427 return -1; 1428 } 1429 1430 static const MemoryRegionOps pnv_phb4_msi_ops = { 1431 .read = pnv_phb4_msi_read, 1432 .write = pnv_phb4_msi_write, 1433 .endianness = DEVICE_LITTLE_ENDIAN 1434 }; 1435 1436 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn) 1437 { 1438 PnvPhb4DMASpace *ds; 1439 1440 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 1441 if (ds->bus == bus && ds->devfn == devfn) { 1442 break; 1443 } 1444 } 1445 return ds; 1446 } 1447 1448 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn) 1449 { 1450 PnvPHB4 *phb = opaque; 1451 PnvPhb4DMASpace *ds; 1452 char name[32]; 1453 1454 ds = pnv_phb4_dma_find(phb, bus, devfn); 1455 1456 if (ds == NULL) { 1457 ds = g_malloc0(sizeof(PnvPhb4DMASpace)); 1458 ds->bus = bus; 1459 ds->devfn = devfn; 1460 ds->pe_num = PHB_INVALID_PE; 1461 ds->phb = phb; 1462 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id, 1463 phb->phb_id); 1464 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr), 1465 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, 1466 OBJECT(phb), name, UINT64_MAX); 1467 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr), 1468 name); 1469 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops, 1470 ds, "msi32", 0x10000); 1471 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops, 1472 ds, "msi64", 0x100000); 1473 pnv_phb4_update_msi_regions(ds); 1474 1475 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list); 1476 } 1477 return &ds->dma_as; 1478 } 1479 1480 static void pnv_phb4_xscom_realize(PnvPHB4 *phb) 1481 { 1482 PnvPhb4PecState *pec = phb->pec; 1483 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1484 int stack_no = pnv_phb4_get_phb_stack_no(phb); 1485 uint32_t pec_nest_base; 1486 uint32_t pec_pci_base; 1487 char name[64]; 1488 1489 assert(pec); 1490 1491 /* Initialize the XSCOM regions for the stack registers */ 1492 snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d", 1493 pec->chip_id, pec->index, stack_no); 1494 pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb), 1495 &pnv_pec_stk_nest_xscom_ops, phb, name, 1496 PHB4_PEC_NEST_STK_REGS_COUNT); 1497 1498 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", 1499 pec->chip_id, pec->index, stack_no); 1500 pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb), 1501 &pnv_pec_stk_pci_xscom_ops, phb, name, 1502 PHB4_PEC_PCI_STK_REGS_COUNT); 1503 1504 /* PHB pass-through */ 1505 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", 1506 pec->chip_id, pec->index, stack_no); 1507 pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb), 1508 &pnv_phb4_xscom_ops, phb, name, 0x40); 1509 1510 pec_nest_base = pecc->xscom_nest_base(pec); 1511 pec_pci_base = pecc->xscom_pci_base(pec); 1512 1513 /* Populate the XSCOM address space. */ 1514 pnv_xscom_add_subregion(pec->chip, 1515 pec_nest_base + 0x40 * (stack_no + 1), 1516 &phb->nest_regs_mr); 1517 pnv_xscom_add_subregion(pec->chip, 1518 pec_pci_base + 0x40 * (stack_no + 1), 1519 &phb->pci_regs_mr); 1520 pnv_xscom_add_subregion(pec->chip, 1521 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 + 1522 0x40 * stack_no, 1523 &phb->phb_regs_mr); 1524 } 1525 1526 static void pnv_phb4_instance_init(Object *obj) 1527 { 1528 PnvPHB4 *phb = PNV_PHB4(obj); 1529 1530 QLIST_INIT(&phb->dma_spaces); 1531 1532 /* XIVE interrupt source object */ 1533 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE); 1534 } 1535 1536 static PnvPhb4PecState *pnv_phb4_get_pec(PnvChip *chip, PnvPHB4 *phb, 1537 Error **errp) 1538 { 1539 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1540 int chip_id = phb->chip_id; 1541 int index = phb->phb_id; 1542 int i, j; 1543 1544 for (i = 0; i < chip->num_pecs; i++) { 1545 /* 1546 * For each PEC, check the amount of phbs it supports 1547 * and see if the given phb4 index matches an index. 1548 */ 1549 PnvPhb4PecState *pec = &chip9->pecs[i]; 1550 1551 for (j = 0; j < pec->num_phbs; j++) { 1552 if (index == pnv_phb4_pec_get_phb_id(pec, j)) { 1553 return pec; 1554 } 1555 } 1556 } 1557 1558 error_setg(errp, 1559 "pnv-phb4 chip-id %d index %d didn't match any existing PEC", 1560 chip_id, index); 1561 1562 return NULL; 1563 } 1564 1565 static void pnv_phb4_realize(DeviceState *dev, Error **errp) 1566 { 1567 PnvPHB4 *phb = PNV_PHB4(dev); 1568 PCIHostState *pci = PCI_HOST_BRIDGE(dev); 1569 XiveSource *xsrc = &phb->xsrc; 1570 Error *local_err = NULL; 1571 int nr_irqs; 1572 char name[32]; 1573 1574 /* User created PHB */ 1575 if (!phb->pec) { 1576 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 1577 PnvChip *chip = pnv_get_chip(pnv, phb->chip_id); 1578 BusState *s; 1579 1580 if (!chip) { 1581 error_setg(errp, "invalid chip id: %d", phb->chip_id); 1582 return; 1583 } 1584 1585 phb->pec = pnv_phb4_get_pec(chip, phb, &local_err); 1586 if (local_err) { 1587 error_propagate(errp, local_err); 1588 return; 1589 } 1590 1591 /* 1592 * Reparent user created devices to the chip to build 1593 * correctly the device tree. 1594 */ 1595 pnv_chip_parent_fixup(chip, OBJECT(phb), phb->phb_id); 1596 1597 s = qdev_get_parent_bus(DEVICE(chip)); 1598 if (!qdev_set_parent_bus(DEVICE(phb), s, &local_err)) { 1599 error_propagate(errp, local_err); 1600 return; 1601 } 1602 } 1603 1604 /* Set the "big_phb" flag */ 1605 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3; 1606 1607 /* Controller Registers */ 1608 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id, 1609 phb->phb_id); 1610 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb, 1611 name, 0x2000); 1612 1613 /* 1614 * PHB4 doesn't support IO space. However, qemu gets very upset if 1615 * we don't have an IO region to anchor IO BARs onto so we just 1616 * initialize one which we never hook up to anything 1617 */ 1618 1619 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id, 1620 phb->phb_id); 1621 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000); 1622 1623 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id, 1624 phb->phb_id); 1625 memory_region_init(&phb->pci_mmio, OBJECT(phb), name, 1626 PCI_MMIO_TOTAL_SIZE); 1627 1628 pci->bus = pci_register_root_bus(dev, dev->id, 1629 pnv_phb4_set_irq, pnv_phb4_map_irq, phb, 1630 &phb->pci_mmio, &phb->pci_io, 1631 0, 4, TYPE_PNV_PHB4_ROOT_BUS); 1632 pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb); 1633 pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 1634 1635 /* Setup XIVE Source */ 1636 if (phb->big_phb) { 1637 nr_irqs = PNV_PHB4_MAX_INTs; 1638 } else { 1639 nr_irqs = PNV_PHB4_MAX_INTs >> 1; 1640 } 1641 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal); 1642 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal); 1643 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { 1644 return; 1645 } 1646 1647 pnv_phb4_update_xsrc(phb); 1648 1649 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs); 1650 1651 pnv_phb4_xscom_realize(phb); 1652 } 1653 1654 static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge, 1655 PCIBus *rootbus) 1656 { 1657 PnvPHB4 *phb = PNV_PHB4(host_bridge); 1658 1659 snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x", 1660 phb->chip_id, phb->phb_id); 1661 return phb->bus_path; 1662 } 1663 1664 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno) 1665 { 1666 PnvPHB4 *phb = PNV_PHB4(xf); 1667 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; 1668 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; 1669 uint64_t data = XIVE_TRIGGER_PQ | offset | srcno; 1670 MemTxResult result; 1671 1672 trace_pnv_phb4_xive_notify(notif_port, data); 1673 1674 address_space_stq_be(&address_space_memory, notif_port, data, 1675 MEMTXATTRS_UNSPECIFIED, &result); 1676 if (result != MEMTX_OK) { 1677 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port); 1678 return; 1679 } 1680 } 1681 1682 static Property pnv_phb4_properties[] = { 1683 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0), 1684 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0), 1685 DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC, 1686 PnvPhb4PecState *), 1687 DEFINE_PROP_END_OF_LIST(), 1688 }; 1689 1690 static void pnv_phb4_class_init(ObjectClass *klass, void *data) 1691 { 1692 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 1693 DeviceClass *dc = DEVICE_CLASS(klass); 1694 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass); 1695 1696 hc->root_bus_path = pnv_phb4_root_bus_path; 1697 dc->realize = pnv_phb4_realize; 1698 device_class_set_props(dc, pnv_phb4_properties); 1699 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1700 dc->user_creatable = true; 1701 1702 xfc->notify = pnv_phb4_xive_notify; 1703 } 1704 1705 static const TypeInfo pnv_phb4_type_info = { 1706 .name = TYPE_PNV_PHB4, 1707 .parent = TYPE_PCIE_HOST_BRIDGE, 1708 .instance_init = pnv_phb4_instance_init, 1709 .instance_size = sizeof(PnvPHB4), 1710 .class_init = pnv_phb4_class_init, 1711 .interfaces = (InterfaceInfo[]) { 1712 { TYPE_XIVE_NOTIFIER }, 1713 { }, 1714 } 1715 }; 1716 1717 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data) 1718 { 1719 BusClass *k = BUS_CLASS(klass); 1720 1721 /* 1722 * PHB4 has only a single root complex. Enforce the limit on the 1723 * parent bus 1724 */ 1725 k->max_dev = 1; 1726 } 1727 1728 static const TypeInfo pnv_phb4_root_bus_info = { 1729 .name = TYPE_PNV_PHB4_ROOT_BUS, 1730 .parent = TYPE_PCIE_BUS, 1731 .class_init = pnv_phb4_root_bus_class_init, 1732 .interfaces = (InterfaceInfo[]) { 1733 { INTERFACE_PCIE_DEVICE }, 1734 { } 1735 }, 1736 }; 1737 1738 static void pnv_phb4_root_port_reset(DeviceState *dev) 1739 { 1740 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev); 1741 PCIDevice *d = PCI_DEVICE(dev); 1742 uint8_t *conf = d->config; 1743 1744 rpc->parent_reset(dev); 1745 1746 pci_byte_test_and_set_mask(conf + PCI_IO_BASE, 1747 PCI_IO_RANGE_MASK & 0xff); 1748 pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT, 1749 PCI_IO_RANGE_MASK & 0xff); 1750 pci_set_word(conf + PCI_MEMORY_BASE, 0); 1751 pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0); 1752 pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1); 1753 pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1); 1754 pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */ 1755 pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff); 1756 } 1757 1758 static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp) 1759 { 1760 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev); 1761 PCIDevice *pci = PCI_DEVICE(dev); 1762 PCIBus *bus = pci_get_bus(pci); 1763 PnvPHB4 *phb = NULL; 1764 Error *local_err = NULL; 1765 1766 phb = (PnvPHB4 *) object_dynamic_cast(OBJECT(bus->qbus.parent), 1767 TYPE_PNV_PHB4); 1768 1769 if (!phb) { 1770 error_setg(errp, "%s must be connected to pnv-phb4 buses", dev->id); 1771 return; 1772 } 1773 1774 /* Set unique chassis/slot values for the root port */ 1775 qdev_prop_set_uint8(&pci->qdev, "chassis", phb->chip_id); 1776 qdev_prop_set_uint16(&pci->qdev, "slot", phb->phb_id); 1777 1778 rpc->parent_realize(dev, &local_err); 1779 if (local_err) { 1780 error_propagate(errp, local_err); 1781 return; 1782 } 1783 } 1784 1785 static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data) 1786 { 1787 DeviceClass *dc = DEVICE_CLASS(klass); 1788 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1789 PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass); 1790 1791 dc->desc = "IBM PHB4 PCIE Root Port"; 1792 dc->user_creatable = true; 1793 1794 device_class_set_parent_realize(dc, pnv_phb4_root_port_realize, 1795 &rpc->parent_realize); 1796 device_class_set_parent_reset(dc, pnv_phb4_root_port_reset, 1797 &rpc->parent_reset); 1798 1799 k->vendor_id = PCI_VENDOR_ID_IBM; 1800 k->device_id = PNV_PHB4_DEVICE_ID; 1801 k->revision = 0; 1802 1803 rpc->exp_offset = 0x48; 1804 rpc->aer_offset = 0x100; 1805 1806 dc->reset = &pnv_phb4_root_port_reset; 1807 } 1808 1809 static const TypeInfo pnv_phb4_root_port_info = { 1810 .name = TYPE_PNV_PHB4_ROOT_PORT, 1811 .parent = TYPE_PCIE_ROOT_PORT, 1812 .instance_size = sizeof(PnvPHB4RootPort), 1813 .class_init = pnv_phb4_root_port_class_init, 1814 }; 1815 1816 static void pnv_phb4_register_types(void) 1817 { 1818 type_register_static(&pnv_phb4_root_bus_info); 1819 type_register_static(&pnv_phb4_root_port_info); 1820 type_register_static(&pnv_phb4_type_info); 1821 type_register_static(&pnv_phb4_iommu_memory_region_info); 1822 } 1823 1824 type_init(pnv_phb4_register_types); 1825 1826 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon) 1827 { 1828 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; 1829 1830 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x\n", 1831 phb->chip_id, phb->phb_id, 1832 offset, offset + phb->xsrc.nr_irqs - 1); 1833 xive_source_pic_print_info(&phb->xsrc, 0, mon); 1834 } 1835