1 /* 2 * QEMU PowerPC PowerNV (POWER9) PHB4 model 3 * 4 * Copyright (c) 2018-2020, IBM Corporation. 5 * 6 * This code is licensed under the GPL version 2 or later. See the 7 * COPYING file in the top-level directory. 8 */ 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qapi/visitor.h" 12 #include "qapi/error.h" 13 #include "qemu-common.h" 14 #include "monitor/monitor.h" 15 #include "target/ppc/cpu.h" 16 #include "hw/pci-host/pnv_phb4_regs.h" 17 #include "hw/pci-host/pnv_phb4.h" 18 #include "hw/pci/pcie_host.h" 19 #include "hw/pci/pcie_port.h" 20 #include "hw/ppc/pnv.h" 21 #include "hw/ppc/pnv_xscom.h" 22 #include "hw/irq.h" 23 #include "hw/qdev-properties.h" 24 #include "qom/object.h" 25 #include "trace.h" 26 27 #define phb_error(phb, fmt, ...) \ 28 qemu_log_mask(LOG_GUEST_ERROR, "phb4[%d:%d]: " fmt "\n", \ 29 (phb)->chip_id, (phb)->phb_id, ## __VA_ARGS__) 30 31 #define phb_pec_error(pec, fmt, ...) \ 32 qemu_log_mask(LOG_GUEST_ERROR, "phb4_pec[%d:%d]: " fmt "\n", \ 33 (pec)->chip_id, (pec)->index, ## __VA_ARGS__) 34 35 /* 36 * QEMU version of the GETFIELD/SETFIELD macros 37 * 38 * These are common with the PnvXive model. 39 */ 40 static inline uint64_t GETFIELD(uint64_t mask, uint64_t word) 41 { 42 return (word & mask) >> ctz64(mask); 43 } 44 45 static inline uint64_t SETFIELD(uint64_t mask, uint64_t word, 46 uint64_t value) 47 { 48 return (word & ~mask) | ((value << ctz64(mask)) & mask); 49 } 50 51 static PCIDevice *pnv_phb4_find_cfg_dev(PnvPHB4 *phb) 52 { 53 PCIHostState *pci = PCI_HOST_BRIDGE(phb); 54 uint64_t addr = phb->regs[PHB_CONFIG_ADDRESS >> 3]; 55 uint8_t bus, devfn; 56 57 if (!(addr >> 63)) { 58 return NULL; 59 } 60 bus = (addr >> 52) & 0xff; 61 devfn = (addr >> 44) & 0xff; 62 63 /* We don't access the root complex this way */ 64 if (bus == 0 && devfn == 0) { 65 return NULL; 66 } 67 return pci_find_device(pci->bus, bus, devfn); 68 } 69 70 /* 71 * The CONFIG_DATA register expects little endian accesses, but as the 72 * region is big endian, we have to swap the value. 73 */ 74 static void pnv_phb4_config_write(PnvPHB4 *phb, unsigned off, 75 unsigned size, uint64_t val) 76 { 77 uint32_t cfg_addr, limit; 78 PCIDevice *pdev; 79 80 pdev = pnv_phb4_find_cfg_dev(phb); 81 if (!pdev) { 82 return; 83 } 84 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; 85 cfg_addr |= off; 86 limit = pci_config_size(pdev); 87 if (limit <= cfg_addr) { 88 /* 89 * conventional pci device can be behind pcie-to-pci bridge. 90 * 256 <= addr < 4K has no effects. 91 */ 92 return; 93 } 94 switch (size) { 95 case 1: 96 break; 97 case 2: 98 val = bswap16(val); 99 break; 100 case 4: 101 val = bswap32(val); 102 break; 103 default: 104 g_assert_not_reached(); 105 } 106 pci_host_config_write_common(pdev, cfg_addr, limit, val, size); 107 } 108 109 static uint64_t pnv_phb4_config_read(PnvPHB4 *phb, unsigned off, 110 unsigned size) 111 { 112 uint32_t cfg_addr, limit; 113 PCIDevice *pdev; 114 uint64_t val; 115 116 pdev = pnv_phb4_find_cfg_dev(phb); 117 if (!pdev) { 118 return ~0ull; 119 } 120 cfg_addr = (phb->regs[PHB_CONFIG_ADDRESS >> 3] >> 32) & 0xffc; 121 cfg_addr |= off; 122 limit = pci_config_size(pdev); 123 if (limit <= cfg_addr) { 124 /* 125 * conventional pci device can be behind pcie-to-pci bridge. 126 * 256 <= addr < 4K has no effects. 127 */ 128 return ~0ull; 129 } 130 val = pci_host_config_read_common(pdev, cfg_addr, limit, size); 131 switch (size) { 132 case 1: 133 return val; 134 case 2: 135 return bswap16(val); 136 case 4: 137 return bswap32(val); 138 default: 139 g_assert_not_reached(); 140 } 141 } 142 143 /* 144 * Root complex register accesses are memory mapped. 145 */ 146 static void pnv_phb4_rc_config_write(PnvPHB4 *phb, unsigned off, 147 unsigned size, uint64_t val) 148 { 149 PCIHostState *pci = PCI_HOST_BRIDGE(phb); 150 PCIDevice *pdev; 151 152 if (size != 4) { 153 phb_error(phb, "rc_config_write invalid size %d\n", size); 154 return; 155 } 156 157 pdev = pci_find_device(pci->bus, 0, 0); 158 if (!pdev) { 159 phb_error(phb, "rc_config_write device not found\n"); 160 return; 161 } 162 163 pci_host_config_write_common(pdev, off, PHB_RC_CONFIG_SIZE, 164 bswap32(val), 4); 165 } 166 167 static uint64_t pnv_phb4_rc_config_read(PnvPHB4 *phb, unsigned off, 168 unsigned size) 169 { 170 PCIHostState *pci = PCI_HOST_BRIDGE(phb); 171 PCIDevice *pdev; 172 uint64_t val; 173 174 if (size != 4) { 175 phb_error(phb, "rc_config_read invalid size %d\n", size); 176 return ~0ull; 177 } 178 179 pdev = pci_find_device(pci->bus, 0, 0); 180 if (!pdev) { 181 phb_error(phb, "rc_config_read device not found\n"); 182 return ~0ull; 183 } 184 185 val = pci_host_config_read_common(pdev, off, PHB_RC_CONFIG_SIZE, 4); 186 return bswap32(val); 187 } 188 189 static void pnv_phb4_check_mbt(PnvPHB4 *phb, uint32_t index) 190 { 191 uint64_t base, start, size, mbe0, mbe1; 192 MemoryRegion *parent; 193 char name[64]; 194 195 /* Unmap first */ 196 if (memory_region_is_mapped(&phb->mr_mmio[index])) { 197 /* Should we destroy it in RCU friendly way... ? */ 198 memory_region_del_subregion(phb->mr_mmio[index].container, 199 &phb->mr_mmio[index]); 200 } 201 202 /* Get table entry */ 203 mbe0 = phb->ioda_MBT[(index << 1)]; 204 mbe1 = phb->ioda_MBT[(index << 1) + 1]; 205 206 if (!(mbe0 & IODA3_MBT0_ENABLE)) { 207 return; 208 } 209 210 /* Grab geometry from registers */ 211 base = GETFIELD(IODA3_MBT0_BASE_ADDR, mbe0) << 12; 212 size = GETFIELD(IODA3_MBT1_MASK, mbe1) << 12; 213 size |= 0xff00000000000000ull; 214 size = ~size + 1; 215 216 /* Calculate PCI side start address based on M32/M64 window type */ 217 if (mbe0 & IODA3_MBT0_TYPE_M32) { 218 start = phb->regs[PHB_M32_START_ADDR >> 3]; 219 if ((start + size) > 0x100000000ull) { 220 phb_error(phb, "M32 set beyond 4GB boundary !"); 221 size = 0x100000000 - start; 222 } 223 } else { 224 start = base | (phb->regs[PHB_M64_UPPER_BITS >> 3]); 225 } 226 227 /* TODO: Figure out how to implemet/decode AOMASK */ 228 229 /* Check if it matches an enabled MMIO region in the PEC stack */ 230 if (memory_region_is_mapped(&phb->mmbar0) && 231 base >= phb->mmio0_base && 232 (base + size) <= (phb->mmio0_base + phb->mmio0_size)) { 233 parent = &phb->mmbar0; 234 base -= phb->mmio0_base; 235 } else if (memory_region_is_mapped(&phb->mmbar1) && 236 base >= phb->mmio1_base && 237 (base + size) <= (phb->mmio1_base + phb->mmio1_size)) { 238 parent = &phb->mmbar1; 239 base -= phb->mmio1_base; 240 } else { 241 phb_error(phb, "PHB MBAR %d out of parent bounds", index); 242 return; 243 } 244 245 /* Create alias (better name ?) */ 246 snprintf(name, sizeof(name), "phb4-mbar%d", index); 247 memory_region_init_alias(&phb->mr_mmio[index], OBJECT(phb), name, 248 &phb->pci_mmio, start, size); 249 memory_region_add_subregion(parent, base, &phb->mr_mmio[index]); 250 } 251 252 static void pnv_phb4_check_all_mbt(PnvPHB4 *phb) 253 { 254 uint64_t i; 255 uint32_t num_windows = phb->big_phb ? PNV_PHB4_MAX_MMIO_WINDOWS : 256 PNV_PHB4_MIN_MMIO_WINDOWS; 257 258 for (i = 0; i < num_windows; i++) { 259 pnv_phb4_check_mbt(phb, i); 260 } 261 } 262 263 static uint64_t *pnv_phb4_ioda_access(PnvPHB4 *phb, 264 unsigned *out_table, unsigned *out_idx) 265 { 266 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; 267 unsigned int index = GETFIELD(PHB_IODA_AD_TADR, adreg); 268 unsigned int table = GETFIELD(PHB_IODA_AD_TSEL, adreg); 269 unsigned int mask; 270 uint64_t *tptr = NULL; 271 272 switch (table) { 273 case IODA3_TBL_LIST: 274 tptr = phb->ioda_LIST; 275 mask = 7; 276 break; 277 case IODA3_TBL_MIST: 278 tptr = phb->ioda_MIST; 279 mask = phb->big_phb ? PNV_PHB4_MAX_MIST : (PNV_PHB4_MAX_MIST >> 1); 280 mask -= 1; 281 break; 282 case IODA3_TBL_RCAM: 283 mask = phb->big_phb ? 127 : 63; 284 break; 285 case IODA3_TBL_MRT: 286 mask = phb->big_phb ? 15 : 7; 287 break; 288 case IODA3_TBL_PESTA: 289 case IODA3_TBL_PESTB: 290 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 291 mask -= 1; 292 break; 293 case IODA3_TBL_TVT: 294 tptr = phb->ioda_TVT; 295 mask = phb->big_phb ? PNV_PHB4_MAX_TVEs : (PNV_PHB4_MAX_TVEs >> 1); 296 mask -= 1; 297 break; 298 case IODA3_TBL_TCR: 299 case IODA3_TBL_TDR: 300 mask = phb->big_phb ? 1023 : 511; 301 break; 302 case IODA3_TBL_MBT: 303 tptr = phb->ioda_MBT; 304 mask = phb->big_phb ? PNV_PHB4_MAX_MBEs : (PNV_PHB4_MAX_MBEs >> 1); 305 mask -= 1; 306 break; 307 case IODA3_TBL_MDT: 308 tptr = phb->ioda_MDT; 309 mask = phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 310 mask -= 1; 311 break; 312 case IODA3_TBL_PEEV: 313 tptr = phb->ioda_PEEV; 314 mask = phb->big_phb ? PNV_PHB4_MAX_PEEVs : (PNV_PHB4_MAX_PEEVs >> 1); 315 mask -= 1; 316 break; 317 default: 318 phb_error(phb, "invalid IODA table %d", table); 319 return NULL; 320 } 321 index &= mask; 322 if (out_idx) { 323 *out_idx = index; 324 } 325 if (out_table) { 326 *out_table = table; 327 } 328 if (tptr) { 329 tptr += index; 330 } 331 if (adreg & PHB_IODA_AD_AUTOINC) { 332 index = (index + 1) & mask; 333 adreg = SETFIELD(PHB_IODA_AD_TADR, adreg, index); 334 } 335 336 phb->regs[PHB_IODA_ADDR >> 3] = adreg; 337 return tptr; 338 } 339 340 static uint64_t pnv_phb4_ioda_read(PnvPHB4 *phb) 341 { 342 unsigned table, idx; 343 uint64_t *tptr; 344 345 tptr = pnv_phb4_ioda_access(phb, &table, &idx); 346 if (!tptr) { 347 /* Special PESTA case */ 348 if (table == IODA3_TBL_PESTA) { 349 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 1)) << 63; 350 } else if (table == IODA3_TBL_PESTB) { 351 return ((uint64_t)(phb->ioda_PEST_AB[idx] & 2)) << 62; 352 } 353 /* Return 0 on unsupported tables, not ff's */ 354 return 0; 355 } 356 return *tptr; 357 } 358 359 static void pnv_phb4_ioda_write(PnvPHB4 *phb, uint64_t val) 360 { 361 unsigned table, idx; 362 uint64_t *tptr; 363 364 tptr = pnv_phb4_ioda_access(phb, &table, &idx); 365 if (!tptr) { 366 /* Special PESTA case */ 367 if (table == IODA3_TBL_PESTA) { 368 phb->ioda_PEST_AB[idx] &= ~1; 369 phb->ioda_PEST_AB[idx] |= (val >> 63) & 1; 370 } else if (table == IODA3_TBL_PESTB) { 371 phb->ioda_PEST_AB[idx] &= ~2; 372 phb->ioda_PEST_AB[idx] |= (val >> 62) & 2; 373 } 374 return; 375 } 376 377 /* Handle side effects */ 378 switch (table) { 379 case IODA3_TBL_LIST: 380 break; 381 case IODA3_TBL_MIST: { 382 /* Special mask for MIST partial write */ 383 uint64_t adreg = phb->regs[PHB_IODA_ADDR >> 3]; 384 uint32_t mmask = GETFIELD(PHB_IODA_AD_MIST_PWV, adreg); 385 uint64_t v = *tptr; 386 if (mmask == 0) { 387 mmask = 0xf; 388 } 389 if (mmask & 8) { 390 v &= 0x0000ffffffffffffull; 391 v |= 0xcfff000000000000ull & val; 392 } 393 if (mmask & 4) { 394 v &= 0xffff0000ffffffffull; 395 v |= 0x0000cfff00000000ull & val; 396 } 397 if (mmask & 2) { 398 v &= 0xffffffff0000ffffull; 399 v |= 0x00000000cfff0000ull & val; 400 } 401 if (mmask & 1) { 402 v &= 0xffffffffffff0000ull; 403 v |= 0x000000000000cfffull & val; 404 } 405 *tptr = v; 406 break; 407 } 408 case IODA3_TBL_MBT: 409 *tptr = val; 410 411 /* Copy accross the valid bit to the other half */ 412 phb->ioda_MBT[idx ^ 1] &= 0x7fffffffffffffffull; 413 phb->ioda_MBT[idx ^ 1] |= 0x8000000000000000ull & val; 414 415 /* Update mappings */ 416 pnv_phb4_check_mbt(phb, idx >> 1); 417 break; 418 default: 419 *tptr = val; 420 } 421 } 422 423 static void pnv_phb4_rtc_invalidate(PnvPHB4 *phb, uint64_t val) 424 { 425 PnvPhb4DMASpace *ds; 426 427 /* Always invalidate all for now ... */ 428 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 429 ds->pe_num = PHB_INVALID_PE; 430 } 431 } 432 433 static void pnv_phb4_update_msi_regions(PnvPhb4DMASpace *ds) 434 { 435 uint64_t cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; 436 437 if (cfg & PHB_PHB4C_32BIT_MSI_EN) { 438 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { 439 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 440 0xffff0000, &ds->msi32_mr); 441 } 442 } else { 443 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi32_mr))) { 444 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), 445 &ds->msi32_mr); 446 } 447 } 448 449 if (cfg & PHB_PHB4C_64BIT_MSI_EN) { 450 if (!memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { 451 memory_region_add_subregion(MEMORY_REGION(&ds->dma_mr), 452 (1ull << 60), &ds->msi64_mr); 453 } 454 } else { 455 if (memory_region_is_mapped(MEMORY_REGION(&ds->msi64_mr))) { 456 memory_region_del_subregion(MEMORY_REGION(&ds->dma_mr), 457 &ds->msi64_mr); 458 } 459 } 460 } 461 462 static void pnv_phb4_update_all_msi_regions(PnvPHB4 *phb) 463 { 464 PnvPhb4DMASpace *ds; 465 466 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 467 pnv_phb4_update_msi_regions(ds); 468 } 469 } 470 471 static void pnv_phb4_update_xsrc(PnvPHB4 *phb) 472 { 473 int shift, flags, i, lsi_base; 474 XiveSource *xsrc = &phb->xsrc; 475 476 /* The XIVE source characteristics can be set at run time */ 477 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PGSZ_64K) { 478 shift = XIVE_ESB_64K; 479 } else { 480 shift = XIVE_ESB_4K; 481 } 482 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_STORE_EOI) { 483 flags = XIVE_SRC_STORE_EOI; 484 } else { 485 flags = 0; 486 } 487 488 /* 489 * When the PQ disable configuration bit is set, the check on the 490 * PQ state bits is disabled on the PHB side (for MSI only) and it 491 * is performed on the IC side instead. 492 */ 493 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_PQ_DISABLE) { 494 flags |= XIVE_SRC_PQ_DISABLE; 495 } 496 497 phb->xsrc.esb_shift = shift; 498 phb->xsrc.esb_flags = flags; 499 500 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); 501 lsi_base <<= 3; 502 503 /* TODO: handle reset values of PHB_LSI_SRC_ID */ 504 if (!lsi_base) { 505 return; 506 } 507 508 /* TODO: need a xive_source_irq_reset_lsi() */ 509 bitmap_zero(xsrc->lsi_map, xsrc->nr_irqs); 510 511 for (i = 0; i < xsrc->nr_irqs; i++) { 512 bool msi = (i < lsi_base || i >= (lsi_base + 8)); 513 if (!msi) { 514 xive_source_irq_set_lsi(xsrc, i); 515 } 516 } 517 } 518 519 static void pnv_phb4_reg_write(void *opaque, hwaddr off, uint64_t val, 520 unsigned size) 521 { 522 PnvPHB4 *phb = PNV_PHB4(opaque); 523 bool changed; 524 525 /* Special case outbound configuration data */ 526 if ((off & 0xfffc) == PHB_CONFIG_DATA) { 527 pnv_phb4_config_write(phb, off & 0x3, size, val); 528 return; 529 } 530 531 /* Special case RC configuration space */ 532 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { 533 pnv_phb4_rc_config_write(phb, off & 0x7ff, size, val); 534 return; 535 } 536 537 /* Other registers are 64-bit only */ 538 if (size != 8 || off & 0x7) { 539 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", 540 off, size); 541 return; 542 } 543 544 /* Handle masking */ 545 switch (off) { 546 case PHB_LSI_SOURCE_ID: 547 val &= PHB_LSI_SRC_ID; 548 break; 549 case PHB_M64_UPPER_BITS: 550 val &= 0xff00000000000000ull; 551 break; 552 /* TCE Kill */ 553 case PHB_TCE_KILL: 554 /* Clear top 3 bits which HW does to indicate successful queuing */ 555 val &= ~(PHB_TCE_KILL_ALL | PHB_TCE_KILL_PE | PHB_TCE_KILL_ONE); 556 break; 557 case PHB_Q_DMA_R: 558 /* 559 * This is enough logic to make SW happy but we aren't 560 * actually quiescing the DMAs 561 */ 562 if (val & PHB_Q_DMA_R_AUTORESET) { 563 val = 0; 564 } else { 565 val &= PHB_Q_DMA_R_QUIESCE_DMA; 566 } 567 break; 568 /* LEM stuff */ 569 case PHB_LEM_FIR_AND_MASK: 570 phb->regs[PHB_LEM_FIR_ACCUM >> 3] &= val; 571 return; 572 case PHB_LEM_FIR_OR_MASK: 573 phb->regs[PHB_LEM_FIR_ACCUM >> 3] |= val; 574 return; 575 case PHB_LEM_ERROR_AND_MASK: 576 phb->regs[PHB_LEM_ERROR_MASK >> 3] &= val; 577 return; 578 case PHB_LEM_ERROR_OR_MASK: 579 phb->regs[PHB_LEM_ERROR_MASK >> 3] |= val; 580 return; 581 case PHB_LEM_WOF: 582 val = 0; 583 break; 584 /* TODO: More regs ..., maybe create a table with masks... */ 585 586 /* Read only registers */ 587 case PHB_CPU_LOADSTORE_STATUS: 588 case PHB_ETU_ERR_SUMMARY: 589 case PHB_PHB4_GEN_CAP: 590 case PHB_PHB4_TCE_CAP: 591 case PHB_PHB4_IRQ_CAP: 592 case PHB_PHB4_EEH_CAP: 593 return; 594 } 595 596 /* Record whether it changed */ 597 changed = phb->regs[off >> 3] != val; 598 599 /* Store in register cache first */ 600 phb->regs[off >> 3] = val; 601 602 /* Handle side effects */ 603 switch (off) { 604 case PHB_PHB4_CONFIG: 605 if (changed) { 606 pnv_phb4_update_all_msi_regions(phb); 607 } 608 break; 609 case PHB_M32_START_ADDR: 610 case PHB_M64_UPPER_BITS: 611 if (changed) { 612 pnv_phb4_check_all_mbt(phb); 613 } 614 break; 615 616 /* IODA table accesses */ 617 case PHB_IODA_DATA0: 618 pnv_phb4_ioda_write(phb, val); 619 break; 620 621 /* RTC invalidation */ 622 case PHB_RTC_INVALIDATE: 623 pnv_phb4_rtc_invalidate(phb, val); 624 break; 625 626 /* PHB Control (Affects XIVE source) */ 627 case PHB_CTRLR: 628 case PHB_LSI_SOURCE_ID: 629 pnv_phb4_update_xsrc(phb); 630 break; 631 632 /* Silent simple writes */ 633 case PHB_ASN_CMPM: 634 case PHB_CONFIG_ADDRESS: 635 case PHB_IODA_ADDR: 636 case PHB_TCE_KILL: 637 case PHB_TCE_SPEC_CTL: 638 case PHB_PEST_BAR: 639 case PHB_PELTV_BAR: 640 case PHB_RTT_BAR: 641 case PHB_LEM_FIR_ACCUM: 642 case PHB_LEM_ERROR_MASK: 643 case PHB_LEM_ACTION0: 644 case PHB_LEM_ACTION1: 645 case PHB_TCE_TAG_ENABLE: 646 case PHB_INT_NOTIFY_ADDR: 647 case PHB_INT_NOTIFY_INDEX: 648 case PHB_DMARD_SYNC: 649 break; 650 651 /* Noise on anything else */ 652 default: 653 qemu_log_mask(LOG_UNIMP, "phb4: reg_write 0x%"PRIx64"=%"PRIx64"\n", 654 off, val); 655 } 656 } 657 658 static uint64_t pnv_phb4_reg_read(void *opaque, hwaddr off, unsigned size) 659 { 660 PnvPHB4 *phb = PNV_PHB4(opaque); 661 uint64_t val; 662 663 if ((off & 0xfffc) == PHB_CONFIG_DATA) { 664 return pnv_phb4_config_read(phb, off & 0x3, size); 665 } 666 667 /* Special case RC configuration space */ 668 if ((off & 0xf800) == PHB_RC_CONFIG_BASE) { 669 return pnv_phb4_rc_config_read(phb, off & 0x7ff, size); 670 } 671 672 /* Other registers are 64-bit only */ 673 if (size != 8 || off & 0x7) { 674 phb_error(phb, "Invalid register access, offset: 0x%"PRIx64" size: %d", 675 off, size); 676 return ~0ull; 677 } 678 679 /* Default read from cache */ 680 val = phb->regs[off >> 3]; 681 682 switch (off) { 683 case PHB_VERSION: 684 return PNV_PHB4_PEC_GET_CLASS(phb->pec)->version; 685 686 /* Read-only */ 687 case PHB_PHB4_GEN_CAP: 688 return 0xe4b8000000000000ull; 689 case PHB_PHB4_TCE_CAP: 690 return phb->big_phb ? 0x4008440000000400ull : 0x2008440000000200ull; 691 case PHB_PHB4_IRQ_CAP: 692 return phb->big_phb ? 0x0800000000001000ull : 0x0800000000000800ull; 693 case PHB_PHB4_EEH_CAP: 694 return phb->big_phb ? 0x2000000000000000ull : 0x1000000000000000ull; 695 696 /* IODA table accesses */ 697 case PHB_IODA_DATA0: 698 return pnv_phb4_ioda_read(phb); 699 700 /* Link training always appears trained */ 701 case PHB_PCIE_DLP_TRAIN_CTL: 702 /* TODO: Do something sensible with speed ? */ 703 return PHB_PCIE_DLP_INBAND_PRESENCE | PHB_PCIE_DLP_TL_LINKACT; 704 705 /* DMA read sync: make it look like it's complete */ 706 case PHB_DMARD_SYNC: 707 return PHB_DMARD_SYNC_COMPLETE; 708 709 /* Silent simple reads */ 710 case PHB_LSI_SOURCE_ID: 711 case PHB_CPU_LOADSTORE_STATUS: 712 case PHB_ASN_CMPM: 713 case PHB_PHB4_CONFIG: 714 case PHB_M32_START_ADDR: 715 case PHB_CONFIG_ADDRESS: 716 case PHB_IODA_ADDR: 717 case PHB_RTC_INVALIDATE: 718 case PHB_TCE_KILL: 719 case PHB_TCE_SPEC_CTL: 720 case PHB_PEST_BAR: 721 case PHB_PELTV_BAR: 722 case PHB_RTT_BAR: 723 case PHB_M64_UPPER_BITS: 724 case PHB_CTRLR: 725 case PHB_LEM_FIR_ACCUM: 726 case PHB_LEM_ERROR_MASK: 727 case PHB_LEM_ACTION0: 728 case PHB_LEM_ACTION1: 729 case PHB_TCE_TAG_ENABLE: 730 case PHB_INT_NOTIFY_ADDR: 731 case PHB_INT_NOTIFY_INDEX: 732 case PHB_Q_DMA_R: 733 case PHB_ETU_ERR_SUMMARY: 734 break; 735 736 /* Noise on anything else */ 737 default: 738 qemu_log_mask(LOG_UNIMP, "phb4: reg_read 0x%"PRIx64"=%"PRIx64"\n", 739 off, val); 740 } 741 return val; 742 } 743 744 static const MemoryRegionOps pnv_phb4_reg_ops = { 745 .read = pnv_phb4_reg_read, 746 .write = pnv_phb4_reg_write, 747 .valid.min_access_size = 1, 748 .valid.max_access_size = 8, 749 .impl.min_access_size = 1, 750 .impl.max_access_size = 8, 751 .endianness = DEVICE_BIG_ENDIAN, 752 }; 753 754 static uint64_t pnv_phb4_xscom_read(void *opaque, hwaddr addr, unsigned size) 755 { 756 PnvPHB4 *phb = PNV_PHB4(opaque); 757 uint32_t reg = addr >> 3; 758 uint64_t val; 759 hwaddr offset; 760 761 switch (reg) { 762 case PHB_SCOM_HV_IND_ADDR: 763 return phb->scom_hv_ind_addr_reg; 764 765 case PHB_SCOM_HV_IND_DATA: 766 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { 767 phb_error(phb, "Invalid indirect address"); 768 return ~0ull; 769 } 770 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; 771 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); 772 val = pnv_phb4_reg_read(phb, offset, size); 773 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { 774 offset += size; 775 offset &= 0x3fff; 776 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, 777 phb->scom_hv_ind_addr_reg, 778 offset); 779 } 780 return val; 781 case PHB_SCOM_ETU_LEM_FIR: 782 case PHB_SCOM_ETU_LEM_FIR_AND: 783 case PHB_SCOM_ETU_LEM_FIR_OR: 784 case PHB_SCOM_ETU_LEM_FIR_MSK: 785 case PHB_SCOM_ETU_LEM_ERR_MSK_AND: 786 case PHB_SCOM_ETU_LEM_ERR_MSK_OR: 787 case PHB_SCOM_ETU_LEM_ACT0: 788 case PHB_SCOM_ETU_LEM_ACT1: 789 case PHB_SCOM_ETU_LEM_WOF: 790 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; 791 return pnv_phb4_reg_read(phb, offset, size); 792 case PHB_SCOM_ETU_PMON_CONFIG: 793 case PHB_SCOM_ETU_PMON_CTR0: 794 case PHB_SCOM_ETU_PMON_CTR1: 795 case PHB_SCOM_ETU_PMON_CTR2: 796 case PHB_SCOM_ETU_PMON_CTR3: 797 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; 798 return pnv_phb4_reg_read(phb, offset, size); 799 800 default: 801 qemu_log_mask(LOG_UNIMP, "phb4: xscom_read 0x%"HWADDR_PRIx"\n", addr); 802 return ~0ull; 803 } 804 } 805 806 static void pnv_phb4_xscom_write(void *opaque, hwaddr addr, 807 uint64_t val, unsigned size) 808 { 809 PnvPHB4 *phb = PNV_PHB4(opaque); 810 uint32_t reg = addr >> 3; 811 hwaddr offset; 812 813 switch (reg) { 814 case PHB_SCOM_HV_IND_ADDR: 815 phb->scom_hv_ind_addr_reg = val & 0xe000000000001fff; 816 break; 817 case PHB_SCOM_HV_IND_DATA: 818 if (!(phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_VALID)) { 819 phb_error(phb, "Invalid indirect address"); 820 break; 821 } 822 size = (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_4B) ? 4 : 8; 823 offset = GETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, phb->scom_hv_ind_addr_reg); 824 pnv_phb4_reg_write(phb, offset, val, size); 825 if (phb->scom_hv_ind_addr_reg & PHB_SCOM_HV_IND_ADDR_AUTOINC) { 826 offset += size; 827 offset &= 0x3fff; 828 phb->scom_hv_ind_addr_reg = SETFIELD(PHB_SCOM_HV_IND_ADDR_ADDR, 829 phb->scom_hv_ind_addr_reg, 830 offset); 831 } 832 break; 833 case PHB_SCOM_ETU_LEM_FIR: 834 case PHB_SCOM_ETU_LEM_FIR_AND: 835 case PHB_SCOM_ETU_LEM_FIR_OR: 836 case PHB_SCOM_ETU_LEM_FIR_MSK: 837 case PHB_SCOM_ETU_LEM_ERR_MSK_AND: 838 case PHB_SCOM_ETU_LEM_ERR_MSK_OR: 839 case PHB_SCOM_ETU_LEM_ACT0: 840 case PHB_SCOM_ETU_LEM_ACT1: 841 case PHB_SCOM_ETU_LEM_WOF: 842 offset = ((reg - PHB_SCOM_ETU_LEM_FIR) << 3) + PHB_LEM_FIR_ACCUM; 843 pnv_phb4_reg_write(phb, offset, val, size); 844 break; 845 case PHB_SCOM_ETU_PMON_CONFIG: 846 case PHB_SCOM_ETU_PMON_CTR0: 847 case PHB_SCOM_ETU_PMON_CTR1: 848 case PHB_SCOM_ETU_PMON_CTR2: 849 case PHB_SCOM_ETU_PMON_CTR3: 850 offset = ((reg - PHB_SCOM_ETU_PMON_CONFIG) << 3) + PHB_PERFMON_CONFIG; 851 pnv_phb4_reg_write(phb, offset, val, size); 852 break; 853 default: 854 qemu_log_mask(LOG_UNIMP, "phb4: xscom_write 0x%"HWADDR_PRIx 855 "=%"PRIx64"\n", addr, val); 856 } 857 } 858 859 const MemoryRegionOps pnv_phb4_xscom_ops = { 860 .read = pnv_phb4_xscom_read, 861 .write = pnv_phb4_xscom_write, 862 .valid.min_access_size = 8, 863 .valid.max_access_size = 8, 864 .impl.min_access_size = 8, 865 .impl.max_access_size = 8, 866 .endianness = DEVICE_BIG_ENDIAN, 867 }; 868 869 static uint64_t pnv_pec_stk_nest_xscom_read(void *opaque, hwaddr addr, 870 unsigned size) 871 { 872 PnvPHB4 *phb = PNV_PHB4(opaque); 873 uint32_t reg = addr >> 3; 874 875 /* TODO: add list of allowed registers and error out if not */ 876 return phb->nest_regs[reg]; 877 } 878 879 /* 880 * Return the 'stack_no' of a PHB4. 'stack_no' is the order 881 * the PHB4 occupies in the PEC. This is the reverse of what 882 * pnv_phb4_pec_get_phb_id() does. 883 * 884 * E.g. a phb with phb_id = 4 and pec->index = 1 (PEC1) will 885 * be the second phb (stack_no = 1) of the PEC. 886 */ 887 static int pnv_phb4_get_phb_stack_no(PnvPHB4 *phb) 888 { 889 PnvPhb4PecState *pec = phb->pec; 890 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 891 int index = pec->index; 892 int stack_no = phb->phb_id; 893 894 while (index--) { 895 stack_no -= pecc->num_phbs[index]; 896 } 897 898 return stack_no; 899 } 900 901 static void pnv_phb4_update_regions(PnvPHB4 *phb) 902 { 903 /* Unmap first always */ 904 if (memory_region_is_mapped(&phb->mr_regs)) { 905 memory_region_del_subregion(&phb->phbbar, &phb->mr_regs); 906 } 907 if (memory_region_is_mapped(&phb->xsrc.esb_mmio)) { 908 memory_region_del_subregion(&phb->intbar, &phb->xsrc.esb_mmio); 909 } 910 911 /* Map registers if enabled */ 912 if (memory_region_is_mapped(&phb->phbbar)) { 913 memory_region_add_subregion(&phb->phbbar, 0, &phb->mr_regs); 914 } 915 916 /* Map ESB if enabled */ 917 if (memory_region_is_mapped(&phb->intbar)) { 918 memory_region_add_subregion(&phb->intbar, 0, &phb->xsrc.esb_mmio); 919 } 920 921 /* Check/update m32 */ 922 pnv_phb4_check_all_mbt(phb); 923 } 924 925 static void pnv_pec_phb_update_map(PnvPHB4 *phb) 926 { 927 PnvPhb4PecState *pec = phb->pec; 928 MemoryRegion *sysmem = get_system_memory(); 929 uint64_t bar_en = phb->nest_regs[PEC_NEST_STK_BAR_EN]; 930 int stack_no = pnv_phb4_get_phb_stack_no(phb); 931 uint64_t bar, mask, size; 932 char name[64]; 933 934 /* 935 * NOTE: This will really not work well if those are remapped 936 * after the PHB has created its sub regions. We could do better 937 * if we had a way to resize regions but we don't really care 938 * that much in practice as the stuff below really only happens 939 * once early during boot 940 */ 941 942 /* Handle unmaps */ 943 if (memory_region_is_mapped(&phb->mmbar0) && 944 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { 945 memory_region_del_subregion(sysmem, &phb->mmbar0); 946 } 947 if (memory_region_is_mapped(&phb->mmbar1) && 948 !(bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { 949 memory_region_del_subregion(sysmem, &phb->mmbar1); 950 } 951 if (memory_region_is_mapped(&phb->phbbar) && 952 !(bar_en & PEC_NEST_STK_BAR_EN_PHB)) { 953 memory_region_del_subregion(sysmem, &phb->phbbar); 954 } 955 if (memory_region_is_mapped(&phb->intbar) && 956 !(bar_en & PEC_NEST_STK_BAR_EN_INT)) { 957 memory_region_del_subregion(sysmem, &phb->intbar); 958 } 959 960 /* Update PHB */ 961 pnv_phb4_update_regions(phb); 962 963 /* Handle maps */ 964 if (!memory_region_is_mapped(&phb->mmbar0) && 965 (bar_en & PEC_NEST_STK_BAR_EN_MMIO0)) { 966 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0] >> 8; 967 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR0_MASK]; 968 size = ((~mask) >> 8) + 1; 969 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio0", 970 pec->chip_id, pec->index, stack_no); 971 memory_region_init(&phb->mmbar0, OBJECT(phb), name, size); 972 memory_region_add_subregion(sysmem, bar, &phb->mmbar0); 973 phb->mmio0_base = bar; 974 phb->mmio0_size = size; 975 } 976 if (!memory_region_is_mapped(&phb->mmbar1) && 977 (bar_en & PEC_NEST_STK_BAR_EN_MMIO1)) { 978 bar = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1] >> 8; 979 mask = phb->nest_regs[PEC_NEST_STK_MMIO_BAR1_MASK]; 980 size = ((~mask) >> 8) + 1; 981 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-mmio1", 982 pec->chip_id, pec->index, stack_no); 983 memory_region_init(&phb->mmbar1, OBJECT(phb), name, size); 984 memory_region_add_subregion(sysmem, bar, &phb->mmbar1); 985 phb->mmio1_base = bar; 986 phb->mmio1_size = size; 987 } 988 if (!memory_region_is_mapped(&phb->phbbar) && 989 (bar_en & PEC_NEST_STK_BAR_EN_PHB)) { 990 bar = phb->nest_regs[PEC_NEST_STK_PHB_REGS_BAR] >> 8; 991 size = PNV_PHB4_NUM_REGS << 3; 992 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d", 993 pec->chip_id, pec->index, stack_no); 994 memory_region_init(&phb->phbbar, OBJECT(phb), name, size); 995 memory_region_add_subregion(sysmem, bar, &phb->phbbar); 996 } 997 if (!memory_region_is_mapped(&phb->intbar) && 998 (bar_en & PEC_NEST_STK_BAR_EN_INT)) { 999 bar = phb->nest_regs[PEC_NEST_STK_INT_BAR] >> 8; 1000 size = PNV_PHB4_MAX_INTs << 16; 1001 snprintf(name, sizeof(name), "pec-%d.%d-phb-%d-int", 1002 phb->pec->chip_id, phb->pec->index, stack_no); 1003 memory_region_init(&phb->intbar, OBJECT(phb), name, size); 1004 memory_region_add_subregion(sysmem, bar, &phb->intbar); 1005 } 1006 1007 /* Update PHB */ 1008 pnv_phb4_update_regions(phb); 1009 } 1010 1011 static void pnv_pec_stk_nest_xscom_write(void *opaque, hwaddr addr, 1012 uint64_t val, unsigned size) 1013 { 1014 PnvPHB4 *phb = PNV_PHB4(opaque); 1015 PnvPhb4PecState *pec = phb->pec; 1016 uint32_t reg = addr >> 3; 1017 1018 switch (reg) { 1019 case PEC_NEST_STK_PCI_NEST_FIR: 1020 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] = val; 1021 break; 1022 case PEC_NEST_STK_PCI_NEST_FIR_CLR: 1023 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] &= val; 1024 break; 1025 case PEC_NEST_STK_PCI_NEST_FIR_SET: 1026 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR] |= val; 1027 break; 1028 case PEC_NEST_STK_PCI_NEST_FIR_MSK: 1029 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] = val; 1030 break; 1031 case PEC_NEST_STK_PCI_NEST_FIR_MSKC: 1032 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] &= val; 1033 break; 1034 case PEC_NEST_STK_PCI_NEST_FIR_MSKS: 1035 phb->nest_regs[PEC_NEST_STK_PCI_NEST_FIR_MSK] |= val; 1036 break; 1037 case PEC_NEST_STK_PCI_NEST_FIR_ACT0: 1038 case PEC_NEST_STK_PCI_NEST_FIR_ACT1: 1039 phb->nest_regs[reg] = val; 1040 break; 1041 case PEC_NEST_STK_PCI_NEST_FIR_WOF: 1042 phb->nest_regs[reg] = 0; 1043 break; 1044 case PEC_NEST_STK_ERR_REPORT_0: 1045 case PEC_NEST_STK_ERR_REPORT_1: 1046 case PEC_NEST_STK_PBCQ_GNRL_STATUS: 1047 /* Flag error ? */ 1048 break; 1049 case PEC_NEST_STK_PBCQ_MODE: 1050 phb->nest_regs[reg] = val & 0xff00000000000000ull; 1051 break; 1052 case PEC_NEST_STK_MMIO_BAR0: 1053 case PEC_NEST_STK_MMIO_BAR0_MASK: 1054 case PEC_NEST_STK_MMIO_BAR1: 1055 case PEC_NEST_STK_MMIO_BAR1_MASK: 1056 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & 1057 (PEC_NEST_STK_BAR_EN_MMIO0 | 1058 PEC_NEST_STK_BAR_EN_MMIO1)) { 1059 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1060 } 1061 phb->nest_regs[reg] = val & 0xffffffffff000000ull; 1062 break; 1063 case PEC_NEST_STK_PHB_REGS_BAR: 1064 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_PHB) { 1065 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1066 } 1067 phb->nest_regs[reg] = val & 0xffffffffffc00000ull; 1068 break; 1069 case PEC_NEST_STK_INT_BAR: 1070 if (phb->nest_regs[PEC_NEST_STK_BAR_EN] & PEC_NEST_STK_BAR_EN_INT) { 1071 phb_pec_error(pec, "Changing enabled BAR unsupported\n"); 1072 } 1073 phb->nest_regs[reg] = val & 0xfffffff000000000ull; 1074 break; 1075 case PEC_NEST_STK_BAR_EN: 1076 phb->nest_regs[reg] = val & 0xf000000000000000ull; 1077 pnv_pec_phb_update_map(phb); 1078 break; 1079 case PEC_NEST_STK_DATA_FRZ_TYPE: 1080 case PEC_NEST_STK_PBCQ_TUN_BAR: 1081 /* Not used for now */ 1082 phb->nest_regs[reg] = val; 1083 break; 1084 default: 1085 qemu_log_mask(LOG_UNIMP, "phb4_pec: nest_xscom_write 0x%"HWADDR_PRIx 1086 "=%"PRIx64"\n", addr, val); 1087 } 1088 } 1089 1090 static const MemoryRegionOps pnv_pec_stk_nest_xscom_ops = { 1091 .read = pnv_pec_stk_nest_xscom_read, 1092 .write = pnv_pec_stk_nest_xscom_write, 1093 .valid.min_access_size = 8, 1094 .valid.max_access_size = 8, 1095 .impl.min_access_size = 8, 1096 .impl.max_access_size = 8, 1097 .endianness = DEVICE_BIG_ENDIAN, 1098 }; 1099 1100 static uint64_t pnv_pec_stk_pci_xscom_read(void *opaque, hwaddr addr, 1101 unsigned size) 1102 { 1103 PnvPHB4 *phb = PNV_PHB4(opaque); 1104 uint32_t reg = addr >> 3; 1105 1106 /* TODO: add list of allowed registers and error out if not */ 1107 return phb->pci_regs[reg]; 1108 } 1109 1110 static void pnv_pec_stk_pci_xscom_write(void *opaque, hwaddr addr, 1111 uint64_t val, unsigned size) 1112 { 1113 PnvPHB4 *phb = PNV_PHB4(opaque); 1114 uint32_t reg = addr >> 3; 1115 1116 switch (reg) { 1117 case PEC_PCI_STK_PCI_FIR: 1118 phb->pci_regs[reg] = val; 1119 break; 1120 case PEC_PCI_STK_PCI_FIR_CLR: 1121 phb->pci_regs[PEC_PCI_STK_PCI_FIR] &= val; 1122 break; 1123 case PEC_PCI_STK_PCI_FIR_SET: 1124 phb->pci_regs[PEC_PCI_STK_PCI_FIR] |= val; 1125 break; 1126 case PEC_PCI_STK_PCI_FIR_MSK: 1127 phb->pci_regs[reg] = val; 1128 break; 1129 case PEC_PCI_STK_PCI_FIR_MSKC: 1130 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] &= val; 1131 break; 1132 case PEC_PCI_STK_PCI_FIR_MSKS: 1133 phb->pci_regs[PEC_PCI_STK_PCI_FIR_MSK] |= val; 1134 break; 1135 case PEC_PCI_STK_PCI_FIR_ACT0: 1136 case PEC_PCI_STK_PCI_FIR_ACT1: 1137 phb->pci_regs[reg] = val; 1138 break; 1139 case PEC_PCI_STK_PCI_FIR_WOF: 1140 phb->pci_regs[reg] = 0; 1141 break; 1142 case PEC_PCI_STK_ETU_RESET: 1143 phb->pci_regs[reg] = val & 0x8000000000000000ull; 1144 /* TODO: Implement reset */ 1145 break; 1146 case PEC_PCI_STK_PBAIB_ERR_REPORT: 1147 break; 1148 case PEC_PCI_STK_PBAIB_TX_CMD_CRED: 1149 case PEC_PCI_STK_PBAIB_TX_DAT_CRED: 1150 phb->pci_regs[reg] = val; 1151 break; 1152 default: 1153 qemu_log_mask(LOG_UNIMP, "phb4_pec_stk: pci_xscom_write 0x%"HWADDR_PRIx 1154 "=%"PRIx64"\n", addr, val); 1155 } 1156 } 1157 1158 static const MemoryRegionOps pnv_pec_stk_pci_xscom_ops = { 1159 .read = pnv_pec_stk_pci_xscom_read, 1160 .write = pnv_pec_stk_pci_xscom_write, 1161 .valid.min_access_size = 8, 1162 .valid.max_access_size = 8, 1163 .impl.min_access_size = 8, 1164 .impl.max_access_size = 8, 1165 .endianness = DEVICE_BIG_ENDIAN, 1166 }; 1167 1168 static int pnv_phb4_map_irq(PCIDevice *pci_dev, int irq_num) 1169 { 1170 /* Check that out properly ... */ 1171 return irq_num & 3; 1172 } 1173 1174 static void pnv_phb4_set_irq(void *opaque, int irq_num, int level) 1175 { 1176 PnvPHB4 *phb = PNV_PHB4(opaque); 1177 uint32_t lsi_base; 1178 1179 /* LSI only ... */ 1180 if (irq_num > 3) { 1181 phb_error(phb, "IRQ %x is not an LSI", irq_num); 1182 } 1183 lsi_base = GETFIELD(PHB_LSI_SRC_ID, phb->regs[PHB_LSI_SOURCE_ID >> 3]); 1184 lsi_base <<= 3; 1185 qemu_set_irq(phb->qirqs[lsi_base + irq_num], level); 1186 } 1187 1188 static bool pnv_phb4_resolve_pe(PnvPhb4DMASpace *ds) 1189 { 1190 uint64_t rtt, addr; 1191 uint16_t rte; 1192 int bus_num; 1193 int num_PEs; 1194 1195 /* Already resolved ? */ 1196 if (ds->pe_num != PHB_INVALID_PE) { 1197 return true; 1198 } 1199 1200 /* We need to lookup the RTT */ 1201 rtt = ds->phb->regs[PHB_RTT_BAR >> 3]; 1202 if (!(rtt & PHB_RTT_BAR_ENABLE)) { 1203 phb_error(ds->phb, "DMA with RTT BAR disabled !"); 1204 /* Set error bits ? fence ? ... */ 1205 return false; 1206 } 1207 1208 /* Read RTE */ 1209 bus_num = pci_bus_num(ds->bus); 1210 addr = rtt & PHB_RTT_BASE_ADDRESS_MASK; 1211 addr += 2 * PCI_BUILD_BDF(bus_num, ds->devfn); 1212 if (dma_memory_read(&address_space_memory, addr, &rte, 1213 sizeof(rte), MEMTXATTRS_UNSPECIFIED)) { 1214 phb_error(ds->phb, "Failed to read RTT entry at 0x%"PRIx64, addr); 1215 /* Set error bits ? fence ? ... */ 1216 return false; 1217 } 1218 rte = be16_to_cpu(rte); 1219 1220 /* Fail upon reading of invalid PE# */ 1221 num_PEs = ds->phb->big_phb ? PNV_PHB4_MAX_PEs : (PNV_PHB4_MAX_PEs >> 1); 1222 if (rte >= num_PEs) { 1223 phb_error(ds->phb, "RTE for RID 0x%x invalid (%04x", ds->devfn, rte); 1224 rte &= num_PEs - 1; 1225 } 1226 ds->pe_num = rte; 1227 return true; 1228 } 1229 1230 static void pnv_phb4_translate_tve(PnvPhb4DMASpace *ds, hwaddr addr, 1231 bool is_write, uint64_t tve, 1232 IOMMUTLBEntry *tlb) 1233 { 1234 uint64_t tta = GETFIELD(IODA3_TVT_TABLE_ADDR, tve); 1235 int32_t lev = GETFIELD(IODA3_TVT_NUM_LEVELS, tve); 1236 uint32_t tts = GETFIELD(IODA3_TVT_TCE_TABLE_SIZE, tve); 1237 uint32_t tps = GETFIELD(IODA3_TVT_IO_PSIZE, tve); 1238 1239 /* Invalid levels */ 1240 if (lev > 4) { 1241 phb_error(ds->phb, "Invalid #levels in TVE %d", lev); 1242 return; 1243 } 1244 1245 /* Invalid entry */ 1246 if (tts == 0) { 1247 phb_error(ds->phb, "Access to invalid TVE"); 1248 return; 1249 } 1250 1251 /* IO Page Size of 0 means untranslated, else use TCEs */ 1252 if (tps == 0) { 1253 /* TODO: Handle boundaries */ 1254 1255 /* Use 4k pages like q35 ... for now */ 1256 tlb->iova = addr & 0xfffffffffffff000ull; 1257 tlb->translated_addr = addr & 0x0003fffffffff000ull; 1258 tlb->addr_mask = 0xfffull; 1259 tlb->perm = IOMMU_RW; 1260 } else { 1261 uint32_t tce_shift, tbl_shift, sh; 1262 uint64_t base, taddr, tce, tce_mask; 1263 1264 /* Address bits per bottom level TCE entry */ 1265 tce_shift = tps + 11; 1266 1267 /* Address bits per table level */ 1268 tbl_shift = tts + 8; 1269 1270 /* Top level table base address */ 1271 base = tta << 12; 1272 1273 /* Total shift to first level */ 1274 sh = tbl_shift * lev + tce_shift; 1275 1276 /* TODO: Limit to support IO page sizes */ 1277 1278 /* TODO: Multi-level untested */ 1279 do { 1280 lev--; 1281 1282 /* Grab the TCE address */ 1283 taddr = base | (((addr >> sh) & ((1ul << tbl_shift) - 1)) << 3); 1284 if (dma_memory_read(&address_space_memory, taddr, &tce, 1285 sizeof(tce), MEMTXATTRS_UNSPECIFIED)) { 1286 phb_error(ds->phb, "Failed to read TCE at 0x%"PRIx64, taddr); 1287 return; 1288 } 1289 tce = be64_to_cpu(tce); 1290 1291 /* Check permission for indirect TCE */ 1292 if ((lev >= 0) && !(tce & 3)) { 1293 phb_error(ds->phb, "Invalid indirect TCE at 0x%"PRIx64, taddr); 1294 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, 1295 is_write ? 'W' : 'R', tve); 1296 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", 1297 tta, lev, tts, tps); 1298 return; 1299 } 1300 sh -= tbl_shift; 1301 base = tce & ~0xfffull; 1302 } while (lev >= 0); 1303 1304 /* We exit the loop with TCE being the final TCE */ 1305 if ((is_write & !(tce & 2)) || ((!is_write) && !(tce & 1))) { 1306 phb_error(ds->phb, "TCE access fault at 0x%"PRIx64, taddr); 1307 phb_error(ds->phb, " xlate %"PRIx64":%c TVE=%"PRIx64, addr, 1308 is_write ? 'W' : 'R', tve); 1309 phb_error(ds->phb, " tta=%"PRIx64" lev=%d tts=%d tps=%d", 1310 tta, lev, tts, tps); 1311 return; 1312 } 1313 tce_mask = ~((1ull << tce_shift) - 1); 1314 tlb->iova = addr & tce_mask; 1315 tlb->translated_addr = tce & tce_mask; 1316 tlb->addr_mask = ~tce_mask; 1317 tlb->perm = tce & 3; 1318 } 1319 } 1320 1321 static IOMMUTLBEntry pnv_phb4_translate_iommu(IOMMUMemoryRegion *iommu, 1322 hwaddr addr, 1323 IOMMUAccessFlags flag, 1324 int iommu_idx) 1325 { 1326 PnvPhb4DMASpace *ds = container_of(iommu, PnvPhb4DMASpace, dma_mr); 1327 int tve_sel; 1328 uint64_t tve, cfg; 1329 IOMMUTLBEntry ret = { 1330 .target_as = &address_space_memory, 1331 .iova = addr, 1332 .translated_addr = 0, 1333 .addr_mask = ~(hwaddr)0, 1334 .perm = IOMMU_NONE, 1335 }; 1336 1337 /* Resolve PE# */ 1338 if (!pnv_phb4_resolve_pe(ds)) { 1339 phb_error(ds->phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", 1340 ds->bus, pci_bus_num(ds->bus), ds->devfn); 1341 return ret; 1342 } 1343 1344 /* Check top bits */ 1345 switch (addr >> 60) { 1346 case 00: 1347 /* DMA or 32-bit MSI ? */ 1348 cfg = ds->phb->regs[PHB_PHB4_CONFIG >> 3]; 1349 if ((cfg & PHB_PHB4C_32BIT_MSI_EN) && 1350 ((addr & 0xffffffffffff0000ull) == 0xffff0000ull)) { 1351 phb_error(ds->phb, "xlate on 32-bit MSI region"); 1352 return ret; 1353 } 1354 /* Choose TVE XXX Use PHB4 Control Register */ 1355 tve_sel = (addr >> 59) & 1; 1356 tve = ds->phb->ioda_TVT[ds->pe_num * 2 + tve_sel]; 1357 pnv_phb4_translate_tve(ds, addr, flag & IOMMU_WO, tve, &ret); 1358 break; 1359 case 01: 1360 phb_error(ds->phb, "xlate on 64-bit MSI region"); 1361 break; 1362 default: 1363 phb_error(ds->phb, "xlate on unsupported address 0x%"PRIx64, addr); 1364 } 1365 return ret; 1366 } 1367 1368 #define TYPE_PNV_PHB4_IOMMU_MEMORY_REGION "pnv-phb4-iommu-memory-region" 1369 DECLARE_INSTANCE_CHECKER(IOMMUMemoryRegion, PNV_PHB4_IOMMU_MEMORY_REGION, 1370 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION) 1371 1372 static void pnv_phb4_iommu_memory_region_class_init(ObjectClass *klass, 1373 void *data) 1374 { 1375 IOMMUMemoryRegionClass *imrc = IOMMU_MEMORY_REGION_CLASS(klass); 1376 1377 imrc->translate = pnv_phb4_translate_iommu; 1378 } 1379 1380 static const TypeInfo pnv_phb4_iommu_memory_region_info = { 1381 .parent = TYPE_IOMMU_MEMORY_REGION, 1382 .name = TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, 1383 .class_init = pnv_phb4_iommu_memory_region_class_init, 1384 }; 1385 1386 /* 1387 * Return the index/phb-id of a PHB4 that belongs to a 1388 * pec->stacks[stack_index] stack. 1389 */ 1390 int pnv_phb4_pec_get_phb_id(PnvPhb4PecState *pec, int stack_index) 1391 { 1392 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1393 int index = pec->index; 1394 int offset = 0; 1395 1396 while (index--) { 1397 offset += pecc->num_phbs[index]; 1398 } 1399 1400 return offset + stack_index; 1401 } 1402 1403 /* 1404 * MSI/MSIX memory region implementation. 1405 * The handler handles both MSI and MSIX. 1406 */ 1407 static void pnv_phb4_msi_write(void *opaque, hwaddr addr, 1408 uint64_t data, unsigned size) 1409 { 1410 PnvPhb4DMASpace *ds = opaque; 1411 PnvPHB4 *phb = ds->phb; 1412 1413 uint32_t src = ((addr >> 4) & 0xffff) | (data & 0x1f); 1414 1415 /* Resolve PE# */ 1416 if (!pnv_phb4_resolve_pe(ds)) { 1417 phb_error(phb, "Failed to resolve PE# for bus @%p (%d) devfn 0x%x", 1418 ds->bus, pci_bus_num(ds->bus), ds->devfn); 1419 return; 1420 } 1421 1422 /* TODO: Check it doesn't collide with LSIs */ 1423 if (src >= phb->xsrc.nr_irqs) { 1424 phb_error(phb, "MSI %d out of bounds", src); 1425 return; 1426 } 1427 1428 /* TODO: check PE/MSI assignement */ 1429 1430 qemu_irq_pulse(phb->qirqs[src]); 1431 } 1432 1433 /* There is no .read as the read result is undefined by PCI spec */ 1434 static uint64_t pnv_phb4_msi_read(void *opaque, hwaddr addr, unsigned size) 1435 { 1436 PnvPhb4DMASpace *ds = opaque; 1437 1438 phb_error(ds->phb, "Invalid MSI read @ 0x%" HWADDR_PRIx, addr); 1439 return -1; 1440 } 1441 1442 static const MemoryRegionOps pnv_phb4_msi_ops = { 1443 .read = pnv_phb4_msi_read, 1444 .write = pnv_phb4_msi_write, 1445 .endianness = DEVICE_LITTLE_ENDIAN 1446 }; 1447 1448 static PnvPhb4DMASpace *pnv_phb4_dma_find(PnvPHB4 *phb, PCIBus *bus, int devfn) 1449 { 1450 PnvPhb4DMASpace *ds; 1451 1452 QLIST_FOREACH(ds, &phb->dma_spaces, list) { 1453 if (ds->bus == bus && ds->devfn == devfn) { 1454 break; 1455 } 1456 } 1457 return ds; 1458 } 1459 1460 static AddressSpace *pnv_phb4_dma_iommu(PCIBus *bus, void *opaque, int devfn) 1461 { 1462 PnvPHB4 *phb = opaque; 1463 PnvPhb4DMASpace *ds; 1464 char name[32]; 1465 1466 ds = pnv_phb4_dma_find(phb, bus, devfn); 1467 1468 if (ds == NULL) { 1469 ds = g_malloc0(sizeof(PnvPhb4DMASpace)); 1470 ds->bus = bus; 1471 ds->devfn = devfn; 1472 ds->pe_num = PHB_INVALID_PE; 1473 ds->phb = phb; 1474 snprintf(name, sizeof(name), "phb4-%d.%d-iommu", phb->chip_id, 1475 phb->phb_id); 1476 memory_region_init_iommu(&ds->dma_mr, sizeof(ds->dma_mr), 1477 TYPE_PNV_PHB4_IOMMU_MEMORY_REGION, 1478 OBJECT(phb), name, UINT64_MAX); 1479 address_space_init(&ds->dma_as, MEMORY_REGION(&ds->dma_mr), 1480 name); 1481 memory_region_init_io(&ds->msi32_mr, OBJECT(phb), &pnv_phb4_msi_ops, 1482 ds, "msi32", 0x10000); 1483 memory_region_init_io(&ds->msi64_mr, OBJECT(phb), &pnv_phb4_msi_ops, 1484 ds, "msi64", 0x100000); 1485 pnv_phb4_update_msi_regions(ds); 1486 1487 QLIST_INSERT_HEAD(&phb->dma_spaces, ds, list); 1488 } 1489 return &ds->dma_as; 1490 } 1491 1492 static void pnv_phb4_xscom_realize(PnvPHB4 *phb) 1493 { 1494 PnvPhb4PecState *pec = phb->pec; 1495 PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec); 1496 int stack_no = pnv_phb4_get_phb_stack_no(phb); 1497 uint32_t pec_nest_base; 1498 uint32_t pec_pci_base; 1499 char name[64]; 1500 1501 assert(pec); 1502 1503 /* Initialize the XSCOM regions for the stack registers */ 1504 snprintf(name, sizeof(name), "xscom-pec-%d.%d-nest-phb-%d", 1505 pec->chip_id, pec->index, stack_no); 1506 pnv_xscom_region_init(&phb->nest_regs_mr, OBJECT(phb), 1507 &pnv_pec_stk_nest_xscom_ops, phb, name, 1508 PHB4_PEC_NEST_STK_REGS_COUNT); 1509 1510 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", 1511 pec->chip_id, pec->index, stack_no); 1512 pnv_xscom_region_init(&phb->pci_regs_mr, OBJECT(phb), 1513 &pnv_pec_stk_pci_xscom_ops, phb, name, 1514 PHB4_PEC_PCI_STK_REGS_COUNT); 1515 1516 /* PHB pass-through */ 1517 snprintf(name, sizeof(name), "xscom-pec-%d.%d-pci-phb-%d", 1518 pec->chip_id, pec->index, stack_no); 1519 pnv_xscom_region_init(&phb->phb_regs_mr, OBJECT(phb), 1520 &pnv_phb4_xscom_ops, phb, name, 0x40); 1521 1522 pec_nest_base = pecc->xscom_nest_base(pec); 1523 pec_pci_base = pecc->xscom_pci_base(pec); 1524 1525 /* Populate the XSCOM address space. */ 1526 pnv_xscom_add_subregion(pec->chip, 1527 pec_nest_base + 0x40 * (stack_no + 1), 1528 &phb->nest_regs_mr); 1529 pnv_xscom_add_subregion(pec->chip, 1530 pec_pci_base + 0x40 * (stack_no + 1), 1531 &phb->pci_regs_mr); 1532 pnv_xscom_add_subregion(pec->chip, 1533 pec_pci_base + PNV9_XSCOM_PEC_PCI_STK0 + 1534 0x40 * stack_no, 1535 &phb->phb_regs_mr); 1536 } 1537 1538 static void pnv_phb4_instance_init(Object *obj) 1539 { 1540 PnvPHB4 *phb = PNV_PHB4(obj); 1541 1542 QLIST_INIT(&phb->dma_spaces); 1543 1544 /* XIVE interrupt source object */ 1545 object_initialize_child(obj, "source", &phb->xsrc, TYPE_XIVE_SOURCE); 1546 } 1547 1548 static PnvPhb4PecState *pnv_phb4_get_pec(PnvChip *chip, PnvPHB4 *phb, 1549 Error **errp) 1550 { 1551 Pnv9Chip *chip9 = PNV9_CHIP(chip); 1552 int chip_id = phb->chip_id; 1553 int index = phb->phb_id; 1554 int i, j; 1555 1556 for (i = 0; i < chip->num_pecs; i++) { 1557 /* 1558 * For each PEC, check the amount of phbs it supports 1559 * and see if the given phb4 index matches an index. 1560 */ 1561 PnvPhb4PecState *pec = &chip9->pecs[i]; 1562 1563 for (j = 0; j < pec->num_phbs; j++) { 1564 if (index == pnv_phb4_pec_get_phb_id(pec, j)) { 1565 return pec; 1566 } 1567 } 1568 } 1569 1570 error_setg(errp, 1571 "pnv-phb4 chip-id %d index %d didn't match any existing PEC", 1572 chip_id, index); 1573 1574 return NULL; 1575 } 1576 1577 static void pnv_phb4_realize(DeviceState *dev, Error **errp) 1578 { 1579 PnvPHB4 *phb = PNV_PHB4(dev); 1580 PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine()); 1581 PnvChip *chip = pnv_get_chip(pnv, phb->chip_id); 1582 PCIHostState *pci = PCI_HOST_BRIDGE(dev); 1583 XiveSource *xsrc = &phb->xsrc; 1584 BusState *s; 1585 Error *local_err = NULL; 1586 int nr_irqs; 1587 char name[32]; 1588 1589 if (!chip) { 1590 error_setg(errp, "invalid chip id: %d", phb->chip_id); 1591 return; 1592 } 1593 1594 /* User created PHBs need to be assigned to a PEC */ 1595 if (!phb->pec) { 1596 phb->pec = pnv_phb4_get_pec(chip, phb, &local_err); 1597 if (local_err) { 1598 error_propagate(errp, local_err); 1599 return; 1600 } 1601 } 1602 1603 /* Reparent the PHB to the chip to build the device tree */ 1604 pnv_chip_parent_fixup(chip, OBJECT(phb), phb->phb_id); 1605 1606 s = qdev_get_parent_bus(DEVICE(chip)); 1607 if (!qdev_set_parent_bus(DEVICE(phb), s, &local_err)) { 1608 error_propagate(errp, local_err); 1609 return; 1610 } 1611 1612 /* Set the "big_phb" flag */ 1613 phb->big_phb = phb->phb_id == 0 || phb->phb_id == 3; 1614 1615 /* Controller Registers */ 1616 snprintf(name, sizeof(name), "phb4-%d.%d-regs", phb->chip_id, 1617 phb->phb_id); 1618 memory_region_init_io(&phb->mr_regs, OBJECT(phb), &pnv_phb4_reg_ops, phb, 1619 name, 0x2000); 1620 1621 /* 1622 * PHB4 doesn't support IO space. However, qemu gets very upset if 1623 * we don't have an IO region to anchor IO BARs onto so we just 1624 * initialize one which we never hook up to anything 1625 */ 1626 1627 snprintf(name, sizeof(name), "phb4-%d.%d-pci-io", phb->chip_id, 1628 phb->phb_id); 1629 memory_region_init(&phb->pci_io, OBJECT(phb), name, 0x10000); 1630 1631 snprintf(name, sizeof(name), "phb4-%d.%d-pci-mmio", phb->chip_id, 1632 phb->phb_id); 1633 memory_region_init(&phb->pci_mmio, OBJECT(phb), name, 1634 PCI_MMIO_TOTAL_SIZE); 1635 1636 pci->bus = pci_register_root_bus(dev, dev->id, 1637 pnv_phb4_set_irq, pnv_phb4_map_irq, phb, 1638 &phb->pci_mmio, &phb->pci_io, 1639 0, 4, TYPE_PNV_PHB4_ROOT_BUS); 1640 pci_setup_iommu(pci->bus, pnv_phb4_dma_iommu, phb); 1641 pci->bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 1642 1643 /* Setup XIVE Source */ 1644 if (phb->big_phb) { 1645 nr_irqs = PNV_PHB4_MAX_INTs; 1646 } else { 1647 nr_irqs = PNV_PHB4_MAX_INTs >> 1; 1648 } 1649 object_property_set_int(OBJECT(xsrc), "nr-irqs", nr_irqs, &error_fatal); 1650 object_property_set_link(OBJECT(xsrc), "xive", OBJECT(phb), &error_fatal); 1651 if (!qdev_realize(DEVICE(xsrc), NULL, errp)) { 1652 return; 1653 } 1654 1655 pnv_phb4_update_xsrc(phb); 1656 1657 phb->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs); 1658 1659 pnv_phb4_xscom_realize(phb); 1660 } 1661 1662 static const char *pnv_phb4_root_bus_path(PCIHostState *host_bridge, 1663 PCIBus *rootbus) 1664 { 1665 PnvPHB4 *phb = PNV_PHB4(host_bridge); 1666 1667 snprintf(phb->bus_path, sizeof(phb->bus_path), "00%02x:%02x", 1668 phb->chip_id, phb->phb_id); 1669 return phb->bus_path; 1670 } 1671 1672 /* 1673 * Address base trigger mode (POWER10) 1674 * 1675 * Trigger directly the IC ESB page 1676 */ 1677 static void pnv_phb4_xive_notify_abt(PnvPHB4 *phb, uint32_t srcno, 1678 bool pq_checked) 1679 { 1680 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; 1681 uint64_t data = 0; /* trigger data : don't care */ 1682 hwaddr addr; 1683 MemTxResult result; 1684 int esb_shift; 1685 1686 if (notif_port & PHB_INT_NOTIFY_ADDR_64K) { 1687 esb_shift = 16; 1688 } else { 1689 esb_shift = 12; 1690 } 1691 1692 /* Compute the address of the IC ESB management page */ 1693 addr = (notif_port & ~PHB_INT_NOTIFY_ADDR_64K); 1694 addr |= (1ull << (esb_shift + 1)) * srcno; 1695 addr |= (1ull << esb_shift); 1696 1697 /* 1698 * When the PQ state bits are checked on the PHB, the associated 1699 * PQ state bits on the IC should be ignored. Use the unconditional 1700 * trigger offset to inject a trigger on the IC. This is always 1701 * the case for LSIs 1702 */ 1703 if (pq_checked) { 1704 addr |= XIVE_ESB_INJECT; 1705 } 1706 1707 trace_pnv_phb4_xive_notify_ic(addr, data); 1708 1709 address_space_stq_be(&address_space_memory, addr, data, 1710 MEMTXATTRS_UNSPECIFIED, &result); 1711 if (result != MEMTX_OK) { 1712 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", addr); 1713 return; 1714 } 1715 } 1716 1717 static void pnv_phb4_xive_notify_ic(PnvPHB4 *phb, uint32_t srcno, 1718 bool pq_checked) 1719 { 1720 uint64_t notif_port = phb->regs[PHB_INT_NOTIFY_ADDR >> 3]; 1721 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; 1722 uint64_t data = offset | srcno; 1723 MemTxResult result; 1724 1725 if (pq_checked) { 1726 data |= XIVE_TRIGGER_PQ; 1727 } 1728 1729 trace_pnv_phb4_xive_notify_ic(notif_port, data); 1730 1731 address_space_stq_be(&address_space_memory, notif_port, data, 1732 MEMTXATTRS_UNSPECIFIED, &result); 1733 if (result != MEMTX_OK) { 1734 phb_error(phb, "trigger failed @%"HWADDR_PRIx "\n", notif_port); 1735 return; 1736 } 1737 } 1738 1739 static void pnv_phb4_xive_notify(XiveNotifier *xf, uint32_t srcno, 1740 bool pq_checked) 1741 { 1742 PnvPHB4 *phb = PNV_PHB4(xf); 1743 1744 if (phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE) { 1745 pnv_phb4_xive_notify_abt(phb, srcno, pq_checked); 1746 } else { 1747 pnv_phb4_xive_notify_ic(phb, srcno, pq_checked); 1748 } 1749 } 1750 1751 static Property pnv_phb4_properties[] = { 1752 DEFINE_PROP_UINT32("index", PnvPHB4, phb_id, 0), 1753 DEFINE_PROP_UINT32("chip-id", PnvPHB4, chip_id, 0), 1754 DEFINE_PROP_LINK("pec", PnvPHB4, pec, TYPE_PNV_PHB4_PEC, 1755 PnvPhb4PecState *), 1756 DEFINE_PROP_END_OF_LIST(), 1757 }; 1758 1759 static void pnv_phb4_class_init(ObjectClass *klass, void *data) 1760 { 1761 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass); 1762 DeviceClass *dc = DEVICE_CLASS(klass); 1763 XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass); 1764 1765 hc->root_bus_path = pnv_phb4_root_bus_path; 1766 dc->realize = pnv_phb4_realize; 1767 device_class_set_props(dc, pnv_phb4_properties); 1768 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); 1769 dc->user_creatable = true; 1770 1771 xfc->notify = pnv_phb4_xive_notify; 1772 } 1773 1774 static const TypeInfo pnv_phb4_type_info = { 1775 .name = TYPE_PNV_PHB4, 1776 .parent = TYPE_PCIE_HOST_BRIDGE, 1777 .instance_init = pnv_phb4_instance_init, 1778 .instance_size = sizeof(PnvPHB4), 1779 .class_init = pnv_phb4_class_init, 1780 .interfaces = (InterfaceInfo[]) { 1781 { TYPE_XIVE_NOTIFIER }, 1782 { }, 1783 } 1784 }; 1785 1786 static void pnv_phb4_root_bus_class_init(ObjectClass *klass, void *data) 1787 { 1788 BusClass *k = BUS_CLASS(klass); 1789 1790 /* 1791 * PHB4 has only a single root complex. Enforce the limit on the 1792 * parent bus 1793 */ 1794 k->max_dev = 1; 1795 } 1796 1797 static const TypeInfo pnv_phb4_root_bus_info = { 1798 .name = TYPE_PNV_PHB4_ROOT_BUS, 1799 .parent = TYPE_PCIE_BUS, 1800 .class_init = pnv_phb4_root_bus_class_init, 1801 .interfaces = (InterfaceInfo[]) { 1802 { INTERFACE_PCIE_DEVICE }, 1803 { } 1804 }, 1805 }; 1806 1807 static void pnv_phb4_root_port_reset(DeviceState *dev) 1808 { 1809 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev); 1810 PCIDevice *d = PCI_DEVICE(dev); 1811 uint8_t *conf = d->config; 1812 1813 rpc->parent_reset(dev); 1814 1815 pci_byte_test_and_set_mask(conf + PCI_IO_BASE, 1816 PCI_IO_RANGE_MASK & 0xff); 1817 pci_byte_test_and_clear_mask(conf + PCI_IO_LIMIT, 1818 PCI_IO_RANGE_MASK & 0xff); 1819 pci_set_word(conf + PCI_MEMORY_BASE, 0); 1820 pci_set_word(conf + PCI_MEMORY_LIMIT, 0xfff0); 1821 pci_set_word(conf + PCI_PREF_MEMORY_BASE, 0x1); 1822 pci_set_word(conf + PCI_PREF_MEMORY_LIMIT, 0xfff1); 1823 pci_set_long(conf + PCI_PREF_BASE_UPPER32, 0x1); /* Hack */ 1824 pci_set_long(conf + PCI_PREF_LIMIT_UPPER32, 0xffffffff); 1825 } 1826 1827 static void pnv_phb4_root_port_realize(DeviceState *dev, Error **errp) 1828 { 1829 PCIERootPortClass *rpc = PCIE_ROOT_PORT_GET_CLASS(dev); 1830 PCIDevice *pci = PCI_DEVICE(dev); 1831 PCIBus *bus = pci_get_bus(pci); 1832 PnvPHB4 *phb = NULL; 1833 Error *local_err = NULL; 1834 1835 phb = (PnvPHB4 *) object_dynamic_cast(OBJECT(bus->qbus.parent), 1836 TYPE_PNV_PHB4); 1837 1838 if (!phb) { 1839 error_setg(errp, "%s must be connected to pnv-phb4 buses", dev->id); 1840 return; 1841 } 1842 1843 /* Set unique chassis/slot values for the root port */ 1844 qdev_prop_set_uint8(&pci->qdev, "chassis", phb->chip_id); 1845 qdev_prop_set_uint16(&pci->qdev, "slot", phb->phb_id); 1846 1847 rpc->parent_realize(dev, &local_err); 1848 if (local_err) { 1849 error_propagate(errp, local_err); 1850 return; 1851 } 1852 } 1853 1854 static void pnv_phb4_root_port_class_init(ObjectClass *klass, void *data) 1855 { 1856 DeviceClass *dc = DEVICE_CLASS(klass); 1857 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1858 PCIERootPortClass *rpc = PCIE_ROOT_PORT_CLASS(klass); 1859 1860 dc->desc = "IBM PHB4 PCIE Root Port"; 1861 dc->user_creatable = true; 1862 1863 device_class_set_parent_realize(dc, pnv_phb4_root_port_realize, 1864 &rpc->parent_realize); 1865 device_class_set_parent_reset(dc, pnv_phb4_root_port_reset, 1866 &rpc->parent_reset); 1867 1868 k->vendor_id = PCI_VENDOR_ID_IBM; 1869 k->device_id = PNV_PHB4_DEVICE_ID; 1870 k->revision = 0; 1871 1872 rpc->exp_offset = 0x48; 1873 rpc->aer_offset = 0x100; 1874 1875 dc->reset = &pnv_phb4_root_port_reset; 1876 } 1877 1878 static const TypeInfo pnv_phb4_root_port_info = { 1879 .name = TYPE_PNV_PHB4_ROOT_PORT, 1880 .parent = TYPE_PCIE_ROOT_PORT, 1881 .instance_size = sizeof(PnvPHB4RootPort), 1882 .class_init = pnv_phb4_root_port_class_init, 1883 }; 1884 1885 static void pnv_phb5_root_port_class_init(ObjectClass *klass, void *data) 1886 { 1887 DeviceClass *dc = DEVICE_CLASS(klass); 1888 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 1889 1890 dc->desc = "IBM PHB5 PCIE Root Port"; 1891 dc->user_creatable = true; 1892 1893 k->vendor_id = PCI_VENDOR_ID_IBM; 1894 k->device_id = PNV_PHB5_DEVICE_ID; 1895 } 1896 1897 static const TypeInfo pnv_phb5_root_port_info = { 1898 .name = TYPE_PNV_PHB5_ROOT_PORT, 1899 .parent = TYPE_PNV_PHB4_ROOT_PORT, 1900 .instance_size = sizeof(PnvPHB4RootPort), 1901 .class_init = pnv_phb5_root_port_class_init, 1902 }; 1903 1904 static void pnv_phb4_register_types(void) 1905 { 1906 type_register_static(&pnv_phb4_root_bus_info); 1907 type_register_static(&pnv_phb5_root_port_info); 1908 type_register_static(&pnv_phb4_root_port_info); 1909 type_register_static(&pnv_phb4_type_info); 1910 type_register_static(&pnv_phb4_iommu_memory_region_info); 1911 } 1912 1913 type_init(pnv_phb4_register_types); 1914 1915 void pnv_phb4_pic_print_info(PnvPHB4 *phb, Monitor *mon) 1916 { 1917 uint64_t notif_port = 1918 phb->regs[PHB_INT_NOTIFY_ADDR >> 3] & ~PHB_INT_NOTIFY_ADDR_64K; 1919 uint32_t offset = phb->regs[PHB_INT_NOTIFY_INDEX >> 3]; 1920 bool abt = !!(phb->regs[PHB_CTRLR >> 3] & PHB_CTRLR_IRQ_ABT_MODE); 1921 1922 monitor_printf(mon, "PHB4[%x:%x] Source %08x .. %08x %s @%"HWADDR_PRIx"\n", 1923 phb->chip_id, phb->phb_id, 1924 offset, offset + phb->xsrc.nr_irqs - 1, 1925 abt ? "ABT" : "", 1926 notif_port); 1927 xive_source_pic_print_info(&phb->xsrc, 0, mon); 1928 } 1929