1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/dma.h" 28 #include "hw/boards.h" 29 #include "hw/isa/isa.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "trace.h" 33 #include "qemu/error-report.h" 34 #include "qemu/config-file.h" 35 #include "qemu/cutils.h" 36 #include "qapi/error.h" 37 38 #define FW_CFG_FILE_SLOTS_DFLT 0x20 39 40 #define FW_CFG_NAME "fw_cfg" 41 #define FW_CFG_PATH "/machine/" FW_CFG_NAME 42 43 #define TYPE_FW_CFG "fw_cfg" 44 #define TYPE_FW_CFG_IO "fw_cfg_io" 45 #define TYPE_FW_CFG_MEM "fw_cfg_mem" 46 47 #define FW_CFG(obj) OBJECT_CHECK(FWCfgState, (obj), TYPE_FW_CFG) 48 #define FW_CFG_IO(obj) OBJECT_CHECK(FWCfgIoState, (obj), TYPE_FW_CFG_IO) 49 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM) 50 51 /* FW_CFG_VERSION bits */ 52 #define FW_CFG_VERSION 0x01 53 #define FW_CFG_VERSION_DMA 0x02 54 55 /* FW_CFG_DMA_CONTROL bits */ 56 #define FW_CFG_DMA_CTL_ERROR 0x01 57 #define FW_CFG_DMA_CTL_READ 0x02 58 #define FW_CFG_DMA_CTL_SKIP 0x04 59 #define FW_CFG_DMA_CTL_SELECT 0x08 60 #define FW_CFG_DMA_CTL_WRITE 0x10 61 62 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 63 64 typedef struct FWCfgEntry { 65 uint32_t len; 66 bool allow_write; 67 uint8_t *data; 68 void *callback_opaque; 69 FWCfgReadCallback read_callback; 70 } FWCfgEntry; 71 72 struct FWCfgState { 73 /*< private >*/ 74 SysBusDevice parent_obj; 75 /*< public >*/ 76 77 uint16_t file_slots; 78 FWCfgEntry *entries[2]; 79 int *entry_order; 80 FWCfgFiles *files; 81 uint16_t cur_entry; 82 uint32_t cur_offset; 83 Notifier machine_ready; 84 85 int fw_cfg_order_override; 86 87 bool dma_enabled; 88 dma_addr_t dma_addr; 89 AddressSpace *dma_as; 90 MemoryRegion dma_iomem; 91 }; 92 93 struct FWCfgIoState { 94 /*< private >*/ 95 FWCfgState parent_obj; 96 /*< public >*/ 97 98 MemoryRegion comb_iomem; 99 uint32_t iobase, dma_iobase; 100 }; 101 102 struct FWCfgMemState { 103 /*< private >*/ 104 FWCfgState parent_obj; 105 /*< public >*/ 106 107 MemoryRegion ctl_iomem, data_iomem; 108 uint32_t data_width; 109 MemoryRegionOps wide_data_ops; 110 }; 111 112 #define JPG_FILE 0 113 #define BMP_FILE 1 114 115 static char *read_splashfile(char *filename, gsize *file_sizep, 116 int *file_typep) 117 { 118 GError *err = NULL; 119 gboolean res; 120 gchar *content; 121 int file_type; 122 unsigned int filehead; 123 int bmp_bpp; 124 125 res = g_file_get_contents(filename, &content, file_sizep, &err); 126 if (res == FALSE) { 127 error_report("failed to read splash file '%s'", filename); 128 g_error_free(err); 129 return NULL; 130 } 131 132 /* check file size */ 133 if (*file_sizep < 30) { 134 goto error; 135 } 136 137 /* check magic ID */ 138 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff; 139 if (filehead == 0xd8ff) { 140 file_type = JPG_FILE; 141 } else if (filehead == 0x4d42) { 142 file_type = BMP_FILE; 143 } else { 144 goto error; 145 } 146 147 /* check BMP bpp */ 148 if (file_type == BMP_FILE) { 149 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff; 150 if (bmp_bpp != 24) { 151 goto error; 152 } 153 } 154 155 /* return values */ 156 *file_typep = file_type; 157 158 return content; 159 160 error: 161 error_report("splash file '%s' format not recognized; must be JPEG " 162 "or 24 bit BMP", filename); 163 g_free(content); 164 return NULL; 165 } 166 167 static void fw_cfg_bootsplash(FWCfgState *s) 168 { 169 int boot_splash_time = -1; 170 const char *boot_splash_filename = NULL; 171 char *p; 172 char *filename, *file_data; 173 gsize file_size; 174 int file_type; 175 const char *temp; 176 177 /* get user configuration */ 178 QemuOptsList *plist = qemu_find_opts("boot-opts"); 179 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 180 if (opts != NULL) { 181 temp = qemu_opt_get(opts, "splash"); 182 if (temp != NULL) { 183 boot_splash_filename = temp; 184 } 185 temp = qemu_opt_get(opts, "splash-time"); 186 if (temp != NULL) { 187 p = (char *)temp; 188 boot_splash_time = strtol(p, &p, 10); 189 } 190 } 191 192 /* insert splash time if user configurated */ 193 if (boot_splash_time >= 0) { 194 /* validate the input */ 195 if (boot_splash_time > 0xffff) { 196 error_report("splash time is big than 65535, force it to 65535."); 197 boot_splash_time = 0xffff; 198 } 199 /* use little endian format */ 200 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff); 201 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff); 202 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2); 203 } 204 205 /* insert splash file if user configurated */ 206 if (boot_splash_filename != NULL) { 207 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 208 if (filename == NULL) { 209 error_report("failed to find file '%s'.", boot_splash_filename); 210 return; 211 } 212 213 /* loading file data */ 214 file_data = read_splashfile(filename, &file_size, &file_type); 215 if (file_data == NULL) { 216 g_free(filename); 217 return; 218 } 219 g_free(boot_splash_filedata); 220 boot_splash_filedata = (uint8_t *)file_data; 221 boot_splash_filedata_size = file_size; 222 223 /* insert data */ 224 if (file_type == JPG_FILE) { 225 fw_cfg_add_file(s, "bootsplash.jpg", 226 boot_splash_filedata, boot_splash_filedata_size); 227 } else { 228 fw_cfg_add_file(s, "bootsplash.bmp", 229 boot_splash_filedata, boot_splash_filedata_size); 230 } 231 g_free(filename); 232 } 233 } 234 235 static void fw_cfg_reboot(FWCfgState *s) 236 { 237 int reboot_timeout = -1; 238 char *p; 239 const char *temp; 240 241 /* get user configuration */ 242 QemuOptsList *plist = qemu_find_opts("boot-opts"); 243 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 244 if (opts != NULL) { 245 temp = qemu_opt_get(opts, "reboot-timeout"); 246 if (temp != NULL) { 247 p = (char *)temp; 248 reboot_timeout = strtol(p, &p, 10); 249 } 250 } 251 /* validate the input */ 252 if (reboot_timeout > 0xffff) { 253 error_report("reboot timeout is larger than 65535, force it to 65535."); 254 reboot_timeout = 0xffff; 255 } 256 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4); 257 } 258 259 static void fw_cfg_write(FWCfgState *s, uint8_t value) 260 { 261 /* nothing, write support removed in QEMU v2.4+ */ 262 } 263 264 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 265 { 266 return s->file_slots; 267 } 268 269 /* Note: this function returns an exclusive limit. */ 270 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 271 { 272 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 273 } 274 275 static int fw_cfg_select(FWCfgState *s, uint16_t key) 276 { 277 int arch, ret; 278 FWCfgEntry *e; 279 280 s->cur_offset = 0; 281 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 282 s->cur_entry = FW_CFG_INVALID; 283 ret = 0; 284 } else { 285 s->cur_entry = key; 286 ret = 1; 287 /* entry successfully selected, now run callback if present */ 288 arch = !!(key & FW_CFG_ARCH_LOCAL); 289 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 290 if (e->read_callback) { 291 e->read_callback(e->callback_opaque); 292 } 293 } 294 295 trace_fw_cfg_select(s, key, ret); 296 return ret; 297 } 298 299 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 300 { 301 FWCfgState *s = opaque; 302 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 303 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 304 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 305 uint64_t value = 0; 306 307 assert(size > 0 && size <= sizeof(value)); 308 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 309 /* The least significant 'size' bytes of the return value are 310 * expected to contain a string preserving portion of the item 311 * data, padded with zeros on the right in case we run out early. 312 * In technical terms, we're composing the host-endian representation 313 * of the big endian interpretation of the fw_cfg string. 314 */ 315 do { 316 value = (value << 8) | e->data[s->cur_offset++]; 317 } while (--size && s->cur_offset < e->len); 318 /* If size is still not zero, we *did* run out early, so continue 319 * left-shifting, to add the appropriate number of padding zeros 320 * on the right. 321 */ 322 value <<= 8 * size; 323 } 324 325 trace_fw_cfg_read(s, value); 326 return value; 327 } 328 329 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 330 uint64_t value, unsigned size) 331 { 332 FWCfgState *s = opaque; 333 unsigned i = size; 334 335 do { 336 fw_cfg_write(s, value >> (8 * --i)); 337 } while (i); 338 } 339 340 static void fw_cfg_dma_transfer(FWCfgState *s) 341 { 342 dma_addr_t len; 343 FWCfgDmaAccess dma; 344 int arch; 345 FWCfgEntry *e; 346 int read = 0, write = 0; 347 dma_addr_t dma_addr; 348 349 /* Reset the address before the next access */ 350 dma_addr = s->dma_addr; 351 s->dma_addr = 0; 352 353 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 354 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 355 FW_CFG_DMA_CTL_ERROR); 356 return; 357 } 358 359 dma.address = be64_to_cpu(dma.address); 360 dma.length = be32_to_cpu(dma.length); 361 dma.control = be32_to_cpu(dma.control); 362 363 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 364 fw_cfg_select(s, dma.control >> 16); 365 } 366 367 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 368 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 369 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 370 371 if (dma.control & FW_CFG_DMA_CTL_READ) { 372 read = 1; 373 write = 0; 374 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 375 read = 0; 376 write = 1; 377 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 378 read = 0; 379 write = 0; 380 } else { 381 dma.length = 0; 382 } 383 384 dma.control = 0; 385 386 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 387 if (s->cur_entry == FW_CFG_INVALID || !e->data || 388 s->cur_offset >= e->len) { 389 len = dma.length; 390 391 /* If the access is not a read access, it will be a skip access, 392 * tested before. 393 */ 394 if (read) { 395 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 396 dma.control |= FW_CFG_DMA_CTL_ERROR; 397 } 398 } 399 if (write) { 400 dma.control |= FW_CFG_DMA_CTL_ERROR; 401 } 402 } else { 403 if (dma.length <= (e->len - s->cur_offset)) { 404 len = dma.length; 405 } else { 406 len = (e->len - s->cur_offset); 407 } 408 409 /* If the access is not a read access, it will be a skip access, 410 * tested before. 411 */ 412 if (read) { 413 if (dma_memory_write(s->dma_as, dma.address, 414 &e->data[s->cur_offset], len)) { 415 dma.control |= FW_CFG_DMA_CTL_ERROR; 416 } 417 } 418 if (write) { 419 if (!e->allow_write || 420 len != dma.length || 421 dma_memory_read(s->dma_as, dma.address, 422 &e->data[s->cur_offset], len)) { 423 dma.control |= FW_CFG_DMA_CTL_ERROR; 424 } 425 } 426 427 s->cur_offset += len; 428 } 429 430 dma.address += len; 431 dma.length -= len; 432 433 } 434 435 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 436 dma.control); 437 438 trace_fw_cfg_read(s, 0); 439 } 440 441 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 442 unsigned size) 443 { 444 /* Return a signature value (and handle various read sizes) */ 445 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 446 } 447 448 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 449 uint64_t value, unsigned size) 450 { 451 FWCfgState *s = opaque; 452 453 if (size == 4) { 454 if (addr == 0) { 455 /* FWCfgDmaAccess high address */ 456 s->dma_addr = value << 32; 457 } else if (addr == 4) { 458 /* FWCfgDmaAccess low address */ 459 s->dma_addr |= value; 460 fw_cfg_dma_transfer(s); 461 } 462 } else if (size == 8 && addr == 0) { 463 s->dma_addr = value; 464 fw_cfg_dma_transfer(s); 465 } 466 } 467 468 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 469 unsigned size, bool is_write) 470 { 471 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 472 (size == 8 && addr == 0)); 473 } 474 475 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 476 unsigned size, bool is_write) 477 { 478 return addr == 0; 479 } 480 481 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 482 uint64_t value, unsigned size) 483 { 484 fw_cfg_select(opaque, (uint16_t)value); 485 } 486 487 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 488 unsigned size, bool is_write) 489 { 490 return is_write && size == 2; 491 } 492 493 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 494 uint64_t value, unsigned size) 495 { 496 switch (size) { 497 case 1: 498 fw_cfg_write(opaque, (uint8_t)value); 499 break; 500 case 2: 501 fw_cfg_select(opaque, (uint16_t)value); 502 break; 503 } 504 } 505 506 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 507 unsigned size, bool is_write) 508 { 509 return (size == 1) || (is_write && size == 2); 510 } 511 512 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 513 .write = fw_cfg_ctl_mem_write, 514 .endianness = DEVICE_BIG_ENDIAN, 515 .valid.accepts = fw_cfg_ctl_mem_valid, 516 }; 517 518 static const MemoryRegionOps fw_cfg_data_mem_ops = { 519 .read = fw_cfg_data_read, 520 .write = fw_cfg_data_mem_write, 521 .endianness = DEVICE_BIG_ENDIAN, 522 .valid = { 523 .min_access_size = 1, 524 .max_access_size = 1, 525 .accepts = fw_cfg_data_mem_valid, 526 }, 527 }; 528 529 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 530 .read = fw_cfg_data_read, 531 .write = fw_cfg_comb_write, 532 .endianness = DEVICE_LITTLE_ENDIAN, 533 .valid.accepts = fw_cfg_comb_valid, 534 }; 535 536 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 537 .read = fw_cfg_dma_mem_read, 538 .write = fw_cfg_dma_mem_write, 539 .endianness = DEVICE_BIG_ENDIAN, 540 .valid.accepts = fw_cfg_dma_mem_valid, 541 .valid.max_access_size = 8, 542 .impl.max_access_size = 8, 543 }; 544 545 static void fw_cfg_reset(DeviceState *d) 546 { 547 FWCfgState *s = FW_CFG(d); 548 549 /* we never register a read callback for FW_CFG_SIGNATURE */ 550 fw_cfg_select(s, FW_CFG_SIGNATURE); 551 } 552 553 /* Save restore 32 bit int as uint16_t 554 This is a Big hack, but it is how the old state did it. 555 Or we broke compatibility in the state, or we can't use struct tm 556 */ 557 558 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 559 VMStateField *field) 560 { 561 uint32_t *v = pv; 562 *v = qemu_get_be16(f); 563 return 0; 564 } 565 566 static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field, 567 QJSON *vmdesc) 568 { 569 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 570 fprintf(stderr, "This functions shouldn't be called.\n"); 571 572 return 0; 573 } 574 575 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 576 .name = "int32_as_uint16", 577 .get = get_uint32_as_uint16, 578 .put = put_unused, 579 }; 580 581 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 582 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 583 584 585 static bool is_version_1(void *opaque, int version_id) 586 { 587 return version_id == 1; 588 } 589 590 bool fw_cfg_dma_enabled(void *opaque) 591 { 592 FWCfgState *s = opaque; 593 594 return s->dma_enabled; 595 } 596 597 static const VMStateDescription vmstate_fw_cfg_dma = { 598 .name = "fw_cfg/dma", 599 .needed = fw_cfg_dma_enabled, 600 .fields = (VMStateField[]) { 601 VMSTATE_UINT64(dma_addr, FWCfgState), 602 VMSTATE_END_OF_LIST() 603 }, 604 }; 605 606 static const VMStateDescription vmstate_fw_cfg = { 607 .name = "fw_cfg", 608 .version_id = 2, 609 .minimum_version_id = 1, 610 .fields = (VMStateField[]) { 611 VMSTATE_UINT16(cur_entry, FWCfgState), 612 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 613 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 614 VMSTATE_END_OF_LIST() 615 }, 616 .subsections = (const VMStateDescription*[]) { 617 &vmstate_fw_cfg_dma, 618 NULL, 619 } 620 }; 621 622 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key, 623 FWCfgReadCallback callback, 624 void *callback_opaque, 625 void *data, size_t len, 626 bool read_only) 627 { 628 int arch = !!(key & FW_CFG_ARCH_LOCAL); 629 630 key &= FW_CFG_ENTRY_MASK; 631 632 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 633 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 634 635 s->entries[arch][key].data = data; 636 s->entries[arch][key].len = (uint32_t)len; 637 s->entries[arch][key].read_callback = callback; 638 s->entries[arch][key].callback_opaque = callback_opaque; 639 s->entries[arch][key].allow_write = !read_only; 640 } 641 642 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 643 void *data, size_t len) 644 { 645 void *ptr; 646 int arch = !!(key & FW_CFG_ARCH_LOCAL); 647 648 key &= FW_CFG_ENTRY_MASK; 649 650 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 651 652 /* return the old data to the function caller, avoid memory leak */ 653 ptr = s->entries[arch][key].data; 654 s->entries[arch][key].data = data; 655 s->entries[arch][key].len = len; 656 s->entries[arch][key].callback_opaque = NULL; 657 s->entries[arch][key].allow_write = false; 658 659 return ptr; 660 } 661 662 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 663 { 664 fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len, true); 665 } 666 667 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 668 { 669 size_t sz = strlen(value) + 1; 670 671 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 672 } 673 674 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 675 { 676 uint16_t *copy; 677 678 copy = g_malloc(sizeof(value)); 679 *copy = cpu_to_le16(value); 680 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 681 } 682 683 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 684 { 685 uint16_t *copy, *old; 686 687 copy = g_malloc(sizeof(value)); 688 *copy = cpu_to_le16(value); 689 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 690 g_free(old); 691 } 692 693 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 694 { 695 uint32_t *copy; 696 697 copy = g_malloc(sizeof(value)); 698 *copy = cpu_to_le32(value); 699 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 700 } 701 702 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 703 { 704 uint64_t *copy; 705 706 copy = g_malloc(sizeof(value)); 707 *copy = cpu_to_le64(value); 708 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 709 } 710 711 void fw_cfg_set_order_override(FWCfgState *s, int order) 712 { 713 assert(s->fw_cfg_order_override == 0); 714 s->fw_cfg_order_override = order; 715 } 716 717 void fw_cfg_reset_order_override(FWCfgState *s) 718 { 719 assert(s->fw_cfg_order_override != 0); 720 s->fw_cfg_order_override = 0; 721 } 722 723 /* 724 * This is the legacy order list. For legacy systems, files are in 725 * the fw_cfg in the order defined below, by the "order" value. Note 726 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 727 * specific area, but there may be more than one and they occur in the 728 * order that the user specifies them on the command line. Those are 729 * handled in a special manner, using the order override above. 730 * 731 * For non-legacy, the files are sorted by filename to avoid this kind 732 * of complexity in the future. 733 * 734 * This is only for x86, other arches don't implement versioning so 735 * they won't set legacy mode. 736 */ 737 static struct { 738 const char *name; 739 int order; 740 } fw_cfg_order[] = { 741 { "etc/boot-menu-wait", 10 }, 742 { "bootsplash.jpg", 11 }, 743 { "bootsplash.bmp", 12 }, 744 { "etc/boot-fail-wait", 15 }, 745 { "etc/smbios/smbios-tables", 20 }, 746 { "etc/smbios/smbios-anchor", 30 }, 747 { "etc/e820", 40 }, 748 { "etc/reserved-memory-end", 50 }, 749 { "genroms/kvmvapic.bin", 55 }, 750 { "genroms/linuxboot.bin", 60 }, 751 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 752 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 753 { "etc/system-states", 90 }, 754 { }, /* User ROMs come here, 100. */ 755 { }, /* Device FW comes here, 110. */ 756 { "etc/extra-pci-roots", 120 }, 757 { "etc/acpi/tables", 130 }, 758 { "etc/table-loader", 140 }, 759 { "etc/tpm/log", 150 }, 760 { "etc/acpi/rsdp", 160 }, 761 { "bootorder", 170 }, 762 763 #define FW_CFG_ORDER_OVERRIDE_LAST 200 764 }; 765 766 static int get_fw_cfg_order(FWCfgState *s, const char *name) 767 { 768 int i; 769 770 if (s->fw_cfg_order_override > 0) { 771 return s->fw_cfg_order_override; 772 } 773 774 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 775 if (fw_cfg_order[i].name == NULL) { 776 continue; 777 } 778 779 if (strcmp(name, fw_cfg_order[i].name) == 0) { 780 return fw_cfg_order[i].order; 781 } 782 } 783 784 /* Stick unknown stuff at the end. */ 785 error_report("warning: Unknown firmware file in legacy mode: %s", name); 786 return FW_CFG_ORDER_OVERRIDE_LAST; 787 } 788 789 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 790 FWCfgReadCallback callback, void *callback_opaque, 791 void *data, size_t len, bool read_only) 792 { 793 int i, index, count; 794 size_t dsize; 795 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 796 int order = 0; 797 798 if (!s->files) { 799 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 800 s->files = g_malloc0(dsize); 801 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 802 } 803 804 count = be32_to_cpu(s->files->count); 805 assert(count < fw_cfg_file_slots(s)); 806 807 /* Find the insertion point. */ 808 if (mc->legacy_fw_cfg_order) { 809 /* 810 * Sort by order. For files with the same order, we keep them 811 * in the sequence in which they were added. 812 */ 813 order = get_fw_cfg_order(s, filename); 814 for (index = count; 815 index > 0 && order < s->entry_order[index - 1]; 816 index--); 817 } else { 818 /* Sort by file name. */ 819 for (index = count; 820 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 821 index--); 822 } 823 824 /* 825 * Move all the entries from the index point and after down one 826 * to create a slot for the new entry. Because calculations are 827 * being done with the index, make it so that "i" is the current 828 * index and "i - 1" is the one being copied from, thus the 829 * unusual start and end in the for statement. 830 */ 831 for (i = count + 1; i > index; i--) { 832 s->files->f[i] = s->files->f[i - 1]; 833 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 834 s->entries[0][FW_CFG_FILE_FIRST + i] = 835 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 836 s->entry_order[i] = s->entry_order[i - 1]; 837 } 838 839 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 840 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 841 842 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 843 for (i = 0; i <= count; i++) { 844 if (i != index && 845 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 846 error_report("duplicate fw_cfg file name: %s", 847 s->files->f[index].name); 848 exit(1); 849 } 850 } 851 852 fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index, 853 callback, callback_opaque, data, len, 854 read_only); 855 856 s->files->f[index].size = cpu_to_be32(len); 857 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 858 s->entry_order[index] = order; 859 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 860 861 s->files->count = cpu_to_be32(count+1); 862 } 863 864 void fw_cfg_add_file(FWCfgState *s, const char *filename, 865 void *data, size_t len) 866 { 867 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true); 868 } 869 870 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 871 void *data, size_t len) 872 { 873 int i, index; 874 void *ptr = NULL; 875 876 assert(s->files); 877 878 index = be32_to_cpu(s->files->count); 879 assert(index < fw_cfg_file_slots(s)); 880 881 for (i = 0; i < index; i++) { 882 if (strcmp(filename, s->files->f[i].name) == 0) { 883 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 884 data, len); 885 s->files->f[i].size = cpu_to_be32(len); 886 return ptr; 887 } 888 } 889 /* add new one */ 890 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true); 891 return NULL; 892 } 893 894 static void fw_cfg_machine_reset(void *opaque) 895 { 896 void *ptr; 897 size_t len; 898 FWCfgState *s = opaque; 899 char *bootindex = get_boot_devices_list(&len, false); 900 901 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 902 g_free(ptr); 903 } 904 905 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 906 { 907 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 908 qemu_register_reset(fw_cfg_machine_reset, s); 909 } 910 911 912 913 static void fw_cfg_init1(DeviceState *dev) 914 { 915 FWCfgState *s = FW_CFG(dev); 916 MachineState *machine = MACHINE(qdev_get_machine()); 917 918 assert(!object_resolve_path(FW_CFG_PATH, NULL)); 919 920 object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL); 921 922 qdev_init_nofail(dev); 923 924 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 925 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 926 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 927 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 928 fw_cfg_bootsplash(s); 929 fw_cfg_reboot(s); 930 931 s->machine_ready.notify = fw_cfg_machine_ready; 932 qemu_add_machine_init_done_notifier(&s->machine_ready); 933 } 934 935 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 936 AddressSpace *dma_as) 937 { 938 DeviceState *dev; 939 FWCfgState *s; 940 uint32_t version = FW_CFG_VERSION; 941 bool dma_requested = dma_iobase && dma_as; 942 943 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 944 qdev_prop_set_uint32(dev, "iobase", iobase); 945 qdev_prop_set_uint32(dev, "dma_iobase", dma_iobase); 946 if (!dma_requested) { 947 qdev_prop_set_bit(dev, "dma_enabled", false); 948 } 949 950 fw_cfg_init1(dev); 951 s = FW_CFG(dev); 952 953 if (s->dma_enabled) { 954 /* 64 bits for the address field */ 955 s->dma_as = dma_as; 956 s->dma_addr = 0; 957 958 version |= FW_CFG_VERSION_DMA; 959 } 960 961 fw_cfg_add_i32(s, FW_CFG_ID, version); 962 963 return s; 964 } 965 966 FWCfgState *fw_cfg_init_io(uint32_t iobase) 967 { 968 return fw_cfg_init_io_dma(iobase, 0, NULL); 969 } 970 971 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 972 hwaddr data_addr, uint32_t data_width, 973 hwaddr dma_addr, AddressSpace *dma_as) 974 { 975 DeviceState *dev; 976 SysBusDevice *sbd; 977 FWCfgState *s; 978 uint32_t version = FW_CFG_VERSION; 979 bool dma_requested = dma_addr && dma_as; 980 981 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 982 qdev_prop_set_uint32(dev, "data_width", data_width); 983 if (!dma_requested) { 984 qdev_prop_set_bit(dev, "dma_enabled", false); 985 } 986 987 fw_cfg_init1(dev); 988 989 sbd = SYS_BUS_DEVICE(dev); 990 sysbus_mmio_map(sbd, 0, ctl_addr); 991 sysbus_mmio_map(sbd, 1, data_addr); 992 993 s = FW_CFG(dev); 994 995 if (s->dma_enabled) { 996 s->dma_as = dma_as; 997 s->dma_addr = 0; 998 sysbus_mmio_map(sbd, 2, dma_addr); 999 version |= FW_CFG_VERSION_DMA; 1000 } 1001 1002 fw_cfg_add_i32(s, FW_CFG_ID, version); 1003 1004 return s; 1005 } 1006 1007 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1008 { 1009 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1010 fw_cfg_data_mem_ops.valid.max_access_size, 1011 0, NULL); 1012 } 1013 1014 1015 FWCfgState *fw_cfg_find(void) 1016 { 1017 return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL)); 1018 } 1019 1020 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1021 { 1022 DeviceClass *dc = DEVICE_CLASS(klass); 1023 1024 dc->reset = fw_cfg_reset; 1025 dc->vmsd = &vmstate_fw_cfg; 1026 } 1027 1028 static const TypeInfo fw_cfg_info = { 1029 .name = TYPE_FW_CFG, 1030 .parent = TYPE_SYS_BUS_DEVICE, 1031 .abstract = true, 1032 .instance_size = sizeof(FWCfgState), 1033 .class_init = fw_cfg_class_init, 1034 }; 1035 1036 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1037 { 1038 uint16_t file_slots_max; 1039 1040 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1041 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1042 FW_CFG_FILE_SLOTS_MIN); 1043 return; 1044 } 1045 1046 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1047 * that we permit. The actual (exclusive) value coming from the 1048 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1049 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1050 if (fw_cfg_file_slots(s) > file_slots_max) { 1051 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1052 file_slots_max); 1053 return; 1054 } 1055 1056 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1057 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1058 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1059 } 1060 1061 static Property fw_cfg_io_properties[] = { 1062 DEFINE_PROP_UINT32("iobase", FWCfgIoState, iobase, -1), 1063 DEFINE_PROP_UINT32("dma_iobase", FWCfgIoState, dma_iobase, -1), 1064 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1065 true), 1066 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1067 FW_CFG_FILE_SLOTS_DFLT), 1068 DEFINE_PROP_END_OF_LIST(), 1069 }; 1070 1071 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1072 { 1073 FWCfgIoState *s = FW_CFG_IO(dev); 1074 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1075 Error *local_err = NULL; 1076 1077 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1078 if (local_err) { 1079 error_propagate(errp, local_err); 1080 return; 1081 } 1082 1083 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1084 * with half of the 16-bit control register. Hence, the total size 1085 * of the i/o region used is FW_CFG_CTL_SIZE */ 1086 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1087 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1088 sysbus_add_io(sbd, s->iobase, &s->comb_iomem); 1089 1090 if (FW_CFG(s)->dma_enabled) { 1091 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1092 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1093 sizeof(dma_addr_t)); 1094 sysbus_add_io(sbd, s->dma_iobase, &FW_CFG(s)->dma_iomem); 1095 } 1096 } 1097 1098 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1099 { 1100 DeviceClass *dc = DEVICE_CLASS(klass); 1101 1102 dc->realize = fw_cfg_io_realize; 1103 dc->props = fw_cfg_io_properties; 1104 } 1105 1106 static const TypeInfo fw_cfg_io_info = { 1107 .name = TYPE_FW_CFG_IO, 1108 .parent = TYPE_FW_CFG, 1109 .instance_size = sizeof(FWCfgIoState), 1110 .class_init = fw_cfg_io_class_init, 1111 }; 1112 1113 1114 static Property fw_cfg_mem_properties[] = { 1115 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1116 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1117 true), 1118 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1119 FW_CFG_FILE_SLOTS_DFLT), 1120 DEFINE_PROP_END_OF_LIST(), 1121 }; 1122 1123 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1124 { 1125 FWCfgMemState *s = FW_CFG_MEM(dev); 1126 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1127 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1128 Error *local_err = NULL; 1129 1130 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1131 if (local_err) { 1132 error_propagate(errp, local_err); 1133 return; 1134 } 1135 1136 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1137 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1138 sysbus_init_mmio(sbd, &s->ctl_iomem); 1139 1140 if (s->data_width > data_ops->valid.max_access_size) { 1141 /* memberwise copy because the "old_mmio" member is const */ 1142 s->wide_data_ops.read = data_ops->read; 1143 s->wide_data_ops.write = data_ops->write; 1144 s->wide_data_ops.endianness = data_ops->endianness; 1145 s->wide_data_ops.valid = data_ops->valid; 1146 s->wide_data_ops.impl = data_ops->impl; 1147 1148 s->wide_data_ops.valid.max_access_size = s->data_width; 1149 s->wide_data_ops.impl.max_access_size = s->data_width; 1150 data_ops = &s->wide_data_ops; 1151 } 1152 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1153 "fwcfg.data", data_ops->valid.max_access_size); 1154 sysbus_init_mmio(sbd, &s->data_iomem); 1155 1156 if (FW_CFG(s)->dma_enabled) { 1157 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1158 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1159 sizeof(dma_addr_t)); 1160 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1161 } 1162 } 1163 1164 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1165 { 1166 DeviceClass *dc = DEVICE_CLASS(klass); 1167 1168 dc->realize = fw_cfg_mem_realize; 1169 dc->props = fw_cfg_mem_properties; 1170 } 1171 1172 static const TypeInfo fw_cfg_mem_info = { 1173 .name = TYPE_FW_CFG_MEM, 1174 .parent = TYPE_FW_CFG, 1175 .instance_size = sizeof(FWCfgMemState), 1176 .class_init = fw_cfg_mem_class_init, 1177 }; 1178 1179 1180 static void fw_cfg_register_types(void) 1181 { 1182 type_register_static(&fw_cfg_info); 1183 type_register_static(&fw_cfg_io_info); 1184 type_register_static(&fw_cfg_mem_info); 1185 } 1186 1187 type_init(fw_cfg_register_types) 1188