1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/dma.h" 28 #include "hw/boards.h" 29 #include "hw/isa/isa.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "trace.h" 33 #include "qemu/error-report.h" 34 #include "qemu/config-file.h" 35 #include "qemu/cutils.h" 36 37 #define FW_CFG_NAME "fw_cfg" 38 #define FW_CFG_PATH "/machine/" FW_CFG_NAME 39 40 #define TYPE_FW_CFG "fw_cfg" 41 #define TYPE_FW_CFG_IO "fw_cfg_io" 42 #define TYPE_FW_CFG_MEM "fw_cfg_mem" 43 44 #define FW_CFG(obj) OBJECT_CHECK(FWCfgState, (obj), TYPE_FW_CFG) 45 #define FW_CFG_IO(obj) OBJECT_CHECK(FWCfgIoState, (obj), TYPE_FW_CFG_IO) 46 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM) 47 48 /* FW_CFG_VERSION bits */ 49 #define FW_CFG_VERSION 0x01 50 #define FW_CFG_VERSION_DMA 0x02 51 52 /* FW_CFG_DMA_CONTROL bits */ 53 #define FW_CFG_DMA_CTL_ERROR 0x01 54 #define FW_CFG_DMA_CTL_READ 0x02 55 #define FW_CFG_DMA_CTL_SKIP 0x04 56 #define FW_CFG_DMA_CTL_SELECT 0x08 57 58 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 59 60 typedef struct FWCfgEntry { 61 uint32_t len; 62 uint8_t *data; 63 void *callback_opaque; 64 FWCfgReadCallback read_callback; 65 } FWCfgEntry; 66 67 struct FWCfgState { 68 /*< private >*/ 69 SysBusDevice parent_obj; 70 /*< public >*/ 71 72 FWCfgEntry entries[2][FW_CFG_MAX_ENTRY]; 73 int entry_order[FW_CFG_MAX_ENTRY]; 74 FWCfgFiles *files; 75 uint16_t cur_entry; 76 uint32_t cur_offset; 77 Notifier machine_ready; 78 79 int fw_cfg_order_override; 80 81 bool dma_enabled; 82 dma_addr_t dma_addr; 83 AddressSpace *dma_as; 84 MemoryRegion dma_iomem; 85 }; 86 87 struct FWCfgIoState { 88 /*< private >*/ 89 FWCfgState parent_obj; 90 /*< public >*/ 91 92 MemoryRegion comb_iomem; 93 uint32_t iobase, dma_iobase; 94 }; 95 96 struct FWCfgMemState { 97 /*< private >*/ 98 FWCfgState parent_obj; 99 /*< public >*/ 100 101 MemoryRegion ctl_iomem, data_iomem; 102 uint32_t data_width; 103 MemoryRegionOps wide_data_ops; 104 }; 105 106 #define JPG_FILE 0 107 #define BMP_FILE 1 108 109 static char *read_splashfile(char *filename, gsize *file_sizep, 110 int *file_typep) 111 { 112 GError *err = NULL; 113 gboolean res; 114 gchar *content; 115 int file_type; 116 unsigned int filehead; 117 int bmp_bpp; 118 119 res = g_file_get_contents(filename, &content, file_sizep, &err); 120 if (res == FALSE) { 121 error_report("failed to read splash file '%s'", filename); 122 g_error_free(err); 123 return NULL; 124 } 125 126 /* check file size */ 127 if (*file_sizep < 30) { 128 goto error; 129 } 130 131 /* check magic ID */ 132 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff; 133 if (filehead == 0xd8ff) { 134 file_type = JPG_FILE; 135 } else if (filehead == 0x4d42) { 136 file_type = BMP_FILE; 137 } else { 138 goto error; 139 } 140 141 /* check BMP bpp */ 142 if (file_type == BMP_FILE) { 143 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff; 144 if (bmp_bpp != 24) { 145 goto error; 146 } 147 } 148 149 /* return values */ 150 *file_typep = file_type; 151 152 return content; 153 154 error: 155 error_report("splash file '%s' format not recognized; must be JPEG " 156 "or 24 bit BMP", filename); 157 g_free(content); 158 return NULL; 159 } 160 161 static void fw_cfg_bootsplash(FWCfgState *s) 162 { 163 int boot_splash_time = -1; 164 const char *boot_splash_filename = NULL; 165 char *p; 166 char *filename, *file_data; 167 gsize file_size; 168 int file_type; 169 const char *temp; 170 171 /* get user configuration */ 172 QemuOptsList *plist = qemu_find_opts("boot-opts"); 173 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 174 if (opts != NULL) { 175 temp = qemu_opt_get(opts, "splash"); 176 if (temp != NULL) { 177 boot_splash_filename = temp; 178 } 179 temp = qemu_opt_get(opts, "splash-time"); 180 if (temp != NULL) { 181 p = (char *)temp; 182 boot_splash_time = strtol(p, &p, 10); 183 } 184 } 185 186 /* insert splash time if user configurated */ 187 if (boot_splash_time >= 0) { 188 /* validate the input */ 189 if (boot_splash_time > 0xffff) { 190 error_report("splash time is big than 65535, force it to 65535."); 191 boot_splash_time = 0xffff; 192 } 193 /* use little endian format */ 194 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff); 195 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff); 196 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2); 197 } 198 199 /* insert splash file if user configurated */ 200 if (boot_splash_filename != NULL) { 201 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 202 if (filename == NULL) { 203 error_report("failed to find file '%s'.", boot_splash_filename); 204 return; 205 } 206 207 /* loading file data */ 208 file_data = read_splashfile(filename, &file_size, &file_type); 209 if (file_data == NULL) { 210 g_free(filename); 211 return; 212 } 213 g_free(boot_splash_filedata); 214 boot_splash_filedata = (uint8_t *)file_data; 215 boot_splash_filedata_size = file_size; 216 217 /* insert data */ 218 if (file_type == JPG_FILE) { 219 fw_cfg_add_file(s, "bootsplash.jpg", 220 boot_splash_filedata, boot_splash_filedata_size); 221 } else { 222 fw_cfg_add_file(s, "bootsplash.bmp", 223 boot_splash_filedata, boot_splash_filedata_size); 224 } 225 g_free(filename); 226 } 227 } 228 229 static void fw_cfg_reboot(FWCfgState *s) 230 { 231 int reboot_timeout = -1; 232 char *p; 233 const char *temp; 234 235 /* get user configuration */ 236 QemuOptsList *plist = qemu_find_opts("boot-opts"); 237 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 238 if (opts != NULL) { 239 temp = qemu_opt_get(opts, "reboot-timeout"); 240 if (temp != NULL) { 241 p = (char *)temp; 242 reboot_timeout = strtol(p, &p, 10); 243 } 244 } 245 /* validate the input */ 246 if (reboot_timeout > 0xffff) { 247 error_report("reboot timeout is larger than 65535, force it to 65535."); 248 reboot_timeout = 0xffff; 249 } 250 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4); 251 } 252 253 static void fw_cfg_write(FWCfgState *s, uint8_t value) 254 { 255 /* nothing, write support removed in QEMU v2.4+ */ 256 } 257 258 static int fw_cfg_select(FWCfgState *s, uint16_t key) 259 { 260 int arch, ret; 261 FWCfgEntry *e; 262 263 s->cur_offset = 0; 264 if ((key & FW_CFG_ENTRY_MASK) >= FW_CFG_MAX_ENTRY) { 265 s->cur_entry = FW_CFG_INVALID; 266 ret = 0; 267 } else { 268 s->cur_entry = key; 269 ret = 1; 270 /* entry successfully selected, now run callback if present */ 271 arch = !!(key & FW_CFG_ARCH_LOCAL); 272 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 273 if (e->read_callback) { 274 e->read_callback(e->callback_opaque); 275 } 276 } 277 278 trace_fw_cfg_select(s, key, ret); 279 return ret; 280 } 281 282 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 283 { 284 FWCfgState *s = opaque; 285 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 286 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 287 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 288 uint64_t value = 0; 289 290 assert(size > 0 && size <= sizeof(value)); 291 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 292 /* The least significant 'size' bytes of the return value are 293 * expected to contain a string preserving portion of the item 294 * data, padded with zeros on the right in case we run out early. 295 * In technical terms, we're composing the host-endian representation 296 * of the big endian interpretation of the fw_cfg string. 297 */ 298 do { 299 value = (value << 8) | e->data[s->cur_offset++]; 300 } while (--size && s->cur_offset < e->len); 301 /* If size is still not zero, we *did* run out early, so continue 302 * left-shifting, to add the appropriate number of padding zeros 303 * on the right. 304 */ 305 value <<= 8 * size; 306 } 307 308 trace_fw_cfg_read(s, value); 309 return value; 310 } 311 312 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 313 uint64_t value, unsigned size) 314 { 315 FWCfgState *s = opaque; 316 unsigned i = size; 317 318 do { 319 fw_cfg_write(s, value >> (8 * --i)); 320 } while (i); 321 } 322 323 static void fw_cfg_dma_transfer(FWCfgState *s) 324 { 325 dma_addr_t len; 326 FWCfgDmaAccess dma; 327 int arch; 328 FWCfgEntry *e; 329 int read; 330 dma_addr_t dma_addr; 331 332 /* Reset the address before the next access */ 333 dma_addr = s->dma_addr; 334 s->dma_addr = 0; 335 336 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 337 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 338 FW_CFG_DMA_CTL_ERROR); 339 return; 340 } 341 342 dma.address = be64_to_cpu(dma.address); 343 dma.length = be32_to_cpu(dma.length); 344 dma.control = be32_to_cpu(dma.control); 345 346 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 347 fw_cfg_select(s, dma.control >> 16); 348 } 349 350 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 351 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 352 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 353 354 if (dma.control & FW_CFG_DMA_CTL_READ) { 355 read = 1; 356 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 357 read = 0; 358 } else { 359 dma.length = 0; 360 } 361 362 dma.control = 0; 363 364 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 365 if (s->cur_entry == FW_CFG_INVALID || !e->data || 366 s->cur_offset >= e->len) { 367 len = dma.length; 368 369 /* If the access is not a read access, it will be a skip access, 370 * tested before. 371 */ 372 if (read) { 373 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 374 dma.control |= FW_CFG_DMA_CTL_ERROR; 375 } 376 } 377 378 } else { 379 if (dma.length <= (e->len - s->cur_offset)) { 380 len = dma.length; 381 } else { 382 len = (e->len - s->cur_offset); 383 } 384 385 /* If the access is not a read access, it will be a skip access, 386 * tested before. 387 */ 388 if (read) { 389 if (dma_memory_write(s->dma_as, dma.address, 390 &e->data[s->cur_offset], len)) { 391 dma.control |= FW_CFG_DMA_CTL_ERROR; 392 } 393 } 394 395 s->cur_offset += len; 396 } 397 398 dma.address += len; 399 dma.length -= len; 400 401 } 402 403 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 404 dma.control); 405 406 trace_fw_cfg_read(s, 0); 407 } 408 409 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 410 unsigned size) 411 { 412 /* Return a signature value (and handle various read sizes) */ 413 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 414 } 415 416 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 417 uint64_t value, unsigned size) 418 { 419 FWCfgState *s = opaque; 420 421 if (size == 4) { 422 if (addr == 0) { 423 /* FWCfgDmaAccess high address */ 424 s->dma_addr = value << 32; 425 } else if (addr == 4) { 426 /* FWCfgDmaAccess low address */ 427 s->dma_addr |= value; 428 fw_cfg_dma_transfer(s); 429 } 430 } else if (size == 8 && addr == 0) { 431 s->dma_addr = value; 432 fw_cfg_dma_transfer(s); 433 } 434 } 435 436 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 437 unsigned size, bool is_write) 438 { 439 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 440 (size == 8 && addr == 0)); 441 } 442 443 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 444 unsigned size, bool is_write) 445 { 446 return addr == 0; 447 } 448 449 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 450 uint64_t value, unsigned size) 451 { 452 fw_cfg_select(opaque, (uint16_t)value); 453 } 454 455 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 456 unsigned size, bool is_write) 457 { 458 return is_write && size == 2; 459 } 460 461 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 462 uint64_t value, unsigned size) 463 { 464 switch (size) { 465 case 1: 466 fw_cfg_write(opaque, (uint8_t)value); 467 break; 468 case 2: 469 fw_cfg_select(opaque, (uint16_t)value); 470 break; 471 } 472 } 473 474 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 475 unsigned size, bool is_write) 476 { 477 return (size == 1) || (is_write && size == 2); 478 } 479 480 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 481 .write = fw_cfg_ctl_mem_write, 482 .endianness = DEVICE_BIG_ENDIAN, 483 .valid.accepts = fw_cfg_ctl_mem_valid, 484 }; 485 486 static const MemoryRegionOps fw_cfg_data_mem_ops = { 487 .read = fw_cfg_data_read, 488 .write = fw_cfg_data_mem_write, 489 .endianness = DEVICE_BIG_ENDIAN, 490 .valid = { 491 .min_access_size = 1, 492 .max_access_size = 1, 493 .accepts = fw_cfg_data_mem_valid, 494 }, 495 }; 496 497 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 498 .read = fw_cfg_data_read, 499 .write = fw_cfg_comb_write, 500 .endianness = DEVICE_LITTLE_ENDIAN, 501 .valid.accepts = fw_cfg_comb_valid, 502 }; 503 504 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 505 .read = fw_cfg_dma_mem_read, 506 .write = fw_cfg_dma_mem_write, 507 .endianness = DEVICE_BIG_ENDIAN, 508 .valid.accepts = fw_cfg_dma_mem_valid, 509 .valid.max_access_size = 8, 510 .impl.max_access_size = 8, 511 }; 512 513 static void fw_cfg_reset(DeviceState *d) 514 { 515 FWCfgState *s = FW_CFG(d); 516 517 /* we never register a read callback for FW_CFG_SIGNATURE */ 518 fw_cfg_select(s, FW_CFG_SIGNATURE); 519 } 520 521 /* Save restore 32 bit int as uint16_t 522 This is a Big hack, but it is how the old state did it. 523 Or we broke compatibility in the state, or we can't use struct tm 524 */ 525 526 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size) 527 { 528 uint32_t *v = pv; 529 *v = qemu_get_be16(f); 530 return 0; 531 } 532 533 static void put_unused(QEMUFile *f, void *pv, size_t size) 534 { 535 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 536 fprintf(stderr, "This functions shouldn't be called.\n"); 537 } 538 539 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 540 .name = "int32_as_uint16", 541 .get = get_uint32_as_uint16, 542 .put = put_unused, 543 }; 544 545 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 546 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 547 548 549 static bool is_version_1(void *opaque, int version_id) 550 { 551 return version_id == 1; 552 } 553 554 bool fw_cfg_dma_enabled(void *opaque) 555 { 556 FWCfgState *s = opaque; 557 558 return s->dma_enabled; 559 } 560 561 static const VMStateDescription vmstate_fw_cfg_dma = { 562 .name = "fw_cfg/dma", 563 .needed = fw_cfg_dma_enabled, 564 .fields = (VMStateField[]) { 565 VMSTATE_UINT64(dma_addr, FWCfgState), 566 VMSTATE_END_OF_LIST() 567 }, 568 }; 569 570 static const VMStateDescription vmstate_fw_cfg = { 571 .name = "fw_cfg", 572 .version_id = 2, 573 .minimum_version_id = 1, 574 .fields = (VMStateField[]) { 575 VMSTATE_UINT16(cur_entry, FWCfgState), 576 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 577 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 578 VMSTATE_END_OF_LIST() 579 }, 580 .subsections = (const VMStateDescription*[]) { 581 &vmstate_fw_cfg_dma, 582 NULL, 583 } 584 }; 585 586 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key, 587 FWCfgReadCallback callback, 588 void *callback_opaque, 589 void *data, size_t len) 590 { 591 int arch = !!(key & FW_CFG_ARCH_LOCAL); 592 593 key &= FW_CFG_ENTRY_MASK; 594 595 assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX); 596 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 597 598 s->entries[arch][key].data = data; 599 s->entries[arch][key].len = (uint32_t)len; 600 s->entries[arch][key].read_callback = callback; 601 s->entries[arch][key].callback_opaque = callback_opaque; 602 } 603 604 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 605 void *data, size_t len) 606 { 607 void *ptr; 608 int arch = !!(key & FW_CFG_ARCH_LOCAL); 609 610 key &= FW_CFG_ENTRY_MASK; 611 612 assert(key < FW_CFG_MAX_ENTRY && len < UINT32_MAX); 613 614 /* return the old data to the function caller, avoid memory leak */ 615 ptr = s->entries[arch][key].data; 616 s->entries[arch][key].data = data; 617 s->entries[arch][key].len = len; 618 s->entries[arch][key].callback_opaque = NULL; 619 620 return ptr; 621 } 622 623 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 624 { 625 fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len); 626 } 627 628 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 629 { 630 size_t sz = strlen(value) + 1; 631 632 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 633 } 634 635 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 636 { 637 uint16_t *copy; 638 639 copy = g_malloc(sizeof(value)); 640 *copy = cpu_to_le16(value); 641 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 642 } 643 644 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 645 { 646 uint16_t *copy, *old; 647 648 copy = g_malloc(sizeof(value)); 649 *copy = cpu_to_le16(value); 650 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 651 g_free(old); 652 } 653 654 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 655 { 656 uint32_t *copy; 657 658 copy = g_malloc(sizeof(value)); 659 *copy = cpu_to_le32(value); 660 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 661 } 662 663 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 664 { 665 uint64_t *copy; 666 667 copy = g_malloc(sizeof(value)); 668 *copy = cpu_to_le64(value); 669 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 670 } 671 672 void fw_cfg_set_order_override(FWCfgState *s, int order) 673 { 674 assert(s->fw_cfg_order_override == 0); 675 s->fw_cfg_order_override = order; 676 } 677 678 void fw_cfg_reset_order_override(FWCfgState *s) 679 { 680 assert(s->fw_cfg_order_override != 0); 681 s->fw_cfg_order_override = 0; 682 } 683 684 /* 685 * This is the legacy order list. For legacy systems, files are in 686 * the fw_cfg in the order defined below, by the "order" value. Note 687 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 688 * specific area, but there may be more than one and they occur in the 689 * order that the user specifies them on the command line. Those are 690 * handled in a special manner, using the order override above. 691 * 692 * For non-legacy, the files are sorted by filename to avoid this kind 693 * of complexity in the future. 694 * 695 * This is only for x86, other arches don't implement versioning so 696 * they won't set legacy mode. 697 */ 698 static struct { 699 const char *name; 700 int order; 701 } fw_cfg_order[] = { 702 { "etc/boot-menu-wait", 10 }, 703 { "bootsplash.jpg", 11 }, 704 { "bootsplash.bmp", 12 }, 705 { "etc/boot-fail-wait", 15 }, 706 { "etc/smbios/smbios-tables", 20 }, 707 { "etc/smbios/smbios-anchor", 30 }, 708 { "etc/e820", 40 }, 709 { "etc/reserved-memory-end", 50 }, 710 { "genroms/kvmvapic.bin", 55 }, 711 { "genroms/linuxboot.bin", 60 }, 712 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 713 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 714 { "etc/system-states", 90 }, 715 { }, /* User ROMs come here, 100. */ 716 { }, /* Device FW comes here, 110. */ 717 { "etc/extra-pci-roots", 120 }, 718 { "etc/acpi/tables", 130 }, 719 { "etc/table-loader", 140 }, 720 { "etc/tpm/log", 150 }, 721 { "etc/acpi/rsdp", 160 }, 722 { "bootorder", 170 }, 723 724 #define FW_CFG_ORDER_OVERRIDE_LAST 200 725 }; 726 727 static int get_fw_cfg_order(FWCfgState *s, const char *name) 728 { 729 int i; 730 731 if (s->fw_cfg_order_override > 0) { 732 return s->fw_cfg_order_override; 733 } 734 735 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 736 if (fw_cfg_order[i].name == NULL) { 737 continue; 738 } 739 740 if (strcmp(name, fw_cfg_order[i].name) == 0) { 741 return fw_cfg_order[i].order; 742 } 743 } 744 745 /* Stick unknown stuff at the end. */ 746 error_report("warning: Unknown firmware file in legacy mode: %s", name); 747 return FW_CFG_ORDER_OVERRIDE_LAST; 748 } 749 750 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 751 FWCfgReadCallback callback, void *callback_opaque, 752 void *data, size_t len) 753 { 754 int i, index, count; 755 size_t dsize; 756 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 757 int order = 0; 758 759 if (!s->files) { 760 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * FW_CFG_FILE_SLOTS; 761 s->files = g_malloc0(dsize); 762 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 763 } 764 765 count = be32_to_cpu(s->files->count); 766 assert(count < FW_CFG_FILE_SLOTS); 767 768 /* Find the insertion point. */ 769 if (mc->legacy_fw_cfg_order) { 770 /* 771 * Sort by order. For files with the same order, we keep them 772 * in the sequence in which they were added. 773 */ 774 order = get_fw_cfg_order(s, filename); 775 for (index = count; 776 index > 0 && order < s->entry_order[index - 1]; 777 index--); 778 } else { 779 /* Sort by file name. */ 780 for (index = count; 781 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 782 index--); 783 } 784 785 /* 786 * Move all the entries from the index point and after down one 787 * to create a slot for the new entry. Because calculations are 788 * being done with the index, make it so that "i" is the current 789 * index and "i - 1" is the one being copied from, thus the 790 * unusual start and end in the for statement. 791 */ 792 for (i = count + 1; i > index; i--) { 793 s->files->f[i] = s->files->f[i - 1]; 794 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 795 s->entries[0][FW_CFG_FILE_FIRST + i] = 796 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 797 s->entry_order[i] = s->entry_order[i - 1]; 798 } 799 800 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 801 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 802 803 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 804 for (i = 0; i <= count; i++) { 805 if (i != index && 806 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 807 error_report("duplicate fw_cfg file name: %s", 808 s->files->f[index].name); 809 exit(1); 810 } 811 } 812 813 fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index, 814 callback, callback_opaque, data, len); 815 816 s->files->f[index].size = cpu_to_be32(len); 817 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 818 s->entry_order[index] = order; 819 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 820 821 s->files->count = cpu_to_be32(count+1); 822 } 823 824 void fw_cfg_add_file(FWCfgState *s, const char *filename, 825 void *data, size_t len) 826 { 827 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len); 828 } 829 830 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 831 void *data, size_t len) 832 { 833 int i, index; 834 void *ptr = NULL; 835 836 assert(s->files); 837 838 index = be32_to_cpu(s->files->count); 839 assert(index < FW_CFG_FILE_SLOTS); 840 841 for (i = 0; i < index; i++) { 842 if (strcmp(filename, s->files->f[i].name) == 0) { 843 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 844 data, len); 845 s->files->f[i].size = cpu_to_be32(len); 846 return ptr; 847 } 848 } 849 /* add new one */ 850 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len); 851 return NULL; 852 } 853 854 static void fw_cfg_machine_reset(void *opaque) 855 { 856 void *ptr; 857 size_t len; 858 FWCfgState *s = opaque; 859 char *bootindex = get_boot_devices_list(&len, false); 860 861 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 862 g_free(ptr); 863 } 864 865 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 866 { 867 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 868 qemu_register_reset(fw_cfg_machine_reset, s); 869 } 870 871 872 873 static void fw_cfg_init1(DeviceState *dev) 874 { 875 FWCfgState *s = FW_CFG(dev); 876 MachineState *machine = MACHINE(qdev_get_machine()); 877 878 assert(!object_resolve_path(FW_CFG_PATH, NULL)); 879 880 object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL); 881 882 qdev_init_nofail(dev); 883 884 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 885 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 886 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 887 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 888 fw_cfg_bootsplash(s); 889 fw_cfg_reboot(s); 890 891 s->machine_ready.notify = fw_cfg_machine_ready; 892 qemu_add_machine_init_done_notifier(&s->machine_ready); 893 } 894 895 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 896 AddressSpace *dma_as) 897 { 898 DeviceState *dev; 899 FWCfgState *s; 900 uint32_t version = FW_CFG_VERSION; 901 bool dma_requested = dma_iobase && dma_as; 902 903 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 904 qdev_prop_set_uint32(dev, "iobase", iobase); 905 qdev_prop_set_uint32(dev, "dma_iobase", dma_iobase); 906 if (!dma_requested) { 907 qdev_prop_set_bit(dev, "dma_enabled", false); 908 } 909 910 fw_cfg_init1(dev); 911 s = FW_CFG(dev); 912 913 if (s->dma_enabled) { 914 /* 64 bits for the address field */ 915 s->dma_as = dma_as; 916 s->dma_addr = 0; 917 918 version |= FW_CFG_VERSION_DMA; 919 } 920 921 fw_cfg_add_i32(s, FW_CFG_ID, version); 922 923 return s; 924 } 925 926 FWCfgState *fw_cfg_init_io(uint32_t iobase) 927 { 928 return fw_cfg_init_io_dma(iobase, 0, NULL); 929 } 930 931 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 932 hwaddr data_addr, uint32_t data_width, 933 hwaddr dma_addr, AddressSpace *dma_as) 934 { 935 DeviceState *dev; 936 SysBusDevice *sbd; 937 FWCfgState *s; 938 uint32_t version = FW_CFG_VERSION; 939 bool dma_requested = dma_addr && dma_as; 940 941 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 942 qdev_prop_set_uint32(dev, "data_width", data_width); 943 if (!dma_requested) { 944 qdev_prop_set_bit(dev, "dma_enabled", false); 945 } 946 947 fw_cfg_init1(dev); 948 949 sbd = SYS_BUS_DEVICE(dev); 950 sysbus_mmio_map(sbd, 0, ctl_addr); 951 sysbus_mmio_map(sbd, 1, data_addr); 952 953 s = FW_CFG(dev); 954 955 if (s->dma_enabled) { 956 s->dma_as = dma_as; 957 s->dma_addr = 0; 958 sysbus_mmio_map(sbd, 2, dma_addr); 959 version |= FW_CFG_VERSION_DMA; 960 } 961 962 fw_cfg_add_i32(s, FW_CFG_ID, version); 963 964 return s; 965 } 966 967 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 968 { 969 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 970 fw_cfg_data_mem_ops.valid.max_access_size, 971 0, NULL); 972 } 973 974 975 FWCfgState *fw_cfg_find(void) 976 { 977 return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL)); 978 } 979 980 static void fw_cfg_class_init(ObjectClass *klass, void *data) 981 { 982 DeviceClass *dc = DEVICE_CLASS(klass); 983 984 dc->reset = fw_cfg_reset; 985 dc->vmsd = &vmstate_fw_cfg; 986 } 987 988 static const TypeInfo fw_cfg_info = { 989 .name = TYPE_FW_CFG, 990 .parent = TYPE_SYS_BUS_DEVICE, 991 .abstract = true, 992 .instance_size = sizeof(FWCfgState), 993 .class_init = fw_cfg_class_init, 994 }; 995 996 997 static Property fw_cfg_io_properties[] = { 998 DEFINE_PROP_UINT32("iobase", FWCfgIoState, iobase, -1), 999 DEFINE_PROP_UINT32("dma_iobase", FWCfgIoState, dma_iobase, -1), 1000 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1001 true), 1002 DEFINE_PROP_END_OF_LIST(), 1003 }; 1004 1005 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1006 { 1007 FWCfgIoState *s = FW_CFG_IO(dev); 1008 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1009 1010 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1011 * with half of the 16-bit control register. Hence, the total size 1012 * of the i/o region used is FW_CFG_CTL_SIZE */ 1013 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1014 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1015 sysbus_add_io(sbd, s->iobase, &s->comb_iomem); 1016 1017 if (FW_CFG(s)->dma_enabled) { 1018 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1019 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1020 sizeof(dma_addr_t)); 1021 sysbus_add_io(sbd, s->dma_iobase, &FW_CFG(s)->dma_iomem); 1022 } 1023 } 1024 1025 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1026 { 1027 DeviceClass *dc = DEVICE_CLASS(klass); 1028 1029 dc->realize = fw_cfg_io_realize; 1030 dc->props = fw_cfg_io_properties; 1031 } 1032 1033 static const TypeInfo fw_cfg_io_info = { 1034 .name = TYPE_FW_CFG_IO, 1035 .parent = TYPE_FW_CFG, 1036 .instance_size = sizeof(FWCfgIoState), 1037 .class_init = fw_cfg_io_class_init, 1038 }; 1039 1040 1041 static Property fw_cfg_mem_properties[] = { 1042 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1043 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1044 true), 1045 DEFINE_PROP_END_OF_LIST(), 1046 }; 1047 1048 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1049 { 1050 FWCfgMemState *s = FW_CFG_MEM(dev); 1051 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1052 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1053 1054 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1055 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1056 sysbus_init_mmio(sbd, &s->ctl_iomem); 1057 1058 if (s->data_width > data_ops->valid.max_access_size) { 1059 /* memberwise copy because the "old_mmio" member is const */ 1060 s->wide_data_ops.read = data_ops->read; 1061 s->wide_data_ops.write = data_ops->write; 1062 s->wide_data_ops.endianness = data_ops->endianness; 1063 s->wide_data_ops.valid = data_ops->valid; 1064 s->wide_data_ops.impl = data_ops->impl; 1065 1066 s->wide_data_ops.valid.max_access_size = s->data_width; 1067 s->wide_data_ops.impl.max_access_size = s->data_width; 1068 data_ops = &s->wide_data_ops; 1069 } 1070 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1071 "fwcfg.data", data_ops->valid.max_access_size); 1072 sysbus_init_mmio(sbd, &s->data_iomem); 1073 1074 if (FW_CFG(s)->dma_enabled) { 1075 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1076 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1077 sizeof(dma_addr_t)); 1078 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1079 } 1080 } 1081 1082 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1083 { 1084 DeviceClass *dc = DEVICE_CLASS(klass); 1085 1086 dc->realize = fw_cfg_mem_realize; 1087 dc->props = fw_cfg_mem_properties; 1088 } 1089 1090 static const TypeInfo fw_cfg_mem_info = { 1091 .name = TYPE_FW_CFG_MEM, 1092 .parent = TYPE_FW_CFG, 1093 .instance_size = sizeof(FWCfgMemState), 1094 .class_init = fw_cfg_mem_class_init, 1095 }; 1096 1097 1098 static void fw_cfg_register_types(void) 1099 { 1100 type_register_static(&fw_cfg_info); 1101 type_register_static(&fw_cfg_io_info); 1102 type_register_static(&fw_cfg_mem_info); 1103 } 1104 1105 type_init(fw_cfg_register_types) 1106