1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu-common.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/dma.h" 29 #include "sysemu/reset.h" 30 #include "hw/boards.h" 31 #include "hw/nvram/fw_cfg.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/sysbus.h" 34 #include "migration/qemu-file-types.h" 35 #include "migration/vmstate.h" 36 #include "trace.h" 37 #include "qemu/error-report.h" 38 #include "qemu/option.h" 39 #include "qemu/config-file.h" 40 #include "qemu/cutils.h" 41 #include "qapi/error.h" 42 43 #define FW_CFG_FILE_SLOTS_DFLT 0x20 44 45 /* FW_CFG_VERSION bits */ 46 #define FW_CFG_VERSION 0x01 47 #define FW_CFG_VERSION_DMA 0x02 48 49 /* FW_CFG_DMA_CONTROL bits */ 50 #define FW_CFG_DMA_CTL_ERROR 0x01 51 #define FW_CFG_DMA_CTL_READ 0x02 52 #define FW_CFG_DMA_CTL_SKIP 0x04 53 #define FW_CFG_DMA_CTL_SELECT 0x08 54 #define FW_CFG_DMA_CTL_WRITE 0x10 55 56 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 57 58 struct FWCfgEntry { 59 uint32_t len; 60 bool allow_write; 61 uint8_t *data; 62 void *callback_opaque; 63 FWCfgCallback select_cb; 64 FWCfgWriteCallback write_cb; 65 }; 66 67 /** 68 * key_name: 69 * 70 * @key: The uint16 selector key. 71 * 72 * Returns: The stringified name if the selector refers to a well-known 73 * numerically defined item, or NULL on key lookup failure. 74 */ 75 static const char *key_name(uint16_t key) 76 { 77 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 78 [FW_CFG_SIGNATURE] = "signature", 79 [FW_CFG_ID] = "id", 80 [FW_CFG_UUID] = "uuid", 81 [FW_CFG_RAM_SIZE] = "ram_size", 82 [FW_CFG_NOGRAPHIC] = "nographic", 83 [FW_CFG_NB_CPUS] = "nb_cpus", 84 [FW_CFG_MACHINE_ID] = "machine_id", 85 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 86 [FW_CFG_KERNEL_SIZE] = "kernel_size", 87 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 88 [FW_CFG_INITRD_ADDR] = "initrd_addr", 89 [FW_CFG_INITRD_SIZE] = "initdr_size", 90 [FW_CFG_BOOT_DEVICE] = "boot_device", 91 [FW_CFG_NUMA] = "numa", 92 [FW_CFG_BOOT_MENU] = "boot_menu", 93 [FW_CFG_MAX_CPUS] = "max_cpus", 94 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 95 [FW_CFG_KERNEL_DATA] = "kernel_data", 96 [FW_CFG_INITRD_DATA] = "initrd_data", 97 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 98 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 99 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 100 [FW_CFG_SETUP_ADDR] = "setup_addr", 101 [FW_CFG_SETUP_SIZE] = "setup_size", 102 [FW_CFG_SETUP_DATA] = "setup_data", 103 [FW_CFG_FILE_DIR] = "file_dir", 104 }; 105 106 if (key & FW_CFG_ARCH_LOCAL) { 107 return fw_cfg_arch_key_name(key); 108 } 109 if (key < FW_CFG_FILE_FIRST) { 110 return fw_cfg_wellknown_keys[key]; 111 } 112 113 return NULL; 114 } 115 116 static inline const char *trace_key_name(uint16_t key) 117 { 118 const char *name = key_name(key); 119 120 return name ? name : "unknown"; 121 } 122 123 #define JPG_FILE 0 124 #define BMP_FILE 1 125 126 static char *read_splashfile(char *filename, gsize *file_sizep, 127 int *file_typep) 128 { 129 GError *err = NULL; 130 gchar *content; 131 int file_type; 132 unsigned int filehead; 133 int bmp_bpp; 134 135 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 136 error_report("failed to read splash file '%s': %s", 137 filename, err->message); 138 g_error_free(err); 139 return NULL; 140 } 141 142 /* check file size */ 143 if (*file_sizep < 30) { 144 goto error; 145 } 146 147 /* check magic ID */ 148 filehead = lduw_le_p(content); 149 if (filehead == 0xd8ff) { 150 file_type = JPG_FILE; 151 } else if (filehead == 0x4d42) { 152 file_type = BMP_FILE; 153 } else { 154 goto error; 155 } 156 157 /* check BMP bpp */ 158 if (file_type == BMP_FILE) { 159 bmp_bpp = lduw_le_p(&content[28]); 160 if (bmp_bpp != 24) { 161 goto error; 162 } 163 } 164 165 /* return values */ 166 *file_typep = file_type; 167 168 return content; 169 170 error: 171 error_report("splash file '%s' format not recognized; must be JPEG " 172 "or 24 bit BMP", filename); 173 g_free(content); 174 return NULL; 175 } 176 177 static void fw_cfg_bootsplash(FWCfgState *s) 178 { 179 const char *boot_splash_filename = NULL; 180 const char *boot_splash_time = NULL; 181 char *filename, *file_data; 182 gsize file_size; 183 int file_type; 184 185 /* get user configuration */ 186 QemuOptsList *plist = qemu_find_opts("boot-opts"); 187 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 188 boot_splash_filename = qemu_opt_get(opts, "splash"); 189 boot_splash_time = qemu_opt_get(opts, "splash-time"); 190 191 /* insert splash time if user configurated */ 192 if (boot_splash_time) { 193 int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1); 194 uint16_t bst_le16; 195 196 /* validate the input */ 197 if (bst_val < 0 || bst_val > 0xffff) { 198 error_report("splash-time is invalid," 199 "it should be a value between 0 and 65535"); 200 exit(1); 201 } 202 /* use little endian format */ 203 bst_le16 = cpu_to_le16(bst_val); 204 fw_cfg_add_file(s, "etc/boot-menu-wait", 205 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 206 } 207 208 /* insert splash file if user configurated */ 209 if (boot_splash_filename) { 210 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 211 if (filename == NULL) { 212 error_report("failed to find file '%s'", boot_splash_filename); 213 return; 214 } 215 216 /* loading file data */ 217 file_data = read_splashfile(filename, &file_size, &file_type); 218 if (file_data == NULL) { 219 g_free(filename); 220 return; 221 } 222 g_free(boot_splash_filedata); 223 boot_splash_filedata = (uint8_t *)file_data; 224 225 /* insert data */ 226 if (file_type == JPG_FILE) { 227 fw_cfg_add_file(s, "bootsplash.jpg", 228 boot_splash_filedata, file_size); 229 } else { 230 fw_cfg_add_file(s, "bootsplash.bmp", 231 boot_splash_filedata, file_size); 232 } 233 g_free(filename); 234 } 235 } 236 237 static void fw_cfg_reboot(FWCfgState *s) 238 { 239 const char *reboot_timeout = NULL; 240 uint64_t rt_val = -1; 241 uint32_t rt_le32; 242 243 /* get user configuration */ 244 QemuOptsList *plist = qemu_find_opts("boot-opts"); 245 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 246 reboot_timeout = qemu_opt_get(opts, "reboot-timeout"); 247 248 if (reboot_timeout) { 249 rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1); 250 251 /* validate the input */ 252 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 253 error_report("reboot timeout is invalid," 254 "it should be a value between -1 and 65535"); 255 exit(1); 256 } 257 } 258 259 rt_le32 = cpu_to_le32(rt_val); 260 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 261 } 262 263 static void fw_cfg_write(FWCfgState *s, uint8_t value) 264 { 265 /* nothing, write support removed in QEMU v2.4+ */ 266 } 267 268 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 269 { 270 return s->file_slots; 271 } 272 273 /* Note: this function returns an exclusive limit. */ 274 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 275 { 276 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 277 } 278 279 static int fw_cfg_select(FWCfgState *s, uint16_t key) 280 { 281 int arch, ret; 282 FWCfgEntry *e; 283 284 s->cur_offset = 0; 285 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 286 s->cur_entry = FW_CFG_INVALID; 287 ret = 0; 288 } else { 289 s->cur_entry = key; 290 ret = 1; 291 /* entry successfully selected, now run callback if present */ 292 arch = !!(key & FW_CFG_ARCH_LOCAL); 293 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 294 if (e->select_cb) { 295 e->select_cb(e->callback_opaque); 296 } 297 } 298 299 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 300 return ret; 301 } 302 303 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 304 { 305 FWCfgState *s = opaque; 306 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 307 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 308 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 309 uint64_t value = 0; 310 311 assert(size > 0 && size <= sizeof(value)); 312 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 313 /* The least significant 'size' bytes of the return value are 314 * expected to contain a string preserving portion of the item 315 * data, padded with zeros on the right in case we run out early. 316 * In technical terms, we're composing the host-endian representation 317 * of the big endian interpretation of the fw_cfg string. 318 */ 319 do { 320 value = (value << 8) | e->data[s->cur_offset++]; 321 } while (--size && s->cur_offset < e->len); 322 /* If size is still not zero, we *did* run out early, so continue 323 * left-shifting, to add the appropriate number of padding zeros 324 * on the right. 325 */ 326 value <<= 8 * size; 327 } 328 329 trace_fw_cfg_read(s, value); 330 return value; 331 } 332 333 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 334 uint64_t value, unsigned size) 335 { 336 FWCfgState *s = opaque; 337 unsigned i = size; 338 339 do { 340 fw_cfg_write(s, value >> (8 * --i)); 341 } while (i); 342 } 343 344 static void fw_cfg_dma_transfer(FWCfgState *s) 345 { 346 dma_addr_t len; 347 FWCfgDmaAccess dma; 348 int arch; 349 FWCfgEntry *e; 350 int read = 0, write = 0; 351 dma_addr_t dma_addr; 352 353 /* Reset the address before the next access */ 354 dma_addr = s->dma_addr; 355 s->dma_addr = 0; 356 357 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 358 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 359 FW_CFG_DMA_CTL_ERROR); 360 return; 361 } 362 363 dma.address = be64_to_cpu(dma.address); 364 dma.length = be32_to_cpu(dma.length); 365 dma.control = be32_to_cpu(dma.control); 366 367 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 368 fw_cfg_select(s, dma.control >> 16); 369 } 370 371 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 372 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 373 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 374 375 if (dma.control & FW_CFG_DMA_CTL_READ) { 376 read = 1; 377 write = 0; 378 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 379 read = 0; 380 write = 1; 381 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 382 read = 0; 383 write = 0; 384 } else { 385 dma.length = 0; 386 } 387 388 dma.control = 0; 389 390 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 391 if (s->cur_entry == FW_CFG_INVALID || !e->data || 392 s->cur_offset >= e->len) { 393 len = dma.length; 394 395 /* If the access is not a read access, it will be a skip access, 396 * tested before. 397 */ 398 if (read) { 399 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 400 dma.control |= FW_CFG_DMA_CTL_ERROR; 401 } 402 } 403 if (write) { 404 dma.control |= FW_CFG_DMA_CTL_ERROR; 405 } 406 } else { 407 if (dma.length <= (e->len - s->cur_offset)) { 408 len = dma.length; 409 } else { 410 len = (e->len - s->cur_offset); 411 } 412 413 /* If the access is not a read access, it will be a skip access, 414 * tested before. 415 */ 416 if (read) { 417 if (dma_memory_write(s->dma_as, dma.address, 418 &e->data[s->cur_offset], len)) { 419 dma.control |= FW_CFG_DMA_CTL_ERROR; 420 } 421 } 422 if (write) { 423 if (!e->allow_write || 424 len != dma.length || 425 dma_memory_read(s->dma_as, dma.address, 426 &e->data[s->cur_offset], len)) { 427 dma.control |= FW_CFG_DMA_CTL_ERROR; 428 } else if (e->write_cb) { 429 e->write_cb(e->callback_opaque, s->cur_offset, len); 430 } 431 } 432 433 s->cur_offset += len; 434 } 435 436 dma.address += len; 437 dma.length -= len; 438 439 } 440 441 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 442 dma.control); 443 444 trace_fw_cfg_read(s, 0); 445 } 446 447 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 448 unsigned size) 449 { 450 /* Return a signature value (and handle various read sizes) */ 451 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 452 } 453 454 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 455 uint64_t value, unsigned size) 456 { 457 FWCfgState *s = opaque; 458 459 if (size == 4) { 460 if (addr == 0) { 461 /* FWCfgDmaAccess high address */ 462 s->dma_addr = value << 32; 463 } else if (addr == 4) { 464 /* FWCfgDmaAccess low address */ 465 s->dma_addr |= value; 466 fw_cfg_dma_transfer(s); 467 } 468 } else if (size == 8 && addr == 0) { 469 s->dma_addr = value; 470 fw_cfg_dma_transfer(s); 471 } 472 } 473 474 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 475 unsigned size, bool is_write, 476 MemTxAttrs attrs) 477 { 478 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 479 (size == 8 && addr == 0)); 480 } 481 482 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 483 unsigned size, bool is_write, 484 MemTxAttrs attrs) 485 { 486 return addr == 0; 487 } 488 489 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 490 { 491 return 0; 492 } 493 494 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 495 uint64_t value, unsigned size) 496 { 497 fw_cfg_select(opaque, (uint16_t)value); 498 } 499 500 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 501 unsigned size, bool is_write, 502 MemTxAttrs attrs) 503 { 504 return is_write && size == 2; 505 } 506 507 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 508 uint64_t value, unsigned size) 509 { 510 switch (size) { 511 case 1: 512 fw_cfg_write(opaque, (uint8_t)value); 513 break; 514 case 2: 515 fw_cfg_select(opaque, (uint16_t)value); 516 break; 517 } 518 } 519 520 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 521 unsigned size, bool is_write, 522 MemTxAttrs attrs) 523 { 524 return (size == 1) || (is_write && size == 2); 525 } 526 527 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 528 .read = fw_cfg_ctl_mem_read, 529 .write = fw_cfg_ctl_mem_write, 530 .endianness = DEVICE_BIG_ENDIAN, 531 .valid.accepts = fw_cfg_ctl_mem_valid, 532 }; 533 534 static const MemoryRegionOps fw_cfg_data_mem_ops = { 535 .read = fw_cfg_data_read, 536 .write = fw_cfg_data_mem_write, 537 .endianness = DEVICE_BIG_ENDIAN, 538 .valid = { 539 .min_access_size = 1, 540 .max_access_size = 1, 541 .accepts = fw_cfg_data_mem_valid, 542 }, 543 }; 544 545 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 546 .read = fw_cfg_data_read, 547 .write = fw_cfg_comb_write, 548 .endianness = DEVICE_LITTLE_ENDIAN, 549 .valid.accepts = fw_cfg_comb_valid, 550 }; 551 552 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 553 .read = fw_cfg_dma_mem_read, 554 .write = fw_cfg_dma_mem_write, 555 .endianness = DEVICE_BIG_ENDIAN, 556 .valid.accepts = fw_cfg_dma_mem_valid, 557 .valid.max_access_size = 8, 558 .impl.max_access_size = 8, 559 }; 560 561 static void fw_cfg_reset(DeviceState *d) 562 { 563 FWCfgState *s = FW_CFG(d); 564 565 /* we never register a read callback for FW_CFG_SIGNATURE */ 566 fw_cfg_select(s, FW_CFG_SIGNATURE); 567 } 568 569 /* Save restore 32 bit int as uint16_t 570 This is a Big hack, but it is how the old state did it. 571 Or we broke compatibility in the state, or we can't use struct tm 572 */ 573 574 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 575 const VMStateField *field) 576 { 577 uint32_t *v = pv; 578 *v = qemu_get_be16(f); 579 return 0; 580 } 581 582 static int put_unused(QEMUFile *f, void *pv, size_t size, 583 const VMStateField *field, QJSON *vmdesc) 584 { 585 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 586 fprintf(stderr, "This functions shouldn't be called.\n"); 587 588 return 0; 589 } 590 591 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 592 .name = "int32_as_uint16", 593 .get = get_uint32_as_uint16, 594 .put = put_unused, 595 }; 596 597 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 598 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 599 600 601 static bool is_version_1(void *opaque, int version_id) 602 { 603 return version_id == 1; 604 } 605 606 bool fw_cfg_dma_enabled(void *opaque) 607 { 608 FWCfgState *s = opaque; 609 610 return s->dma_enabled; 611 } 612 613 static const VMStateDescription vmstate_fw_cfg_dma = { 614 .name = "fw_cfg/dma", 615 .needed = fw_cfg_dma_enabled, 616 .fields = (VMStateField[]) { 617 VMSTATE_UINT64(dma_addr, FWCfgState), 618 VMSTATE_END_OF_LIST() 619 }, 620 }; 621 622 static const VMStateDescription vmstate_fw_cfg = { 623 .name = "fw_cfg", 624 .version_id = 2, 625 .minimum_version_id = 1, 626 .fields = (VMStateField[]) { 627 VMSTATE_UINT16(cur_entry, FWCfgState), 628 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 629 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 630 VMSTATE_END_OF_LIST() 631 }, 632 .subsections = (const VMStateDescription*[]) { 633 &vmstate_fw_cfg_dma, 634 NULL, 635 } 636 }; 637 638 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 639 FWCfgCallback select_cb, 640 FWCfgWriteCallback write_cb, 641 void *callback_opaque, 642 void *data, size_t len, 643 bool read_only) 644 { 645 int arch = !!(key & FW_CFG_ARCH_LOCAL); 646 647 key &= FW_CFG_ENTRY_MASK; 648 649 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 650 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 651 652 s->entries[arch][key].data = data; 653 s->entries[arch][key].len = (uint32_t)len; 654 s->entries[arch][key].select_cb = select_cb; 655 s->entries[arch][key].write_cb = write_cb; 656 s->entries[arch][key].callback_opaque = callback_opaque; 657 s->entries[arch][key].allow_write = !read_only; 658 } 659 660 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 661 void *data, size_t len) 662 { 663 void *ptr; 664 int arch = !!(key & FW_CFG_ARCH_LOCAL); 665 666 key &= FW_CFG_ENTRY_MASK; 667 668 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 669 670 /* return the old data to the function caller, avoid memory leak */ 671 ptr = s->entries[arch][key].data; 672 s->entries[arch][key].data = data; 673 s->entries[arch][key].len = len; 674 s->entries[arch][key].callback_opaque = NULL; 675 s->entries[arch][key].allow_write = false; 676 677 return ptr; 678 } 679 680 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 681 { 682 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 683 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 684 } 685 686 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 687 { 688 size_t sz = strlen(value) + 1; 689 690 trace_fw_cfg_add_string(key, trace_key_name(key), value); 691 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 692 } 693 694 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 695 { 696 size_t sz = strlen(value) + 1; 697 char *old; 698 699 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 700 g_free(old); 701 } 702 703 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 704 { 705 uint16_t *copy; 706 707 copy = g_malloc(sizeof(value)); 708 *copy = cpu_to_le16(value); 709 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 710 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 711 } 712 713 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 714 { 715 uint16_t *copy, *old; 716 717 copy = g_malloc(sizeof(value)); 718 *copy = cpu_to_le16(value); 719 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 720 g_free(old); 721 } 722 723 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 724 { 725 uint32_t *copy; 726 727 copy = g_malloc(sizeof(value)); 728 *copy = cpu_to_le32(value); 729 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 730 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 731 } 732 733 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 734 { 735 uint32_t *copy, *old; 736 737 copy = g_malloc(sizeof(value)); 738 *copy = cpu_to_le32(value); 739 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 740 g_free(old); 741 } 742 743 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 744 { 745 uint64_t *copy; 746 747 copy = g_malloc(sizeof(value)); 748 *copy = cpu_to_le64(value); 749 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 750 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 751 } 752 753 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 754 { 755 uint64_t *copy, *old; 756 757 copy = g_malloc(sizeof(value)); 758 *copy = cpu_to_le64(value); 759 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 760 g_free(old); 761 } 762 763 void fw_cfg_set_order_override(FWCfgState *s, int order) 764 { 765 assert(s->fw_cfg_order_override == 0); 766 s->fw_cfg_order_override = order; 767 } 768 769 void fw_cfg_reset_order_override(FWCfgState *s) 770 { 771 assert(s->fw_cfg_order_override != 0); 772 s->fw_cfg_order_override = 0; 773 } 774 775 /* 776 * This is the legacy order list. For legacy systems, files are in 777 * the fw_cfg in the order defined below, by the "order" value. Note 778 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 779 * specific area, but there may be more than one and they occur in the 780 * order that the user specifies them on the command line. Those are 781 * handled in a special manner, using the order override above. 782 * 783 * For non-legacy, the files are sorted by filename to avoid this kind 784 * of complexity in the future. 785 * 786 * This is only for x86, other arches don't implement versioning so 787 * they won't set legacy mode. 788 */ 789 static struct { 790 const char *name; 791 int order; 792 } fw_cfg_order[] = { 793 { "etc/boot-menu-wait", 10 }, 794 { "bootsplash.jpg", 11 }, 795 { "bootsplash.bmp", 12 }, 796 { "etc/boot-fail-wait", 15 }, 797 { "etc/smbios/smbios-tables", 20 }, 798 { "etc/smbios/smbios-anchor", 30 }, 799 { "etc/e820", 40 }, 800 { "etc/reserved-memory-end", 50 }, 801 { "genroms/kvmvapic.bin", 55 }, 802 { "genroms/linuxboot.bin", 60 }, 803 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 804 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 805 { "etc/system-states", 90 }, 806 { }, /* User ROMs come here, 100. */ 807 { }, /* Device FW comes here, 110. */ 808 { "etc/extra-pci-roots", 120 }, 809 { "etc/acpi/tables", 130 }, 810 { "etc/table-loader", 140 }, 811 { "etc/tpm/log", 150 }, 812 { "etc/acpi/rsdp", 160 }, 813 { "bootorder", 170 }, 814 815 #define FW_CFG_ORDER_OVERRIDE_LAST 200 816 }; 817 818 static int get_fw_cfg_order(FWCfgState *s, const char *name) 819 { 820 int i; 821 822 if (s->fw_cfg_order_override > 0) { 823 return s->fw_cfg_order_override; 824 } 825 826 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 827 if (fw_cfg_order[i].name == NULL) { 828 continue; 829 } 830 831 if (strcmp(name, fw_cfg_order[i].name) == 0) { 832 return fw_cfg_order[i].order; 833 } 834 } 835 836 /* Stick unknown stuff at the end. */ 837 warn_report("Unknown firmware file in legacy mode: %s", name); 838 return FW_CFG_ORDER_OVERRIDE_LAST; 839 } 840 841 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 842 FWCfgCallback select_cb, 843 FWCfgWriteCallback write_cb, 844 void *callback_opaque, 845 void *data, size_t len, bool read_only) 846 { 847 int i, index, count; 848 size_t dsize; 849 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 850 int order = 0; 851 852 if (!s->files) { 853 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 854 s->files = g_malloc0(dsize); 855 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 856 } 857 858 count = be32_to_cpu(s->files->count); 859 assert(count < fw_cfg_file_slots(s)); 860 861 /* Find the insertion point. */ 862 if (mc->legacy_fw_cfg_order) { 863 /* 864 * Sort by order. For files with the same order, we keep them 865 * in the sequence in which they were added. 866 */ 867 order = get_fw_cfg_order(s, filename); 868 for (index = count; 869 index > 0 && order < s->entry_order[index - 1]; 870 index--); 871 } else { 872 /* Sort by file name. */ 873 for (index = count; 874 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 875 index--); 876 } 877 878 /* 879 * Move all the entries from the index point and after down one 880 * to create a slot for the new entry. Because calculations are 881 * being done with the index, make it so that "i" is the current 882 * index and "i - 1" is the one being copied from, thus the 883 * unusual start and end in the for statement. 884 */ 885 for (i = count; i > index; i--) { 886 s->files->f[i] = s->files->f[i - 1]; 887 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 888 s->entries[0][FW_CFG_FILE_FIRST + i] = 889 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 890 s->entry_order[i] = s->entry_order[i - 1]; 891 } 892 893 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 894 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 895 896 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 897 for (i = 0; i <= count; i++) { 898 if (i != index && 899 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 900 error_report("duplicate fw_cfg file name: %s", 901 s->files->f[index].name); 902 exit(1); 903 } 904 } 905 906 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 907 select_cb, write_cb, 908 callback_opaque, data, len, 909 read_only); 910 911 s->files->f[index].size = cpu_to_be32(len); 912 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 913 s->entry_order[index] = order; 914 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 915 916 s->files->count = cpu_to_be32(count+1); 917 } 918 919 void fw_cfg_add_file(FWCfgState *s, const char *filename, 920 void *data, size_t len) 921 { 922 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 923 } 924 925 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 926 void *data, size_t len) 927 { 928 int i, index; 929 void *ptr = NULL; 930 931 assert(s->files); 932 933 index = be32_to_cpu(s->files->count); 934 935 for (i = 0; i < index; i++) { 936 if (strcmp(filename, s->files->f[i].name) == 0) { 937 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 938 data, len); 939 s->files->f[i].size = cpu_to_be32(len); 940 return ptr; 941 } 942 } 943 944 assert(index < fw_cfg_file_slots(s)); 945 946 /* add new one */ 947 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 948 return NULL; 949 } 950 951 static void fw_cfg_machine_reset(void *opaque) 952 { 953 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 954 FWCfgState *s = opaque; 955 void *ptr; 956 size_t len; 957 char *buf; 958 959 buf = get_boot_devices_list(&len); 960 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 961 g_free(ptr); 962 963 if (!mc->legacy_fw_cfg_order) { 964 buf = get_boot_devices_lchs_list(&len); 965 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 966 g_free(ptr); 967 } 968 } 969 970 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 971 { 972 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 973 qemu_register_reset(fw_cfg_machine_reset, s); 974 } 975 976 977 978 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 979 { 980 FWCfgState *s = FW_CFG(dev); 981 MachineState *machine = MACHINE(qdev_get_machine()); 982 uint32_t version = FW_CFG_VERSION; 983 984 if (!fw_cfg_find()) { 985 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 986 return; 987 } 988 989 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 990 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 991 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 992 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 993 fw_cfg_bootsplash(s); 994 fw_cfg_reboot(s); 995 996 if (s->dma_enabled) { 997 version |= FW_CFG_VERSION_DMA; 998 } 999 1000 fw_cfg_add_i32(s, FW_CFG_ID, version); 1001 1002 s->machine_ready.notify = fw_cfg_machine_ready; 1003 qemu_add_machine_init_done_notifier(&s->machine_ready); 1004 } 1005 1006 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1007 AddressSpace *dma_as) 1008 { 1009 DeviceState *dev; 1010 SysBusDevice *sbd; 1011 FWCfgIoState *ios; 1012 FWCfgState *s; 1013 bool dma_requested = dma_iobase && dma_as; 1014 1015 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 1016 if (!dma_requested) { 1017 qdev_prop_set_bit(dev, "dma_enabled", false); 1018 } 1019 1020 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1021 OBJECT(dev), NULL); 1022 qdev_init_nofail(dev); 1023 1024 sbd = SYS_BUS_DEVICE(dev); 1025 ios = FW_CFG_IO(dev); 1026 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 1027 1028 s = FW_CFG(dev); 1029 1030 if (s->dma_enabled) { 1031 /* 64 bits for the address field */ 1032 s->dma_as = dma_as; 1033 s->dma_addr = 0; 1034 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 1035 } 1036 1037 return s; 1038 } 1039 1040 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1041 { 1042 return fw_cfg_init_io_dma(iobase, 0, NULL); 1043 } 1044 1045 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1046 hwaddr data_addr, uint32_t data_width, 1047 hwaddr dma_addr, AddressSpace *dma_as) 1048 { 1049 DeviceState *dev; 1050 SysBusDevice *sbd; 1051 FWCfgState *s; 1052 bool dma_requested = dma_addr && dma_as; 1053 1054 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 1055 qdev_prop_set_uint32(dev, "data_width", data_width); 1056 if (!dma_requested) { 1057 qdev_prop_set_bit(dev, "dma_enabled", false); 1058 } 1059 1060 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1061 OBJECT(dev), NULL); 1062 qdev_init_nofail(dev); 1063 1064 sbd = SYS_BUS_DEVICE(dev); 1065 sysbus_mmio_map(sbd, 0, ctl_addr); 1066 sysbus_mmio_map(sbd, 1, data_addr); 1067 1068 s = FW_CFG(dev); 1069 1070 if (s->dma_enabled) { 1071 s->dma_as = dma_as; 1072 s->dma_addr = 0; 1073 sysbus_mmio_map(sbd, 2, dma_addr); 1074 } 1075 1076 return s; 1077 } 1078 1079 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1080 { 1081 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1082 fw_cfg_data_mem_ops.valid.max_access_size, 1083 0, NULL); 1084 } 1085 1086 1087 FWCfgState *fw_cfg_find(void) 1088 { 1089 /* Returns NULL unless there is exactly one fw_cfg device */ 1090 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1091 } 1092 1093 1094 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1095 { 1096 DeviceClass *dc = DEVICE_CLASS(klass); 1097 1098 dc->reset = fw_cfg_reset; 1099 dc->vmsd = &vmstate_fw_cfg; 1100 } 1101 1102 static const TypeInfo fw_cfg_info = { 1103 .name = TYPE_FW_CFG, 1104 .parent = TYPE_SYS_BUS_DEVICE, 1105 .abstract = true, 1106 .instance_size = sizeof(FWCfgState), 1107 .class_init = fw_cfg_class_init, 1108 }; 1109 1110 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1111 { 1112 uint16_t file_slots_max; 1113 1114 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1115 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1116 FW_CFG_FILE_SLOTS_MIN); 1117 return; 1118 } 1119 1120 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1121 * that we permit. The actual (exclusive) value coming from the 1122 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1123 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1124 if (fw_cfg_file_slots(s) > file_slots_max) { 1125 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1126 file_slots_max); 1127 return; 1128 } 1129 1130 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1131 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1132 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1133 } 1134 1135 static Property fw_cfg_io_properties[] = { 1136 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1137 true), 1138 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1139 FW_CFG_FILE_SLOTS_DFLT), 1140 DEFINE_PROP_END_OF_LIST(), 1141 }; 1142 1143 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1144 { 1145 FWCfgIoState *s = FW_CFG_IO(dev); 1146 Error *local_err = NULL; 1147 1148 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1149 if (local_err) { 1150 error_propagate(errp, local_err); 1151 return; 1152 } 1153 1154 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1155 * with half of the 16-bit control register. Hence, the total size 1156 * of the i/o region used is FW_CFG_CTL_SIZE */ 1157 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1158 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1159 1160 if (FW_CFG(s)->dma_enabled) { 1161 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1162 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1163 sizeof(dma_addr_t)); 1164 } 1165 1166 fw_cfg_common_realize(dev, errp); 1167 } 1168 1169 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1170 { 1171 DeviceClass *dc = DEVICE_CLASS(klass); 1172 1173 dc->realize = fw_cfg_io_realize; 1174 dc->props = fw_cfg_io_properties; 1175 } 1176 1177 static const TypeInfo fw_cfg_io_info = { 1178 .name = TYPE_FW_CFG_IO, 1179 .parent = TYPE_FW_CFG, 1180 .instance_size = sizeof(FWCfgIoState), 1181 .class_init = fw_cfg_io_class_init, 1182 }; 1183 1184 1185 static Property fw_cfg_mem_properties[] = { 1186 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1187 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1188 true), 1189 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1190 FW_CFG_FILE_SLOTS_DFLT), 1191 DEFINE_PROP_END_OF_LIST(), 1192 }; 1193 1194 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1195 { 1196 FWCfgMemState *s = FW_CFG_MEM(dev); 1197 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1198 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1199 Error *local_err = NULL; 1200 1201 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1202 if (local_err) { 1203 error_propagate(errp, local_err); 1204 return; 1205 } 1206 1207 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1208 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1209 sysbus_init_mmio(sbd, &s->ctl_iomem); 1210 1211 if (s->data_width > data_ops->valid.max_access_size) { 1212 s->wide_data_ops = *data_ops; 1213 1214 s->wide_data_ops.valid.max_access_size = s->data_width; 1215 s->wide_data_ops.impl.max_access_size = s->data_width; 1216 data_ops = &s->wide_data_ops; 1217 } 1218 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1219 "fwcfg.data", data_ops->valid.max_access_size); 1220 sysbus_init_mmio(sbd, &s->data_iomem); 1221 1222 if (FW_CFG(s)->dma_enabled) { 1223 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1224 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1225 sizeof(dma_addr_t)); 1226 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1227 } 1228 1229 fw_cfg_common_realize(dev, errp); 1230 } 1231 1232 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1233 { 1234 DeviceClass *dc = DEVICE_CLASS(klass); 1235 1236 dc->realize = fw_cfg_mem_realize; 1237 dc->props = fw_cfg_mem_properties; 1238 } 1239 1240 static const TypeInfo fw_cfg_mem_info = { 1241 .name = TYPE_FW_CFG_MEM, 1242 .parent = TYPE_FW_CFG, 1243 .instance_size = sizeof(FWCfgMemState), 1244 .class_init = fw_cfg_mem_class_init, 1245 }; 1246 1247 1248 static void fw_cfg_register_types(void) 1249 { 1250 type_register_static(&fw_cfg_info); 1251 type_register_static(&fw_cfg_io_info); 1252 type_register_static(&fw_cfg_mem_info); 1253 } 1254 1255 type_init(fw_cfg_register_types) 1256