xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision f480f6e8)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu-common.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 
43 #define FW_CFG_FILE_SLOTS_DFLT 0x20
44 
45 /* FW_CFG_VERSION bits */
46 #define FW_CFG_VERSION      0x01
47 #define FW_CFG_VERSION_DMA  0x02
48 
49 /* FW_CFG_DMA_CONTROL bits */
50 #define FW_CFG_DMA_CTL_ERROR   0x01
51 #define FW_CFG_DMA_CTL_READ    0x02
52 #define FW_CFG_DMA_CTL_SKIP    0x04
53 #define FW_CFG_DMA_CTL_SELECT  0x08
54 #define FW_CFG_DMA_CTL_WRITE   0x10
55 
56 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
57 
58 struct FWCfgEntry {
59     uint32_t len;
60     bool allow_write;
61     uint8_t *data;
62     void *callback_opaque;
63     FWCfgCallback select_cb;
64     FWCfgWriteCallback write_cb;
65 };
66 
67 /**
68  * key_name:
69  *
70  * @key: The uint16 selector key.
71  *
72  * Returns: The stringified name if the selector refers to a well-known
73  *          numerically defined item, or NULL on key lookup failure.
74  */
75 static const char *key_name(uint16_t key)
76 {
77     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
78         [FW_CFG_SIGNATURE] = "signature",
79         [FW_CFG_ID] = "id",
80         [FW_CFG_UUID] = "uuid",
81         [FW_CFG_RAM_SIZE] = "ram_size",
82         [FW_CFG_NOGRAPHIC] = "nographic",
83         [FW_CFG_NB_CPUS] = "nb_cpus",
84         [FW_CFG_MACHINE_ID] = "machine_id",
85         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
86         [FW_CFG_KERNEL_SIZE] = "kernel_size",
87         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
88         [FW_CFG_INITRD_ADDR] = "initrd_addr",
89         [FW_CFG_INITRD_SIZE] = "initdr_size",
90         [FW_CFG_BOOT_DEVICE] = "boot_device",
91         [FW_CFG_NUMA] = "numa",
92         [FW_CFG_BOOT_MENU] = "boot_menu",
93         [FW_CFG_MAX_CPUS] = "max_cpus",
94         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
95         [FW_CFG_KERNEL_DATA] = "kernel_data",
96         [FW_CFG_INITRD_DATA] = "initrd_data",
97         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
98         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
99         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
100         [FW_CFG_SETUP_ADDR] = "setup_addr",
101         [FW_CFG_SETUP_SIZE] = "setup_size",
102         [FW_CFG_SETUP_DATA] = "setup_data",
103         [FW_CFG_FILE_DIR] = "file_dir",
104     };
105 
106     if (key & FW_CFG_ARCH_LOCAL) {
107         return fw_cfg_arch_key_name(key);
108     }
109     if (key < FW_CFG_FILE_FIRST) {
110         return fw_cfg_wellknown_keys[key];
111     }
112 
113     return NULL;
114 }
115 
116 static inline const char *trace_key_name(uint16_t key)
117 {
118     const char *name = key_name(key);
119 
120     return name ? name : "unknown";
121 }
122 
123 #define JPG_FILE 0
124 #define BMP_FILE 1
125 
126 static char *read_splashfile(char *filename, gsize *file_sizep,
127                              int *file_typep)
128 {
129     GError *err = NULL;
130     gchar *content;
131     int file_type;
132     unsigned int filehead;
133     int bmp_bpp;
134 
135     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
136         error_report("failed to read splash file '%s': %s",
137                      filename, err->message);
138         g_error_free(err);
139         return NULL;
140     }
141 
142     /* check file size */
143     if (*file_sizep < 30) {
144         goto error;
145     }
146 
147     /* check magic ID */
148     filehead = lduw_le_p(content);
149     if (filehead == 0xd8ff) {
150         file_type = JPG_FILE;
151     } else if (filehead == 0x4d42) {
152         file_type = BMP_FILE;
153     } else {
154         goto error;
155     }
156 
157     /* check BMP bpp */
158     if (file_type == BMP_FILE) {
159         bmp_bpp = lduw_le_p(&content[28]);
160         if (bmp_bpp != 24) {
161             goto error;
162         }
163     }
164 
165     /* return values */
166     *file_typep = file_type;
167 
168     return content;
169 
170 error:
171     error_report("splash file '%s' format not recognized; must be JPEG "
172                  "or 24 bit BMP", filename);
173     g_free(content);
174     return NULL;
175 }
176 
177 static void fw_cfg_bootsplash(FWCfgState *s)
178 {
179     const char *boot_splash_filename = NULL;
180     const char *boot_splash_time = NULL;
181     char *filename, *file_data;
182     gsize file_size;
183     int file_type;
184 
185     /* get user configuration */
186     QemuOptsList *plist = qemu_find_opts("boot-opts");
187     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
188     boot_splash_filename = qemu_opt_get(opts, "splash");
189     boot_splash_time = qemu_opt_get(opts, "splash-time");
190 
191     /* insert splash time if user configurated */
192     if (boot_splash_time) {
193         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
194         uint16_t bst_le16;
195 
196         /* validate the input */
197         if (bst_val < 0 || bst_val > 0xffff) {
198             error_report("splash-time is invalid,"
199                          "it should be a value between 0 and 65535");
200             exit(1);
201         }
202         /* use little endian format */
203         bst_le16 = cpu_to_le16(bst_val);
204         fw_cfg_add_file(s, "etc/boot-menu-wait",
205                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
206     }
207 
208     /* insert splash file if user configurated */
209     if (boot_splash_filename) {
210         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
211         if (filename == NULL) {
212             error_report("failed to find file '%s'", boot_splash_filename);
213             return;
214         }
215 
216         /* loading file data */
217         file_data = read_splashfile(filename, &file_size, &file_type);
218         if (file_data == NULL) {
219             g_free(filename);
220             return;
221         }
222         g_free(boot_splash_filedata);
223         boot_splash_filedata = (uint8_t *)file_data;
224 
225         /* insert data */
226         if (file_type == JPG_FILE) {
227             fw_cfg_add_file(s, "bootsplash.jpg",
228                             boot_splash_filedata, file_size);
229         } else {
230             fw_cfg_add_file(s, "bootsplash.bmp",
231                             boot_splash_filedata, file_size);
232         }
233         g_free(filename);
234     }
235 }
236 
237 static void fw_cfg_reboot(FWCfgState *s)
238 {
239     const char *reboot_timeout = NULL;
240     uint64_t rt_val = -1;
241     uint32_t rt_le32;
242 
243     /* get user configuration */
244     QemuOptsList *plist = qemu_find_opts("boot-opts");
245     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
246     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
247 
248     if (reboot_timeout) {
249         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
250 
251         /* validate the input */
252         if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
253             error_report("reboot timeout is invalid,"
254                          "it should be a value between -1 and 65535");
255             exit(1);
256         }
257     }
258 
259     rt_le32 = cpu_to_le32(rt_val);
260     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
261 }
262 
263 static void fw_cfg_write(FWCfgState *s, uint8_t value)
264 {
265     /* nothing, write support removed in QEMU v2.4+ */
266 }
267 
268 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
269 {
270     return s->file_slots;
271 }
272 
273 /* Note: this function returns an exclusive limit. */
274 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
275 {
276     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
277 }
278 
279 static int fw_cfg_select(FWCfgState *s, uint16_t key)
280 {
281     int arch, ret;
282     FWCfgEntry *e;
283 
284     s->cur_offset = 0;
285     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
286         s->cur_entry = FW_CFG_INVALID;
287         ret = 0;
288     } else {
289         s->cur_entry = key;
290         ret = 1;
291         /* entry successfully selected, now run callback if present */
292         arch = !!(key & FW_CFG_ARCH_LOCAL);
293         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
294         if (e->select_cb) {
295             e->select_cb(e->callback_opaque);
296         }
297     }
298 
299     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
300     return ret;
301 }
302 
303 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
304 {
305     FWCfgState *s = opaque;
306     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
307     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
308                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
309     uint64_t value = 0;
310 
311     assert(size > 0 && size <= sizeof(value));
312     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
313         /* The least significant 'size' bytes of the return value are
314          * expected to contain a string preserving portion of the item
315          * data, padded with zeros on the right in case we run out early.
316          * In technical terms, we're composing the host-endian representation
317          * of the big endian interpretation of the fw_cfg string.
318          */
319         do {
320             value = (value << 8) | e->data[s->cur_offset++];
321         } while (--size && s->cur_offset < e->len);
322         /* If size is still not zero, we *did* run out early, so continue
323          * left-shifting, to add the appropriate number of padding zeros
324          * on the right.
325          */
326         value <<= 8 * size;
327     }
328 
329     trace_fw_cfg_read(s, value);
330     return value;
331 }
332 
333 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
334                                   uint64_t value, unsigned size)
335 {
336     FWCfgState *s = opaque;
337     unsigned i = size;
338 
339     do {
340         fw_cfg_write(s, value >> (8 * --i));
341     } while (i);
342 }
343 
344 static void fw_cfg_dma_transfer(FWCfgState *s)
345 {
346     dma_addr_t len;
347     FWCfgDmaAccess dma;
348     int arch;
349     FWCfgEntry *e;
350     int read = 0, write = 0;
351     dma_addr_t dma_addr;
352 
353     /* Reset the address before the next access */
354     dma_addr = s->dma_addr;
355     s->dma_addr = 0;
356 
357     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
358         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
359                    FW_CFG_DMA_CTL_ERROR);
360         return;
361     }
362 
363     dma.address = be64_to_cpu(dma.address);
364     dma.length = be32_to_cpu(dma.length);
365     dma.control = be32_to_cpu(dma.control);
366 
367     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
368         fw_cfg_select(s, dma.control >> 16);
369     }
370 
371     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
372     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
373         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
374 
375     if (dma.control & FW_CFG_DMA_CTL_READ) {
376         read = 1;
377         write = 0;
378     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
379         read = 0;
380         write = 1;
381     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
382         read = 0;
383         write = 0;
384     } else {
385         dma.length = 0;
386     }
387 
388     dma.control = 0;
389 
390     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
391         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
392                                 s->cur_offset >= e->len) {
393             len = dma.length;
394 
395             /* If the access is not a read access, it will be a skip access,
396              * tested before.
397              */
398             if (read) {
399                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
400                     dma.control |= FW_CFG_DMA_CTL_ERROR;
401                 }
402             }
403             if (write) {
404                 dma.control |= FW_CFG_DMA_CTL_ERROR;
405             }
406         } else {
407             if (dma.length <= (e->len - s->cur_offset)) {
408                 len = dma.length;
409             } else {
410                 len = (e->len - s->cur_offset);
411             }
412 
413             /* If the access is not a read access, it will be a skip access,
414              * tested before.
415              */
416             if (read) {
417                 if (dma_memory_write(s->dma_as, dma.address,
418                                     &e->data[s->cur_offset], len)) {
419                     dma.control |= FW_CFG_DMA_CTL_ERROR;
420                 }
421             }
422             if (write) {
423                 if (!e->allow_write ||
424                     len != dma.length ||
425                     dma_memory_read(s->dma_as, dma.address,
426                                     &e->data[s->cur_offset], len)) {
427                     dma.control |= FW_CFG_DMA_CTL_ERROR;
428                 } else if (e->write_cb) {
429                     e->write_cb(e->callback_opaque, s->cur_offset, len);
430                 }
431             }
432 
433             s->cur_offset += len;
434         }
435 
436         dma.address += len;
437         dma.length  -= len;
438 
439     }
440 
441     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
442                 dma.control);
443 
444     trace_fw_cfg_read(s, 0);
445 }
446 
447 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
448                                     unsigned size)
449 {
450     /* Return a signature value (and handle various read sizes) */
451     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
452 }
453 
454 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
455                                  uint64_t value, unsigned size)
456 {
457     FWCfgState *s = opaque;
458 
459     if (size == 4) {
460         if (addr == 0) {
461             /* FWCfgDmaAccess high address */
462             s->dma_addr = value << 32;
463         } else if (addr == 4) {
464             /* FWCfgDmaAccess low address */
465             s->dma_addr |= value;
466             fw_cfg_dma_transfer(s);
467         }
468     } else if (size == 8 && addr == 0) {
469         s->dma_addr = value;
470         fw_cfg_dma_transfer(s);
471     }
472 }
473 
474 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
475                                  unsigned size, bool is_write,
476                                  MemTxAttrs attrs)
477 {
478     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
479                          (size == 8 && addr == 0));
480 }
481 
482 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
483                                   unsigned size, bool is_write,
484                                   MemTxAttrs attrs)
485 {
486     return addr == 0;
487 }
488 
489 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
490 {
491     return 0;
492 }
493 
494 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
495                                  uint64_t value, unsigned size)
496 {
497     fw_cfg_select(opaque, (uint16_t)value);
498 }
499 
500 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
501                                  unsigned size, bool is_write,
502                                  MemTxAttrs attrs)
503 {
504     return is_write && size == 2;
505 }
506 
507 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
508                               uint64_t value, unsigned size)
509 {
510     switch (size) {
511     case 1:
512         fw_cfg_write(opaque, (uint8_t)value);
513         break;
514     case 2:
515         fw_cfg_select(opaque, (uint16_t)value);
516         break;
517     }
518 }
519 
520 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
521                               unsigned size, bool is_write,
522                               MemTxAttrs attrs)
523 {
524     return (size == 1) || (is_write && size == 2);
525 }
526 
527 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
528     .read = fw_cfg_ctl_mem_read,
529     .write = fw_cfg_ctl_mem_write,
530     .endianness = DEVICE_BIG_ENDIAN,
531     .valid.accepts = fw_cfg_ctl_mem_valid,
532 };
533 
534 static const MemoryRegionOps fw_cfg_data_mem_ops = {
535     .read = fw_cfg_data_read,
536     .write = fw_cfg_data_mem_write,
537     .endianness = DEVICE_BIG_ENDIAN,
538     .valid = {
539         .min_access_size = 1,
540         .max_access_size = 1,
541         .accepts = fw_cfg_data_mem_valid,
542     },
543 };
544 
545 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
546     .read = fw_cfg_data_read,
547     .write = fw_cfg_comb_write,
548     .endianness = DEVICE_LITTLE_ENDIAN,
549     .valid.accepts = fw_cfg_comb_valid,
550 };
551 
552 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
553     .read = fw_cfg_dma_mem_read,
554     .write = fw_cfg_dma_mem_write,
555     .endianness = DEVICE_BIG_ENDIAN,
556     .valid.accepts = fw_cfg_dma_mem_valid,
557     .valid.max_access_size = 8,
558     .impl.max_access_size = 8,
559 };
560 
561 static void fw_cfg_reset(DeviceState *d)
562 {
563     FWCfgState *s = FW_CFG(d);
564 
565     /* we never register a read callback for FW_CFG_SIGNATURE */
566     fw_cfg_select(s, FW_CFG_SIGNATURE);
567 }
568 
569 /* Save restore 32 bit int as uint16_t
570    This is a Big hack, but it is how the old state did it.
571    Or we broke compatibility in the state, or we can't use struct tm
572  */
573 
574 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
575                                 const VMStateField *field)
576 {
577     uint32_t *v = pv;
578     *v = qemu_get_be16(f);
579     return 0;
580 }
581 
582 static int put_unused(QEMUFile *f, void *pv, size_t size,
583                       const VMStateField *field, QJSON *vmdesc)
584 {
585     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
586     fprintf(stderr, "This functions shouldn't be called.\n");
587 
588     return 0;
589 }
590 
591 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
592     .name = "int32_as_uint16",
593     .get  = get_uint32_as_uint16,
594     .put  = put_unused,
595 };
596 
597 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
598     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
599 
600 
601 static bool is_version_1(void *opaque, int version_id)
602 {
603     return version_id == 1;
604 }
605 
606 bool fw_cfg_dma_enabled(void *opaque)
607 {
608     FWCfgState *s = opaque;
609 
610     return s->dma_enabled;
611 }
612 
613 static const VMStateDescription vmstate_fw_cfg_dma = {
614     .name = "fw_cfg/dma",
615     .needed = fw_cfg_dma_enabled,
616     .fields = (VMStateField[]) {
617         VMSTATE_UINT64(dma_addr, FWCfgState),
618         VMSTATE_END_OF_LIST()
619     },
620 };
621 
622 static const VMStateDescription vmstate_fw_cfg = {
623     .name = "fw_cfg",
624     .version_id = 2,
625     .minimum_version_id = 1,
626     .fields = (VMStateField[]) {
627         VMSTATE_UINT16(cur_entry, FWCfgState),
628         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
629         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
630         VMSTATE_END_OF_LIST()
631     },
632     .subsections = (const VMStateDescription*[]) {
633         &vmstate_fw_cfg_dma,
634         NULL,
635     }
636 };
637 
638 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
639                                       FWCfgCallback select_cb,
640                                       FWCfgWriteCallback write_cb,
641                                       void *callback_opaque,
642                                       void *data, size_t len,
643                                       bool read_only)
644 {
645     int arch = !!(key & FW_CFG_ARCH_LOCAL);
646 
647     key &= FW_CFG_ENTRY_MASK;
648 
649     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
650     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
651 
652     s->entries[arch][key].data = data;
653     s->entries[arch][key].len = (uint32_t)len;
654     s->entries[arch][key].select_cb = select_cb;
655     s->entries[arch][key].write_cb = write_cb;
656     s->entries[arch][key].callback_opaque = callback_opaque;
657     s->entries[arch][key].allow_write = !read_only;
658 }
659 
660 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
661                                               void *data, size_t len)
662 {
663     void *ptr;
664     int arch = !!(key & FW_CFG_ARCH_LOCAL);
665 
666     key &= FW_CFG_ENTRY_MASK;
667 
668     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
669 
670     /* return the old data to the function caller, avoid memory leak */
671     ptr = s->entries[arch][key].data;
672     s->entries[arch][key].data = data;
673     s->entries[arch][key].len = len;
674     s->entries[arch][key].callback_opaque = NULL;
675     s->entries[arch][key].allow_write = false;
676 
677     return ptr;
678 }
679 
680 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
681 {
682     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
683     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
684 }
685 
686 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
687 {
688     size_t sz = strlen(value) + 1;
689 
690     trace_fw_cfg_add_string(key, trace_key_name(key), value);
691     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
692 }
693 
694 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
695 {
696     size_t sz = strlen(value) + 1;
697     char *old;
698 
699     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
700     g_free(old);
701 }
702 
703 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
704 {
705     uint16_t *copy;
706 
707     copy = g_malloc(sizeof(value));
708     *copy = cpu_to_le16(value);
709     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
710     fw_cfg_add_bytes(s, key, copy, sizeof(value));
711 }
712 
713 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
714 {
715     uint16_t *copy, *old;
716 
717     copy = g_malloc(sizeof(value));
718     *copy = cpu_to_le16(value);
719     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
720     g_free(old);
721 }
722 
723 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
724 {
725     uint32_t *copy;
726 
727     copy = g_malloc(sizeof(value));
728     *copy = cpu_to_le32(value);
729     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
730     fw_cfg_add_bytes(s, key, copy, sizeof(value));
731 }
732 
733 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
734 {
735     uint32_t *copy, *old;
736 
737     copy = g_malloc(sizeof(value));
738     *copy = cpu_to_le32(value);
739     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
740     g_free(old);
741 }
742 
743 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
744 {
745     uint64_t *copy;
746 
747     copy = g_malloc(sizeof(value));
748     *copy = cpu_to_le64(value);
749     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
750     fw_cfg_add_bytes(s, key, copy, sizeof(value));
751 }
752 
753 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
754 {
755     uint64_t *copy, *old;
756 
757     copy = g_malloc(sizeof(value));
758     *copy = cpu_to_le64(value);
759     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
760     g_free(old);
761 }
762 
763 void fw_cfg_set_order_override(FWCfgState *s, int order)
764 {
765     assert(s->fw_cfg_order_override == 0);
766     s->fw_cfg_order_override = order;
767 }
768 
769 void fw_cfg_reset_order_override(FWCfgState *s)
770 {
771     assert(s->fw_cfg_order_override != 0);
772     s->fw_cfg_order_override = 0;
773 }
774 
775 /*
776  * This is the legacy order list.  For legacy systems, files are in
777  * the fw_cfg in the order defined below, by the "order" value.  Note
778  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
779  * specific area, but there may be more than one and they occur in the
780  * order that the user specifies them on the command line.  Those are
781  * handled in a special manner, using the order override above.
782  *
783  * For non-legacy, the files are sorted by filename to avoid this kind
784  * of complexity in the future.
785  *
786  * This is only for x86, other arches don't implement versioning so
787  * they won't set legacy mode.
788  */
789 static struct {
790     const char *name;
791     int order;
792 } fw_cfg_order[] = {
793     { "etc/boot-menu-wait", 10 },
794     { "bootsplash.jpg", 11 },
795     { "bootsplash.bmp", 12 },
796     { "etc/boot-fail-wait", 15 },
797     { "etc/smbios/smbios-tables", 20 },
798     { "etc/smbios/smbios-anchor", 30 },
799     { "etc/e820", 40 },
800     { "etc/reserved-memory-end", 50 },
801     { "genroms/kvmvapic.bin", 55 },
802     { "genroms/linuxboot.bin", 60 },
803     { }, /* VGA ROMs from pc_vga_init come here, 70. */
804     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
805     { "etc/system-states", 90 },
806     { }, /* User ROMs come here, 100. */
807     { }, /* Device FW comes here, 110. */
808     { "etc/extra-pci-roots", 120 },
809     { "etc/acpi/tables", 130 },
810     { "etc/table-loader", 140 },
811     { "etc/tpm/log", 150 },
812     { "etc/acpi/rsdp", 160 },
813     { "bootorder", 170 },
814 
815 #define FW_CFG_ORDER_OVERRIDE_LAST 200
816 };
817 
818 static int get_fw_cfg_order(FWCfgState *s, const char *name)
819 {
820     int i;
821 
822     if (s->fw_cfg_order_override > 0) {
823         return s->fw_cfg_order_override;
824     }
825 
826     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
827         if (fw_cfg_order[i].name == NULL) {
828             continue;
829         }
830 
831         if (strcmp(name, fw_cfg_order[i].name) == 0) {
832             return fw_cfg_order[i].order;
833         }
834     }
835 
836     /* Stick unknown stuff at the end. */
837     warn_report("Unknown firmware file in legacy mode: %s", name);
838     return FW_CFG_ORDER_OVERRIDE_LAST;
839 }
840 
841 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
842                               FWCfgCallback select_cb,
843                               FWCfgWriteCallback write_cb,
844                               void *callback_opaque,
845                               void *data, size_t len, bool read_only)
846 {
847     int i, index, count;
848     size_t dsize;
849     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
850     int order = 0;
851 
852     if (!s->files) {
853         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
854         s->files = g_malloc0(dsize);
855         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
856     }
857 
858     count = be32_to_cpu(s->files->count);
859     assert(count < fw_cfg_file_slots(s));
860 
861     /* Find the insertion point. */
862     if (mc->legacy_fw_cfg_order) {
863         /*
864          * Sort by order. For files with the same order, we keep them
865          * in the sequence in which they were added.
866          */
867         order = get_fw_cfg_order(s, filename);
868         for (index = count;
869              index > 0 && order < s->entry_order[index - 1];
870              index--);
871     } else {
872         /* Sort by file name. */
873         for (index = count;
874              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
875              index--);
876     }
877 
878     /*
879      * Move all the entries from the index point and after down one
880      * to create a slot for the new entry.  Because calculations are
881      * being done with the index, make it so that "i" is the current
882      * index and "i - 1" is the one being copied from, thus the
883      * unusual start and end in the for statement.
884      */
885     for (i = count; i > index; i--) {
886         s->files->f[i] = s->files->f[i - 1];
887         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
888         s->entries[0][FW_CFG_FILE_FIRST + i] =
889             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
890         s->entry_order[i] = s->entry_order[i - 1];
891     }
892 
893     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
894     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
895 
896     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
897     for (i = 0; i <= count; i++) {
898         if (i != index &&
899             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
900             error_report("duplicate fw_cfg file name: %s",
901                          s->files->f[index].name);
902             exit(1);
903         }
904     }
905 
906     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
907                               select_cb, write_cb,
908                               callback_opaque, data, len,
909                               read_only);
910 
911     s->files->f[index].size   = cpu_to_be32(len);
912     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
913     s->entry_order[index] = order;
914     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
915 
916     s->files->count = cpu_to_be32(count+1);
917 }
918 
919 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
920                      void *data, size_t len)
921 {
922     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
923 }
924 
925 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
926                         void *data, size_t len)
927 {
928     int i, index;
929     void *ptr = NULL;
930 
931     assert(s->files);
932 
933     index = be32_to_cpu(s->files->count);
934 
935     for (i = 0; i < index; i++) {
936         if (strcmp(filename, s->files->f[i].name) == 0) {
937             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
938                                            data, len);
939             s->files->f[i].size   = cpu_to_be32(len);
940             return ptr;
941         }
942     }
943 
944     assert(index < fw_cfg_file_slots(s));
945 
946     /* add new one */
947     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
948     return NULL;
949 }
950 
951 static void fw_cfg_machine_reset(void *opaque)
952 {
953     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
954     FWCfgState *s = opaque;
955     void *ptr;
956     size_t len;
957     char *buf;
958 
959     buf = get_boot_devices_list(&len);
960     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
961     g_free(ptr);
962 
963     if (!mc->legacy_fw_cfg_order) {
964         buf = get_boot_devices_lchs_list(&len);
965         ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
966         g_free(ptr);
967     }
968 }
969 
970 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
971 {
972     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
973     qemu_register_reset(fw_cfg_machine_reset, s);
974 }
975 
976 
977 
978 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
979 {
980     FWCfgState *s = FW_CFG(dev);
981     MachineState *machine = MACHINE(qdev_get_machine());
982     uint32_t version = FW_CFG_VERSION;
983 
984     if (!fw_cfg_find()) {
985         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
986         return;
987     }
988 
989     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
990     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
991     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
992     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
993     fw_cfg_bootsplash(s);
994     fw_cfg_reboot(s);
995 
996     if (s->dma_enabled) {
997         version |= FW_CFG_VERSION_DMA;
998     }
999 
1000     fw_cfg_add_i32(s, FW_CFG_ID, version);
1001 
1002     s->machine_ready.notify = fw_cfg_machine_ready;
1003     qemu_add_machine_init_done_notifier(&s->machine_ready);
1004 }
1005 
1006 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1007                                 AddressSpace *dma_as)
1008 {
1009     DeviceState *dev;
1010     SysBusDevice *sbd;
1011     FWCfgIoState *ios;
1012     FWCfgState *s;
1013     bool dma_requested = dma_iobase && dma_as;
1014 
1015     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
1016     if (!dma_requested) {
1017         qdev_prop_set_bit(dev, "dma_enabled", false);
1018     }
1019 
1020     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1021                               OBJECT(dev), NULL);
1022     qdev_init_nofail(dev);
1023 
1024     sbd = SYS_BUS_DEVICE(dev);
1025     ios = FW_CFG_IO(dev);
1026     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1027 
1028     s = FW_CFG(dev);
1029 
1030     if (s->dma_enabled) {
1031         /* 64 bits for the address field */
1032         s->dma_as = dma_as;
1033         s->dma_addr = 0;
1034         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1035     }
1036 
1037     return s;
1038 }
1039 
1040 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1041 {
1042     return fw_cfg_init_io_dma(iobase, 0, NULL);
1043 }
1044 
1045 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1046                                  hwaddr data_addr, uint32_t data_width,
1047                                  hwaddr dma_addr, AddressSpace *dma_as)
1048 {
1049     DeviceState *dev;
1050     SysBusDevice *sbd;
1051     FWCfgState *s;
1052     bool dma_requested = dma_addr && dma_as;
1053 
1054     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1055     qdev_prop_set_uint32(dev, "data_width", data_width);
1056     if (!dma_requested) {
1057         qdev_prop_set_bit(dev, "dma_enabled", false);
1058     }
1059 
1060     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1061                               OBJECT(dev), NULL);
1062     qdev_init_nofail(dev);
1063 
1064     sbd = SYS_BUS_DEVICE(dev);
1065     sysbus_mmio_map(sbd, 0, ctl_addr);
1066     sysbus_mmio_map(sbd, 1, data_addr);
1067 
1068     s = FW_CFG(dev);
1069 
1070     if (s->dma_enabled) {
1071         s->dma_as = dma_as;
1072         s->dma_addr = 0;
1073         sysbus_mmio_map(sbd, 2, dma_addr);
1074     }
1075 
1076     return s;
1077 }
1078 
1079 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1080 {
1081     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1082                                 fw_cfg_data_mem_ops.valid.max_access_size,
1083                                 0, NULL);
1084 }
1085 
1086 
1087 FWCfgState *fw_cfg_find(void)
1088 {
1089     /* Returns NULL unless there is exactly one fw_cfg device */
1090     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1091 }
1092 
1093 
1094 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1095 {
1096     DeviceClass *dc = DEVICE_CLASS(klass);
1097 
1098     dc->reset = fw_cfg_reset;
1099     dc->vmsd = &vmstate_fw_cfg;
1100 }
1101 
1102 static const TypeInfo fw_cfg_info = {
1103     .name          = TYPE_FW_CFG,
1104     .parent        = TYPE_SYS_BUS_DEVICE,
1105     .abstract      = true,
1106     .instance_size = sizeof(FWCfgState),
1107     .class_init    = fw_cfg_class_init,
1108 };
1109 
1110 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1111 {
1112     uint16_t file_slots_max;
1113 
1114     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1115         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1116                    FW_CFG_FILE_SLOTS_MIN);
1117         return;
1118     }
1119 
1120     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1121      * that we permit. The actual (exclusive) value coming from the
1122      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1123     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1124     if (fw_cfg_file_slots(s) > file_slots_max) {
1125         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1126                    file_slots_max);
1127         return;
1128     }
1129 
1130     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1131     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1132     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1133 }
1134 
1135 static Property fw_cfg_io_properties[] = {
1136     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1137                      true),
1138     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1139                        FW_CFG_FILE_SLOTS_DFLT),
1140     DEFINE_PROP_END_OF_LIST(),
1141 };
1142 
1143 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1144 {
1145     FWCfgIoState *s = FW_CFG_IO(dev);
1146     Error *local_err = NULL;
1147 
1148     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1149     if (local_err) {
1150         error_propagate(errp, local_err);
1151         return;
1152     }
1153 
1154     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1155      * with half of the 16-bit control register. Hence, the total size
1156      * of the i/o region used is FW_CFG_CTL_SIZE */
1157     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1158                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1159 
1160     if (FW_CFG(s)->dma_enabled) {
1161         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1162                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1163                               sizeof(dma_addr_t));
1164     }
1165 
1166     fw_cfg_common_realize(dev, errp);
1167 }
1168 
1169 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1170 {
1171     DeviceClass *dc = DEVICE_CLASS(klass);
1172 
1173     dc->realize = fw_cfg_io_realize;
1174     dc->props = fw_cfg_io_properties;
1175 }
1176 
1177 static const TypeInfo fw_cfg_io_info = {
1178     .name          = TYPE_FW_CFG_IO,
1179     .parent        = TYPE_FW_CFG,
1180     .instance_size = sizeof(FWCfgIoState),
1181     .class_init    = fw_cfg_io_class_init,
1182 };
1183 
1184 
1185 static Property fw_cfg_mem_properties[] = {
1186     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1187     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1188                      true),
1189     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1190                        FW_CFG_FILE_SLOTS_DFLT),
1191     DEFINE_PROP_END_OF_LIST(),
1192 };
1193 
1194 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1195 {
1196     FWCfgMemState *s = FW_CFG_MEM(dev);
1197     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1198     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1199     Error *local_err = NULL;
1200 
1201     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1202     if (local_err) {
1203         error_propagate(errp, local_err);
1204         return;
1205     }
1206 
1207     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1208                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1209     sysbus_init_mmio(sbd, &s->ctl_iomem);
1210 
1211     if (s->data_width > data_ops->valid.max_access_size) {
1212         s->wide_data_ops = *data_ops;
1213 
1214         s->wide_data_ops.valid.max_access_size = s->data_width;
1215         s->wide_data_ops.impl.max_access_size  = s->data_width;
1216         data_ops = &s->wide_data_ops;
1217     }
1218     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1219                           "fwcfg.data", data_ops->valid.max_access_size);
1220     sysbus_init_mmio(sbd, &s->data_iomem);
1221 
1222     if (FW_CFG(s)->dma_enabled) {
1223         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1224                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1225                               sizeof(dma_addr_t));
1226         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1227     }
1228 
1229     fw_cfg_common_realize(dev, errp);
1230 }
1231 
1232 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1233 {
1234     DeviceClass *dc = DEVICE_CLASS(klass);
1235 
1236     dc->realize = fw_cfg_mem_realize;
1237     dc->props = fw_cfg_mem_properties;
1238 }
1239 
1240 static const TypeInfo fw_cfg_mem_info = {
1241     .name          = TYPE_FW_CFG_MEM,
1242     .parent        = TYPE_FW_CFG,
1243     .instance_size = sizeof(FWCfgMemState),
1244     .class_init    = fw_cfg_mem_class_init,
1245 };
1246 
1247 
1248 static void fw_cfg_register_types(void)
1249 {
1250     type_register_static(&fw_cfg_info);
1251     type_register_static(&fw_cfg_io_info);
1252     type_register_static(&fw_cfg_mem_info);
1253 }
1254 
1255 type_init(fw_cfg_register_types)
1256