xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision d5a42d1942b77de0d1271f53d47c14a40b831be6)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/option.h"
35 #include "qemu/config-file.h"
36 #include "qemu/cutils.h"
37 #include "qapi/error.h"
38 
39 #define FW_CFG_FILE_SLOTS_DFLT 0x20
40 
41 /* FW_CFG_VERSION bits */
42 #define FW_CFG_VERSION      0x01
43 #define FW_CFG_VERSION_DMA  0x02
44 
45 /* FW_CFG_DMA_CONTROL bits */
46 #define FW_CFG_DMA_CTL_ERROR   0x01
47 #define FW_CFG_DMA_CTL_READ    0x02
48 #define FW_CFG_DMA_CTL_SKIP    0x04
49 #define FW_CFG_DMA_CTL_SELECT  0x08
50 #define FW_CFG_DMA_CTL_WRITE   0x10
51 
52 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
53 
54 struct FWCfgEntry {
55     uint32_t len;
56     bool allow_write;
57     uint8_t *data;
58     void *callback_opaque;
59     FWCfgCallback select_cb;
60     FWCfgWriteCallback write_cb;
61 };
62 
63 /**
64  * key_name:
65  *
66  * @key: The uint16 selector key.
67  *
68  * Returns: The stringified name if the selector refers to a well-known
69  *          numerically defined item, or NULL on key lookup failure.
70  */
71 static const char *key_name(uint16_t key)
72 {
73     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
74         [FW_CFG_SIGNATURE] = "signature",
75         [FW_CFG_ID] = "id",
76         [FW_CFG_UUID] = "uuid",
77         [FW_CFG_RAM_SIZE] = "ram_size",
78         [FW_CFG_NOGRAPHIC] = "nographic",
79         [FW_CFG_NB_CPUS] = "nb_cpus",
80         [FW_CFG_MACHINE_ID] = "machine_id",
81         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
82         [FW_CFG_KERNEL_SIZE] = "kernel_size",
83         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
84         [FW_CFG_INITRD_ADDR] = "initrd_addr",
85         [FW_CFG_INITRD_SIZE] = "initdr_size",
86         [FW_CFG_BOOT_DEVICE] = "boot_device",
87         [FW_CFG_NUMA] = "numa",
88         [FW_CFG_BOOT_MENU] = "boot_menu",
89         [FW_CFG_MAX_CPUS] = "max_cpus",
90         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
91         [FW_CFG_KERNEL_DATA] = "kernel_data",
92         [FW_CFG_INITRD_DATA] = "initrd_data",
93         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
94         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
95         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
96         [FW_CFG_SETUP_ADDR] = "setup_addr",
97         [FW_CFG_SETUP_SIZE] = "setup_size",
98         [FW_CFG_SETUP_DATA] = "setup_data",
99         [FW_CFG_FILE_DIR] = "file_dir",
100     };
101 
102     if (key & FW_CFG_ARCH_LOCAL) {
103         return fw_cfg_arch_key_name(key);
104     }
105     if (key < FW_CFG_FILE_FIRST) {
106         return fw_cfg_wellknown_keys[key];
107     }
108 
109     return NULL;
110 }
111 
112 static inline const char *trace_key_name(uint16_t key)
113 {
114     const char *name = key_name(key);
115 
116     return name ? name : "unknown";
117 }
118 
119 #define JPG_FILE 0
120 #define BMP_FILE 1
121 
122 static char *read_splashfile(char *filename, gsize *file_sizep,
123                              int *file_typep)
124 {
125     GError *err = NULL;
126     gchar *content;
127     int file_type;
128     unsigned int filehead;
129     int bmp_bpp;
130 
131     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
132         error_report("failed to read splash file '%s': %s",
133                      filename, err->message);
134         g_error_free(err);
135         return NULL;
136     }
137 
138     /* check file size */
139     if (*file_sizep < 30) {
140         goto error;
141     }
142 
143     /* check magic ID */
144     filehead = lduw_le_p(content);
145     if (filehead == 0xd8ff) {
146         file_type = JPG_FILE;
147     } else if (filehead == 0x4d42) {
148         file_type = BMP_FILE;
149     } else {
150         goto error;
151     }
152 
153     /* check BMP bpp */
154     if (file_type == BMP_FILE) {
155         bmp_bpp = lduw_le_p(&content[28]);
156         if (bmp_bpp != 24) {
157             goto error;
158         }
159     }
160 
161     /* return values */
162     *file_typep = file_type;
163 
164     return content;
165 
166 error:
167     error_report("splash file '%s' format not recognized; must be JPEG "
168                  "or 24 bit BMP", filename);
169     g_free(content);
170     return NULL;
171 }
172 
173 static void fw_cfg_bootsplash(FWCfgState *s)
174 {
175     const char *boot_splash_filename = NULL;
176     const char *boot_splash_time = NULL;
177     char *filename, *file_data;
178     gsize file_size;
179     int file_type;
180 
181     /* get user configuration */
182     QemuOptsList *plist = qemu_find_opts("boot-opts");
183     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
184     boot_splash_filename = qemu_opt_get(opts, "splash");
185     boot_splash_time = qemu_opt_get(opts, "splash-time");
186 
187     /* insert splash time if user configurated */
188     if (boot_splash_time) {
189         int64_t bst_val = qemu_opt_get_number(opts, "splash-time", -1);
190         uint16_t bst_le16;
191 
192         /* validate the input */
193         if (bst_val < 0 || bst_val > 0xffff) {
194             error_report("splash-time is invalid,"
195                          "it should be a value between 0 and 65535");
196             exit(1);
197         }
198         /* use little endian format */
199         bst_le16 = cpu_to_le16(bst_val);
200         fw_cfg_add_file(s, "etc/boot-menu-wait",
201                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
202     }
203 
204     /* insert splash file if user configurated */
205     if (boot_splash_filename) {
206         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
207         if (filename == NULL) {
208             error_report("failed to find file '%s'", boot_splash_filename);
209             return;
210         }
211 
212         /* loading file data */
213         file_data = read_splashfile(filename, &file_size, &file_type);
214         if (file_data == NULL) {
215             g_free(filename);
216             return;
217         }
218         g_free(boot_splash_filedata);
219         boot_splash_filedata = (uint8_t *)file_data;
220 
221         /* insert data */
222         if (file_type == JPG_FILE) {
223             fw_cfg_add_file(s, "bootsplash.jpg",
224                             boot_splash_filedata, file_size);
225         } else {
226             fw_cfg_add_file(s, "bootsplash.bmp",
227                             boot_splash_filedata, file_size);
228         }
229         g_free(filename);
230     }
231 }
232 
233 static void fw_cfg_reboot(FWCfgState *s)
234 {
235     const char *reboot_timeout = NULL;
236     int64_t rt_val = -1;
237 
238     /* get user configuration */
239     QemuOptsList *plist = qemu_find_opts("boot-opts");
240     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
241     reboot_timeout = qemu_opt_get(opts, "reboot-timeout");
242 
243     if (reboot_timeout) {
244         rt_val = qemu_opt_get_number(opts, "reboot-timeout", -1);
245         /* validate the input */
246         if (rt_val < 0 || rt_val > 0xffff) {
247             error_report("reboot timeout is invalid,"
248                          "it should be a value between 0 and 65535");
249             exit(1);
250         }
251     }
252 
253     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_val, 4), 4);
254 }
255 
256 static void fw_cfg_write(FWCfgState *s, uint8_t value)
257 {
258     /* nothing, write support removed in QEMU v2.4+ */
259 }
260 
261 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
262 {
263     return s->file_slots;
264 }
265 
266 /* Note: this function returns an exclusive limit. */
267 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
268 {
269     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
270 }
271 
272 static int fw_cfg_select(FWCfgState *s, uint16_t key)
273 {
274     int arch, ret;
275     FWCfgEntry *e;
276 
277     s->cur_offset = 0;
278     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
279         s->cur_entry = FW_CFG_INVALID;
280         ret = 0;
281     } else {
282         s->cur_entry = key;
283         ret = 1;
284         /* entry successfully selected, now run callback if present */
285         arch = !!(key & FW_CFG_ARCH_LOCAL);
286         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
287         if (e->select_cb) {
288             e->select_cb(e->callback_opaque);
289         }
290     }
291 
292     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
293     return ret;
294 }
295 
296 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
297 {
298     FWCfgState *s = opaque;
299     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
300     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
301                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
302     uint64_t value = 0;
303 
304     assert(size > 0 && size <= sizeof(value));
305     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
306         /* The least significant 'size' bytes of the return value are
307          * expected to contain a string preserving portion of the item
308          * data, padded with zeros on the right in case we run out early.
309          * In technical terms, we're composing the host-endian representation
310          * of the big endian interpretation of the fw_cfg string.
311          */
312         do {
313             value = (value << 8) | e->data[s->cur_offset++];
314         } while (--size && s->cur_offset < e->len);
315         /* If size is still not zero, we *did* run out early, so continue
316          * left-shifting, to add the appropriate number of padding zeros
317          * on the right.
318          */
319         value <<= 8 * size;
320     }
321 
322     trace_fw_cfg_read(s, value);
323     return value;
324 }
325 
326 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
327                                   uint64_t value, unsigned size)
328 {
329     FWCfgState *s = opaque;
330     unsigned i = size;
331 
332     do {
333         fw_cfg_write(s, value >> (8 * --i));
334     } while (i);
335 }
336 
337 static void fw_cfg_dma_transfer(FWCfgState *s)
338 {
339     dma_addr_t len;
340     FWCfgDmaAccess dma;
341     int arch;
342     FWCfgEntry *e;
343     int read = 0, write = 0;
344     dma_addr_t dma_addr;
345 
346     /* Reset the address before the next access */
347     dma_addr = s->dma_addr;
348     s->dma_addr = 0;
349 
350     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
351         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
352                    FW_CFG_DMA_CTL_ERROR);
353         return;
354     }
355 
356     dma.address = be64_to_cpu(dma.address);
357     dma.length = be32_to_cpu(dma.length);
358     dma.control = be32_to_cpu(dma.control);
359 
360     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
361         fw_cfg_select(s, dma.control >> 16);
362     }
363 
364     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
365     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
366         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
367 
368     if (dma.control & FW_CFG_DMA_CTL_READ) {
369         read = 1;
370         write = 0;
371     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
372         read = 0;
373         write = 1;
374     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
375         read = 0;
376         write = 0;
377     } else {
378         dma.length = 0;
379     }
380 
381     dma.control = 0;
382 
383     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
384         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
385                                 s->cur_offset >= e->len) {
386             len = dma.length;
387 
388             /* If the access is not a read access, it will be a skip access,
389              * tested before.
390              */
391             if (read) {
392                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
393                     dma.control |= FW_CFG_DMA_CTL_ERROR;
394                 }
395             }
396             if (write) {
397                 dma.control |= FW_CFG_DMA_CTL_ERROR;
398             }
399         } else {
400             if (dma.length <= (e->len - s->cur_offset)) {
401                 len = dma.length;
402             } else {
403                 len = (e->len - s->cur_offset);
404             }
405 
406             /* If the access is not a read access, it will be a skip access,
407              * tested before.
408              */
409             if (read) {
410                 if (dma_memory_write(s->dma_as, dma.address,
411                                     &e->data[s->cur_offset], len)) {
412                     dma.control |= FW_CFG_DMA_CTL_ERROR;
413                 }
414             }
415             if (write) {
416                 if (!e->allow_write ||
417                     len != dma.length ||
418                     dma_memory_read(s->dma_as, dma.address,
419                                     &e->data[s->cur_offset], len)) {
420                     dma.control |= FW_CFG_DMA_CTL_ERROR;
421                 } else if (e->write_cb) {
422                     e->write_cb(e->callback_opaque, s->cur_offset, len);
423                 }
424             }
425 
426             s->cur_offset += len;
427         }
428 
429         dma.address += len;
430         dma.length  -= len;
431 
432     }
433 
434     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
435                 dma.control);
436 
437     trace_fw_cfg_read(s, 0);
438 }
439 
440 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
441                                     unsigned size)
442 {
443     /* Return a signature value (and handle various read sizes) */
444     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
445 }
446 
447 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
448                                  uint64_t value, unsigned size)
449 {
450     FWCfgState *s = opaque;
451 
452     if (size == 4) {
453         if (addr == 0) {
454             /* FWCfgDmaAccess high address */
455             s->dma_addr = value << 32;
456         } else if (addr == 4) {
457             /* FWCfgDmaAccess low address */
458             s->dma_addr |= value;
459             fw_cfg_dma_transfer(s);
460         }
461     } else if (size == 8 && addr == 0) {
462         s->dma_addr = value;
463         fw_cfg_dma_transfer(s);
464     }
465 }
466 
467 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
468                                  unsigned size, bool is_write,
469                                  MemTxAttrs attrs)
470 {
471     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
472                          (size == 8 && addr == 0));
473 }
474 
475 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
476                                   unsigned size, bool is_write,
477                                   MemTxAttrs attrs)
478 {
479     return addr == 0;
480 }
481 
482 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
483 {
484     return 0;
485 }
486 
487 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
488                                  uint64_t value, unsigned size)
489 {
490     fw_cfg_select(opaque, (uint16_t)value);
491 }
492 
493 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
494                                  unsigned size, bool is_write,
495                                  MemTxAttrs attrs)
496 {
497     return is_write && size == 2;
498 }
499 
500 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
501                               uint64_t value, unsigned size)
502 {
503     switch (size) {
504     case 1:
505         fw_cfg_write(opaque, (uint8_t)value);
506         break;
507     case 2:
508         fw_cfg_select(opaque, (uint16_t)value);
509         break;
510     }
511 }
512 
513 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
514                               unsigned size, bool is_write,
515                               MemTxAttrs attrs)
516 {
517     return (size == 1) || (is_write && size == 2);
518 }
519 
520 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
521     .read = fw_cfg_ctl_mem_read,
522     .write = fw_cfg_ctl_mem_write,
523     .endianness = DEVICE_BIG_ENDIAN,
524     .valid.accepts = fw_cfg_ctl_mem_valid,
525 };
526 
527 static const MemoryRegionOps fw_cfg_data_mem_ops = {
528     .read = fw_cfg_data_read,
529     .write = fw_cfg_data_mem_write,
530     .endianness = DEVICE_BIG_ENDIAN,
531     .valid = {
532         .min_access_size = 1,
533         .max_access_size = 1,
534         .accepts = fw_cfg_data_mem_valid,
535     },
536 };
537 
538 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
539     .read = fw_cfg_data_read,
540     .write = fw_cfg_comb_write,
541     .endianness = DEVICE_LITTLE_ENDIAN,
542     .valid.accepts = fw_cfg_comb_valid,
543 };
544 
545 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
546     .read = fw_cfg_dma_mem_read,
547     .write = fw_cfg_dma_mem_write,
548     .endianness = DEVICE_BIG_ENDIAN,
549     .valid.accepts = fw_cfg_dma_mem_valid,
550     .valid.max_access_size = 8,
551     .impl.max_access_size = 8,
552 };
553 
554 static void fw_cfg_reset(DeviceState *d)
555 {
556     FWCfgState *s = FW_CFG(d);
557 
558     /* we never register a read callback for FW_CFG_SIGNATURE */
559     fw_cfg_select(s, FW_CFG_SIGNATURE);
560 }
561 
562 /* Save restore 32 bit int as uint16_t
563    This is a Big hack, but it is how the old state did it.
564    Or we broke compatibility in the state, or we can't use struct tm
565  */
566 
567 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
568                                 const VMStateField *field)
569 {
570     uint32_t *v = pv;
571     *v = qemu_get_be16(f);
572     return 0;
573 }
574 
575 static int put_unused(QEMUFile *f, void *pv, size_t size,
576                       const VMStateField *field, QJSON *vmdesc)
577 {
578     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
579     fprintf(stderr, "This functions shouldn't be called.\n");
580 
581     return 0;
582 }
583 
584 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
585     .name = "int32_as_uint16",
586     .get  = get_uint32_as_uint16,
587     .put  = put_unused,
588 };
589 
590 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
591     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
592 
593 
594 static bool is_version_1(void *opaque, int version_id)
595 {
596     return version_id == 1;
597 }
598 
599 bool fw_cfg_dma_enabled(void *opaque)
600 {
601     FWCfgState *s = opaque;
602 
603     return s->dma_enabled;
604 }
605 
606 static const VMStateDescription vmstate_fw_cfg_dma = {
607     .name = "fw_cfg/dma",
608     .needed = fw_cfg_dma_enabled,
609     .fields = (VMStateField[]) {
610         VMSTATE_UINT64(dma_addr, FWCfgState),
611         VMSTATE_END_OF_LIST()
612     },
613 };
614 
615 static const VMStateDescription vmstate_fw_cfg = {
616     .name = "fw_cfg",
617     .version_id = 2,
618     .minimum_version_id = 1,
619     .fields = (VMStateField[]) {
620         VMSTATE_UINT16(cur_entry, FWCfgState),
621         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
622         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
623         VMSTATE_END_OF_LIST()
624     },
625     .subsections = (const VMStateDescription*[]) {
626         &vmstate_fw_cfg_dma,
627         NULL,
628     }
629 };
630 
631 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
632                                       FWCfgCallback select_cb,
633                                       FWCfgWriteCallback write_cb,
634                                       void *callback_opaque,
635                                       void *data, size_t len,
636                                       bool read_only)
637 {
638     int arch = !!(key & FW_CFG_ARCH_LOCAL);
639 
640     key &= FW_CFG_ENTRY_MASK;
641 
642     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
643     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
644 
645     s->entries[arch][key].data = data;
646     s->entries[arch][key].len = (uint32_t)len;
647     s->entries[arch][key].select_cb = select_cb;
648     s->entries[arch][key].write_cb = write_cb;
649     s->entries[arch][key].callback_opaque = callback_opaque;
650     s->entries[arch][key].allow_write = !read_only;
651 }
652 
653 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
654                                               void *data, size_t len)
655 {
656     void *ptr;
657     int arch = !!(key & FW_CFG_ARCH_LOCAL);
658 
659     key &= FW_CFG_ENTRY_MASK;
660 
661     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
662 
663     /* return the old data to the function caller, avoid memory leak */
664     ptr = s->entries[arch][key].data;
665     s->entries[arch][key].data = data;
666     s->entries[arch][key].len = len;
667     s->entries[arch][key].callback_opaque = NULL;
668     s->entries[arch][key].allow_write = false;
669 
670     return ptr;
671 }
672 
673 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
674 {
675     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
676     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
677 }
678 
679 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
680 {
681     size_t sz = strlen(value) + 1;
682 
683     trace_fw_cfg_add_string(key, trace_key_name(key), value);
684     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
685 }
686 
687 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
688 {
689     uint16_t *copy;
690 
691     copy = g_malloc(sizeof(value));
692     *copy = cpu_to_le16(value);
693     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
694     fw_cfg_add_bytes(s, key, copy, sizeof(value));
695 }
696 
697 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
698 {
699     uint16_t *copy, *old;
700 
701     copy = g_malloc(sizeof(value));
702     *copy = cpu_to_le16(value);
703     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
704     g_free(old);
705 }
706 
707 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
708 {
709     uint32_t *copy;
710 
711     copy = g_malloc(sizeof(value));
712     *copy = cpu_to_le32(value);
713     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
714     fw_cfg_add_bytes(s, key, copy, sizeof(value));
715 }
716 
717 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
718 {
719     uint64_t *copy;
720 
721     copy = g_malloc(sizeof(value));
722     *copy = cpu_to_le64(value);
723     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
724     fw_cfg_add_bytes(s, key, copy, sizeof(value));
725 }
726 
727 void fw_cfg_set_order_override(FWCfgState *s, int order)
728 {
729     assert(s->fw_cfg_order_override == 0);
730     s->fw_cfg_order_override = order;
731 }
732 
733 void fw_cfg_reset_order_override(FWCfgState *s)
734 {
735     assert(s->fw_cfg_order_override != 0);
736     s->fw_cfg_order_override = 0;
737 }
738 
739 /*
740  * This is the legacy order list.  For legacy systems, files are in
741  * the fw_cfg in the order defined below, by the "order" value.  Note
742  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
743  * specific area, but there may be more than one and they occur in the
744  * order that the user specifies them on the command line.  Those are
745  * handled in a special manner, using the order override above.
746  *
747  * For non-legacy, the files are sorted by filename to avoid this kind
748  * of complexity in the future.
749  *
750  * This is only for x86, other arches don't implement versioning so
751  * they won't set legacy mode.
752  */
753 static struct {
754     const char *name;
755     int order;
756 } fw_cfg_order[] = {
757     { "etc/boot-menu-wait", 10 },
758     { "bootsplash.jpg", 11 },
759     { "bootsplash.bmp", 12 },
760     { "etc/boot-fail-wait", 15 },
761     { "etc/smbios/smbios-tables", 20 },
762     { "etc/smbios/smbios-anchor", 30 },
763     { "etc/e820", 40 },
764     { "etc/reserved-memory-end", 50 },
765     { "genroms/kvmvapic.bin", 55 },
766     { "genroms/linuxboot.bin", 60 },
767     { }, /* VGA ROMs from pc_vga_init come here, 70. */
768     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
769     { "etc/system-states", 90 },
770     { }, /* User ROMs come here, 100. */
771     { }, /* Device FW comes here, 110. */
772     { "etc/extra-pci-roots", 120 },
773     { "etc/acpi/tables", 130 },
774     { "etc/table-loader", 140 },
775     { "etc/tpm/log", 150 },
776     { "etc/acpi/rsdp", 160 },
777     { "bootorder", 170 },
778 
779 #define FW_CFG_ORDER_OVERRIDE_LAST 200
780 };
781 
782 static int get_fw_cfg_order(FWCfgState *s, const char *name)
783 {
784     int i;
785 
786     if (s->fw_cfg_order_override > 0) {
787         return s->fw_cfg_order_override;
788     }
789 
790     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
791         if (fw_cfg_order[i].name == NULL) {
792             continue;
793         }
794 
795         if (strcmp(name, fw_cfg_order[i].name) == 0) {
796             return fw_cfg_order[i].order;
797         }
798     }
799 
800     /* Stick unknown stuff at the end. */
801     warn_report("Unknown firmware file in legacy mode: %s", name);
802     return FW_CFG_ORDER_OVERRIDE_LAST;
803 }
804 
805 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
806                               FWCfgCallback select_cb,
807                               FWCfgWriteCallback write_cb,
808                               void *callback_opaque,
809                               void *data, size_t len, bool read_only)
810 {
811     int i, index, count;
812     size_t dsize;
813     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
814     int order = 0;
815 
816     if (!s->files) {
817         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
818         s->files = g_malloc0(dsize);
819         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
820     }
821 
822     count = be32_to_cpu(s->files->count);
823     assert(count < fw_cfg_file_slots(s));
824 
825     /* Find the insertion point. */
826     if (mc->legacy_fw_cfg_order) {
827         /*
828          * Sort by order. For files with the same order, we keep them
829          * in the sequence in which they were added.
830          */
831         order = get_fw_cfg_order(s, filename);
832         for (index = count;
833              index > 0 && order < s->entry_order[index - 1];
834              index--);
835     } else {
836         /* Sort by file name. */
837         for (index = count;
838              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
839              index--);
840     }
841 
842     /*
843      * Move all the entries from the index point and after down one
844      * to create a slot for the new entry.  Because calculations are
845      * being done with the index, make it so that "i" is the current
846      * index and "i - 1" is the one being copied from, thus the
847      * unusual start and end in the for statement.
848      */
849     for (i = count; i > index; i--) {
850         s->files->f[i] = s->files->f[i - 1];
851         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
852         s->entries[0][FW_CFG_FILE_FIRST + i] =
853             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
854         s->entry_order[i] = s->entry_order[i - 1];
855     }
856 
857     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
858     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
859 
860     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
861     for (i = 0; i <= count; i++) {
862         if (i != index &&
863             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
864             error_report("duplicate fw_cfg file name: %s",
865                          s->files->f[index].name);
866             exit(1);
867         }
868     }
869 
870     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
871                               select_cb, write_cb,
872                               callback_opaque, data, len,
873                               read_only);
874 
875     s->files->f[index].size   = cpu_to_be32(len);
876     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
877     s->entry_order[index] = order;
878     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
879 
880     s->files->count = cpu_to_be32(count+1);
881 }
882 
883 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
884                      void *data, size_t len)
885 {
886     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
887 }
888 
889 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
890                         void *data, size_t len)
891 {
892     int i, index;
893     void *ptr = NULL;
894 
895     assert(s->files);
896 
897     index = be32_to_cpu(s->files->count);
898 
899     for (i = 0; i < index; i++) {
900         if (strcmp(filename, s->files->f[i].name) == 0) {
901             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
902                                            data, len);
903             s->files->f[i].size   = cpu_to_be32(len);
904             return ptr;
905         }
906     }
907 
908     assert(index < fw_cfg_file_slots(s));
909 
910     /* add new one */
911     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
912     return NULL;
913 }
914 
915 static void fw_cfg_machine_reset(void *opaque)
916 {
917     void *ptr;
918     size_t len;
919     FWCfgState *s = opaque;
920     char *bootindex = get_boot_devices_list(&len);
921 
922     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
923     g_free(ptr);
924 }
925 
926 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
927 {
928     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
929     qemu_register_reset(fw_cfg_machine_reset, s);
930 }
931 
932 
933 
934 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
935 {
936     FWCfgState *s = FW_CFG(dev);
937     MachineState *machine = MACHINE(qdev_get_machine());
938     uint32_t version = FW_CFG_VERSION;
939 
940     if (!fw_cfg_find()) {
941         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
942         return;
943     }
944 
945     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
946     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
947     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
948     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
949     fw_cfg_bootsplash(s);
950     fw_cfg_reboot(s);
951 
952     if (s->dma_enabled) {
953         version |= FW_CFG_VERSION_DMA;
954     }
955 
956     fw_cfg_add_i32(s, FW_CFG_ID, version);
957 
958     s->machine_ready.notify = fw_cfg_machine_ready;
959     qemu_add_machine_init_done_notifier(&s->machine_ready);
960 }
961 
962 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
963                                 AddressSpace *dma_as)
964 {
965     DeviceState *dev;
966     SysBusDevice *sbd;
967     FWCfgIoState *ios;
968     FWCfgState *s;
969     bool dma_requested = dma_iobase && dma_as;
970 
971     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
972     if (!dma_requested) {
973         qdev_prop_set_bit(dev, "dma_enabled", false);
974     }
975 
976     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
977                               OBJECT(dev), NULL);
978     qdev_init_nofail(dev);
979 
980     sbd = SYS_BUS_DEVICE(dev);
981     ios = FW_CFG_IO(dev);
982     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
983 
984     s = FW_CFG(dev);
985 
986     if (s->dma_enabled) {
987         /* 64 bits for the address field */
988         s->dma_as = dma_as;
989         s->dma_addr = 0;
990         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
991     }
992 
993     return s;
994 }
995 
996 FWCfgState *fw_cfg_init_io(uint32_t iobase)
997 {
998     return fw_cfg_init_io_dma(iobase, 0, NULL);
999 }
1000 
1001 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1002                                  hwaddr data_addr, uint32_t data_width,
1003                                  hwaddr dma_addr, AddressSpace *dma_as)
1004 {
1005     DeviceState *dev;
1006     SysBusDevice *sbd;
1007     FWCfgState *s;
1008     bool dma_requested = dma_addr && dma_as;
1009 
1010     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
1011     qdev_prop_set_uint32(dev, "data_width", data_width);
1012     if (!dma_requested) {
1013         qdev_prop_set_bit(dev, "dma_enabled", false);
1014     }
1015 
1016     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1017                               OBJECT(dev), NULL);
1018     qdev_init_nofail(dev);
1019 
1020     sbd = SYS_BUS_DEVICE(dev);
1021     sysbus_mmio_map(sbd, 0, ctl_addr);
1022     sysbus_mmio_map(sbd, 1, data_addr);
1023 
1024     s = FW_CFG(dev);
1025 
1026     if (s->dma_enabled) {
1027         s->dma_as = dma_as;
1028         s->dma_addr = 0;
1029         sysbus_mmio_map(sbd, 2, dma_addr);
1030     }
1031 
1032     return s;
1033 }
1034 
1035 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1036 {
1037     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1038                                 fw_cfg_data_mem_ops.valid.max_access_size,
1039                                 0, NULL);
1040 }
1041 
1042 
1043 FWCfgState *fw_cfg_find(void)
1044 {
1045     /* Returns NULL unless there is exactly one fw_cfg device */
1046     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1047 }
1048 
1049 
1050 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1051 {
1052     DeviceClass *dc = DEVICE_CLASS(klass);
1053 
1054     dc->reset = fw_cfg_reset;
1055     dc->vmsd = &vmstate_fw_cfg;
1056 }
1057 
1058 static const TypeInfo fw_cfg_info = {
1059     .name          = TYPE_FW_CFG,
1060     .parent        = TYPE_SYS_BUS_DEVICE,
1061     .abstract      = true,
1062     .instance_size = sizeof(FWCfgState),
1063     .class_init    = fw_cfg_class_init,
1064 };
1065 
1066 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1067 {
1068     uint16_t file_slots_max;
1069 
1070     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1071         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1072                    FW_CFG_FILE_SLOTS_MIN);
1073         return;
1074     }
1075 
1076     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1077      * that we permit. The actual (exclusive) value coming from the
1078      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1079     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1080     if (fw_cfg_file_slots(s) > file_slots_max) {
1081         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1082                    file_slots_max);
1083         return;
1084     }
1085 
1086     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1087     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1088     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1089 }
1090 
1091 static Property fw_cfg_io_properties[] = {
1092     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1093                      true),
1094     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1095                        FW_CFG_FILE_SLOTS_DFLT),
1096     DEFINE_PROP_END_OF_LIST(),
1097 };
1098 
1099 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1100 {
1101     FWCfgIoState *s = FW_CFG_IO(dev);
1102     Error *local_err = NULL;
1103 
1104     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1105     if (local_err) {
1106         error_propagate(errp, local_err);
1107         return;
1108     }
1109 
1110     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1111      * with half of the 16-bit control register. Hence, the total size
1112      * of the i/o region used is FW_CFG_CTL_SIZE */
1113     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1114                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1115 
1116     if (FW_CFG(s)->dma_enabled) {
1117         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1118                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1119                               sizeof(dma_addr_t));
1120     }
1121 
1122     fw_cfg_common_realize(dev, errp);
1123 }
1124 
1125 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1126 {
1127     DeviceClass *dc = DEVICE_CLASS(klass);
1128 
1129     dc->realize = fw_cfg_io_realize;
1130     dc->props = fw_cfg_io_properties;
1131 }
1132 
1133 static const TypeInfo fw_cfg_io_info = {
1134     .name          = TYPE_FW_CFG_IO,
1135     .parent        = TYPE_FW_CFG,
1136     .instance_size = sizeof(FWCfgIoState),
1137     .class_init    = fw_cfg_io_class_init,
1138 };
1139 
1140 
1141 static Property fw_cfg_mem_properties[] = {
1142     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1143     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1144                      true),
1145     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1146                        FW_CFG_FILE_SLOTS_DFLT),
1147     DEFINE_PROP_END_OF_LIST(),
1148 };
1149 
1150 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1151 {
1152     FWCfgMemState *s = FW_CFG_MEM(dev);
1153     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1154     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1155     Error *local_err = NULL;
1156 
1157     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1158     if (local_err) {
1159         error_propagate(errp, local_err);
1160         return;
1161     }
1162 
1163     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1164                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1165     sysbus_init_mmio(sbd, &s->ctl_iomem);
1166 
1167     if (s->data_width > data_ops->valid.max_access_size) {
1168         s->wide_data_ops = *data_ops;
1169 
1170         s->wide_data_ops.valid.max_access_size = s->data_width;
1171         s->wide_data_ops.impl.max_access_size  = s->data_width;
1172         data_ops = &s->wide_data_ops;
1173     }
1174     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1175                           "fwcfg.data", data_ops->valid.max_access_size);
1176     sysbus_init_mmio(sbd, &s->data_iomem);
1177 
1178     if (FW_CFG(s)->dma_enabled) {
1179         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1180                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1181                               sizeof(dma_addr_t));
1182         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1183     }
1184 
1185     fw_cfg_common_realize(dev, errp);
1186 }
1187 
1188 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1189 {
1190     DeviceClass *dc = DEVICE_CLASS(klass);
1191 
1192     dc->realize = fw_cfg_mem_realize;
1193     dc->props = fw_cfg_mem_properties;
1194 }
1195 
1196 static const TypeInfo fw_cfg_mem_info = {
1197     .name          = TYPE_FW_CFG_MEM,
1198     .parent        = TYPE_FW_CFG,
1199     .instance_size = sizeof(FWCfgMemState),
1200     .class_init    = fw_cfg_mem_class_init,
1201 };
1202 
1203 
1204 static void fw_cfg_register_types(void)
1205 {
1206     type_register_static(&fw_cfg_info);
1207     type_register_static(&fw_cfg_io_info);
1208     type_register_static(&fw_cfg_mem_info);
1209 }
1210 
1211 type_init(fw_cfg_register_types)
1212