1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/datadir.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/dma.h" 29 #include "sysemu/reset.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/qdev-properties.h" 34 #include "hw/sysbus.h" 35 #include "migration/qemu-file-types.h" 36 #include "migration/vmstate.h" 37 #include "trace.h" 38 #include "qemu/error-report.h" 39 #include "qemu/option.h" 40 #include "qemu/config-file.h" 41 #include "qemu/cutils.h" 42 #include "qapi/error.h" 43 #include "hw/acpi/aml-build.h" 44 #include "hw/pci/pci_bus.h" 45 #include "hw/loader.h" 46 47 #define FW_CFG_FILE_SLOTS_DFLT 0x20 48 49 /* FW_CFG_VERSION bits */ 50 #define FW_CFG_VERSION 0x01 51 #define FW_CFG_VERSION_DMA 0x02 52 53 /* FW_CFG_DMA_CONTROL bits */ 54 #define FW_CFG_DMA_CTL_ERROR 0x01 55 #define FW_CFG_DMA_CTL_READ 0x02 56 #define FW_CFG_DMA_CTL_SKIP 0x04 57 #define FW_CFG_DMA_CTL_SELECT 0x08 58 #define FW_CFG_DMA_CTL_WRITE 0x10 59 60 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 61 62 struct FWCfgEntry { 63 uint32_t len; 64 bool allow_write; 65 uint8_t *data; 66 void *callback_opaque; 67 FWCfgCallback select_cb; 68 FWCfgWriteCallback write_cb; 69 }; 70 71 /** 72 * key_name: 73 * 74 * @key: The uint16 selector key. 75 * 76 * Returns: The stringified name if the selector refers to a well-known 77 * numerically defined item, or NULL on key lookup failure. 78 */ 79 static const char *key_name(uint16_t key) 80 { 81 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 82 [FW_CFG_SIGNATURE] = "signature", 83 [FW_CFG_ID] = "id", 84 [FW_CFG_UUID] = "uuid", 85 [FW_CFG_RAM_SIZE] = "ram_size", 86 [FW_CFG_NOGRAPHIC] = "nographic", 87 [FW_CFG_NB_CPUS] = "nb_cpus", 88 [FW_CFG_MACHINE_ID] = "machine_id", 89 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 90 [FW_CFG_KERNEL_SIZE] = "kernel_size", 91 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 92 [FW_CFG_INITRD_ADDR] = "initrd_addr", 93 [FW_CFG_INITRD_SIZE] = "initdr_size", 94 [FW_CFG_BOOT_DEVICE] = "boot_device", 95 [FW_CFG_NUMA] = "numa", 96 [FW_CFG_BOOT_MENU] = "boot_menu", 97 [FW_CFG_MAX_CPUS] = "max_cpus", 98 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 99 [FW_CFG_KERNEL_DATA] = "kernel_data", 100 [FW_CFG_INITRD_DATA] = "initrd_data", 101 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 102 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 103 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 104 [FW_CFG_SETUP_ADDR] = "setup_addr", 105 [FW_CFG_SETUP_SIZE] = "setup_size", 106 [FW_CFG_SETUP_DATA] = "setup_data", 107 [FW_CFG_FILE_DIR] = "file_dir", 108 }; 109 110 if (key & FW_CFG_ARCH_LOCAL) { 111 return fw_cfg_arch_key_name(key); 112 } 113 if (key < FW_CFG_FILE_FIRST) { 114 return fw_cfg_wellknown_keys[key]; 115 } 116 117 return NULL; 118 } 119 120 static inline const char *trace_key_name(uint16_t key) 121 { 122 const char *name = key_name(key); 123 124 return name ? name : "unknown"; 125 } 126 127 #define JPG_FILE 0 128 #define BMP_FILE 1 129 130 static char *read_splashfile(char *filename, gsize *file_sizep, 131 int *file_typep) 132 { 133 GError *err = NULL; 134 gchar *content; 135 int file_type; 136 unsigned int filehead; 137 int bmp_bpp; 138 139 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 140 error_report("failed to read splash file '%s': %s", 141 filename, err->message); 142 g_error_free(err); 143 return NULL; 144 } 145 146 /* check file size */ 147 if (*file_sizep < 30) { 148 goto error; 149 } 150 151 /* check magic ID */ 152 filehead = lduw_le_p(content); 153 if (filehead == 0xd8ff) { 154 file_type = JPG_FILE; 155 } else if (filehead == 0x4d42) { 156 file_type = BMP_FILE; 157 } else { 158 goto error; 159 } 160 161 /* check BMP bpp */ 162 if (file_type == BMP_FILE) { 163 bmp_bpp = lduw_le_p(&content[28]); 164 if (bmp_bpp != 24) { 165 goto error; 166 } 167 } 168 169 /* return values */ 170 *file_typep = file_type; 171 172 return content; 173 174 error: 175 error_report("splash file '%s' format not recognized; must be JPEG " 176 "or 24 bit BMP", filename); 177 g_free(content); 178 return NULL; 179 } 180 181 static void fw_cfg_bootsplash(FWCfgState *s) 182 { 183 char *filename, *file_data; 184 gsize file_size; 185 int file_type; 186 187 /* insert splash time if user configurated */ 188 if (current_machine->boot_config.has_splash_time) { 189 int64_t bst_val = current_machine->boot_config.splash_time; 190 uint16_t bst_le16; 191 192 /* validate the input */ 193 if (bst_val < 0 || bst_val > 0xffff) { 194 error_report("splash-time is invalid," 195 "it should be a value between 0 and 65535"); 196 exit(1); 197 } 198 /* use little endian format */ 199 bst_le16 = cpu_to_le16(bst_val); 200 fw_cfg_add_file(s, "etc/boot-menu-wait", 201 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 202 } 203 204 /* insert splash file if user configurated */ 205 if (current_machine->boot_config.splash) { 206 const char *boot_splash_filename = current_machine->boot_config.splash; 207 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 208 if (filename == NULL) { 209 error_report("failed to find file '%s'", boot_splash_filename); 210 return; 211 } 212 213 /* loading file data */ 214 file_data = read_splashfile(filename, &file_size, &file_type); 215 if (file_data == NULL) { 216 g_free(filename); 217 return; 218 } 219 g_free(boot_splash_filedata); 220 boot_splash_filedata = (uint8_t *)file_data; 221 222 /* insert data */ 223 if (file_type == JPG_FILE) { 224 fw_cfg_add_file(s, "bootsplash.jpg", 225 boot_splash_filedata, file_size); 226 } else { 227 fw_cfg_add_file(s, "bootsplash.bmp", 228 boot_splash_filedata, file_size); 229 } 230 g_free(filename); 231 } 232 } 233 234 static void fw_cfg_reboot(FWCfgState *s) 235 { 236 uint64_t rt_val = -1; 237 uint32_t rt_le32; 238 239 if (current_machine->boot_config.has_reboot_timeout) { 240 rt_val = current_machine->boot_config.reboot_timeout; 241 242 /* validate the input */ 243 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 244 error_report("reboot timeout is invalid," 245 "it should be a value between -1 and 65535"); 246 exit(1); 247 } 248 } 249 250 rt_le32 = cpu_to_le32(rt_val); 251 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 252 } 253 254 static void fw_cfg_write(FWCfgState *s, uint8_t value) 255 { 256 /* nothing, write support removed in QEMU v2.4+ */ 257 } 258 259 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 260 { 261 return s->file_slots; 262 } 263 264 /* Note: this function returns an exclusive limit. */ 265 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 266 { 267 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 268 } 269 270 static int fw_cfg_select(FWCfgState *s, uint16_t key) 271 { 272 int arch, ret; 273 FWCfgEntry *e; 274 275 s->cur_offset = 0; 276 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 277 s->cur_entry = FW_CFG_INVALID; 278 ret = 0; 279 } else { 280 s->cur_entry = key; 281 ret = 1; 282 /* entry successfully selected, now run callback if present */ 283 arch = !!(key & FW_CFG_ARCH_LOCAL); 284 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 285 if (e->select_cb) { 286 e->select_cb(e->callback_opaque); 287 } 288 } 289 290 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 291 return ret; 292 } 293 294 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 295 { 296 FWCfgState *s = opaque; 297 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 298 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 299 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 300 uint64_t value = 0; 301 302 assert(size > 0 && size <= sizeof(value)); 303 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 304 /* The least significant 'size' bytes of the return value are 305 * expected to contain a string preserving portion of the item 306 * data, padded with zeros on the right in case we run out early. 307 * In technical terms, we're composing the host-endian representation 308 * of the big endian interpretation of the fw_cfg string. 309 */ 310 do { 311 value = (value << 8) | e->data[s->cur_offset++]; 312 } while (--size && s->cur_offset < e->len); 313 /* If size is still not zero, we *did* run out early, so continue 314 * left-shifting, to add the appropriate number of padding zeros 315 * on the right. 316 */ 317 value <<= 8 * size; 318 } 319 320 trace_fw_cfg_read(s, value); 321 return value; 322 } 323 324 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 325 uint64_t value, unsigned size) 326 { 327 FWCfgState *s = opaque; 328 unsigned i = size; 329 330 do { 331 fw_cfg_write(s, value >> (8 * --i)); 332 } while (i); 333 } 334 335 static void fw_cfg_dma_transfer(FWCfgState *s) 336 { 337 dma_addr_t len; 338 FWCfgDmaAccess dma; 339 int arch; 340 FWCfgEntry *e; 341 int read = 0, write = 0; 342 dma_addr_t dma_addr; 343 344 /* Reset the address before the next access */ 345 dma_addr = s->dma_addr; 346 s->dma_addr = 0; 347 348 if (dma_memory_read(s->dma_as, dma_addr, 349 &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) { 350 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 351 FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED); 352 return; 353 } 354 355 dma.address = be64_to_cpu(dma.address); 356 dma.length = be32_to_cpu(dma.length); 357 dma.control = be32_to_cpu(dma.control); 358 359 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 360 fw_cfg_select(s, dma.control >> 16); 361 } 362 363 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 364 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 365 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 366 367 if (dma.control & FW_CFG_DMA_CTL_READ) { 368 read = 1; 369 write = 0; 370 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 371 read = 0; 372 write = 1; 373 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 374 read = 0; 375 write = 0; 376 } else { 377 dma.length = 0; 378 } 379 380 dma.control = 0; 381 382 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 383 if (s->cur_entry == FW_CFG_INVALID || !e->data || 384 s->cur_offset >= e->len) { 385 len = dma.length; 386 387 /* If the access is not a read access, it will be a skip access, 388 * tested before. 389 */ 390 if (read) { 391 if (dma_memory_set(s->dma_as, dma.address, 0, len, 392 MEMTXATTRS_UNSPECIFIED)) { 393 dma.control |= FW_CFG_DMA_CTL_ERROR; 394 } 395 } 396 if (write) { 397 dma.control |= FW_CFG_DMA_CTL_ERROR; 398 } 399 } else { 400 if (dma.length <= (e->len - s->cur_offset)) { 401 len = dma.length; 402 } else { 403 len = (e->len - s->cur_offset); 404 } 405 406 /* If the access is not a read access, it will be a skip access, 407 * tested before. 408 */ 409 if (read) { 410 if (dma_memory_write(s->dma_as, dma.address, 411 &e->data[s->cur_offset], len, 412 MEMTXATTRS_UNSPECIFIED)) { 413 dma.control |= FW_CFG_DMA_CTL_ERROR; 414 } 415 } 416 if (write) { 417 if (!e->allow_write || 418 len != dma.length || 419 dma_memory_read(s->dma_as, dma.address, 420 &e->data[s->cur_offset], len, 421 MEMTXATTRS_UNSPECIFIED)) { 422 dma.control |= FW_CFG_DMA_CTL_ERROR; 423 } else if (e->write_cb) { 424 e->write_cb(e->callback_opaque, s->cur_offset, len); 425 } 426 } 427 428 s->cur_offset += len; 429 } 430 431 dma.address += len; 432 dma.length -= len; 433 434 } 435 436 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 437 dma.control, MEMTXATTRS_UNSPECIFIED); 438 439 trace_fw_cfg_read(s, 0); 440 } 441 442 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 443 unsigned size) 444 { 445 /* Return a signature value (and handle various read sizes) */ 446 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 447 } 448 449 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 450 uint64_t value, unsigned size) 451 { 452 FWCfgState *s = opaque; 453 454 if (size == 4) { 455 if (addr == 0) { 456 /* FWCfgDmaAccess high address */ 457 s->dma_addr = value << 32; 458 } else if (addr == 4) { 459 /* FWCfgDmaAccess low address */ 460 s->dma_addr |= value; 461 fw_cfg_dma_transfer(s); 462 } 463 } else if (size == 8 && addr == 0) { 464 s->dma_addr = value; 465 fw_cfg_dma_transfer(s); 466 } 467 } 468 469 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 470 unsigned size, bool is_write, 471 MemTxAttrs attrs) 472 { 473 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 474 (size == 8 && addr == 0)); 475 } 476 477 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 478 unsigned size, bool is_write, 479 MemTxAttrs attrs) 480 { 481 return addr == 0; 482 } 483 484 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 485 { 486 return 0; 487 } 488 489 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 490 uint64_t value, unsigned size) 491 { 492 fw_cfg_select(opaque, (uint16_t)value); 493 } 494 495 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 496 unsigned size, bool is_write, 497 MemTxAttrs attrs) 498 { 499 return is_write && size == 2; 500 } 501 502 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 503 uint64_t value, unsigned size) 504 { 505 switch (size) { 506 case 1: 507 fw_cfg_write(opaque, (uint8_t)value); 508 break; 509 case 2: 510 fw_cfg_select(opaque, (uint16_t)value); 511 break; 512 } 513 } 514 515 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 516 unsigned size, bool is_write, 517 MemTxAttrs attrs) 518 { 519 return (size == 1) || (is_write && size == 2); 520 } 521 522 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 523 .read = fw_cfg_ctl_mem_read, 524 .write = fw_cfg_ctl_mem_write, 525 .endianness = DEVICE_BIG_ENDIAN, 526 .valid.accepts = fw_cfg_ctl_mem_valid, 527 }; 528 529 static const MemoryRegionOps fw_cfg_data_mem_ops = { 530 .read = fw_cfg_data_read, 531 .write = fw_cfg_data_mem_write, 532 .endianness = DEVICE_BIG_ENDIAN, 533 .valid = { 534 .min_access_size = 1, 535 .max_access_size = 1, 536 .accepts = fw_cfg_data_mem_valid, 537 }, 538 }; 539 540 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 541 .read = fw_cfg_data_read, 542 .write = fw_cfg_comb_write, 543 .endianness = DEVICE_LITTLE_ENDIAN, 544 .valid.accepts = fw_cfg_comb_valid, 545 }; 546 547 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 548 .read = fw_cfg_dma_mem_read, 549 .write = fw_cfg_dma_mem_write, 550 .endianness = DEVICE_BIG_ENDIAN, 551 .valid.accepts = fw_cfg_dma_mem_valid, 552 .valid.max_access_size = 8, 553 .impl.max_access_size = 8, 554 }; 555 556 static void fw_cfg_reset(DeviceState *d) 557 { 558 FWCfgState *s = FW_CFG(d); 559 560 /* we never register a read callback for FW_CFG_SIGNATURE */ 561 fw_cfg_select(s, FW_CFG_SIGNATURE); 562 } 563 564 /* Save restore 32 bit int as uint16_t 565 This is a Big hack, but it is how the old state did it. 566 Or we broke compatibility in the state, or we can't use struct tm 567 */ 568 569 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 570 const VMStateField *field) 571 { 572 uint32_t *v = pv; 573 *v = qemu_get_be16(f); 574 return 0; 575 } 576 577 static int put_unused(QEMUFile *f, void *pv, size_t size, 578 const VMStateField *field, JSONWriter *vmdesc) 579 { 580 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 581 fprintf(stderr, "This functions shouldn't be called.\n"); 582 583 return 0; 584 } 585 586 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 587 .name = "int32_as_uint16", 588 .get = get_uint32_as_uint16, 589 .put = put_unused, 590 }; 591 592 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 593 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 594 595 596 static bool is_version_1(void *opaque, int version_id) 597 { 598 return version_id == 1; 599 } 600 601 bool fw_cfg_dma_enabled(void *opaque) 602 { 603 FWCfgState *s = opaque; 604 605 return s->dma_enabled; 606 } 607 608 static bool fw_cfg_acpi_mr_restore(void *opaque) 609 { 610 FWCfgState *s = opaque; 611 bool mr_aligned; 612 613 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) && 614 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) && 615 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size()); 616 return s->acpi_mr_restore && !mr_aligned; 617 } 618 619 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 620 { 621 MemoryRegion *mr; 622 ram_addr_t offset; 623 int arch = !!(key & FW_CFG_ARCH_LOCAL); 624 void *ptr; 625 626 key &= FW_CFG_ENTRY_MASK; 627 assert(key < fw_cfg_max_entry(s)); 628 629 ptr = s->entries[arch][key].data; 630 mr = memory_region_from_host(ptr, &offset); 631 632 memory_region_ram_resize(mr, size, &error_abort); 633 } 634 635 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 636 { 637 FWCfgState *s = opaque; 638 int i, index; 639 640 assert(s->files); 641 642 index = be32_to_cpu(s->files->count); 643 644 for (i = 0; i < index; i++) { 645 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 646 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 647 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 648 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 649 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 650 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 651 } 652 } 653 654 return 0; 655 } 656 657 static const VMStateDescription vmstate_fw_cfg_dma = { 658 .name = "fw_cfg/dma", 659 .needed = fw_cfg_dma_enabled, 660 .fields = (const VMStateField[]) { 661 VMSTATE_UINT64(dma_addr, FWCfgState), 662 VMSTATE_END_OF_LIST() 663 }, 664 }; 665 666 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 667 .name = "fw_cfg/acpi_mr", 668 .version_id = 1, 669 .minimum_version_id = 1, 670 .needed = fw_cfg_acpi_mr_restore, 671 .post_load = fw_cfg_acpi_mr_restore_post_load, 672 .fields = (const VMStateField[]) { 673 VMSTATE_UINT64(table_mr_size, FWCfgState), 674 VMSTATE_UINT64(linker_mr_size, FWCfgState), 675 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 676 VMSTATE_END_OF_LIST() 677 }, 678 }; 679 680 static const VMStateDescription vmstate_fw_cfg = { 681 .name = "fw_cfg", 682 .version_id = 2, 683 .minimum_version_id = 1, 684 .fields = (const VMStateField[]) { 685 VMSTATE_UINT16(cur_entry, FWCfgState), 686 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 687 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 688 VMSTATE_END_OF_LIST() 689 }, 690 .subsections = (const VMStateDescription * const []) { 691 &vmstate_fw_cfg_dma, 692 &vmstate_fw_cfg_acpi_mr, 693 NULL, 694 } 695 }; 696 697 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 698 FWCfgCallback select_cb, 699 FWCfgWriteCallback write_cb, 700 void *callback_opaque, 701 void *data, size_t len, 702 bool read_only) 703 { 704 int arch = !!(key & FW_CFG_ARCH_LOCAL); 705 706 key &= FW_CFG_ENTRY_MASK; 707 708 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 709 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 710 711 s->entries[arch][key].data = data; 712 s->entries[arch][key].len = (uint32_t)len; 713 s->entries[arch][key].select_cb = select_cb; 714 s->entries[arch][key].write_cb = write_cb; 715 s->entries[arch][key].callback_opaque = callback_opaque; 716 s->entries[arch][key].allow_write = !read_only; 717 } 718 719 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 720 void *data, size_t len) 721 { 722 void *ptr; 723 int arch = !!(key & FW_CFG_ARCH_LOCAL); 724 725 key &= FW_CFG_ENTRY_MASK; 726 727 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 728 729 /* return the old data to the function caller, avoid memory leak */ 730 ptr = s->entries[arch][key].data; 731 s->entries[arch][key].data = data; 732 s->entries[arch][key].len = len; 733 s->entries[arch][key].callback_opaque = NULL; 734 s->entries[arch][key].allow_write = false; 735 736 return ptr; 737 } 738 739 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 740 { 741 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 742 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 743 } 744 745 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 746 { 747 size_t sz = strlen(value) + 1; 748 749 trace_fw_cfg_add_string(key, trace_key_name(key), value); 750 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 751 } 752 753 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 754 { 755 size_t sz = strlen(value) + 1; 756 char *old; 757 758 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 759 g_free(old); 760 } 761 762 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 763 { 764 uint16_t *copy; 765 766 copy = g_malloc(sizeof(value)); 767 *copy = cpu_to_le16(value); 768 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 769 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 770 } 771 772 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 773 { 774 uint16_t *copy, *old; 775 776 copy = g_malloc(sizeof(value)); 777 *copy = cpu_to_le16(value); 778 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 779 g_free(old); 780 } 781 782 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 783 { 784 uint32_t *copy; 785 786 copy = g_malloc(sizeof(value)); 787 *copy = cpu_to_le32(value); 788 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 789 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 790 } 791 792 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 793 { 794 uint32_t *copy, *old; 795 796 copy = g_malloc(sizeof(value)); 797 *copy = cpu_to_le32(value); 798 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 799 g_free(old); 800 } 801 802 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 803 { 804 uint64_t *copy; 805 806 copy = g_malloc(sizeof(value)); 807 *copy = cpu_to_le64(value); 808 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 809 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 810 } 811 812 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 813 { 814 uint64_t *copy, *old; 815 816 copy = g_malloc(sizeof(value)); 817 *copy = cpu_to_le64(value); 818 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 819 g_free(old); 820 } 821 822 void fw_cfg_set_order_override(FWCfgState *s, int order) 823 { 824 assert(s->fw_cfg_order_override == 0); 825 s->fw_cfg_order_override = order; 826 } 827 828 void fw_cfg_reset_order_override(FWCfgState *s) 829 { 830 assert(s->fw_cfg_order_override != 0); 831 s->fw_cfg_order_override = 0; 832 } 833 834 /* 835 * This is the legacy order list. For legacy systems, files are in 836 * the fw_cfg in the order defined below, by the "order" value. Note 837 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 838 * specific area, but there may be more than one and they occur in the 839 * order that the user specifies them on the command line. Those are 840 * handled in a special manner, using the order override above. 841 * 842 * For non-legacy, the files are sorted by filename to avoid this kind 843 * of complexity in the future. 844 * 845 * This is only for x86, other arches don't implement versioning so 846 * they won't set legacy mode. 847 */ 848 static struct { 849 const char *name; 850 int order; 851 } fw_cfg_order[] = { 852 { "etc/boot-menu-wait", 10 }, 853 { "bootsplash.jpg", 11 }, 854 { "bootsplash.bmp", 12 }, 855 { "etc/boot-fail-wait", 15 }, 856 { "etc/smbios/smbios-tables", 20 }, 857 { "etc/smbios/smbios-anchor", 30 }, 858 { "etc/e820", 40 }, 859 { "etc/reserved-memory-end", 50 }, 860 { "genroms/kvmvapic.bin", 55 }, 861 { "genroms/linuxboot.bin", 60 }, 862 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 863 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 864 { "etc/system-states", 90 }, 865 { }, /* User ROMs come here, 100. */ 866 { }, /* Device FW comes here, 110. */ 867 { "etc/extra-pci-roots", 120 }, 868 { "etc/acpi/tables", 130 }, 869 { "etc/table-loader", 140 }, 870 { "etc/tpm/log", 150 }, 871 { "etc/acpi/rsdp", 160 }, 872 { "bootorder", 170 }, 873 { "etc/msr_feature_control", 180 }, 874 875 #define FW_CFG_ORDER_OVERRIDE_LAST 200 876 }; 877 878 /* 879 * Any sub-page size update to these table MRs will be lost during migration, 880 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 881 * In order to avoid the inconsistency in sizes save them separately and 882 * migrate over in vmstate post_load(). 883 */ 884 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 885 { 886 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 887 s->table_mr_size = len; 888 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 889 s->linker_mr_size = len; 890 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 891 s->rsdp_mr_size = len; 892 } 893 } 894 895 static int get_fw_cfg_order(FWCfgState *s, const char *name) 896 { 897 int i; 898 899 if (s->fw_cfg_order_override > 0) { 900 return s->fw_cfg_order_override; 901 } 902 903 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 904 if (fw_cfg_order[i].name == NULL) { 905 continue; 906 } 907 908 if (strcmp(name, fw_cfg_order[i].name) == 0) { 909 return fw_cfg_order[i].order; 910 } 911 } 912 913 /* Stick unknown stuff at the end. */ 914 warn_report("Unknown firmware file in legacy mode: %s", name); 915 return FW_CFG_ORDER_OVERRIDE_LAST; 916 } 917 918 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 919 FWCfgCallback select_cb, 920 FWCfgWriteCallback write_cb, 921 void *callback_opaque, 922 void *data, size_t len, bool read_only) 923 { 924 int i, index, count; 925 size_t dsize; 926 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 927 int order = 0; 928 929 if (!s->files) { 930 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 931 s->files = g_malloc0(dsize); 932 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 933 } 934 935 count = be32_to_cpu(s->files->count); 936 assert(count < fw_cfg_file_slots(s)); 937 938 /* Find the insertion point. */ 939 if (mc->legacy_fw_cfg_order) { 940 /* 941 * Sort by order. For files with the same order, we keep them 942 * in the sequence in which they were added. 943 */ 944 order = get_fw_cfg_order(s, filename); 945 for (index = count; 946 index > 0 && order < s->entry_order[index - 1]; 947 index--); 948 } else { 949 /* Sort by file name. */ 950 for (index = count; 951 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 952 index--); 953 } 954 955 /* 956 * Move all the entries from the index point and after down one 957 * to create a slot for the new entry. Because calculations are 958 * being done with the index, make it so that "i" is the current 959 * index and "i - 1" is the one being copied from, thus the 960 * unusual start and end in the for statement. 961 */ 962 for (i = count; i > index; i--) { 963 s->files->f[i] = s->files->f[i - 1]; 964 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 965 s->entries[0][FW_CFG_FILE_FIRST + i] = 966 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 967 s->entry_order[i] = s->entry_order[i - 1]; 968 } 969 970 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 971 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 972 973 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 974 for (i = 0; i <= count; i++) { 975 if (i != index && 976 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 977 error_report("duplicate fw_cfg file name: %s", 978 s->files->f[index].name); 979 exit(1); 980 } 981 } 982 983 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 984 select_cb, write_cb, 985 callback_opaque, data, len, 986 read_only); 987 988 s->files->f[index].size = cpu_to_be32(len); 989 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 990 s->entry_order[index] = order; 991 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 992 993 s->files->count = cpu_to_be32(count+1); 994 fw_cfg_acpi_mr_save(s, filename, len); 995 } 996 997 void fw_cfg_add_file(FWCfgState *s, const char *filename, 998 void *data, size_t len) 999 { 1000 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1001 } 1002 1003 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1004 void *data, size_t len) 1005 { 1006 int i, index; 1007 void *ptr = NULL; 1008 1009 assert(s->files); 1010 1011 index = be32_to_cpu(s->files->count); 1012 1013 for (i = 0; i < index; i++) { 1014 if (strcmp(filename, s->files->f[i].name) == 0) { 1015 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1016 data, len); 1017 s->files->f[i].size = cpu_to_be32(len); 1018 fw_cfg_acpi_mr_save(s, filename, len); 1019 return ptr; 1020 } 1021 } 1022 1023 assert(index < fw_cfg_file_slots(s)); 1024 1025 /* add new one */ 1026 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1027 return NULL; 1028 } 1029 1030 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, 1031 const char *gen_id, Error **errp) 1032 { 1033 FWCfgDataGeneratorClass *klass; 1034 GByteArray *array; 1035 Object *obj; 1036 gsize size; 1037 1038 obj = object_resolve_path_component(object_get_objects_root(), gen_id); 1039 if (!obj) { 1040 error_setg(errp, "Cannot find object ID '%s'", gen_id); 1041 return false; 1042 } 1043 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1044 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1045 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1046 return false; 1047 } 1048 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1049 array = klass->get_data(obj, errp); 1050 if (!array) { 1051 return false; 1052 } 1053 size = array->len; 1054 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1055 1056 return true; 1057 } 1058 1059 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s) 1060 { 1061 int extra_hosts = 0; 1062 1063 if (!bus) { 1064 return; 1065 } 1066 1067 QLIST_FOREACH(bus, &bus->child, sibling) { 1068 /* look for expander root buses */ 1069 if (pci_bus_is_root(bus)) { 1070 extra_hosts++; 1071 } 1072 } 1073 1074 if (extra_hosts && s) { 1075 uint64_t *val = g_malloc(sizeof(*val)); 1076 *val = cpu_to_le64(extra_hosts); 1077 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val)); 1078 } 1079 } 1080 1081 static void fw_cfg_machine_reset(void *opaque) 1082 { 1083 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1084 FWCfgState *s = opaque; 1085 void *ptr; 1086 size_t len; 1087 char *buf; 1088 1089 buf = get_boot_devices_list(&len); 1090 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1091 g_free(ptr); 1092 1093 if (!mc->legacy_fw_cfg_order) { 1094 buf = get_boot_devices_lchs_list(&len); 1095 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1096 g_free(ptr); 1097 } 1098 } 1099 1100 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1101 { 1102 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1103 qemu_register_reset(fw_cfg_machine_reset, s); 1104 } 1105 1106 static Property fw_cfg_properties[] = { 1107 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1108 DEFINE_PROP_END_OF_LIST(), 1109 }; 1110 1111 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1112 { 1113 FWCfgState *s = FW_CFG(dev); 1114 MachineState *machine = MACHINE(qdev_get_machine()); 1115 uint32_t version = FW_CFG_VERSION; 1116 1117 if (!fw_cfg_find()) { 1118 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1119 return; 1120 } 1121 1122 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1123 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1124 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1125 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu)); 1126 fw_cfg_bootsplash(s); 1127 fw_cfg_reboot(s); 1128 1129 if (s->dma_enabled) { 1130 version |= FW_CFG_VERSION_DMA; 1131 } 1132 1133 fw_cfg_add_i32(s, FW_CFG_ID, version); 1134 1135 s->machine_ready.notify = fw_cfg_machine_ready; 1136 qemu_add_machine_init_done_notifier(&s->machine_ready); 1137 } 1138 1139 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1140 AddressSpace *dma_as) 1141 { 1142 DeviceState *dev; 1143 SysBusDevice *sbd; 1144 FWCfgIoState *ios; 1145 FWCfgState *s; 1146 MemoryRegion *iomem = get_system_io(); 1147 bool dma_requested = dma_iobase && dma_as; 1148 1149 dev = qdev_new(TYPE_FW_CFG_IO); 1150 if (!dma_requested) { 1151 qdev_prop_set_bit(dev, "dma_enabled", false); 1152 } 1153 1154 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1155 OBJECT(dev)); 1156 1157 sbd = SYS_BUS_DEVICE(dev); 1158 sysbus_realize_and_unref(sbd, &error_fatal); 1159 ios = FW_CFG_IO(dev); 1160 memory_region_add_subregion(iomem, iobase, &ios->comb_iomem); 1161 1162 s = FW_CFG(dev); 1163 1164 if (s->dma_enabled) { 1165 /* 64 bits for the address field */ 1166 s->dma_as = dma_as; 1167 s->dma_addr = 0; 1168 memory_region_add_subregion(iomem, dma_iobase, &s->dma_iomem); 1169 } 1170 1171 return s; 1172 } 1173 1174 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1175 { 1176 return fw_cfg_init_io_dma(iobase, 0, NULL); 1177 } 1178 1179 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1180 hwaddr data_addr, uint32_t data_width, 1181 hwaddr dma_addr, AddressSpace *dma_as) 1182 { 1183 DeviceState *dev; 1184 SysBusDevice *sbd; 1185 FWCfgState *s; 1186 bool dma_requested = dma_addr && dma_as; 1187 1188 dev = qdev_new(TYPE_FW_CFG_MEM); 1189 qdev_prop_set_uint32(dev, "data_width", data_width); 1190 if (!dma_requested) { 1191 qdev_prop_set_bit(dev, "dma_enabled", false); 1192 } 1193 1194 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1195 OBJECT(dev)); 1196 1197 sbd = SYS_BUS_DEVICE(dev); 1198 sysbus_realize_and_unref(sbd, &error_fatal); 1199 sysbus_mmio_map(sbd, 0, ctl_addr); 1200 sysbus_mmio_map(sbd, 1, data_addr); 1201 1202 s = FW_CFG(dev); 1203 1204 if (s->dma_enabled) { 1205 s->dma_as = dma_as; 1206 s->dma_addr = 0; 1207 sysbus_mmio_map(sbd, 2, dma_addr); 1208 } 1209 1210 return s; 1211 } 1212 1213 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1214 { 1215 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1216 fw_cfg_data_mem_ops.valid.max_access_size, 1217 0, NULL); 1218 } 1219 1220 1221 FWCfgState *fw_cfg_find(void) 1222 { 1223 /* Returns NULL unless there is exactly one fw_cfg device */ 1224 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1225 } 1226 1227 void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 1228 uint16_t data_key, const char *image_name, 1229 bool try_decompress) 1230 { 1231 size_t size = -1; 1232 uint8_t *data; 1233 1234 if (image_name == NULL) { 1235 return; 1236 } 1237 1238 if (try_decompress) { 1239 size = load_image_gzipped_buffer(image_name, 1240 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 1241 } 1242 1243 if (size == (size_t)-1) { 1244 gchar *contents; 1245 gsize length; 1246 1247 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 1248 error_report("failed to load \"%s\"", image_name); 1249 exit(1); 1250 } 1251 size = length; 1252 data = (uint8_t *)contents; 1253 } 1254 1255 fw_cfg_add_i32(fw_cfg, size_key, size); 1256 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 1257 } 1258 1259 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1260 { 1261 DeviceClass *dc = DEVICE_CLASS(klass); 1262 1263 dc->reset = fw_cfg_reset; 1264 dc->vmsd = &vmstate_fw_cfg; 1265 1266 device_class_set_props(dc, fw_cfg_properties); 1267 } 1268 1269 static const TypeInfo fw_cfg_info = { 1270 .name = TYPE_FW_CFG, 1271 .parent = TYPE_SYS_BUS_DEVICE, 1272 .abstract = true, 1273 .instance_size = sizeof(FWCfgState), 1274 .class_init = fw_cfg_class_init, 1275 }; 1276 1277 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1278 { 1279 uint16_t file_slots_max; 1280 1281 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1282 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1283 FW_CFG_FILE_SLOTS_MIN); 1284 return; 1285 } 1286 1287 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1288 * that we permit. The actual (exclusive) value coming from the 1289 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1290 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1291 if (fw_cfg_file_slots(s) > file_slots_max) { 1292 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1293 file_slots_max); 1294 return; 1295 } 1296 1297 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1298 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1299 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1300 } 1301 1302 static Property fw_cfg_io_properties[] = { 1303 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1304 true), 1305 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1306 FW_CFG_FILE_SLOTS_DFLT), 1307 DEFINE_PROP_END_OF_LIST(), 1308 }; 1309 1310 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1311 { 1312 ERRP_GUARD(); 1313 FWCfgIoState *s = FW_CFG_IO(dev); 1314 1315 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1316 if (*errp) { 1317 return; 1318 } 1319 1320 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1321 * with half of the 16-bit control register. Hence, the total size 1322 * of the i/o region used is FW_CFG_CTL_SIZE */ 1323 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1324 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1325 1326 if (FW_CFG(s)->dma_enabled) { 1327 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1328 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1329 sizeof(dma_addr_t)); 1330 } 1331 1332 fw_cfg_common_realize(dev, errp); 1333 } 1334 1335 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1336 { 1337 DeviceClass *dc = DEVICE_CLASS(klass); 1338 1339 dc->realize = fw_cfg_io_realize; 1340 device_class_set_props(dc, fw_cfg_io_properties); 1341 } 1342 1343 static const TypeInfo fw_cfg_io_info = { 1344 .name = TYPE_FW_CFG_IO, 1345 .parent = TYPE_FW_CFG, 1346 .instance_size = sizeof(FWCfgIoState), 1347 .class_init = fw_cfg_io_class_init, 1348 }; 1349 1350 1351 static Property fw_cfg_mem_properties[] = { 1352 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1353 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1354 true), 1355 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1356 FW_CFG_FILE_SLOTS_DFLT), 1357 DEFINE_PROP_END_OF_LIST(), 1358 }; 1359 1360 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1361 { 1362 ERRP_GUARD(); 1363 FWCfgMemState *s = FW_CFG_MEM(dev); 1364 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1365 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1366 1367 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1368 if (*errp) { 1369 return; 1370 } 1371 1372 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1373 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1374 sysbus_init_mmio(sbd, &s->ctl_iomem); 1375 1376 if (s->data_width > data_ops->valid.max_access_size) { 1377 s->wide_data_ops = *data_ops; 1378 1379 s->wide_data_ops.valid.max_access_size = s->data_width; 1380 s->wide_data_ops.impl.max_access_size = s->data_width; 1381 data_ops = &s->wide_data_ops; 1382 } 1383 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1384 "fwcfg.data", data_ops->valid.max_access_size); 1385 sysbus_init_mmio(sbd, &s->data_iomem); 1386 1387 if (FW_CFG(s)->dma_enabled) { 1388 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1389 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1390 sizeof(dma_addr_t)); 1391 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1392 } 1393 1394 fw_cfg_common_realize(dev, errp); 1395 } 1396 1397 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1398 { 1399 DeviceClass *dc = DEVICE_CLASS(klass); 1400 1401 dc->realize = fw_cfg_mem_realize; 1402 device_class_set_props(dc, fw_cfg_mem_properties); 1403 } 1404 1405 static const TypeInfo fw_cfg_mem_info = { 1406 .name = TYPE_FW_CFG_MEM, 1407 .parent = TYPE_FW_CFG, 1408 .instance_size = sizeof(FWCfgMemState), 1409 .class_init = fw_cfg_mem_class_init, 1410 }; 1411 1412 static void fw_cfg_register_types(void) 1413 { 1414 type_register_static(&fw_cfg_info); 1415 type_register_static(&fw_cfg_io_info); 1416 type_register_static(&fw_cfg_mem_info); 1417 } 1418 1419 type_init(fw_cfg_register_types) 1420