1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/datadir.h" 27 #include "sysemu/sysemu.h" 28 #include "sysemu/dma.h" 29 #include "sysemu/reset.h" 30 #include "hw/boards.h" 31 #include "hw/nvram/fw_cfg.h" 32 #include "hw/qdev-properties.h" 33 #include "hw/sysbus.h" 34 #include "migration/qemu-file-types.h" 35 #include "migration/vmstate.h" 36 #include "trace.h" 37 #include "qemu/error-report.h" 38 #include "qemu/option.h" 39 #include "qemu/config-file.h" 40 #include "qemu/cutils.h" 41 #include "qapi/error.h" 42 #include "hw/acpi/aml-build.h" 43 #include "hw/pci/pci_bus.h" 44 #include "hw/loader.h" 45 46 #define FW_CFG_FILE_SLOTS_DFLT 0x20 47 48 /* FW_CFG_VERSION bits */ 49 #define FW_CFG_VERSION 0x01 50 #define FW_CFG_VERSION_DMA 0x02 51 52 /* FW_CFG_DMA_CONTROL bits */ 53 #define FW_CFG_DMA_CTL_ERROR 0x01 54 #define FW_CFG_DMA_CTL_READ 0x02 55 #define FW_CFG_DMA_CTL_SKIP 0x04 56 #define FW_CFG_DMA_CTL_SELECT 0x08 57 #define FW_CFG_DMA_CTL_WRITE 0x10 58 59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 60 61 struct FWCfgEntry { 62 uint32_t len; 63 bool allow_write; 64 uint8_t *data; 65 void *callback_opaque; 66 FWCfgCallback select_cb; 67 FWCfgWriteCallback write_cb; 68 }; 69 70 /** 71 * key_name: 72 * 73 * @key: The uint16 selector key. 74 * 75 * Returns: The stringified name if the selector refers to a well-known 76 * numerically defined item, or NULL on key lookup failure. 77 */ 78 static const char *key_name(uint16_t key) 79 { 80 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 81 [FW_CFG_SIGNATURE] = "signature", 82 [FW_CFG_ID] = "id", 83 [FW_CFG_UUID] = "uuid", 84 [FW_CFG_RAM_SIZE] = "ram_size", 85 [FW_CFG_NOGRAPHIC] = "nographic", 86 [FW_CFG_NB_CPUS] = "nb_cpus", 87 [FW_CFG_MACHINE_ID] = "machine_id", 88 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 89 [FW_CFG_KERNEL_SIZE] = "kernel_size", 90 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 91 [FW_CFG_INITRD_ADDR] = "initrd_addr", 92 [FW_CFG_INITRD_SIZE] = "initdr_size", 93 [FW_CFG_BOOT_DEVICE] = "boot_device", 94 [FW_CFG_NUMA] = "numa", 95 [FW_CFG_BOOT_MENU] = "boot_menu", 96 [FW_CFG_MAX_CPUS] = "max_cpus", 97 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 98 [FW_CFG_KERNEL_DATA] = "kernel_data", 99 [FW_CFG_INITRD_DATA] = "initrd_data", 100 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 101 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 102 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 103 [FW_CFG_SETUP_ADDR] = "setup_addr", 104 [FW_CFG_SETUP_SIZE] = "setup_size", 105 [FW_CFG_SETUP_DATA] = "setup_data", 106 [FW_CFG_FILE_DIR] = "file_dir", 107 }; 108 109 if (key & FW_CFG_ARCH_LOCAL) { 110 return fw_cfg_arch_key_name(key); 111 } 112 if (key < FW_CFG_FILE_FIRST) { 113 return fw_cfg_wellknown_keys[key]; 114 } 115 116 return NULL; 117 } 118 119 static inline const char *trace_key_name(uint16_t key) 120 { 121 const char *name = key_name(key); 122 123 return name ? name : "unknown"; 124 } 125 126 #define JPG_FILE 0 127 #define BMP_FILE 1 128 129 static char *read_splashfile(char *filename, gsize *file_sizep, 130 int *file_typep) 131 { 132 GError *err = NULL; 133 gchar *content; 134 int file_type; 135 unsigned int filehead; 136 int bmp_bpp; 137 138 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 139 error_report("failed to read splash file '%s': %s", 140 filename, err->message); 141 g_error_free(err); 142 return NULL; 143 } 144 145 /* check file size */ 146 if (*file_sizep < 30) { 147 goto error; 148 } 149 150 /* check magic ID */ 151 filehead = lduw_le_p(content); 152 if (filehead == 0xd8ff) { 153 file_type = JPG_FILE; 154 } else if (filehead == 0x4d42) { 155 file_type = BMP_FILE; 156 } else { 157 goto error; 158 } 159 160 /* check BMP bpp */ 161 if (file_type == BMP_FILE) { 162 bmp_bpp = lduw_le_p(&content[28]); 163 if (bmp_bpp != 24) { 164 goto error; 165 } 166 } 167 168 /* return values */ 169 *file_typep = file_type; 170 171 return content; 172 173 error: 174 error_report("splash file '%s' format not recognized; must be JPEG " 175 "or 24 bit BMP", filename); 176 g_free(content); 177 return NULL; 178 } 179 180 static void fw_cfg_bootsplash(FWCfgState *s) 181 { 182 char *filename, *file_data; 183 gsize file_size; 184 int file_type; 185 186 /* insert splash time if user configurated */ 187 if (current_machine->boot_config.has_splash_time) { 188 int64_t bst_val = current_machine->boot_config.splash_time; 189 uint16_t bst_le16; 190 191 /* validate the input */ 192 if (bst_val < 0 || bst_val > 0xffff) { 193 error_report("splash-time is invalid," 194 "it should be a value between 0 and 65535"); 195 exit(1); 196 } 197 /* use little endian format */ 198 bst_le16 = cpu_to_le16(bst_val); 199 fw_cfg_add_file(s, "etc/boot-menu-wait", 200 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 201 } 202 203 /* insert splash file if user configurated */ 204 if (current_machine->boot_config.splash) { 205 const char *boot_splash_filename = current_machine->boot_config.splash; 206 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 207 if (filename == NULL) { 208 error_report("failed to find file '%s'", boot_splash_filename); 209 return; 210 } 211 212 /* loading file data */ 213 file_data = read_splashfile(filename, &file_size, &file_type); 214 if (file_data == NULL) { 215 g_free(filename); 216 return; 217 } 218 g_free(boot_splash_filedata); 219 boot_splash_filedata = (uint8_t *)file_data; 220 221 /* insert data */ 222 if (file_type == JPG_FILE) { 223 fw_cfg_add_file(s, "bootsplash.jpg", 224 boot_splash_filedata, file_size); 225 } else { 226 fw_cfg_add_file(s, "bootsplash.bmp", 227 boot_splash_filedata, file_size); 228 } 229 g_free(filename); 230 } 231 } 232 233 static void fw_cfg_reboot(FWCfgState *s) 234 { 235 uint64_t rt_val = -1; 236 uint32_t rt_le32; 237 238 if (current_machine->boot_config.has_reboot_timeout) { 239 rt_val = current_machine->boot_config.reboot_timeout; 240 241 /* validate the input */ 242 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 243 error_report("reboot timeout is invalid," 244 "it should be a value between -1 and 65535"); 245 exit(1); 246 } 247 } 248 249 rt_le32 = cpu_to_le32(rt_val); 250 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 251 } 252 253 static void fw_cfg_write(FWCfgState *s, uint8_t value) 254 { 255 /* nothing, write support removed in QEMU v2.4+ */ 256 } 257 258 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 259 { 260 return s->file_slots; 261 } 262 263 /* Note: this function returns an exclusive limit. */ 264 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 265 { 266 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 267 } 268 269 static int fw_cfg_select(FWCfgState *s, uint16_t key) 270 { 271 int arch, ret; 272 FWCfgEntry *e; 273 274 s->cur_offset = 0; 275 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 276 s->cur_entry = FW_CFG_INVALID; 277 ret = 0; 278 } else { 279 s->cur_entry = key; 280 ret = 1; 281 /* entry successfully selected, now run callback if present */ 282 arch = !!(key & FW_CFG_ARCH_LOCAL); 283 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 284 if (e->select_cb) { 285 e->select_cb(e->callback_opaque); 286 } 287 } 288 289 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 290 return ret; 291 } 292 293 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 294 { 295 FWCfgState *s = opaque; 296 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 297 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 298 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 299 uint64_t value = 0; 300 301 assert(size > 0 && size <= sizeof(value)); 302 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 303 /* The least significant 'size' bytes of the return value are 304 * expected to contain a string preserving portion of the item 305 * data, padded with zeros on the right in case we run out early. 306 * In technical terms, we're composing the host-endian representation 307 * of the big endian interpretation of the fw_cfg string. 308 */ 309 do { 310 value = (value << 8) | e->data[s->cur_offset++]; 311 } while (--size && s->cur_offset < e->len); 312 /* If size is still not zero, we *did* run out early, so continue 313 * left-shifting, to add the appropriate number of padding zeros 314 * on the right. 315 */ 316 value <<= 8 * size; 317 } 318 319 trace_fw_cfg_read(s, value); 320 return value; 321 } 322 323 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 324 uint64_t value, unsigned size) 325 { 326 FWCfgState *s = opaque; 327 unsigned i = size; 328 329 do { 330 fw_cfg_write(s, value >> (8 * --i)); 331 } while (i); 332 } 333 334 static void fw_cfg_dma_transfer(FWCfgState *s) 335 { 336 dma_addr_t len; 337 FWCfgDmaAccess dma; 338 int arch; 339 FWCfgEntry *e; 340 int read = 0, write = 0; 341 dma_addr_t dma_addr; 342 343 /* Reset the address before the next access */ 344 dma_addr = s->dma_addr; 345 s->dma_addr = 0; 346 347 if (dma_memory_read(s->dma_as, dma_addr, 348 &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) { 349 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 350 FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED); 351 return; 352 } 353 354 dma.address = be64_to_cpu(dma.address); 355 dma.length = be32_to_cpu(dma.length); 356 dma.control = be32_to_cpu(dma.control); 357 358 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 359 fw_cfg_select(s, dma.control >> 16); 360 } 361 362 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 363 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 364 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 365 366 if (dma.control & FW_CFG_DMA_CTL_READ) { 367 read = 1; 368 write = 0; 369 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 370 read = 0; 371 write = 1; 372 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 373 read = 0; 374 write = 0; 375 } else { 376 dma.length = 0; 377 } 378 379 dma.control = 0; 380 381 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 382 if (s->cur_entry == FW_CFG_INVALID || !e->data || 383 s->cur_offset >= e->len) { 384 len = dma.length; 385 386 /* If the access is not a read access, it will be a skip access, 387 * tested before. 388 */ 389 if (read) { 390 if (dma_memory_set(s->dma_as, dma.address, 0, len, 391 MEMTXATTRS_UNSPECIFIED)) { 392 dma.control |= FW_CFG_DMA_CTL_ERROR; 393 } 394 } 395 if (write) { 396 dma.control |= FW_CFG_DMA_CTL_ERROR; 397 } 398 } else { 399 if (dma.length <= (e->len - s->cur_offset)) { 400 len = dma.length; 401 } else { 402 len = (e->len - s->cur_offset); 403 } 404 405 /* If the access is not a read access, it will be a skip access, 406 * tested before. 407 */ 408 if (read) { 409 if (dma_memory_write(s->dma_as, dma.address, 410 &e->data[s->cur_offset], len, 411 MEMTXATTRS_UNSPECIFIED)) { 412 dma.control |= FW_CFG_DMA_CTL_ERROR; 413 } 414 } 415 if (write) { 416 if (!e->allow_write || 417 len != dma.length || 418 dma_memory_read(s->dma_as, dma.address, 419 &e->data[s->cur_offset], len, 420 MEMTXATTRS_UNSPECIFIED)) { 421 dma.control |= FW_CFG_DMA_CTL_ERROR; 422 } else if (e->write_cb) { 423 e->write_cb(e->callback_opaque, s->cur_offset, len); 424 } 425 } 426 427 s->cur_offset += len; 428 } 429 430 dma.address += len; 431 dma.length -= len; 432 433 } 434 435 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 436 dma.control, MEMTXATTRS_UNSPECIFIED); 437 438 trace_fw_cfg_read(s, 0); 439 } 440 441 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 442 unsigned size) 443 { 444 /* Return a signature value (and handle various read sizes) */ 445 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 446 } 447 448 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 449 uint64_t value, unsigned size) 450 { 451 FWCfgState *s = opaque; 452 453 if (size == 4) { 454 if (addr == 0) { 455 /* FWCfgDmaAccess high address */ 456 s->dma_addr = value << 32; 457 } else if (addr == 4) { 458 /* FWCfgDmaAccess low address */ 459 s->dma_addr |= value; 460 fw_cfg_dma_transfer(s); 461 } 462 } else if (size == 8 && addr == 0) { 463 s->dma_addr = value; 464 fw_cfg_dma_transfer(s); 465 } 466 } 467 468 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 469 unsigned size, bool is_write, 470 MemTxAttrs attrs) 471 { 472 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 473 (size == 8 && addr == 0)); 474 } 475 476 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 477 unsigned size, bool is_write, 478 MemTxAttrs attrs) 479 { 480 return addr == 0; 481 } 482 483 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 484 { 485 return 0; 486 } 487 488 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 489 uint64_t value, unsigned size) 490 { 491 fw_cfg_select(opaque, (uint16_t)value); 492 } 493 494 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 495 unsigned size, bool is_write, 496 MemTxAttrs attrs) 497 { 498 return is_write && size == 2; 499 } 500 501 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 502 uint64_t value, unsigned size) 503 { 504 switch (size) { 505 case 1: 506 fw_cfg_write(opaque, (uint8_t)value); 507 break; 508 case 2: 509 fw_cfg_select(opaque, (uint16_t)value); 510 break; 511 } 512 } 513 514 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 515 unsigned size, bool is_write, 516 MemTxAttrs attrs) 517 { 518 return (size == 1) || (is_write && size == 2); 519 } 520 521 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 522 .read = fw_cfg_ctl_mem_read, 523 .write = fw_cfg_ctl_mem_write, 524 .endianness = DEVICE_BIG_ENDIAN, 525 .valid.accepts = fw_cfg_ctl_mem_valid, 526 }; 527 528 static const MemoryRegionOps fw_cfg_data_mem_ops = { 529 .read = fw_cfg_data_read, 530 .write = fw_cfg_data_mem_write, 531 .endianness = DEVICE_BIG_ENDIAN, 532 .valid = { 533 .min_access_size = 1, 534 .max_access_size = 1, 535 .accepts = fw_cfg_data_mem_valid, 536 }, 537 }; 538 539 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 540 .read = fw_cfg_data_read, 541 .write = fw_cfg_comb_write, 542 .endianness = DEVICE_LITTLE_ENDIAN, 543 .valid.accepts = fw_cfg_comb_valid, 544 }; 545 546 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 547 .read = fw_cfg_dma_mem_read, 548 .write = fw_cfg_dma_mem_write, 549 .endianness = DEVICE_BIG_ENDIAN, 550 .valid.accepts = fw_cfg_dma_mem_valid, 551 .valid.max_access_size = 8, 552 .impl.max_access_size = 8, 553 }; 554 555 static void fw_cfg_reset(DeviceState *d) 556 { 557 FWCfgState *s = FW_CFG(d); 558 559 /* we never register a read callback for FW_CFG_SIGNATURE */ 560 fw_cfg_select(s, FW_CFG_SIGNATURE); 561 } 562 563 /* Save restore 32 bit int as uint16_t 564 This is a Big hack, but it is how the old state did it. 565 Or we broke compatibility in the state, or we can't use struct tm 566 */ 567 568 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 569 const VMStateField *field) 570 { 571 uint32_t *v = pv; 572 *v = qemu_get_be16(f); 573 return 0; 574 } 575 576 static int put_unused(QEMUFile *f, void *pv, size_t size, 577 const VMStateField *field, JSONWriter *vmdesc) 578 { 579 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 580 fprintf(stderr, "This functions shouldn't be called.\n"); 581 582 return 0; 583 } 584 585 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 586 .name = "int32_as_uint16", 587 .get = get_uint32_as_uint16, 588 .put = put_unused, 589 }; 590 591 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 592 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 593 594 595 static bool is_version_1(void *opaque, int version_id) 596 { 597 return version_id == 1; 598 } 599 600 bool fw_cfg_dma_enabled(void *opaque) 601 { 602 FWCfgState *s = opaque; 603 604 return s->dma_enabled; 605 } 606 607 static bool fw_cfg_acpi_mr_restore(void *opaque) 608 { 609 FWCfgState *s = opaque; 610 bool mr_aligned; 611 612 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) && 613 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) && 614 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size()); 615 return s->acpi_mr_restore && !mr_aligned; 616 } 617 618 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 619 { 620 MemoryRegion *mr; 621 ram_addr_t offset; 622 int arch = !!(key & FW_CFG_ARCH_LOCAL); 623 void *ptr; 624 625 key &= FW_CFG_ENTRY_MASK; 626 assert(key < fw_cfg_max_entry(s)); 627 628 ptr = s->entries[arch][key].data; 629 mr = memory_region_from_host(ptr, &offset); 630 631 memory_region_ram_resize(mr, size, &error_abort); 632 } 633 634 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 635 { 636 FWCfgState *s = opaque; 637 int i, index; 638 639 assert(s->files); 640 641 index = be32_to_cpu(s->files->count); 642 643 for (i = 0; i < index; i++) { 644 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 645 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 646 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 647 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 648 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 649 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 650 } 651 } 652 653 return 0; 654 } 655 656 static const VMStateDescription vmstate_fw_cfg_dma = { 657 .name = "fw_cfg/dma", 658 .needed = fw_cfg_dma_enabled, 659 .fields = (VMStateField[]) { 660 VMSTATE_UINT64(dma_addr, FWCfgState), 661 VMSTATE_END_OF_LIST() 662 }, 663 }; 664 665 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 666 .name = "fw_cfg/acpi_mr", 667 .version_id = 1, 668 .minimum_version_id = 1, 669 .needed = fw_cfg_acpi_mr_restore, 670 .post_load = fw_cfg_acpi_mr_restore_post_load, 671 .fields = (VMStateField[]) { 672 VMSTATE_UINT64(table_mr_size, FWCfgState), 673 VMSTATE_UINT64(linker_mr_size, FWCfgState), 674 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 675 VMSTATE_END_OF_LIST() 676 }, 677 }; 678 679 static const VMStateDescription vmstate_fw_cfg = { 680 .name = "fw_cfg", 681 .version_id = 2, 682 .minimum_version_id = 1, 683 .fields = (VMStateField[]) { 684 VMSTATE_UINT16(cur_entry, FWCfgState), 685 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 686 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 687 VMSTATE_END_OF_LIST() 688 }, 689 .subsections = (const VMStateDescription*[]) { 690 &vmstate_fw_cfg_dma, 691 &vmstate_fw_cfg_acpi_mr, 692 NULL, 693 } 694 }; 695 696 void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 697 FWCfgCallback select_cb, 698 FWCfgWriteCallback write_cb, 699 void *callback_opaque, 700 void *data, size_t len, 701 bool read_only) 702 { 703 int arch = !!(key & FW_CFG_ARCH_LOCAL); 704 705 key &= FW_CFG_ENTRY_MASK; 706 707 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 708 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 709 710 s->entries[arch][key].data = data; 711 s->entries[arch][key].len = (uint32_t)len; 712 s->entries[arch][key].select_cb = select_cb; 713 s->entries[arch][key].write_cb = write_cb; 714 s->entries[arch][key].callback_opaque = callback_opaque; 715 s->entries[arch][key].allow_write = !read_only; 716 } 717 718 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 719 void *data, size_t len) 720 { 721 void *ptr; 722 int arch = !!(key & FW_CFG_ARCH_LOCAL); 723 724 key &= FW_CFG_ENTRY_MASK; 725 726 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 727 728 /* return the old data to the function caller, avoid memory leak */ 729 ptr = s->entries[arch][key].data; 730 s->entries[arch][key].data = data; 731 s->entries[arch][key].len = len; 732 s->entries[arch][key].callback_opaque = NULL; 733 s->entries[arch][key].allow_write = false; 734 735 return ptr; 736 } 737 738 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 739 { 740 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 741 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 742 } 743 744 void *fw_cfg_read_bytes_ptr(FWCfgState *s, uint16_t key) 745 { 746 int arch = !!(key & FW_CFG_ARCH_LOCAL); 747 748 key &= FW_CFG_ENTRY_MASK; 749 assert(key < fw_cfg_max_entry(s)); 750 return s->entries[arch][key].data; 751 } 752 753 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 754 { 755 size_t sz = strlen(value) + 1; 756 757 trace_fw_cfg_add_string(key, trace_key_name(key), value); 758 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 759 } 760 761 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 762 { 763 size_t sz = strlen(value) + 1; 764 char *old; 765 766 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 767 g_free(old); 768 } 769 770 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 771 { 772 uint16_t *copy; 773 774 copy = g_malloc(sizeof(value)); 775 *copy = cpu_to_le16(value); 776 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 777 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 778 } 779 780 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 781 { 782 uint16_t *copy, *old; 783 784 copy = g_malloc(sizeof(value)); 785 *copy = cpu_to_le16(value); 786 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 787 g_free(old); 788 } 789 790 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 791 { 792 uint32_t *copy; 793 794 copy = g_malloc(sizeof(value)); 795 *copy = cpu_to_le32(value); 796 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 797 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 798 } 799 800 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 801 { 802 uint32_t *copy, *old; 803 804 copy = g_malloc(sizeof(value)); 805 *copy = cpu_to_le32(value); 806 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 807 g_free(old); 808 } 809 810 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 811 { 812 uint64_t *copy; 813 814 copy = g_malloc(sizeof(value)); 815 *copy = cpu_to_le64(value); 816 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 817 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 818 } 819 820 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 821 { 822 uint64_t *copy, *old; 823 824 copy = g_malloc(sizeof(value)); 825 *copy = cpu_to_le64(value); 826 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 827 g_free(old); 828 } 829 830 void fw_cfg_set_order_override(FWCfgState *s, int order) 831 { 832 assert(s->fw_cfg_order_override == 0); 833 s->fw_cfg_order_override = order; 834 } 835 836 void fw_cfg_reset_order_override(FWCfgState *s) 837 { 838 assert(s->fw_cfg_order_override != 0); 839 s->fw_cfg_order_override = 0; 840 } 841 842 /* 843 * This is the legacy order list. For legacy systems, files are in 844 * the fw_cfg in the order defined below, by the "order" value. Note 845 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 846 * specific area, but there may be more than one and they occur in the 847 * order that the user specifies them on the command line. Those are 848 * handled in a special manner, using the order override above. 849 * 850 * For non-legacy, the files are sorted by filename to avoid this kind 851 * of complexity in the future. 852 * 853 * This is only for x86, other arches don't implement versioning so 854 * they won't set legacy mode. 855 */ 856 static struct { 857 const char *name; 858 int order; 859 } fw_cfg_order[] = { 860 { "etc/boot-menu-wait", 10 }, 861 { "bootsplash.jpg", 11 }, 862 { "bootsplash.bmp", 12 }, 863 { "etc/boot-fail-wait", 15 }, 864 { "etc/smbios/smbios-tables", 20 }, 865 { "etc/smbios/smbios-anchor", 30 }, 866 { "etc/e820", 40 }, 867 { "etc/reserved-memory-end", 50 }, 868 { "genroms/kvmvapic.bin", 55 }, 869 { "genroms/linuxboot.bin", 60 }, 870 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 871 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 872 { "etc/system-states", 90 }, 873 { }, /* User ROMs come here, 100. */ 874 { }, /* Device FW comes here, 110. */ 875 { "etc/extra-pci-roots", 120 }, 876 { "etc/acpi/tables", 130 }, 877 { "etc/table-loader", 140 }, 878 { "etc/tpm/log", 150 }, 879 { "etc/acpi/rsdp", 160 }, 880 { "bootorder", 170 }, 881 { "etc/msr_feature_control", 180 }, 882 883 #define FW_CFG_ORDER_OVERRIDE_LAST 200 884 }; 885 886 /* 887 * Any sub-page size update to these table MRs will be lost during migration, 888 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 889 * In order to avoid the inconsistency in sizes save them seperately and 890 * migrate over in vmstate post_load(). 891 */ 892 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 893 { 894 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 895 s->table_mr_size = len; 896 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 897 s->linker_mr_size = len; 898 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 899 s->rsdp_mr_size = len; 900 } 901 } 902 903 static int get_fw_cfg_order(FWCfgState *s, const char *name) 904 { 905 int i; 906 907 if (s->fw_cfg_order_override > 0) { 908 return s->fw_cfg_order_override; 909 } 910 911 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 912 if (fw_cfg_order[i].name == NULL) { 913 continue; 914 } 915 916 if (strcmp(name, fw_cfg_order[i].name) == 0) { 917 return fw_cfg_order[i].order; 918 } 919 } 920 921 /* Stick unknown stuff at the end. */ 922 warn_report("Unknown firmware file in legacy mode: %s", name); 923 return FW_CFG_ORDER_OVERRIDE_LAST; 924 } 925 926 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 927 FWCfgCallback select_cb, 928 FWCfgWriteCallback write_cb, 929 void *callback_opaque, 930 void *data, size_t len, bool read_only) 931 { 932 int i, index, count; 933 size_t dsize; 934 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 935 int order = 0; 936 937 if (!s->files) { 938 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 939 s->files = g_malloc0(dsize); 940 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 941 } 942 943 count = be32_to_cpu(s->files->count); 944 assert(count < fw_cfg_file_slots(s)); 945 946 /* Find the insertion point. */ 947 if (mc->legacy_fw_cfg_order) { 948 /* 949 * Sort by order. For files with the same order, we keep them 950 * in the sequence in which they were added. 951 */ 952 order = get_fw_cfg_order(s, filename); 953 for (index = count; 954 index > 0 && order < s->entry_order[index - 1]; 955 index--); 956 } else { 957 /* Sort by file name. */ 958 for (index = count; 959 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 960 index--); 961 } 962 963 /* 964 * Move all the entries from the index point and after down one 965 * to create a slot for the new entry. Because calculations are 966 * being done with the index, make it so that "i" is the current 967 * index and "i - 1" is the one being copied from, thus the 968 * unusual start and end in the for statement. 969 */ 970 for (i = count; i > index; i--) { 971 s->files->f[i] = s->files->f[i - 1]; 972 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 973 s->entries[0][FW_CFG_FILE_FIRST + i] = 974 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 975 s->entry_order[i] = s->entry_order[i - 1]; 976 } 977 978 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 979 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 980 981 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 982 for (i = 0; i <= count; i++) { 983 if (i != index && 984 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 985 error_report("duplicate fw_cfg file name: %s", 986 s->files->f[index].name); 987 exit(1); 988 } 989 } 990 991 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 992 select_cb, write_cb, 993 callback_opaque, data, len, 994 read_only); 995 996 s->files->f[index].size = cpu_to_be32(len); 997 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 998 s->entry_order[index] = order; 999 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 1000 1001 s->files->count = cpu_to_be32(count+1); 1002 fw_cfg_acpi_mr_save(s, filename, len); 1003 } 1004 1005 void fw_cfg_add_file(FWCfgState *s, const char *filename, 1006 void *data, size_t len) 1007 { 1008 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1009 } 1010 1011 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1012 void *data, size_t len) 1013 { 1014 int i, index; 1015 void *ptr = NULL; 1016 1017 assert(s->files); 1018 1019 index = be32_to_cpu(s->files->count); 1020 1021 for (i = 0; i < index; i++) { 1022 if (strcmp(filename, s->files->f[i].name) == 0) { 1023 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1024 data, len); 1025 s->files->f[i].size = cpu_to_be32(len); 1026 fw_cfg_acpi_mr_save(s, filename, len); 1027 return ptr; 1028 } 1029 } 1030 1031 assert(index < fw_cfg_file_slots(s)); 1032 1033 /* add new one */ 1034 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1035 return NULL; 1036 } 1037 1038 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename, 1039 const char *gen_id, Error **errp) 1040 { 1041 FWCfgDataGeneratorClass *klass; 1042 GByteArray *array; 1043 Object *obj; 1044 gsize size; 1045 1046 obj = object_resolve_path_component(object_get_objects_root(), gen_id); 1047 if (!obj) { 1048 error_setg(errp, "Cannot find object ID '%s'", gen_id); 1049 return false; 1050 } 1051 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1052 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1053 gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1054 return false; 1055 } 1056 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1057 array = klass->get_data(obj, errp); 1058 if (!array) { 1059 return false; 1060 } 1061 size = array->len; 1062 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1063 1064 return true; 1065 } 1066 1067 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s) 1068 { 1069 int extra_hosts = 0; 1070 1071 if (!bus) { 1072 return; 1073 } 1074 1075 QLIST_FOREACH(bus, &bus->child, sibling) { 1076 /* look for expander root buses */ 1077 if (pci_bus_is_root(bus)) { 1078 extra_hosts++; 1079 } 1080 } 1081 1082 if (extra_hosts && s) { 1083 uint64_t *val = g_malloc(sizeof(*val)); 1084 *val = cpu_to_le64(extra_hosts); 1085 fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val)); 1086 } 1087 } 1088 1089 static void fw_cfg_machine_reset(void *opaque) 1090 { 1091 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1092 FWCfgState *s = opaque; 1093 void *ptr; 1094 size_t len; 1095 char *buf; 1096 1097 buf = get_boot_devices_list(&len); 1098 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1099 g_free(ptr); 1100 1101 if (!mc->legacy_fw_cfg_order) { 1102 buf = get_boot_devices_lchs_list(&len); 1103 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1104 g_free(ptr); 1105 } 1106 } 1107 1108 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1109 { 1110 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1111 qemu_register_reset(fw_cfg_machine_reset, s); 1112 } 1113 1114 static Property fw_cfg_properties[] = { 1115 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1116 DEFINE_PROP_END_OF_LIST(), 1117 }; 1118 1119 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1120 { 1121 FWCfgState *s = FW_CFG(dev); 1122 MachineState *machine = MACHINE(qdev_get_machine()); 1123 uint32_t version = FW_CFG_VERSION; 1124 1125 if (!fw_cfg_find()) { 1126 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1127 return; 1128 } 1129 1130 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1131 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1132 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1133 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu)); 1134 fw_cfg_bootsplash(s); 1135 fw_cfg_reboot(s); 1136 1137 if (s->dma_enabled) { 1138 version |= FW_CFG_VERSION_DMA; 1139 } 1140 1141 fw_cfg_add_i32(s, FW_CFG_ID, version); 1142 1143 s->machine_ready.notify = fw_cfg_machine_ready; 1144 qemu_add_machine_init_done_notifier(&s->machine_ready); 1145 } 1146 1147 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1148 AddressSpace *dma_as) 1149 { 1150 DeviceState *dev; 1151 SysBusDevice *sbd; 1152 FWCfgIoState *ios; 1153 FWCfgState *s; 1154 bool dma_requested = dma_iobase && dma_as; 1155 1156 dev = qdev_new(TYPE_FW_CFG_IO); 1157 if (!dma_requested) { 1158 qdev_prop_set_bit(dev, "dma_enabled", false); 1159 } 1160 1161 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1162 OBJECT(dev)); 1163 1164 sbd = SYS_BUS_DEVICE(dev); 1165 sysbus_realize_and_unref(sbd, &error_fatal); 1166 ios = FW_CFG_IO(dev); 1167 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 1168 1169 s = FW_CFG(dev); 1170 1171 if (s->dma_enabled) { 1172 /* 64 bits for the address field */ 1173 s->dma_as = dma_as; 1174 s->dma_addr = 0; 1175 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 1176 } 1177 1178 return s; 1179 } 1180 1181 FWCfgState *fw_cfg_init_io(uint32_t iobase) 1182 { 1183 return fw_cfg_init_io_dma(iobase, 0, NULL); 1184 } 1185 1186 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1187 hwaddr data_addr, uint32_t data_width, 1188 hwaddr dma_addr, AddressSpace *dma_as) 1189 { 1190 DeviceState *dev; 1191 SysBusDevice *sbd; 1192 FWCfgState *s; 1193 bool dma_requested = dma_addr && dma_as; 1194 1195 dev = qdev_new(TYPE_FW_CFG_MEM); 1196 qdev_prop_set_uint32(dev, "data_width", data_width); 1197 if (!dma_requested) { 1198 qdev_prop_set_bit(dev, "dma_enabled", false); 1199 } 1200 1201 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1202 OBJECT(dev)); 1203 1204 sbd = SYS_BUS_DEVICE(dev); 1205 sysbus_realize_and_unref(sbd, &error_fatal); 1206 sysbus_mmio_map(sbd, 0, ctl_addr); 1207 sysbus_mmio_map(sbd, 1, data_addr); 1208 1209 s = FW_CFG(dev); 1210 1211 if (s->dma_enabled) { 1212 s->dma_as = dma_as; 1213 s->dma_addr = 0; 1214 sysbus_mmio_map(sbd, 2, dma_addr); 1215 } 1216 1217 return s; 1218 } 1219 1220 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1221 { 1222 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1223 fw_cfg_data_mem_ops.valid.max_access_size, 1224 0, NULL); 1225 } 1226 1227 1228 FWCfgState *fw_cfg_find(void) 1229 { 1230 /* Returns NULL unless there is exactly one fw_cfg device */ 1231 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1232 } 1233 1234 void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 1235 uint16_t data_key, const char *image_name, 1236 bool try_decompress) 1237 { 1238 size_t size = -1; 1239 uint8_t *data; 1240 1241 if (image_name == NULL) { 1242 return; 1243 } 1244 1245 if (try_decompress) { 1246 size = load_image_gzipped_buffer(image_name, 1247 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 1248 } 1249 1250 if (size == (size_t)-1) { 1251 gchar *contents; 1252 gsize length; 1253 1254 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 1255 error_report("failed to load \"%s\"", image_name); 1256 exit(1); 1257 } 1258 size = length; 1259 data = (uint8_t *)contents; 1260 } 1261 1262 fw_cfg_add_i32(fw_cfg, size_key, size); 1263 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 1264 } 1265 1266 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1267 { 1268 DeviceClass *dc = DEVICE_CLASS(klass); 1269 1270 dc->reset = fw_cfg_reset; 1271 dc->vmsd = &vmstate_fw_cfg; 1272 1273 device_class_set_props(dc, fw_cfg_properties); 1274 } 1275 1276 static const TypeInfo fw_cfg_info = { 1277 .name = TYPE_FW_CFG, 1278 .parent = TYPE_SYS_BUS_DEVICE, 1279 .abstract = true, 1280 .instance_size = sizeof(FWCfgState), 1281 .class_init = fw_cfg_class_init, 1282 }; 1283 1284 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1285 { 1286 uint16_t file_slots_max; 1287 1288 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1289 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1290 FW_CFG_FILE_SLOTS_MIN); 1291 return; 1292 } 1293 1294 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1295 * that we permit. The actual (exclusive) value coming from the 1296 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1297 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1298 if (fw_cfg_file_slots(s) > file_slots_max) { 1299 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1300 file_slots_max); 1301 return; 1302 } 1303 1304 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1305 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1306 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1307 } 1308 1309 static Property fw_cfg_io_properties[] = { 1310 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1311 true), 1312 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1313 FW_CFG_FILE_SLOTS_DFLT), 1314 DEFINE_PROP_END_OF_LIST(), 1315 }; 1316 1317 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1318 { 1319 ERRP_GUARD(); 1320 FWCfgIoState *s = FW_CFG_IO(dev); 1321 1322 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1323 if (*errp) { 1324 return; 1325 } 1326 1327 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1328 * with half of the 16-bit control register. Hence, the total size 1329 * of the i/o region used is FW_CFG_CTL_SIZE */ 1330 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1331 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1332 1333 if (FW_CFG(s)->dma_enabled) { 1334 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1335 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1336 sizeof(dma_addr_t)); 1337 } 1338 1339 fw_cfg_common_realize(dev, errp); 1340 } 1341 1342 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1343 { 1344 DeviceClass *dc = DEVICE_CLASS(klass); 1345 1346 dc->realize = fw_cfg_io_realize; 1347 device_class_set_props(dc, fw_cfg_io_properties); 1348 } 1349 1350 static const TypeInfo fw_cfg_io_info = { 1351 .name = TYPE_FW_CFG_IO, 1352 .parent = TYPE_FW_CFG, 1353 .instance_size = sizeof(FWCfgIoState), 1354 .class_init = fw_cfg_io_class_init, 1355 }; 1356 1357 1358 static Property fw_cfg_mem_properties[] = { 1359 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1360 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1361 true), 1362 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1363 FW_CFG_FILE_SLOTS_DFLT), 1364 DEFINE_PROP_END_OF_LIST(), 1365 }; 1366 1367 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1368 { 1369 ERRP_GUARD(); 1370 FWCfgMemState *s = FW_CFG_MEM(dev); 1371 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1372 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1373 1374 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1375 if (*errp) { 1376 return; 1377 } 1378 1379 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1380 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1381 sysbus_init_mmio(sbd, &s->ctl_iomem); 1382 1383 if (s->data_width > data_ops->valid.max_access_size) { 1384 s->wide_data_ops = *data_ops; 1385 1386 s->wide_data_ops.valid.max_access_size = s->data_width; 1387 s->wide_data_ops.impl.max_access_size = s->data_width; 1388 data_ops = &s->wide_data_ops; 1389 } 1390 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1391 "fwcfg.data", data_ops->valid.max_access_size); 1392 sysbus_init_mmio(sbd, &s->data_iomem); 1393 1394 if (FW_CFG(s)->dma_enabled) { 1395 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1396 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1397 sizeof(dma_addr_t)); 1398 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1399 } 1400 1401 fw_cfg_common_realize(dev, errp); 1402 } 1403 1404 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1405 { 1406 DeviceClass *dc = DEVICE_CLASS(klass); 1407 1408 dc->realize = fw_cfg_mem_realize; 1409 device_class_set_props(dc, fw_cfg_mem_properties); 1410 } 1411 1412 static const TypeInfo fw_cfg_mem_info = { 1413 .name = TYPE_FW_CFG_MEM, 1414 .parent = TYPE_FW_CFG, 1415 .instance_size = sizeof(FWCfgMemState), 1416 .class_init = fw_cfg_mem_class_init, 1417 }; 1418 1419 static void fw_cfg_register_types(void) 1420 { 1421 type_register_static(&fw_cfg_info); 1422 type_register_static(&fw_cfg_io_info); 1423 type_register_static(&fw_cfg_mem_info); 1424 } 1425 1426 type_init(fw_cfg_register_types) 1427