xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision aa09b3d5)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/datadir.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pci_bus.h"
44 #include "hw/loader.h"
45 
46 #define FW_CFG_FILE_SLOTS_DFLT 0x20
47 
48 /* FW_CFG_VERSION bits */
49 #define FW_CFG_VERSION      0x01
50 #define FW_CFG_VERSION_DMA  0x02
51 
52 /* FW_CFG_DMA_CONTROL bits */
53 #define FW_CFG_DMA_CTL_ERROR   0x01
54 #define FW_CFG_DMA_CTL_READ    0x02
55 #define FW_CFG_DMA_CTL_SKIP    0x04
56 #define FW_CFG_DMA_CTL_SELECT  0x08
57 #define FW_CFG_DMA_CTL_WRITE   0x10
58 
59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
60 
61 struct FWCfgEntry {
62     uint32_t len;
63     bool allow_write;
64     uint8_t *data;
65     void *callback_opaque;
66     FWCfgCallback select_cb;
67     FWCfgWriteCallback write_cb;
68 };
69 
70 /**
71  * key_name:
72  *
73  * @key: The uint16 selector key.
74  *
75  * Returns: The stringified name if the selector refers to a well-known
76  *          numerically defined item, or NULL on key lookup failure.
77  */
78 static const char *key_name(uint16_t key)
79 {
80     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
81         [FW_CFG_SIGNATURE] = "signature",
82         [FW_CFG_ID] = "id",
83         [FW_CFG_UUID] = "uuid",
84         [FW_CFG_RAM_SIZE] = "ram_size",
85         [FW_CFG_NOGRAPHIC] = "nographic",
86         [FW_CFG_NB_CPUS] = "nb_cpus",
87         [FW_CFG_MACHINE_ID] = "machine_id",
88         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
89         [FW_CFG_KERNEL_SIZE] = "kernel_size",
90         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
91         [FW_CFG_INITRD_ADDR] = "initrd_addr",
92         [FW_CFG_INITRD_SIZE] = "initdr_size",
93         [FW_CFG_BOOT_DEVICE] = "boot_device",
94         [FW_CFG_NUMA] = "numa",
95         [FW_CFG_BOOT_MENU] = "boot_menu",
96         [FW_CFG_MAX_CPUS] = "max_cpus",
97         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
98         [FW_CFG_KERNEL_DATA] = "kernel_data",
99         [FW_CFG_INITRD_DATA] = "initrd_data",
100         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
101         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
102         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
103         [FW_CFG_SETUP_ADDR] = "setup_addr",
104         [FW_CFG_SETUP_SIZE] = "setup_size",
105         [FW_CFG_SETUP_DATA] = "setup_data",
106         [FW_CFG_FILE_DIR] = "file_dir",
107     };
108 
109     if (key & FW_CFG_ARCH_LOCAL) {
110         return fw_cfg_arch_key_name(key);
111     }
112     if (key < FW_CFG_FILE_FIRST) {
113         return fw_cfg_wellknown_keys[key];
114     }
115 
116     return NULL;
117 }
118 
119 static inline const char *trace_key_name(uint16_t key)
120 {
121     const char *name = key_name(key);
122 
123     return name ? name : "unknown";
124 }
125 
126 #define JPG_FILE 0
127 #define BMP_FILE 1
128 
129 static char *read_splashfile(char *filename, gsize *file_sizep,
130                              int *file_typep)
131 {
132     GError *err = NULL;
133     gchar *content;
134     int file_type;
135     unsigned int filehead;
136     int bmp_bpp;
137 
138     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
139         error_report("failed to read splash file '%s': %s",
140                      filename, err->message);
141         g_error_free(err);
142         return NULL;
143     }
144 
145     /* check file size */
146     if (*file_sizep < 30) {
147         goto error;
148     }
149 
150     /* check magic ID */
151     filehead = lduw_le_p(content);
152     if (filehead == 0xd8ff) {
153         file_type = JPG_FILE;
154     } else if (filehead == 0x4d42) {
155         file_type = BMP_FILE;
156     } else {
157         goto error;
158     }
159 
160     /* check BMP bpp */
161     if (file_type == BMP_FILE) {
162         bmp_bpp = lduw_le_p(&content[28]);
163         if (bmp_bpp != 24) {
164             goto error;
165         }
166     }
167 
168     /* return values */
169     *file_typep = file_type;
170 
171     return content;
172 
173 error:
174     error_report("splash file '%s' format not recognized; must be JPEG "
175                  "or 24 bit BMP", filename);
176     g_free(content);
177     return NULL;
178 }
179 
180 static void fw_cfg_bootsplash(FWCfgState *s)
181 {
182     char *filename, *file_data;
183     gsize file_size;
184     int file_type;
185 
186     /* insert splash time if user configurated */
187     if (current_machine->boot_config.has_splash_time) {
188         int64_t bst_val = current_machine->boot_config.splash_time;
189         uint16_t bst_le16;
190 
191         /* validate the input */
192         if (bst_val < 0 || bst_val > 0xffff) {
193             error_report("splash-time is invalid,"
194                          "it should be a value between 0 and 65535");
195             exit(1);
196         }
197         /* use little endian format */
198         bst_le16 = cpu_to_le16(bst_val);
199         fw_cfg_add_file(s, "etc/boot-menu-wait",
200                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
201     }
202 
203     /* insert splash file if user configurated */
204     if (current_machine->boot_config.splash) {
205         const char *boot_splash_filename = current_machine->boot_config.splash;
206         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
207         if (filename == NULL) {
208             error_report("failed to find file '%s'", boot_splash_filename);
209             return;
210         }
211 
212         /* loading file data */
213         file_data = read_splashfile(filename, &file_size, &file_type);
214         if (file_data == NULL) {
215             g_free(filename);
216             return;
217         }
218         g_free(boot_splash_filedata);
219         boot_splash_filedata = (uint8_t *)file_data;
220 
221         /* insert data */
222         if (file_type == JPG_FILE) {
223             fw_cfg_add_file(s, "bootsplash.jpg",
224                             boot_splash_filedata, file_size);
225         } else {
226             fw_cfg_add_file(s, "bootsplash.bmp",
227                             boot_splash_filedata, file_size);
228         }
229         g_free(filename);
230     }
231 }
232 
233 static void fw_cfg_reboot(FWCfgState *s)
234 {
235     uint64_t rt_val = -1;
236     uint32_t rt_le32;
237 
238     if (current_machine->boot_config.has_reboot_timeout) {
239         rt_val = current_machine->boot_config.reboot_timeout;
240 
241         /* validate the input */
242         if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
243             error_report("reboot timeout is invalid,"
244                          "it should be a value between -1 and 65535");
245             exit(1);
246         }
247     }
248 
249     rt_le32 = cpu_to_le32(rt_val);
250     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
251 }
252 
253 static void fw_cfg_write(FWCfgState *s, uint8_t value)
254 {
255     /* nothing, write support removed in QEMU v2.4+ */
256 }
257 
258 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
259 {
260     return s->file_slots;
261 }
262 
263 /* Note: this function returns an exclusive limit. */
264 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
265 {
266     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
267 }
268 
269 static int fw_cfg_select(FWCfgState *s, uint16_t key)
270 {
271     int arch, ret;
272     FWCfgEntry *e;
273 
274     s->cur_offset = 0;
275     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
276         s->cur_entry = FW_CFG_INVALID;
277         ret = 0;
278     } else {
279         s->cur_entry = key;
280         ret = 1;
281         /* entry successfully selected, now run callback if present */
282         arch = !!(key & FW_CFG_ARCH_LOCAL);
283         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
284         if (e->select_cb) {
285             e->select_cb(e->callback_opaque);
286         }
287     }
288 
289     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
290     return ret;
291 }
292 
293 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
294 {
295     FWCfgState *s = opaque;
296     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
297     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
298                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
299     uint64_t value = 0;
300 
301     assert(size > 0 && size <= sizeof(value));
302     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
303         /* The least significant 'size' bytes of the return value are
304          * expected to contain a string preserving portion of the item
305          * data, padded with zeros on the right in case we run out early.
306          * In technical terms, we're composing the host-endian representation
307          * of the big endian interpretation of the fw_cfg string.
308          */
309         do {
310             value = (value << 8) | e->data[s->cur_offset++];
311         } while (--size && s->cur_offset < e->len);
312         /* If size is still not zero, we *did* run out early, so continue
313          * left-shifting, to add the appropriate number of padding zeros
314          * on the right.
315          */
316         value <<= 8 * size;
317     }
318 
319     trace_fw_cfg_read(s, value);
320     return value;
321 }
322 
323 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
324                                   uint64_t value, unsigned size)
325 {
326     FWCfgState *s = opaque;
327     unsigned i = size;
328 
329     do {
330         fw_cfg_write(s, value >> (8 * --i));
331     } while (i);
332 }
333 
334 static void fw_cfg_dma_transfer(FWCfgState *s)
335 {
336     dma_addr_t len;
337     FWCfgDmaAccess dma;
338     int arch;
339     FWCfgEntry *e;
340     int read = 0, write = 0;
341     dma_addr_t dma_addr;
342 
343     /* Reset the address before the next access */
344     dma_addr = s->dma_addr;
345     s->dma_addr = 0;
346 
347     if (dma_memory_read(s->dma_as, dma_addr,
348                         &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
349         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
350                    FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
351         return;
352     }
353 
354     dma.address = be64_to_cpu(dma.address);
355     dma.length = be32_to_cpu(dma.length);
356     dma.control = be32_to_cpu(dma.control);
357 
358     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
359         fw_cfg_select(s, dma.control >> 16);
360     }
361 
362     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
363     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
364         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
365 
366     if (dma.control & FW_CFG_DMA_CTL_READ) {
367         read = 1;
368         write = 0;
369     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
370         read = 0;
371         write = 1;
372     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
373         read = 0;
374         write = 0;
375     } else {
376         dma.length = 0;
377     }
378 
379     dma.control = 0;
380 
381     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
382         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
383                                 s->cur_offset >= e->len) {
384             len = dma.length;
385 
386             /* If the access is not a read access, it will be a skip access,
387              * tested before.
388              */
389             if (read) {
390                 if (dma_memory_set(s->dma_as, dma.address, 0, len,
391                                    MEMTXATTRS_UNSPECIFIED)) {
392                     dma.control |= FW_CFG_DMA_CTL_ERROR;
393                 }
394             }
395             if (write) {
396                 dma.control |= FW_CFG_DMA_CTL_ERROR;
397             }
398         } else {
399             if (dma.length <= (e->len - s->cur_offset)) {
400                 len = dma.length;
401             } else {
402                 len = (e->len - s->cur_offset);
403             }
404 
405             /* If the access is not a read access, it will be a skip access,
406              * tested before.
407              */
408             if (read) {
409                 if (dma_memory_write(s->dma_as, dma.address,
410                                      &e->data[s->cur_offset], len,
411                                      MEMTXATTRS_UNSPECIFIED)) {
412                     dma.control |= FW_CFG_DMA_CTL_ERROR;
413                 }
414             }
415             if (write) {
416                 if (!e->allow_write ||
417                     len != dma.length ||
418                     dma_memory_read(s->dma_as, dma.address,
419                                     &e->data[s->cur_offset], len,
420                                     MEMTXATTRS_UNSPECIFIED)) {
421                     dma.control |= FW_CFG_DMA_CTL_ERROR;
422                 } else if (e->write_cb) {
423                     e->write_cb(e->callback_opaque, s->cur_offset, len);
424                 }
425             }
426 
427             s->cur_offset += len;
428         }
429 
430         dma.address += len;
431         dma.length  -= len;
432 
433     }
434 
435     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
436                 dma.control, MEMTXATTRS_UNSPECIFIED);
437 
438     trace_fw_cfg_read(s, 0);
439 }
440 
441 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
442                                     unsigned size)
443 {
444     /* Return a signature value (and handle various read sizes) */
445     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
446 }
447 
448 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
449                                  uint64_t value, unsigned size)
450 {
451     FWCfgState *s = opaque;
452 
453     if (size == 4) {
454         if (addr == 0) {
455             /* FWCfgDmaAccess high address */
456             s->dma_addr = value << 32;
457         } else if (addr == 4) {
458             /* FWCfgDmaAccess low address */
459             s->dma_addr |= value;
460             fw_cfg_dma_transfer(s);
461         }
462     } else if (size == 8 && addr == 0) {
463         s->dma_addr = value;
464         fw_cfg_dma_transfer(s);
465     }
466 }
467 
468 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
469                                  unsigned size, bool is_write,
470                                  MemTxAttrs attrs)
471 {
472     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
473                          (size == 8 && addr == 0));
474 }
475 
476 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
477                                   unsigned size, bool is_write,
478                                   MemTxAttrs attrs)
479 {
480     return addr == 0;
481 }
482 
483 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
484 {
485     return 0;
486 }
487 
488 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
489                                  uint64_t value, unsigned size)
490 {
491     fw_cfg_select(opaque, (uint16_t)value);
492 }
493 
494 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
495                                  unsigned size, bool is_write,
496                                  MemTxAttrs attrs)
497 {
498     return is_write && size == 2;
499 }
500 
501 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
502                               uint64_t value, unsigned size)
503 {
504     switch (size) {
505     case 1:
506         fw_cfg_write(opaque, (uint8_t)value);
507         break;
508     case 2:
509         fw_cfg_select(opaque, (uint16_t)value);
510         break;
511     }
512 }
513 
514 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
515                               unsigned size, bool is_write,
516                               MemTxAttrs attrs)
517 {
518     return (size == 1) || (is_write && size == 2);
519 }
520 
521 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
522     .read = fw_cfg_ctl_mem_read,
523     .write = fw_cfg_ctl_mem_write,
524     .endianness = DEVICE_BIG_ENDIAN,
525     .valid.accepts = fw_cfg_ctl_mem_valid,
526 };
527 
528 static const MemoryRegionOps fw_cfg_data_mem_ops = {
529     .read = fw_cfg_data_read,
530     .write = fw_cfg_data_mem_write,
531     .endianness = DEVICE_BIG_ENDIAN,
532     .valid = {
533         .min_access_size = 1,
534         .max_access_size = 1,
535         .accepts = fw_cfg_data_mem_valid,
536     },
537 };
538 
539 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
540     .read = fw_cfg_data_read,
541     .write = fw_cfg_comb_write,
542     .endianness = DEVICE_LITTLE_ENDIAN,
543     .valid.accepts = fw_cfg_comb_valid,
544 };
545 
546 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
547     .read = fw_cfg_dma_mem_read,
548     .write = fw_cfg_dma_mem_write,
549     .endianness = DEVICE_BIG_ENDIAN,
550     .valid.accepts = fw_cfg_dma_mem_valid,
551     .valid.max_access_size = 8,
552     .impl.max_access_size = 8,
553 };
554 
555 static void fw_cfg_reset(DeviceState *d)
556 {
557     FWCfgState *s = FW_CFG(d);
558 
559     /* we never register a read callback for FW_CFG_SIGNATURE */
560     fw_cfg_select(s, FW_CFG_SIGNATURE);
561 }
562 
563 /* Save restore 32 bit int as uint16_t
564    This is a Big hack, but it is how the old state did it.
565    Or we broke compatibility in the state, or we can't use struct tm
566  */
567 
568 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
569                                 const VMStateField *field)
570 {
571     uint32_t *v = pv;
572     *v = qemu_get_be16(f);
573     return 0;
574 }
575 
576 static int put_unused(QEMUFile *f, void *pv, size_t size,
577                       const VMStateField *field, JSONWriter *vmdesc)
578 {
579     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
580     fprintf(stderr, "This functions shouldn't be called.\n");
581 
582     return 0;
583 }
584 
585 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
586     .name = "int32_as_uint16",
587     .get  = get_uint32_as_uint16,
588     .put  = put_unused,
589 };
590 
591 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
592     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
593 
594 
595 static bool is_version_1(void *opaque, int version_id)
596 {
597     return version_id == 1;
598 }
599 
600 bool fw_cfg_dma_enabled(void *opaque)
601 {
602     FWCfgState *s = opaque;
603 
604     return s->dma_enabled;
605 }
606 
607 static bool fw_cfg_acpi_mr_restore(void *opaque)
608 {
609     FWCfgState *s = opaque;
610     bool mr_aligned;
611 
612     mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
613                  QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
614                  QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
615     return s->acpi_mr_restore && !mr_aligned;
616 }
617 
618 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
619 {
620     MemoryRegion *mr;
621     ram_addr_t offset;
622     int arch = !!(key & FW_CFG_ARCH_LOCAL);
623     void *ptr;
624 
625     key &= FW_CFG_ENTRY_MASK;
626     assert(key < fw_cfg_max_entry(s));
627 
628     ptr = s->entries[arch][key].data;
629     mr = memory_region_from_host(ptr, &offset);
630 
631     memory_region_ram_resize(mr, size, &error_abort);
632 }
633 
634 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
635 {
636     FWCfgState *s = opaque;
637     int i, index;
638 
639     assert(s->files);
640 
641     index = be32_to_cpu(s->files->count);
642 
643     for (i = 0; i < index; i++) {
644         if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
645             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
646         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
647             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
648         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
649             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
650         }
651     }
652 
653     return 0;
654 }
655 
656 static const VMStateDescription vmstate_fw_cfg_dma = {
657     .name = "fw_cfg/dma",
658     .needed = fw_cfg_dma_enabled,
659     .fields = (VMStateField[]) {
660         VMSTATE_UINT64(dma_addr, FWCfgState),
661         VMSTATE_END_OF_LIST()
662     },
663 };
664 
665 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
666     .name = "fw_cfg/acpi_mr",
667     .version_id = 1,
668     .minimum_version_id = 1,
669     .needed = fw_cfg_acpi_mr_restore,
670     .post_load = fw_cfg_acpi_mr_restore_post_load,
671     .fields = (VMStateField[]) {
672         VMSTATE_UINT64(table_mr_size, FWCfgState),
673         VMSTATE_UINT64(linker_mr_size, FWCfgState),
674         VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
675         VMSTATE_END_OF_LIST()
676     },
677 };
678 
679 static const VMStateDescription vmstate_fw_cfg = {
680     .name = "fw_cfg",
681     .version_id = 2,
682     .minimum_version_id = 1,
683     .fields = (VMStateField[]) {
684         VMSTATE_UINT16(cur_entry, FWCfgState),
685         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
686         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
687         VMSTATE_END_OF_LIST()
688     },
689     .subsections = (const VMStateDescription*[]) {
690         &vmstate_fw_cfg_dma,
691         &vmstate_fw_cfg_acpi_mr,
692         NULL,
693     }
694 };
695 
696 void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
697                                FWCfgCallback select_cb,
698                                FWCfgWriteCallback write_cb,
699                                void *callback_opaque,
700                                void *data, size_t len,
701                                bool read_only)
702 {
703     int arch = !!(key & FW_CFG_ARCH_LOCAL);
704 
705     key &= FW_CFG_ENTRY_MASK;
706 
707     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
708     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
709 
710     s->entries[arch][key].data = data;
711     s->entries[arch][key].len = (uint32_t)len;
712     s->entries[arch][key].select_cb = select_cb;
713     s->entries[arch][key].write_cb = write_cb;
714     s->entries[arch][key].callback_opaque = callback_opaque;
715     s->entries[arch][key].allow_write = !read_only;
716 }
717 
718 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
719                                               void *data, size_t len)
720 {
721     void *ptr;
722     int arch = !!(key & FW_CFG_ARCH_LOCAL);
723 
724     key &= FW_CFG_ENTRY_MASK;
725 
726     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
727 
728     /* return the old data to the function caller, avoid memory leak */
729     ptr = s->entries[arch][key].data;
730     s->entries[arch][key].data = data;
731     s->entries[arch][key].len = len;
732     s->entries[arch][key].callback_opaque = NULL;
733     s->entries[arch][key].allow_write = false;
734 
735     return ptr;
736 }
737 
738 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
739 {
740     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
741     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
742 }
743 
744 void *fw_cfg_read_bytes_ptr(FWCfgState *s, uint16_t key)
745 {
746     int arch = !!(key & FW_CFG_ARCH_LOCAL);
747 
748     key &= FW_CFG_ENTRY_MASK;
749     assert(key < fw_cfg_max_entry(s));
750     return s->entries[arch][key].data;
751 }
752 
753 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
754 {
755     size_t sz = strlen(value) + 1;
756 
757     trace_fw_cfg_add_string(key, trace_key_name(key), value);
758     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
759 }
760 
761 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
762 {
763     size_t sz = strlen(value) + 1;
764     char *old;
765 
766     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
767     g_free(old);
768 }
769 
770 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
771 {
772     uint16_t *copy;
773 
774     copy = g_malloc(sizeof(value));
775     *copy = cpu_to_le16(value);
776     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
777     fw_cfg_add_bytes(s, key, copy, sizeof(value));
778 }
779 
780 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
781 {
782     uint16_t *copy, *old;
783 
784     copy = g_malloc(sizeof(value));
785     *copy = cpu_to_le16(value);
786     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
787     g_free(old);
788 }
789 
790 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
791 {
792     uint32_t *copy;
793 
794     copy = g_malloc(sizeof(value));
795     *copy = cpu_to_le32(value);
796     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
797     fw_cfg_add_bytes(s, key, copy, sizeof(value));
798 }
799 
800 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
801 {
802     uint32_t *copy, *old;
803 
804     copy = g_malloc(sizeof(value));
805     *copy = cpu_to_le32(value);
806     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
807     g_free(old);
808 }
809 
810 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
811 {
812     uint64_t *copy;
813 
814     copy = g_malloc(sizeof(value));
815     *copy = cpu_to_le64(value);
816     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
817     fw_cfg_add_bytes(s, key, copy, sizeof(value));
818 }
819 
820 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
821 {
822     uint64_t *copy, *old;
823 
824     copy = g_malloc(sizeof(value));
825     *copy = cpu_to_le64(value);
826     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
827     g_free(old);
828 }
829 
830 void fw_cfg_set_order_override(FWCfgState *s, int order)
831 {
832     assert(s->fw_cfg_order_override == 0);
833     s->fw_cfg_order_override = order;
834 }
835 
836 void fw_cfg_reset_order_override(FWCfgState *s)
837 {
838     assert(s->fw_cfg_order_override != 0);
839     s->fw_cfg_order_override = 0;
840 }
841 
842 /*
843  * This is the legacy order list.  For legacy systems, files are in
844  * the fw_cfg in the order defined below, by the "order" value.  Note
845  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
846  * specific area, but there may be more than one and they occur in the
847  * order that the user specifies them on the command line.  Those are
848  * handled in a special manner, using the order override above.
849  *
850  * For non-legacy, the files are sorted by filename to avoid this kind
851  * of complexity in the future.
852  *
853  * This is only for x86, other arches don't implement versioning so
854  * they won't set legacy mode.
855  */
856 static struct {
857     const char *name;
858     int order;
859 } fw_cfg_order[] = {
860     { "etc/boot-menu-wait", 10 },
861     { "bootsplash.jpg", 11 },
862     { "bootsplash.bmp", 12 },
863     { "etc/boot-fail-wait", 15 },
864     { "etc/smbios/smbios-tables", 20 },
865     { "etc/smbios/smbios-anchor", 30 },
866     { "etc/e820", 40 },
867     { "etc/reserved-memory-end", 50 },
868     { "genroms/kvmvapic.bin", 55 },
869     { "genroms/linuxboot.bin", 60 },
870     { }, /* VGA ROMs from pc_vga_init come here, 70. */
871     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
872     { "etc/system-states", 90 },
873     { }, /* User ROMs come here, 100. */
874     { }, /* Device FW comes here, 110. */
875     { "etc/extra-pci-roots", 120 },
876     { "etc/acpi/tables", 130 },
877     { "etc/table-loader", 140 },
878     { "etc/tpm/log", 150 },
879     { "etc/acpi/rsdp", 160 },
880     { "bootorder", 170 },
881     { "etc/msr_feature_control", 180 },
882 
883 #define FW_CFG_ORDER_OVERRIDE_LAST 200
884 };
885 
886 /*
887  * Any sub-page size update to these table MRs will be lost during migration,
888  * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
889  * In order to avoid the inconsistency in sizes save them seperately and
890  * migrate over in vmstate post_load().
891  */
892 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
893 {
894     if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
895         s->table_mr_size = len;
896     } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
897         s->linker_mr_size = len;
898     } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
899         s->rsdp_mr_size = len;
900     }
901 }
902 
903 static int get_fw_cfg_order(FWCfgState *s, const char *name)
904 {
905     int i;
906 
907     if (s->fw_cfg_order_override > 0) {
908         return s->fw_cfg_order_override;
909     }
910 
911     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
912         if (fw_cfg_order[i].name == NULL) {
913             continue;
914         }
915 
916         if (strcmp(name, fw_cfg_order[i].name) == 0) {
917             return fw_cfg_order[i].order;
918         }
919     }
920 
921     /* Stick unknown stuff at the end. */
922     warn_report("Unknown firmware file in legacy mode: %s", name);
923     return FW_CFG_ORDER_OVERRIDE_LAST;
924 }
925 
926 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
927                               FWCfgCallback select_cb,
928                               FWCfgWriteCallback write_cb,
929                               void *callback_opaque,
930                               void *data, size_t len, bool read_only)
931 {
932     int i, index, count;
933     size_t dsize;
934     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
935     int order = 0;
936 
937     if (!s->files) {
938         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
939         s->files = g_malloc0(dsize);
940         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
941     }
942 
943     count = be32_to_cpu(s->files->count);
944     assert(count < fw_cfg_file_slots(s));
945 
946     /* Find the insertion point. */
947     if (mc->legacy_fw_cfg_order) {
948         /*
949          * Sort by order. For files with the same order, we keep them
950          * in the sequence in which they were added.
951          */
952         order = get_fw_cfg_order(s, filename);
953         for (index = count;
954              index > 0 && order < s->entry_order[index - 1];
955              index--);
956     } else {
957         /* Sort by file name. */
958         for (index = count;
959              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
960              index--);
961     }
962 
963     /*
964      * Move all the entries from the index point and after down one
965      * to create a slot for the new entry.  Because calculations are
966      * being done with the index, make it so that "i" is the current
967      * index and "i - 1" is the one being copied from, thus the
968      * unusual start and end in the for statement.
969      */
970     for (i = count; i > index; i--) {
971         s->files->f[i] = s->files->f[i - 1];
972         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
973         s->entries[0][FW_CFG_FILE_FIRST + i] =
974             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
975         s->entry_order[i] = s->entry_order[i - 1];
976     }
977 
978     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
979     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
980 
981     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
982     for (i = 0; i <= count; i++) {
983         if (i != index &&
984             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
985             error_report("duplicate fw_cfg file name: %s",
986                          s->files->f[index].name);
987             exit(1);
988         }
989     }
990 
991     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
992                               select_cb, write_cb,
993                               callback_opaque, data, len,
994                               read_only);
995 
996     s->files->f[index].size   = cpu_to_be32(len);
997     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
998     s->entry_order[index] = order;
999     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
1000 
1001     s->files->count = cpu_to_be32(count+1);
1002     fw_cfg_acpi_mr_save(s, filename, len);
1003 }
1004 
1005 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
1006                      void *data, size_t len)
1007 {
1008     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1009 }
1010 
1011 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1012                         void *data, size_t len)
1013 {
1014     int i, index;
1015     void *ptr = NULL;
1016 
1017     assert(s->files);
1018 
1019     index = be32_to_cpu(s->files->count);
1020 
1021     for (i = 0; i < index; i++) {
1022         if (strcmp(filename, s->files->f[i].name) == 0) {
1023             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1024                                            data, len);
1025             s->files->f[i].size   = cpu_to_be32(len);
1026             fw_cfg_acpi_mr_save(s, filename, len);
1027             return ptr;
1028         }
1029     }
1030 
1031     assert(index < fw_cfg_file_slots(s));
1032 
1033     /* add new one */
1034     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1035     return NULL;
1036 }
1037 
1038 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1039                                const char *gen_id, Error **errp)
1040 {
1041     FWCfgDataGeneratorClass *klass;
1042     GByteArray *array;
1043     Object *obj;
1044     gsize size;
1045 
1046     obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1047     if (!obj) {
1048         error_setg(errp, "Cannot find object ID '%s'", gen_id);
1049         return false;
1050     }
1051     if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1052         error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1053                    gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1054         return false;
1055     }
1056     klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1057     array = klass->get_data(obj, errp);
1058     if (!array) {
1059         return false;
1060     }
1061     size = array->len;
1062     fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1063 
1064     return true;
1065 }
1066 
1067 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1068 {
1069     int extra_hosts = 0;
1070 
1071     if (!bus) {
1072         return;
1073     }
1074 
1075     QLIST_FOREACH(bus, &bus->child, sibling) {
1076         /* look for expander root buses */
1077         if (pci_bus_is_root(bus)) {
1078             extra_hosts++;
1079         }
1080     }
1081 
1082     if (extra_hosts && s) {
1083         uint64_t *val = g_malloc(sizeof(*val));
1084         *val = cpu_to_le64(extra_hosts);
1085         fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1086     }
1087 }
1088 
1089 static void fw_cfg_machine_reset(void *opaque)
1090 {
1091     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1092     FWCfgState *s = opaque;
1093     void *ptr;
1094     size_t len;
1095     char *buf;
1096 
1097     buf = get_boot_devices_list(&len);
1098     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1099     g_free(ptr);
1100 
1101     if (!mc->legacy_fw_cfg_order) {
1102         buf = get_boot_devices_lchs_list(&len);
1103         ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1104         g_free(ptr);
1105     }
1106 }
1107 
1108 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1109 {
1110     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1111     qemu_register_reset(fw_cfg_machine_reset, s);
1112 }
1113 
1114 static Property fw_cfg_properties[] = {
1115     DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1116     DEFINE_PROP_END_OF_LIST(),
1117 };
1118 
1119 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1120 {
1121     FWCfgState *s = FW_CFG(dev);
1122     MachineState *machine = MACHINE(qdev_get_machine());
1123     uint32_t version = FW_CFG_VERSION;
1124 
1125     if (!fw_cfg_find()) {
1126         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1127         return;
1128     }
1129 
1130     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1131     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1132     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1133     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu));
1134     fw_cfg_bootsplash(s);
1135     fw_cfg_reboot(s);
1136 
1137     if (s->dma_enabled) {
1138         version |= FW_CFG_VERSION_DMA;
1139     }
1140 
1141     fw_cfg_add_i32(s, FW_CFG_ID, version);
1142 
1143     s->machine_ready.notify = fw_cfg_machine_ready;
1144     qemu_add_machine_init_done_notifier(&s->machine_ready);
1145 }
1146 
1147 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1148                                 AddressSpace *dma_as)
1149 {
1150     DeviceState *dev;
1151     SysBusDevice *sbd;
1152     FWCfgIoState *ios;
1153     FWCfgState *s;
1154     bool dma_requested = dma_iobase && dma_as;
1155 
1156     dev = qdev_new(TYPE_FW_CFG_IO);
1157     if (!dma_requested) {
1158         qdev_prop_set_bit(dev, "dma_enabled", false);
1159     }
1160 
1161     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1162                               OBJECT(dev));
1163 
1164     sbd = SYS_BUS_DEVICE(dev);
1165     sysbus_realize_and_unref(sbd, &error_fatal);
1166     ios = FW_CFG_IO(dev);
1167     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1168 
1169     s = FW_CFG(dev);
1170 
1171     if (s->dma_enabled) {
1172         /* 64 bits for the address field */
1173         s->dma_as = dma_as;
1174         s->dma_addr = 0;
1175         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1176     }
1177 
1178     return s;
1179 }
1180 
1181 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1182 {
1183     return fw_cfg_init_io_dma(iobase, 0, NULL);
1184 }
1185 
1186 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1187                                  hwaddr data_addr, uint32_t data_width,
1188                                  hwaddr dma_addr, AddressSpace *dma_as)
1189 {
1190     DeviceState *dev;
1191     SysBusDevice *sbd;
1192     FWCfgState *s;
1193     bool dma_requested = dma_addr && dma_as;
1194 
1195     dev = qdev_new(TYPE_FW_CFG_MEM);
1196     qdev_prop_set_uint32(dev, "data_width", data_width);
1197     if (!dma_requested) {
1198         qdev_prop_set_bit(dev, "dma_enabled", false);
1199     }
1200 
1201     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1202                               OBJECT(dev));
1203 
1204     sbd = SYS_BUS_DEVICE(dev);
1205     sysbus_realize_and_unref(sbd, &error_fatal);
1206     sysbus_mmio_map(sbd, 0, ctl_addr);
1207     sysbus_mmio_map(sbd, 1, data_addr);
1208 
1209     s = FW_CFG(dev);
1210 
1211     if (s->dma_enabled) {
1212         s->dma_as = dma_as;
1213         s->dma_addr = 0;
1214         sysbus_mmio_map(sbd, 2, dma_addr);
1215     }
1216 
1217     return s;
1218 }
1219 
1220 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1221 {
1222     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1223                                 fw_cfg_data_mem_ops.valid.max_access_size,
1224                                 0, NULL);
1225 }
1226 
1227 
1228 FWCfgState *fw_cfg_find(void)
1229 {
1230     /* Returns NULL unless there is exactly one fw_cfg device */
1231     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1232 }
1233 
1234 void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
1235                           uint16_t data_key, const char *image_name,
1236                           bool try_decompress)
1237 {
1238     size_t size = -1;
1239     uint8_t *data;
1240 
1241     if (image_name == NULL) {
1242         return;
1243     }
1244 
1245     if (try_decompress) {
1246         size = load_image_gzipped_buffer(image_name,
1247                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
1248     }
1249 
1250     if (size == (size_t)-1) {
1251         gchar *contents;
1252         gsize length;
1253 
1254         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
1255             error_report("failed to load \"%s\"", image_name);
1256             exit(1);
1257         }
1258         size = length;
1259         data = (uint8_t *)contents;
1260     }
1261 
1262     fw_cfg_add_i32(fw_cfg, size_key, size);
1263     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
1264 }
1265 
1266 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1267 {
1268     DeviceClass *dc = DEVICE_CLASS(klass);
1269 
1270     dc->reset = fw_cfg_reset;
1271     dc->vmsd = &vmstate_fw_cfg;
1272 
1273     device_class_set_props(dc, fw_cfg_properties);
1274 }
1275 
1276 static const TypeInfo fw_cfg_info = {
1277     .name          = TYPE_FW_CFG,
1278     .parent        = TYPE_SYS_BUS_DEVICE,
1279     .abstract      = true,
1280     .instance_size = sizeof(FWCfgState),
1281     .class_init    = fw_cfg_class_init,
1282 };
1283 
1284 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1285 {
1286     uint16_t file_slots_max;
1287 
1288     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1289         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1290                    FW_CFG_FILE_SLOTS_MIN);
1291         return;
1292     }
1293 
1294     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1295      * that we permit. The actual (exclusive) value coming from the
1296      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1297     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1298     if (fw_cfg_file_slots(s) > file_slots_max) {
1299         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1300                    file_slots_max);
1301         return;
1302     }
1303 
1304     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1305     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1306     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1307 }
1308 
1309 static Property fw_cfg_io_properties[] = {
1310     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1311                      true),
1312     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1313                        FW_CFG_FILE_SLOTS_DFLT),
1314     DEFINE_PROP_END_OF_LIST(),
1315 };
1316 
1317 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1318 {
1319     ERRP_GUARD();
1320     FWCfgIoState *s = FW_CFG_IO(dev);
1321 
1322     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1323     if (*errp) {
1324         return;
1325     }
1326 
1327     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1328      * with half of the 16-bit control register. Hence, the total size
1329      * of the i/o region used is FW_CFG_CTL_SIZE */
1330     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1331                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1332 
1333     if (FW_CFG(s)->dma_enabled) {
1334         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1335                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1336                               sizeof(dma_addr_t));
1337     }
1338 
1339     fw_cfg_common_realize(dev, errp);
1340 }
1341 
1342 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1343 {
1344     DeviceClass *dc = DEVICE_CLASS(klass);
1345 
1346     dc->realize = fw_cfg_io_realize;
1347     device_class_set_props(dc, fw_cfg_io_properties);
1348 }
1349 
1350 static const TypeInfo fw_cfg_io_info = {
1351     .name          = TYPE_FW_CFG_IO,
1352     .parent        = TYPE_FW_CFG,
1353     .instance_size = sizeof(FWCfgIoState),
1354     .class_init    = fw_cfg_io_class_init,
1355 };
1356 
1357 
1358 static Property fw_cfg_mem_properties[] = {
1359     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1360     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1361                      true),
1362     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1363                        FW_CFG_FILE_SLOTS_DFLT),
1364     DEFINE_PROP_END_OF_LIST(),
1365 };
1366 
1367 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1368 {
1369     ERRP_GUARD();
1370     FWCfgMemState *s = FW_CFG_MEM(dev);
1371     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1372     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1373 
1374     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1375     if (*errp) {
1376         return;
1377     }
1378 
1379     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1380                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1381     sysbus_init_mmio(sbd, &s->ctl_iomem);
1382 
1383     if (s->data_width > data_ops->valid.max_access_size) {
1384         s->wide_data_ops = *data_ops;
1385 
1386         s->wide_data_ops.valid.max_access_size = s->data_width;
1387         s->wide_data_ops.impl.max_access_size  = s->data_width;
1388         data_ops = &s->wide_data_ops;
1389     }
1390     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1391                           "fwcfg.data", data_ops->valid.max_access_size);
1392     sysbus_init_mmio(sbd, &s->data_iomem);
1393 
1394     if (FW_CFG(s)->dma_enabled) {
1395         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1396                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1397                               sizeof(dma_addr_t));
1398         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1399     }
1400 
1401     fw_cfg_common_realize(dev, errp);
1402 }
1403 
1404 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1405 {
1406     DeviceClass *dc = DEVICE_CLASS(klass);
1407 
1408     dc->realize = fw_cfg_mem_realize;
1409     device_class_set_props(dc, fw_cfg_mem_properties);
1410 }
1411 
1412 static const TypeInfo fw_cfg_mem_info = {
1413     .name          = TYPE_FW_CFG_MEM,
1414     .parent        = TYPE_FW_CFG,
1415     .instance_size = sizeof(FWCfgMemState),
1416     .class_init    = fw_cfg_mem_class_init,
1417 };
1418 
1419 static void fw_cfg_register_types(void)
1420 {
1421     type_register_static(&fw_cfg_info);
1422     type_register_static(&fw_cfg_io_info);
1423     type_register_static(&fw_cfg_mem_info);
1424 }
1425 
1426 type_init(fw_cfg_register_types)
1427