xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision a6caeee8)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/datadir.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "sysemu/reset.h"
30 #include "hw/boards.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/qdev-properties.h"
33 #include "hw/sysbus.h"
34 #include "migration/qemu-file-types.h"
35 #include "migration/vmstate.h"
36 #include "trace.h"
37 #include "qemu/error-report.h"
38 #include "qemu/option.h"
39 #include "qemu/config-file.h"
40 #include "qemu/cutils.h"
41 #include "qapi/error.h"
42 #include "hw/acpi/aml-build.h"
43 #include "hw/pci/pci_bus.h"
44 
45 #define FW_CFG_FILE_SLOTS_DFLT 0x20
46 
47 /* FW_CFG_VERSION bits */
48 #define FW_CFG_VERSION      0x01
49 #define FW_CFG_VERSION_DMA  0x02
50 
51 /* FW_CFG_DMA_CONTROL bits */
52 #define FW_CFG_DMA_CTL_ERROR   0x01
53 #define FW_CFG_DMA_CTL_READ    0x02
54 #define FW_CFG_DMA_CTL_SKIP    0x04
55 #define FW_CFG_DMA_CTL_SELECT  0x08
56 #define FW_CFG_DMA_CTL_WRITE   0x10
57 
58 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
59 
60 struct FWCfgEntry {
61     uint32_t len;
62     bool allow_write;
63     uint8_t *data;
64     void *callback_opaque;
65     FWCfgCallback select_cb;
66     FWCfgWriteCallback write_cb;
67 };
68 
69 /**
70  * key_name:
71  *
72  * @key: The uint16 selector key.
73  *
74  * Returns: The stringified name if the selector refers to a well-known
75  *          numerically defined item, or NULL on key lookup failure.
76  */
77 static const char *key_name(uint16_t key)
78 {
79     static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = {
80         [FW_CFG_SIGNATURE] = "signature",
81         [FW_CFG_ID] = "id",
82         [FW_CFG_UUID] = "uuid",
83         [FW_CFG_RAM_SIZE] = "ram_size",
84         [FW_CFG_NOGRAPHIC] = "nographic",
85         [FW_CFG_NB_CPUS] = "nb_cpus",
86         [FW_CFG_MACHINE_ID] = "machine_id",
87         [FW_CFG_KERNEL_ADDR] = "kernel_addr",
88         [FW_CFG_KERNEL_SIZE] = "kernel_size",
89         [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline",
90         [FW_CFG_INITRD_ADDR] = "initrd_addr",
91         [FW_CFG_INITRD_SIZE] = "initdr_size",
92         [FW_CFG_BOOT_DEVICE] = "boot_device",
93         [FW_CFG_NUMA] = "numa",
94         [FW_CFG_BOOT_MENU] = "boot_menu",
95         [FW_CFG_MAX_CPUS] = "max_cpus",
96         [FW_CFG_KERNEL_ENTRY] = "kernel_entry",
97         [FW_CFG_KERNEL_DATA] = "kernel_data",
98         [FW_CFG_INITRD_DATA] = "initrd_data",
99         [FW_CFG_CMDLINE_ADDR] = "cmdline_addr",
100         [FW_CFG_CMDLINE_SIZE] = "cmdline_size",
101         [FW_CFG_CMDLINE_DATA] = "cmdline_data",
102         [FW_CFG_SETUP_ADDR] = "setup_addr",
103         [FW_CFG_SETUP_SIZE] = "setup_size",
104         [FW_CFG_SETUP_DATA] = "setup_data",
105         [FW_CFG_FILE_DIR] = "file_dir",
106     };
107 
108     if (key & FW_CFG_ARCH_LOCAL) {
109         return fw_cfg_arch_key_name(key);
110     }
111     if (key < FW_CFG_FILE_FIRST) {
112         return fw_cfg_wellknown_keys[key];
113     }
114 
115     return NULL;
116 }
117 
118 static inline const char *trace_key_name(uint16_t key)
119 {
120     const char *name = key_name(key);
121 
122     return name ? name : "unknown";
123 }
124 
125 #define JPG_FILE 0
126 #define BMP_FILE 1
127 
128 static char *read_splashfile(char *filename, gsize *file_sizep,
129                              int *file_typep)
130 {
131     GError *err = NULL;
132     gchar *content;
133     int file_type;
134     unsigned int filehead;
135     int bmp_bpp;
136 
137     if (!g_file_get_contents(filename, &content, file_sizep, &err)) {
138         error_report("failed to read splash file '%s': %s",
139                      filename, err->message);
140         g_error_free(err);
141         return NULL;
142     }
143 
144     /* check file size */
145     if (*file_sizep < 30) {
146         goto error;
147     }
148 
149     /* check magic ID */
150     filehead = lduw_le_p(content);
151     if (filehead == 0xd8ff) {
152         file_type = JPG_FILE;
153     } else if (filehead == 0x4d42) {
154         file_type = BMP_FILE;
155     } else {
156         goto error;
157     }
158 
159     /* check BMP bpp */
160     if (file_type == BMP_FILE) {
161         bmp_bpp = lduw_le_p(&content[28]);
162         if (bmp_bpp != 24) {
163             goto error;
164         }
165     }
166 
167     /* return values */
168     *file_typep = file_type;
169 
170     return content;
171 
172 error:
173     error_report("splash file '%s' format not recognized; must be JPEG "
174                  "or 24 bit BMP", filename);
175     g_free(content);
176     return NULL;
177 }
178 
179 static void fw_cfg_bootsplash(FWCfgState *s)
180 {
181     char *filename, *file_data;
182     gsize file_size;
183     int file_type;
184 
185     /* insert splash time if user configurated */
186     if (current_machine->boot_config.has_splash_time) {
187         int64_t bst_val = current_machine->boot_config.splash_time;
188         uint16_t bst_le16;
189 
190         /* validate the input */
191         if (bst_val < 0 || bst_val > 0xffff) {
192             error_report("splash-time is invalid,"
193                          "it should be a value between 0 and 65535");
194             exit(1);
195         }
196         /* use little endian format */
197         bst_le16 = cpu_to_le16(bst_val);
198         fw_cfg_add_file(s, "etc/boot-menu-wait",
199                         g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16);
200     }
201 
202     /* insert splash file if user configurated */
203     if (current_machine->boot_config.has_splash) {
204         const char *boot_splash_filename = current_machine->boot_config.splash;
205         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
206         if (filename == NULL) {
207             error_report("failed to find file '%s'", boot_splash_filename);
208             return;
209         }
210 
211         /* loading file data */
212         file_data = read_splashfile(filename, &file_size, &file_type);
213         if (file_data == NULL) {
214             g_free(filename);
215             return;
216         }
217         g_free(boot_splash_filedata);
218         boot_splash_filedata = (uint8_t *)file_data;
219 
220         /* insert data */
221         if (file_type == JPG_FILE) {
222             fw_cfg_add_file(s, "bootsplash.jpg",
223                             boot_splash_filedata, file_size);
224         } else {
225             fw_cfg_add_file(s, "bootsplash.bmp",
226                             boot_splash_filedata, file_size);
227         }
228         g_free(filename);
229     }
230 }
231 
232 static void fw_cfg_reboot(FWCfgState *s)
233 {
234     uint64_t rt_val = -1;
235     uint32_t rt_le32;
236 
237     if (current_machine->boot_config.has_reboot_timeout) {
238         rt_val = current_machine->boot_config.reboot_timeout;
239 
240         /* validate the input */
241         if (rt_val > 0xffff && rt_val != (uint64_t)-1) {
242             error_report("reboot timeout is invalid,"
243                          "it should be a value between -1 and 65535");
244             exit(1);
245         }
246     }
247 
248     rt_le32 = cpu_to_le32(rt_val);
249     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4);
250 }
251 
252 static void fw_cfg_write(FWCfgState *s, uint8_t value)
253 {
254     /* nothing, write support removed in QEMU v2.4+ */
255 }
256 
257 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
258 {
259     return s->file_slots;
260 }
261 
262 /* Note: this function returns an exclusive limit. */
263 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
264 {
265     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
266 }
267 
268 static int fw_cfg_select(FWCfgState *s, uint16_t key)
269 {
270     int arch, ret;
271     FWCfgEntry *e;
272 
273     s->cur_offset = 0;
274     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
275         s->cur_entry = FW_CFG_INVALID;
276         ret = 0;
277     } else {
278         s->cur_entry = key;
279         ret = 1;
280         /* entry successfully selected, now run callback if present */
281         arch = !!(key & FW_CFG_ARCH_LOCAL);
282         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
283         if (e->select_cb) {
284             e->select_cb(e->callback_opaque);
285         }
286     }
287 
288     trace_fw_cfg_select(s, key, trace_key_name(key), ret);
289     return ret;
290 }
291 
292 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
293 {
294     FWCfgState *s = opaque;
295     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
296     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
297                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
298     uint64_t value = 0;
299 
300     assert(size > 0 && size <= sizeof(value));
301     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
302         /* The least significant 'size' bytes of the return value are
303          * expected to contain a string preserving portion of the item
304          * data, padded with zeros on the right in case we run out early.
305          * In technical terms, we're composing the host-endian representation
306          * of the big endian interpretation of the fw_cfg string.
307          */
308         do {
309             value = (value << 8) | e->data[s->cur_offset++];
310         } while (--size && s->cur_offset < e->len);
311         /* If size is still not zero, we *did* run out early, so continue
312          * left-shifting, to add the appropriate number of padding zeros
313          * on the right.
314          */
315         value <<= 8 * size;
316     }
317 
318     trace_fw_cfg_read(s, value);
319     return value;
320 }
321 
322 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
323                                   uint64_t value, unsigned size)
324 {
325     FWCfgState *s = opaque;
326     unsigned i = size;
327 
328     do {
329         fw_cfg_write(s, value >> (8 * --i));
330     } while (i);
331 }
332 
333 static void fw_cfg_dma_transfer(FWCfgState *s)
334 {
335     dma_addr_t len;
336     FWCfgDmaAccess dma;
337     int arch;
338     FWCfgEntry *e;
339     int read = 0, write = 0;
340     dma_addr_t dma_addr;
341 
342     /* Reset the address before the next access */
343     dma_addr = s->dma_addr;
344     s->dma_addr = 0;
345 
346     if (dma_memory_read(s->dma_as, dma_addr,
347                         &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) {
348         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
349                    FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED);
350         return;
351     }
352 
353     dma.address = be64_to_cpu(dma.address);
354     dma.length = be32_to_cpu(dma.length);
355     dma.control = be32_to_cpu(dma.control);
356 
357     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
358         fw_cfg_select(s, dma.control >> 16);
359     }
360 
361     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
362     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
363         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
364 
365     if (dma.control & FW_CFG_DMA_CTL_READ) {
366         read = 1;
367         write = 0;
368     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
369         read = 0;
370         write = 1;
371     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
372         read = 0;
373         write = 0;
374     } else {
375         dma.length = 0;
376     }
377 
378     dma.control = 0;
379 
380     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
381         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
382                                 s->cur_offset >= e->len) {
383             len = dma.length;
384 
385             /* If the access is not a read access, it will be a skip access,
386              * tested before.
387              */
388             if (read) {
389                 if (dma_memory_set(s->dma_as, dma.address, 0, len,
390                                    MEMTXATTRS_UNSPECIFIED)) {
391                     dma.control |= FW_CFG_DMA_CTL_ERROR;
392                 }
393             }
394             if (write) {
395                 dma.control |= FW_CFG_DMA_CTL_ERROR;
396             }
397         } else {
398             if (dma.length <= (e->len - s->cur_offset)) {
399                 len = dma.length;
400             } else {
401                 len = (e->len - s->cur_offset);
402             }
403 
404             /* If the access is not a read access, it will be a skip access,
405              * tested before.
406              */
407             if (read) {
408                 if (dma_memory_write(s->dma_as, dma.address,
409                                      &e->data[s->cur_offset], len,
410                                      MEMTXATTRS_UNSPECIFIED)) {
411                     dma.control |= FW_CFG_DMA_CTL_ERROR;
412                 }
413             }
414             if (write) {
415                 if (!e->allow_write ||
416                     len != dma.length ||
417                     dma_memory_read(s->dma_as, dma.address,
418                                     &e->data[s->cur_offset], len,
419                                     MEMTXATTRS_UNSPECIFIED)) {
420                     dma.control |= FW_CFG_DMA_CTL_ERROR;
421                 } else if (e->write_cb) {
422                     e->write_cb(e->callback_opaque, s->cur_offset, len);
423                 }
424             }
425 
426             s->cur_offset += len;
427         }
428 
429         dma.address += len;
430         dma.length  -= len;
431 
432     }
433 
434     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
435                 dma.control, MEMTXATTRS_UNSPECIFIED);
436 
437     trace_fw_cfg_read(s, 0);
438 }
439 
440 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
441                                     unsigned size)
442 {
443     /* Return a signature value (and handle various read sizes) */
444     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
445 }
446 
447 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
448                                  uint64_t value, unsigned size)
449 {
450     FWCfgState *s = opaque;
451 
452     if (size == 4) {
453         if (addr == 0) {
454             /* FWCfgDmaAccess high address */
455             s->dma_addr = value << 32;
456         } else if (addr == 4) {
457             /* FWCfgDmaAccess low address */
458             s->dma_addr |= value;
459             fw_cfg_dma_transfer(s);
460         }
461     } else if (size == 8 && addr == 0) {
462         s->dma_addr = value;
463         fw_cfg_dma_transfer(s);
464     }
465 }
466 
467 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
468                                  unsigned size, bool is_write,
469                                  MemTxAttrs attrs)
470 {
471     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
472                          (size == 8 && addr == 0));
473 }
474 
475 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
476                                   unsigned size, bool is_write,
477                                   MemTxAttrs attrs)
478 {
479     return addr == 0;
480 }
481 
482 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
483 {
484     return 0;
485 }
486 
487 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
488                                  uint64_t value, unsigned size)
489 {
490     fw_cfg_select(opaque, (uint16_t)value);
491 }
492 
493 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
494                                  unsigned size, bool is_write,
495                                  MemTxAttrs attrs)
496 {
497     return is_write && size == 2;
498 }
499 
500 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
501                               uint64_t value, unsigned size)
502 {
503     switch (size) {
504     case 1:
505         fw_cfg_write(opaque, (uint8_t)value);
506         break;
507     case 2:
508         fw_cfg_select(opaque, (uint16_t)value);
509         break;
510     }
511 }
512 
513 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
514                               unsigned size, bool is_write,
515                               MemTxAttrs attrs)
516 {
517     return (size == 1) || (is_write && size == 2);
518 }
519 
520 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
521     .read = fw_cfg_ctl_mem_read,
522     .write = fw_cfg_ctl_mem_write,
523     .endianness = DEVICE_BIG_ENDIAN,
524     .valid.accepts = fw_cfg_ctl_mem_valid,
525 };
526 
527 static const MemoryRegionOps fw_cfg_data_mem_ops = {
528     .read = fw_cfg_data_read,
529     .write = fw_cfg_data_mem_write,
530     .endianness = DEVICE_BIG_ENDIAN,
531     .valid = {
532         .min_access_size = 1,
533         .max_access_size = 1,
534         .accepts = fw_cfg_data_mem_valid,
535     },
536 };
537 
538 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
539     .read = fw_cfg_data_read,
540     .write = fw_cfg_comb_write,
541     .endianness = DEVICE_LITTLE_ENDIAN,
542     .valid.accepts = fw_cfg_comb_valid,
543 };
544 
545 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
546     .read = fw_cfg_dma_mem_read,
547     .write = fw_cfg_dma_mem_write,
548     .endianness = DEVICE_BIG_ENDIAN,
549     .valid.accepts = fw_cfg_dma_mem_valid,
550     .valid.max_access_size = 8,
551     .impl.max_access_size = 8,
552 };
553 
554 static void fw_cfg_reset(DeviceState *d)
555 {
556     FWCfgState *s = FW_CFG(d);
557 
558     /* we never register a read callback for FW_CFG_SIGNATURE */
559     fw_cfg_select(s, FW_CFG_SIGNATURE);
560 }
561 
562 /* Save restore 32 bit int as uint16_t
563    This is a Big hack, but it is how the old state did it.
564    Or we broke compatibility in the state, or we can't use struct tm
565  */
566 
567 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
568                                 const VMStateField *field)
569 {
570     uint32_t *v = pv;
571     *v = qemu_get_be16(f);
572     return 0;
573 }
574 
575 static int put_unused(QEMUFile *f, void *pv, size_t size,
576                       const VMStateField *field, JSONWriter *vmdesc)
577 {
578     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
579     fprintf(stderr, "This functions shouldn't be called.\n");
580 
581     return 0;
582 }
583 
584 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
585     .name = "int32_as_uint16",
586     .get  = get_uint32_as_uint16,
587     .put  = put_unused,
588 };
589 
590 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
591     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
592 
593 
594 static bool is_version_1(void *opaque, int version_id)
595 {
596     return version_id == 1;
597 }
598 
599 bool fw_cfg_dma_enabled(void *opaque)
600 {
601     FWCfgState *s = opaque;
602 
603     return s->dma_enabled;
604 }
605 
606 static bool fw_cfg_acpi_mr_restore(void *opaque)
607 {
608     FWCfgState *s = opaque;
609     bool mr_aligned;
610 
611     mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) &&
612                  QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) &&
613                  QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size());
614     return s->acpi_mr_restore && !mr_aligned;
615 }
616 
617 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size)
618 {
619     MemoryRegion *mr;
620     ram_addr_t offset;
621     int arch = !!(key & FW_CFG_ARCH_LOCAL);
622     void *ptr;
623 
624     key &= FW_CFG_ENTRY_MASK;
625     assert(key < fw_cfg_max_entry(s));
626 
627     ptr = s->entries[arch][key].data;
628     mr = memory_region_from_host(ptr, &offset);
629 
630     memory_region_ram_resize(mr, size, &error_abort);
631 }
632 
633 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id)
634 {
635     FWCfgState *s = opaque;
636     int i, index;
637 
638     assert(s->files);
639 
640     index = be32_to_cpu(s->files->count);
641 
642     for (i = 0; i < index; i++) {
643         if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) {
644             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size);
645         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) {
646             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size);
647         } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) {
648             fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size);
649         }
650     }
651 
652     return 0;
653 }
654 
655 static const VMStateDescription vmstate_fw_cfg_dma = {
656     .name = "fw_cfg/dma",
657     .needed = fw_cfg_dma_enabled,
658     .fields = (VMStateField[]) {
659         VMSTATE_UINT64(dma_addr, FWCfgState),
660         VMSTATE_END_OF_LIST()
661     },
662 };
663 
664 static const VMStateDescription vmstate_fw_cfg_acpi_mr = {
665     .name = "fw_cfg/acpi_mr",
666     .version_id = 1,
667     .minimum_version_id = 1,
668     .needed = fw_cfg_acpi_mr_restore,
669     .post_load = fw_cfg_acpi_mr_restore_post_load,
670     .fields = (VMStateField[]) {
671         VMSTATE_UINT64(table_mr_size, FWCfgState),
672         VMSTATE_UINT64(linker_mr_size, FWCfgState),
673         VMSTATE_UINT64(rsdp_mr_size, FWCfgState),
674         VMSTATE_END_OF_LIST()
675     },
676 };
677 
678 static const VMStateDescription vmstate_fw_cfg = {
679     .name = "fw_cfg",
680     .version_id = 2,
681     .minimum_version_id = 1,
682     .fields = (VMStateField[]) {
683         VMSTATE_UINT16(cur_entry, FWCfgState),
684         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
685         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
686         VMSTATE_END_OF_LIST()
687     },
688     .subsections = (const VMStateDescription*[]) {
689         &vmstate_fw_cfg_dma,
690         &vmstate_fw_cfg_acpi_mr,
691         NULL,
692     }
693 };
694 
695 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
696                                       FWCfgCallback select_cb,
697                                       FWCfgWriteCallback write_cb,
698                                       void *callback_opaque,
699                                       void *data, size_t len,
700                                       bool read_only)
701 {
702     int arch = !!(key & FW_CFG_ARCH_LOCAL);
703 
704     key &= FW_CFG_ENTRY_MASK;
705 
706     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
707     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
708 
709     s->entries[arch][key].data = data;
710     s->entries[arch][key].len = (uint32_t)len;
711     s->entries[arch][key].select_cb = select_cb;
712     s->entries[arch][key].write_cb = write_cb;
713     s->entries[arch][key].callback_opaque = callback_opaque;
714     s->entries[arch][key].allow_write = !read_only;
715 }
716 
717 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
718                                               void *data, size_t len)
719 {
720     void *ptr;
721     int arch = !!(key & FW_CFG_ARCH_LOCAL);
722 
723     key &= FW_CFG_ENTRY_MASK;
724 
725     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
726 
727     /* return the old data to the function caller, avoid memory leak */
728     ptr = s->entries[arch][key].data;
729     s->entries[arch][key].data = data;
730     s->entries[arch][key].len = len;
731     s->entries[arch][key].callback_opaque = NULL;
732     s->entries[arch][key].allow_write = false;
733 
734     return ptr;
735 }
736 
737 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
738 {
739     trace_fw_cfg_add_bytes(key, trace_key_name(key), len);
740     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
741 }
742 
743 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
744 {
745     size_t sz = strlen(value) + 1;
746 
747     trace_fw_cfg_add_string(key, trace_key_name(key), value);
748     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
749 }
750 
751 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value)
752 {
753     size_t sz = strlen(value) + 1;
754     char *old;
755 
756     old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz);
757     g_free(old);
758 }
759 
760 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
761 {
762     uint16_t *copy;
763 
764     copy = g_malloc(sizeof(value));
765     *copy = cpu_to_le16(value);
766     trace_fw_cfg_add_i16(key, trace_key_name(key), value);
767     fw_cfg_add_bytes(s, key, copy, sizeof(value));
768 }
769 
770 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
771 {
772     uint16_t *copy, *old;
773 
774     copy = g_malloc(sizeof(value));
775     *copy = cpu_to_le16(value);
776     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
777     g_free(old);
778 }
779 
780 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
781 {
782     uint32_t *copy;
783 
784     copy = g_malloc(sizeof(value));
785     *copy = cpu_to_le32(value);
786     trace_fw_cfg_add_i32(key, trace_key_name(key), value);
787     fw_cfg_add_bytes(s, key, copy, sizeof(value));
788 }
789 
790 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value)
791 {
792     uint32_t *copy, *old;
793 
794     copy = g_malloc(sizeof(value));
795     *copy = cpu_to_le32(value);
796     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
797     g_free(old);
798 }
799 
800 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
801 {
802     uint64_t *copy;
803 
804     copy = g_malloc(sizeof(value));
805     *copy = cpu_to_le64(value);
806     trace_fw_cfg_add_i64(key, trace_key_name(key), value);
807     fw_cfg_add_bytes(s, key, copy, sizeof(value));
808 }
809 
810 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value)
811 {
812     uint64_t *copy, *old;
813 
814     copy = g_malloc(sizeof(value));
815     *copy = cpu_to_le64(value);
816     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
817     g_free(old);
818 }
819 
820 void fw_cfg_set_order_override(FWCfgState *s, int order)
821 {
822     assert(s->fw_cfg_order_override == 0);
823     s->fw_cfg_order_override = order;
824 }
825 
826 void fw_cfg_reset_order_override(FWCfgState *s)
827 {
828     assert(s->fw_cfg_order_override != 0);
829     s->fw_cfg_order_override = 0;
830 }
831 
832 /*
833  * This is the legacy order list.  For legacy systems, files are in
834  * the fw_cfg in the order defined below, by the "order" value.  Note
835  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
836  * specific area, but there may be more than one and they occur in the
837  * order that the user specifies them on the command line.  Those are
838  * handled in a special manner, using the order override above.
839  *
840  * For non-legacy, the files are sorted by filename to avoid this kind
841  * of complexity in the future.
842  *
843  * This is only for x86, other arches don't implement versioning so
844  * they won't set legacy mode.
845  */
846 static struct {
847     const char *name;
848     int order;
849 } fw_cfg_order[] = {
850     { "etc/boot-menu-wait", 10 },
851     { "bootsplash.jpg", 11 },
852     { "bootsplash.bmp", 12 },
853     { "etc/boot-fail-wait", 15 },
854     { "etc/smbios/smbios-tables", 20 },
855     { "etc/smbios/smbios-anchor", 30 },
856     { "etc/e820", 40 },
857     { "etc/reserved-memory-end", 50 },
858     { "genroms/kvmvapic.bin", 55 },
859     { "genroms/linuxboot.bin", 60 },
860     { }, /* VGA ROMs from pc_vga_init come here, 70. */
861     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
862     { "etc/system-states", 90 },
863     { }, /* User ROMs come here, 100. */
864     { }, /* Device FW comes here, 110. */
865     { "etc/extra-pci-roots", 120 },
866     { "etc/acpi/tables", 130 },
867     { "etc/table-loader", 140 },
868     { "etc/tpm/log", 150 },
869     { "etc/acpi/rsdp", 160 },
870     { "bootorder", 170 },
871     { "etc/msr_feature_control", 180 },
872 
873 #define FW_CFG_ORDER_OVERRIDE_LAST 200
874 };
875 
876 /*
877  * Any sub-page size update to these table MRs will be lost during migration,
878  * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path.
879  * In order to avoid the inconsistency in sizes save them seperately and
880  * migrate over in vmstate post_load().
881  */
882 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len)
883 {
884     if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) {
885         s->table_mr_size = len;
886     } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) {
887         s->linker_mr_size = len;
888     } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) {
889         s->rsdp_mr_size = len;
890     }
891 }
892 
893 static int get_fw_cfg_order(FWCfgState *s, const char *name)
894 {
895     int i;
896 
897     if (s->fw_cfg_order_override > 0) {
898         return s->fw_cfg_order_override;
899     }
900 
901     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
902         if (fw_cfg_order[i].name == NULL) {
903             continue;
904         }
905 
906         if (strcmp(name, fw_cfg_order[i].name) == 0) {
907             return fw_cfg_order[i].order;
908         }
909     }
910 
911     /* Stick unknown stuff at the end. */
912     warn_report("Unknown firmware file in legacy mode: %s", name);
913     return FW_CFG_ORDER_OVERRIDE_LAST;
914 }
915 
916 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
917                               FWCfgCallback select_cb,
918                               FWCfgWriteCallback write_cb,
919                               void *callback_opaque,
920                               void *data, size_t len, bool read_only)
921 {
922     int i, index, count;
923     size_t dsize;
924     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
925     int order = 0;
926 
927     if (!s->files) {
928         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
929         s->files = g_malloc0(dsize);
930         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
931     }
932 
933     count = be32_to_cpu(s->files->count);
934     assert(count < fw_cfg_file_slots(s));
935 
936     /* Find the insertion point. */
937     if (mc->legacy_fw_cfg_order) {
938         /*
939          * Sort by order. For files with the same order, we keep them
940          * in the sequence in which they were added.
941          */
942         order = get_fw_cfg_order(s, filename);
943         for (index = count;
944              index > 0 && order < s->entry_order[index - 1];
945              index--);
946     } else {
947         /* Sort by file name. */
948         for (index = count;
949              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
950              index--);
951     }
952 
953     /*
954      * Move all the entries from the index point and after down one
955      * to create a slot for the new entry.  Because calculations are
956      * being done with the index, make it so that "i" is the current
957      * index and "i - 1" is the one being copied from, thus the
958      * unusual start and end in the for statement.
959      */
960     for (i = count; i > index; i--) {
961         s->files->f[i] = s->files->f[i - 1];
962         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
963         s->entries[0][FW_CFG_FILE_FIRST + i] =
964             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
965         s->entry_order[i] = s->entry_order[i - 1];
966     }
967 
968     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
969     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
970 
971     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
972     for (i = 0; i <= count; i++) {
973         if (i != index &&
974             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
975             error_report("duplicate fw_cfg file name: %s",
976                          s->files->f[index].name);
977             exit(1);
978         }
979     }
980 
981     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
982                               select_cb, write_cb,
983                               callback_opaque, data, len,
984                               read_only);
985 
986     s->files->f[index].size   = cpu_to_be32(len);
987     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
988     s->entry_order[index] = order;
989     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
990 
991     s->files->count = cpu_to_be32(count+1);
992     fw_cfg_acpi_mr_save(s, filename, len);
993 }
994 
995 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
996                      void *data, size_t len)
997 {
998     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
999 }
1000 
1001 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
1002                         void *data, size_t len)
1003 {
1004     int i, index;
1005     void *ptr = NULL;
1006 
1007     assert(s->files);
1008 
1009     index = be32_to_cpu(s->files->count);
1010 
1011     for (i = 0; i < index; i++) {
1012         if (strcmp(filename, s->files->f[i].name) == 0) {
1013             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
1014                                            data, len);
1015             s->files->f[i].size   = cpu_to_be32(len);
1016             fw_cfg_acpi_mr_save(s, filename, len);
1017             return ptr;
1018         }
1019     }
1020 
1021     assert(index < fw_cfg_file_slots(s));
1022 
1023     /* add new one */
1024     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
1025     return NULL;
1026 }
1027 
1028 bool fw_cfg_add_from_generator(FWCfgState *s, const char *filename,
1029                                const char *gen_id, Error **errp)
1030 {
1031     FWCfgDataGeneratorClass *klass;
1032     GByteArray *array;
1033     Object *obj;
1034     gsize size;
1035 
1036     obj = object_resolve_path_component(object_get_objects_root(), gen_id);
1037     if (!obj) {
1038         error_setg(errp, "Cannot find object ID '%s'", gen_id);
1039         return false;
1040     }
1041     if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) {
1042         error_setg(errp, "Object ID '%s' is not a '%s' subclass",
1043                    gen_id, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE);
1044         return false;
1045     }
1046     klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj);
1047     array = klass->get_data(obj, errp);
1048     if (!array) {
1049         return false;
1050     }
1051     size = array->len;
1052     fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size);
1053 
1054     return true;
1055 }
1056 
1057 void fw_cfg_add_extra_pci_roots(PCIBus *bus, FWCfgState *s)
1058 {
1059     int extra_hosts = 0;
1060 
1061     if (!bus) {
1062         return;
1063     }
1064 
1065     QLIST_FOREACH(bus, &bus->child, sibling) {
1066         /* look for expander root buses */
1067         if (pci_bus_is_root(bus)) {
1068             extra_hosts++;
1069         }
1070     }
1071 
1072     if (extra_hosts && s) {
1073         uint64_t *val = g_malloc(sizeof(*val));
1074         *val = cpu_to_le64(extra_hosts);
1075         fw_cfg_add_file(s, "etc/extra-pci-roots", val, sizeof(*val));
1076     }
1077 }
1078 
1079 static void fw_cfg_machine_reset(void *opaque)
1080 {
1081     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
1082     FWCfgState *s = opaque;
1083     void *ptr;
1084     size_t len;
1085     char *buf;
1086 
1087     buf = get_boot_devices_list(&len);
1088     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len);
1089     g_free(ptr);
1090 
1091     if (!mc->legacy_fw_cfg_order) {
1092         buf = get_boot_devices_lchs_list(&len);
1093         ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len);
1094         g_free(ptr);
1095     }
1096 }
1097 
1098 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
1099 {
1100     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
1101     qemu_register_reset(fw_cfg_machine_reset, s);
1102 }
1103 
1104 static Property fw_cfg_properties[] = {
1105     DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true),
1106     DEFINE_PROP_END_OF_LIST(),
1107 };
1108 
1109 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
1110 {
1111     FWCfgState *s = FW_CFG(dev);
1112     MachineState *machine = MACHINE(qdev_get_machine());
1113     uint32_t version = FW_CFG_VERSION;
1114 
1115     if (!fw_cfg_find()) {
1116         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
1117         return;
1118     }
1119 
1120     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
1121     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
1122     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
1123     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu));
1124     fw_cfg_bootsplash(s);
1125     fw_cfg_reboot(s);
1126 
1127     if (s->dma_enabled) {
1128         version |= FW_CFG_VERSION_DMA;
1129     }
1130 
1131     fw_cfg_add_i32(s, FW_CFG_ID, version);
1132 
1133     s->machine_ready.notify = fw_cfg_machine_ready;
1134     qemu_add_machine_init_done_notifier(&s->machine_ready);
1135 }
1136 
1137 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
1138                                 AddressSpace *dma_as)
1139 {
1140     DeviceState *dev;
1141     SysBusDevice *sbd;
1142     FWCfgIoState *ios;
1143     FWCfgState *s;
1144     bool dma_requested = dma_iobase && dma_as;
1145 
1146     dev = qdev_new(TYPE_FW_CFG_IO);
1147     if (!dma_requested) {
1148         qdev_prop_set_bit(dev, "dma_enabled", false);
1149     }
1150 
1151     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1152                               OBJECT(dev));
1153 
1154     sbd = SYS_BUS_DEVICE(dev);
1155     sysbus_realize_and_unref(sbd, &error_fatal);
1156     ios = FW_CFG_IO(dev);
1157     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
1158 
1159     s = FW_CFG(dev);
1160 
1161     if (s->dma_enabled) {
1162         /* 64 bits for the address field */
1163         s->dma_as = dma_as;
1164         s->dma_addr = 0;
1165         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
1166     }
1167 
1168     return s;
1169 }
1170 
1171 FWCfgState *fw_cfg_init_io(uint32_t iobase)
1172 {
1173     return fw_cfg_init_io_dma(iobase, 0, NULL);
1174 }
1175 
1176 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
1177                                  hwaddr data_addr, uint32_t data_width,
1178                                  hwaddr dma_addr, AddressSpace *dma_as)
1179 {
1180     DeviceState *dev;
1181     SysBusDevice *sbd;
1182     FWCfgState *s;
1183     bool dma_requested = dma_addr && dma_as;
1184 
1185     dev = qdev_new(TYPE_FW_CFG_MEM);
1186     qdev_prop_set_uint32(dev, "data_width", data_width);
1187     if (!dma_requested) {
1188         qdev_prop_set_bit(dev, "dma_enabled", false);
1189     }
1190 
1191     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
1192                               OBJECT(dev));
1193 
1194     sbd = SYS_BUS_DEVICE(dev);
1195     sysbus_realize_and_unref(sbd, &error_fatal);
1196     sysbus_mmio_map(sbd, 0, ctl_addr);
1197     sysbus_mmio_map(sbd, 1, data_addr);
1198 
1199     s = FW_CFG(dev);
1200 
1201     if (s->dma_enabled) {
1202         s->dma_as = dma_as;
1203         s->dma_addr = 0;
1204         sysbus_mmio_map(sbd, 2, dma_addr);
1205     }
1206 
1207     return s;
1208 }
1209 
1210 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1211 {
1212     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1213                                 fw_cfg_data_mem_ops.valid.max_access_size,
1214                                 0, NULL);
1215 }
1216 
1217 
1218 FWCfgState *fw_cfg_find(void)
1219 {
1220     /* Returns NULL unless there is exactly one fw_cfg device */
1221     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
1222 }
1223 
1224 
1225 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1226 {
1227     DeviceClass *dc = DEVICE_CLASS(klass);
1228 
1229     dc->reset = fw_cfg_reset;
1230     dc->vmsd = &vmstate_fw_cfg;
1231 
1232     device_class_set_props(dc, fw_cfg_properties);
1233 }
1234 
1235 static const TypeInfo fw_cfg_info = {
1236     .name          = TYPE_FW_CFG,
1237     .parent        = TYPE_SYS_BUS_DEVICE,
1238     .abstract      = true,
1239     .instance_size = sizeof(FWCfgState),
1240     .class_init    = fw_cfg_class_init,
1241 };
1242 
1243 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1244 {
1245     uint16_t file_slots_max;
1246 
1247     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1248         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1249                    FW_CFG_FILE_SLOTS_MIN);
1250         return;
1251     }
1252 
1253     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1254      * that we permit. The actual (exclusive) value coming from the
1255      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1256     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1257     if (fw_cfg_file_slots(s) > file_slots_max) {
1258         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1259                    file_slots_max);
1260         return;
1261     }
1262 
1263     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1264     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1265     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1266 }
1267 
1268 static Property fw_cfg_io_properties[] = {
1269     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1270                      true),
1271     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1272                        FW_CFG_FILE_SLOTS_DFLT),
1273     DEFINE_PROP_END_OF_LIST(),
1274 };
1275 
1276 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1277 {
1278     ERRP_GUARD();
1279     FWCfgIoState *s = FW_CFG_IO(dev);
1280 
1281     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1282     if (*errp) {
1283         return;
1284     }
1285 
1286     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1287      * with half of the 16-bit control register. Hence, the total size
1288      * of the i/o region used is FW_CFG_CTL_SIZE */
1289     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1290                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1291 
1292     if (FW_CFG(s)->dma_enabled) {
1293         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1294                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1295                               sizeof(dma_addr_t));
1296     }
1297 
1298     fw_cfg_common_realize(dev, errp);
1299 }
1300 
1301 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1302 {
1303     DeviceClass *dc = DEVICE_CLASS(klass);
1304 
1305     dc->realize = fw_cfg_io_realize;
1306     device_class_set_props(dc, fw_cfg_io_properties);
1307 }
1308 
1309 static const TypeInfo fw_cfg_io_info = {
1310     .name          = TYPE_FW_CFG_IO,
1311     .parent        = TYPE_FW_CFG,
1312     .instance_size = sizeof(FWCfgIoState),
1313     .class_init    = fw_cfg_io_class_init,
1314 };
1315 
1316 
1317 static Property fw_cfg_mem_properties[] = {
1318     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1319     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1320                      true),
1321     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1322                        FW_CFG_FILE_SLOTS_DFLT),
1323     DEFINE_PROP_END_OF_LIST(),
1324 };
1325 
1326 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1327 {
1328     ERRP_GUARD();
1329     FWCfgMemState *s = FW_CFG_MEM(dev);
1330     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1331     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1332 
1333     fw_cfg_file_slots_allocate(FW_CFG(s), errp);
1334     if (*errp) {
1335         return;
1336     }
1337 
1338     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1339                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1340     sysbus_init_mmio(sbd, &s->ctl_iomem);
1341 
1342     if (s->data_width > data_ops->valid.max_access_size) {
1343         s->wide_data_ops = *data_ops;
1344 
1345         s->wide_data_ops.valid.max_access_size = s->data_width;
1346         s->wide_data_ops.impl.max_access_size  = s->data_width;
1347         data_ops = &s->wide_data_ops;
1348     }
1349     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1350                           "fwcfg.data", data_ops->valid.max_access_size);
1351     sysbus_init_mmio(sbd, &s->data_iomem);
1352 
1353     if (FW_CFG(s)->dma_enabled) {
1354         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1355                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1356                               sizeof(dma_addr_t));
1357         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1358     }
1359 
1360     fw_cfg_common_realize(dev, errp);
1361 }
1362 
1363 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1364 {
1365     DeviceClass *dc = DEVICE_CLASS(klass);
1366 
1367     dc->realize = fw_cfg_mem_realize;
1368     device_class_set_props(dc, fw_cfg_mem_properties);
1369 }
1370 
1371 static const TypeInfo fw_cfg_mem_info = {
1372     .name          = TYPE_FW_CFG_MEM,
1373     .parent        = TYPE_FW_CFG,
1374     .instance_size = sizeof(FWCfgMemState),
1375     .class_init    = fw_cfg_mem_class_init,
1376 };
1377 
1378 static void fw_cfg_register_types(void)
1379 {
1380     type_register_static(&fw_cfg_info);
1381     type_register_static(&fw_cfg_io_info);
1382     type_register_static(&fw_cfg_mem_info);
1383 }
1384 
1385 type_init(fw_cfg_register_types)
1386