1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "sysemu/sysemu.h" 27 #include "sysemu/dma.h" 28 #include "hw/boards.h" 29 #include "hw/isa/isa.h" 30 #include "hw/nvram/fw_cfg.h" 31 #include "hw/sysbus.h" 32 #include "trace.h" 33 #include "qemu/error-report.h" 34 #include "qemu/config-file.h" 35 #include "qemu/cutils.h" 36 #include "qapi/error.h" 37 38 #define FW_CFG_FILE_SLOTS_DFLT 0x20 39 40 /* FW_CFG_VERSION bits */ 41 #define FW_CFG_VERSION 0x01 42 #define FW_CFG_VERSION_DMA 0x02 43 44 /* FW_CFG_DMA_CONTROL bits */ 45 #define FW_CFG_DMA_CTL_ERROR 0x01 46 #define FW_CFG_DMA_CTL_READ 0x02 47 #define FW_CFG_DMA_CTL_SKIP 0x04 48 #define FW_CFG_DMA_CTL_SELECT 0x08 49 #define FW_CFG_DMA_CTL_WRITE 0x10 50 51 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 52 53 struct FWCfgEntry { 54 uint32_t len; 55 bool allow_write; 56 uint8_t *data; 57 void *callback_opaque; 58 FWCfgReadCallback read_callback; 59 }; 60 61 #define JPG_FILE 0 62 #define BMP_FILE 1 63 64 static char *read_splashfile(char *filename, gsize *file_sizep, 65 int *file_typep) 66 { 67 GError *err = NULL; 68 gboolean res; 69 gchar *content; 70 int file_type; 71 unsigned int filehead; 72 int bmp_bpp; 73 74 res = g_file_get_contents(filename, &content, file_sizep, &err); 75 if (res == FALSE) { 76 error_report("failed to read splash file '%s'", filename); 77 g_error_free(err); 78 return NULL; 79 } 80 81 /* check file size */ 82 if (*file_sizep < 30) { 83 goto error; 84 } 85 86 /* check magic ID */ 87 filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff; 88 if (filehead == 0xd8ff) { 89 file_type = JPG_FILE; 90 } else if (filehead == 0x4d42) { 91 file_type = BMP_FILE; 92 } else { 93 goto error; 94 } 95 96 /* check BMP bpp */ 97 if (file_type == BMP_FILE) { 98 bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff; 99 if (bmp_bpp != 24) { 100 goto error; 101 } 102 } 103 104 /* return values */ 105 *file_typep = file_type; 106 107 return content; 108 109 error: 110 error_report("splash file '%s' format not recognized; must be JPEG " 111 "or 24 bit BMP", filename); 112 g_free(content); 113 return NULL; 114 } 115 116 static void fw_cfg_bootsplash(FWCfgState *s) 117 { 118 int boot_splash_time = -1; 119 const char *boot_splash_filename = NULL; 120 char *p; 121 char *filename, *file_data; 122 gsize file_size; 123 int file_type; 124 const char *temp; 125 126 /* get user configuration */ 127 QemuOptsList *plist = qemu_find_opts("boot-opts"); 128 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 129 if (opts != NULL) { 130 temp = qemu_opt_get(opts, "splash"); 131 if (temp != NULL) { 132 boot_splash_filename = temp; 133 } 134 temp = qemu_opt_get(opts, "splash-time"); 135 if (temp != NULL) { 136 p = (char *)temp; 137 boot_splash_time = strtol(p, &p, 10); 138 } 139 } 140 141 /* insert splash time if user configurated */ 142 if (boot_splash_time >= 0) { 143 /* validate the input */ 144 if (boot_splash_time > 0xffff) { 145 error_report("splash time is big than 65535, force it to 65535."); 146 boot_splash_time = 0xffff; 147 } 148 /* use little endian format */ 149 qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff); 150 qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff); 151 fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2); 152 } 153 154 /* insert splash file if user configurated */ 155 if (boot_splash_filename != NULL) { 156 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 157 if (filename == NULL) { 158 error_report("failed to find file '%s'.", boot_splash_filename); 159 return; 160 } 161 162 /* loading file data */ 163 file_data = read_splashfile(filename, &file_size, &file_type); 164 if (file_data == NULL) { 165 g_free(filename); 166 return; 167 } 168 g_free(boot_splash_filedata); 169 boot_splash_filedata = (uint8_t *)file_data; 170 boot_splash_filedata_size = file_size; 171 172 /* insert data */ 173 if (file_type == JPG_FILE) { 174 fw_cfg_add_file(s, "bootsplash.jpg", 175 boot_splash_filedata, boot_splash_filedata_size); 176 } else { 177 fw_cfg_add_file(s, "bootsplash.bmp", 178 boot_splash_filedata, boot_splash_filedata_size); 179 } 180 g_free(filename); 181 } 182 } 183 184 static void fw_cfg_reboot(FWCfgState *s) 185 { 186 int reboot_timeout = -1; 187 char *p; 188 const char *temp; 189 190 /* get user configuration */ 191 QemuOptsList *plist = qemu_find_opts("boot-opts"); 192 QemuOpts *opts = QTAILQ_FIRST(&plist->head); 193 if (opts != NULL) { 194 temp = qemu_opt_get(opts, "reboot-timeout"); 195 if (temp != NULL) { 196 p = (char *)temp; 197 reboot_timeout = strtol(p, &p, 10); 198 } 199 } 200 /* validate the input */ 201 if (reboot_timeout > 0xffff) { 202 error_report("reboot timeout is larger than 65535, force it to 65535."); 203 reboot_timeout = 0xffff; 204 } 205 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4); 206 } 207 208 static void fw_cfg_write(FWCfgState *s, uint8_t value) 209 { 210 /* nothing, write support removed in QEMU v2.4+ */ 211 } 212 213 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 214 { 215 return s->file_slots; 216 } 217 218 /* Note: this function returns an exclusive limit. */ 219 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 220 { 221 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 222 } 223 224 static int fw_cfg_select(FWCfgState *s, uint16_t key) 225 { 226 int arch, ret; 227 FWCfgEntry *e; 228 229 s->cur_offset = 0; 230 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 231 s->cur_entry = FW_CFG_INVALID; 232 ret = 0; 233 } else { 234 s->cur_entry = key; 235 ret = 1; 236 /* entry successfully selected, now run callback if present */ 237 arch = !!(key & FW_CFG_ARCH_LOCAL); 238 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 239 if (e->read_callback) { 240 e->read_callback(e->callback_opaque); 241 } 242 } 243 244 trace_fw_cfg_select(s, key, ret); 245 return ret; 246 } 247 248 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 249 { 250 FWCfgState *s = opaque; 251 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 252 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 253 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 254 uint64_t value = 0; 255 256 assert(size > 0 && size <= sizeof(value)); 257 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 258 /* The least significant 'size' bytes of the return value are 259 * expected to contain a string preserving portion of the item 260 * data, padded with zeros on the right in case we run out early. 261 * In technical terms, we're composing the host-endian representation 262 * of the big endian interpretation of the fw_cfg string. 263 */ 264 do { 265 value = (value << 8) | e->data[s->cur_offset++]; 266 } while (--size && s->cur_offset < e->len); 267 /* If size is still not zero, we *did* run out early, so continue 268 * left-shifting, to add the appropriate number of padding zeros 269 * on the right. 270 */ 271 value <<= 8 * size; 272 } 273 274 trace_fw_cfg_read(s, value); 275 return value; 276 } 277 278 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 279 uint64_t value, unsigned size) 280 { 281 FWCfgState *s = opaque; 282 unsigned i = size; 283 284 do { 285 fw_cfg_write(s, value >> (8 * --i)); 286 } while (i); 287 } 288 289 static void fw_cfg_dma_transfer(FWCfgState *s) 290 { 291 dma_addr_t len; 292 FWCfgDmaAccess dma; 293 int arch; 294 FWCfgEntry *e; 295 int read = 0, write = 0; 296 dma_addr_t dma_addr; 297 298 /* Reset the address before the next access */ 299 dma_addr = s->dma_addr; 300 s->dma_addr = 0; 301 302 if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) { 303 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 304 FW_CFG_DMA_CTL_ERROR); 305 return; 306 } 307 308 dma.address = be64_to_cpu(dma.address); 309 dma.length = be32_to_cpu(dma.length); 310 dma.control = be32_to_cpu(dma.control); 311 312 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 313 fw_cfg_select(s, dma.control >> 16); 314 } 315 316 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 317 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 318 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 319 320 if (dma.control & FW_CFG_DMA_CTL_READ) { 321 read = 1; 322 write = 0; 323 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 324 read = 0; 325 write = 1; 326 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 327 read = 0; 328 write = 0; 329 } else { 330 dma.length = 0; 331 } 332 333 dma.control = 0; 334 335 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 336 if (s->cur_entry == FW_CFG_INVALID || !e->data || 337 s->cur_offset >= e->len) { 338 len = dma.length; 339 340 /* If the access is not a read access, it will be a skip access, 341 * tested before. 342 */ 343 if (read) { 344 if (dma_memory_set(s->dma_as, dma.address, 0, len)) { 345 dma.control |= FW_CFG_DMA_CTL_ERROR; 346 } 347 } 348 if (write) { 349 dma.control |= FW_CFG_DMA_CTL_ERROR; 350 } 351 } else { 352 if (dma.length <= (e->len - s->cur_offset)) { 353 len = dma.length; 354 } else { 355 len = (e->len - s->cur_offset); 356 } 357 358 /* If the access is not a read access, it will be a skip access, 359 * tested before. 360 */ 361 if (read) { 362 if (dma_memory_write(s->dma_as, dma.address, 363 &e->data[s->cur_offset], len)) { 364 dma.control |= FW_CFG_DMA_CTL_ERROR; 365 } 366 } 367 if (write) { 368 if (!e->allow_write || 369 len != dma.length || 370 dma_memory_read(s->dma_as, dma.address, 371 &e->data[s->cur_offset], len)) { 372 dma.control |= FW_CFG_DMA_CTL_ERROR; 373 } 374 } 375 376 s->cur_offset += len; 377 } 378 379 dma.address += len; 380 dma.length -= len; 381 382 } 383 384 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 385 dma.control); 386 387 trace_fw_cfg_read(s, 0); 388 } 389 390 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 391 unsigned size) 392 { 393 /* Return a signature value (and handle various read sizes) */ 394 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 395 } 396 397 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 398 uint64_t value, unsigned size) 399 { 400 FWCfgState *s = opaque; 401 402 if (size == 4) { 403 if (addr == 0) { 404 /* FWCfgDmaAccess high address */ 405 s->dma_addr = value << 32; 406 } else if (addr == 4) { 407 /* FWCfgDmaAccess low address */ 408 s->dma_addr |= value; 409 fw_cfg_dma_transfer(s); 410 } 411 } else if (size == 8 && addr == 0) { 412 s->dma_addr = value; 413 fw_cfg_dma_transfer(s); 414 } 415 } 416 417 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 418 unsigned size, bool is_write) 419 { 420 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 421 (size == 8 && addr == 0)); 422 } 423 424 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 425 unsigned size, bool is_write) 426 { 427 return addr == 0; 428 } 429 430 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 431 uint64_t value, unsigned size) 432 { 433 fw_cfg_select(opaque, (uint16_t)value); 434 } 435 436 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 437 unsigned size, bool is_write) 438 { 439 return is_write && size == 2; 440 } 441 442 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 443 uint64_t value, unsigned size) 444 { 445 switch (size) { 446 case 1: 447 fw_cfg_write(opaque, (uint8_t)value); 448 break; 449 case 2: 450 fw_cfg_select(opaque, (uint16_t)value); 451 break; 452 } 453 } 454 455 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 456 unsigned size, bool is_write) 457 { 458 return (size == 1) || (is_write && size == 2); 459 } 460 461 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 462 .write = fw_cfg_ctl_mem_write, 463 .endianness = DEVICE_BIG_ENDIAN, 464 .valid.accepts = fw_cfg_ctl_mem_valid, 465 }; 466 467 static const MemoryRegionOps fw_cfg_data_mem_ops = { 468 .read = fw_cfg_data_read, 469 .write = fw_cfg_data_mem_write, 470 .endianness = DEVICE_BIG_ENDIAN, 471 .valid = { 472 .min_access_size = 1, 473 .max_access_size = 1, 474 .accepts = fw_cfg_data_mem_valid, 475 }, 476 }; 477 478 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 479 .read = fw_cfg_data_read, 480 .write = fw_cfg_comb_write, 481 .endianness = DEVICE_LITTLE_ENDIAN, 482 .valid.accepts = fw_cfg_comb_valid, 483 }; 484 485 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 486 .read = fw_cfg_dma_mem_read, 487 .write = fw_cfg_dma_mem_write, 488 .endianness = DEVICE_BIG_ENDIAN, 489 .valid.accepts = fw_cfg_dma_mem_valid, 490 .valid.max_access_size = 8, 491 .impl.max_access_size = 8, 492 }; 493 494 static void fw_cfg_reset(DeviceState *d) 495 { 496 FWCfgState *s = FW_CFG(d); 497 498 /* we never register a read callback for FW_CFG_SIGNATURE */ 499 fw_cfg_select(s, FW_CFG_SIGNATURE); 500 } 501 502 /* Save restore 32 bit int as uint16_t 503 This is a Big hack, but it is how the old state did it. 504 Or we broke compatibility in the state, or we can't use struct tm 505 */ 506 507 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 508 VMStateField *field) 509 { 510 uint32_t *v = pv; 511 *v = qemu_get_be16(f); 512 return 0; 513 } 514 515 static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field, 516 QJSON *vmdesc) 517 { 518 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 519 fprintf(stderr, "This functions shouldn't be called.\n"); 520 521 return 0; 522 } 523 524 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 525 .name = "int32_as_uint16", 526 .get = get_uint32_as_uint16, 527 .put = put_unused, 528 }; 529 530 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 531 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 532 533 534 static bool is_version_1(void *opaque, int version_id) 535 { 536 return version_id == 1; 537 } 538 539 bool fw_cfg_dma_enabled(void *opaque) 540 { 541 FWCfgState *s = opaque; 542 543 return s->dma_enabled; 544 } 545 546 static const VMStateDescription vmstate_fw_cfg_dma = { 547 .name = "fw_cfg/dma", 548 .needed = fw_cfg_dma_enabled, 549 .fields = (VMStateField[]) { 550 VMSTATE_UINT64(dma_addr, FWCfgState), 551 VMSTATE_END_OF_LIST() 552 }, 553 }; 554 555 static const VMStateDescription vmstate_fw_cfg = { 556 .name = "fw_cfg", 557 .version_id = 2, 558 .minimum_version_id = 1, 559 .fields = (VMStateField[]) { 560 VMSTATE_UINT16(cur_entry, FWCfgState), 561 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 562 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 563 VMSTATE_END_OF_LIST() 564 }, 565 .subsections = (const VMStateDescription*[]) { 566 &vmstate_fw_cfg_dma, 567 NULL, 568 } 569 }; 570 571 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key, 572 FWCfgReadCallback callback, 573 void *callback_opaque, 574 void *data, size_t len, 575 bool read_only) 576 { 577 int arch = !!(key & FW_CFG_ARCH_LOCAL); 578 579 key &= FW_CFG_ENTRY_MASK; 580 581 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 582 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 583 584 s->entries[arch][key].data = data; 585 s->entries[arch][key].len = (uint32_t)len; 586 s->entries[arch][key].read_callback = callback; 587 s->entries[arch][key].callback_opaque = callback_opaque; 588 s->entries[arch][key].allow_write = !read_only; 589 } 590 591 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 592 void *data, size_t len) 593 { 594 void *ptr; 595 int arch = !!(key & FW_CFG_ARCH_LOCAL); 596 597 key &= FW_CFG_ENTRY_MASK; 598 599 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 600 601 /* return the old data to the function caller, avoid memory leak */ 602 ptr = s->entries[arch][key].data; 603 s->entries[arch][key].data = data; 604 s->entries[arch][key].len = len; 605 s->entries[arch][key].callback_opaque = NULL; 606 s->entries[arch][key].allow_write = false; 607 608 return ptr; 609 } 610 611 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 612 { 613 fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len, true); 614 } 615 616 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 617 { 618 size_t sz = strlen(value) + 1; 619 620 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 621 } 622 623 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 624 { 625 uint16_t *copy; 626 627 copy = g_malloc(sizeof(value)); 628 *copy = cpu_to_le16(value); 629 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 630 } 631 632 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 633 { 634 uint16_t *copy, *old; 635 636 copy = g_malloc(sizeof(value)); 637 *copy = cpu_to_le16(value); 638 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 639 g_free(old); 640 } 641 642 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 643 { 644 uint32_t *copy; 645 646 copy = g_malloc(sizeof(value)); 647 *copy = cpu_to_le32(value); 648 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 649 } 650 651 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 652 { 653 uint64_t *copy; 654 655 copy = g_malloc(sizeof(value)); 656 *copy = cpu_to_le64(value); 657 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 658 } 659 660 void fw_cfg_set_order_override(FWCfgState *s, int order) 661 { 662 assert(s->fw_cfg_order_override == 0); 663 s->fw_cfg_order_override = order; 664 } 665 666 void fw_cfg_reset_order_override(FWCfgState *s) 667 { 668 assert(s->fw_cfg_order_override != 0); 669 s->fw_cfg_order_override = 0; 670 } 671 672 /* 673 * This is the legacy order list. For legacy systems, files are in 674 * the fw_cfg in the order defined below, by the "order" value. Note 675 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 676 * specific area, but there may be more than one and they occur in the 677 * order that the user specifies them on the command line. Those are 678 * handled in a special manner, using the order override above. 679 * 680 * For non-legacy, the files are sorted by filename to avoid this kind 681 * of complexity in the future. 682 * 683 * This is only for x86, other arches don't implement versioning so 684 * they won't set legacy mode. 685 */ 686 static struct { 687 const char *name; 688 int order; 689 } fw_cfg_order[] = { 690 { "etc/boot-menu-wait", 10 }, 691 { "bootsplash.jpg", 11 }, 692 { "bootsplash.bmp", 12 }, 693 { "etc/boot-fail-wait", 15 }, 694 { "etc/smbios/smbios-tables", 20 }, 695 { "etc/smbios/smbios-anchor", 30 }, 696 { "etc/e820", 40 }, 697 { "etc/reserved-memory-end", 50 }, 698 { "genroms/kvmvapic.bin", 55 }, 699 { "genroms/linuxboot.bin", 60 }, 700 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 701 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 702 { "etc/system-states", 90 }, 703 { }, /* User ROMs come here, 100. */ 704 { }, /* Device FW comes here, 110. */ 705 { "etc/extra-pci-roots", 120 }, 706 { "etc/acpi/tables", 130 }, 707 { "etc/table-loader", 140 }, 708 { "etc/tpm/log", 150 }, 709 { "etc/acpi/rsdp", 160 }, 710 { "bootorder", 170 }, 711 712 #define FW_CFG_ORDER_OVERRIDE_LAST 200 713 }; 714 715 static int get_fw_cfg_order(FWCfgState *s, const char *name) 716 { 717 int i; 718 719 if (s->fw_cfg_order_override > 0) { 720 return s->fw_cfg_order_override; 721 } 722 723 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 724 if (fw_cfg_order[i].name == NULL) { 725 continue; 726 } 727 728 if (strcmp(name, fw_cfg_order[i].name) == 0) { 729 return fw_cfg_order[i].order; 730 } 731 } 732 733 /* Stick unknown stuff at the end. */ 734 warn_report("Unknown firmware file in legacy mode: %s", name); 735 return FW_CFG_ORDER_OVERRIDE_LAST; 736 } 737 738 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 739 FWCfgReadCallback callback, void *callback_opaque, 740 void *data, size_t len, bool read_only) 741 { 742 int i, index, count; 743 size_t dsize; 744 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 745 int order = 0; 746 747 if (!s->files) { 748 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 749 s->files = g_malloc0(dsize); 750 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 751 } 752 753 count = be32_to_cpu(s->files->count); 754 assert(count < fw_cfg_file_slots(s)); 755 756 /* Find the insertion point. */ 757 if (mc->legacy_fw_cfg_order) { 758 /* 759 * Sort by order. For files with the same order, we keep them 760 * in the sequence in which they were added. 761 */ 762 order = get_fw_cfg_order(s, filename); 763 for (index = count; 764 index > 0 && order < s->entry_order[index - 1]; 765 index--); 766 } else { 767 /* Sort by file name. */ 768 for (index = count; 769 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 770 index--); 771 } 772 773 /* 774 * Move all the entries from the index point and after down one 775 * to create a slot for the new entry. Because calculations are 776 * being done with the index, make it so that "i" is the current 777 * index and "i - 1" is the one being copied from, thus the 778 * unusual start and end in the for statement. 779 */ 780 for (i = count + 1; i > index; i--) { 781 s->files->f[i] = s->files->f[i - 1]; 782 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 783 s->entries[0][FW_CFG_FILE_FIRST + i] = 784 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 785 s->entry_order[i] = s->entry_order[i - 1]; 786 } 787 788 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 789 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 790 791 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 792 for (i = 0; i <= count; i++) { 793 if (i != index && 794 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 795 error_report("duplicate fw_cfg file name: %s", 796 s->files->f[index].name); 797 exit(1); 798 } 799 } 800 801 fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index, 802 callback, callback_opaque, data, len, 803 read_only); 804 805 s->files->f[index].size = cpu_to_be32(len); 806 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 807 s->entry_order[index] = order; 808 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 809 810 s->files->count = cpu_to_be32(count+1); 811 } 812 813 void fw_cfg_add_file(FWCfgState *s, const char *filename, 814 void *data, size_t len) 815 { 816 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true); 817 } 818 819 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 820 void *data, size_t len) 821 { 822 int i, index; 823 void *ptr = NULL; 824 825 assert(s->files); 826 827 index = be32_to_cpu(s->files->count); 828 assert(index < fw_cfg_file_slots(s)); 829 830 for (i = 0; i < index; i++) { 831 if (strcmp(filename, s->files->f[i].name) == 0) { 832 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 833 data, len); 834 s->files->f[i].size = cpu_to_be32(len); 835 return ptr; 836 } 837 } 838 /* add new one */ 839 fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true); 840 return NULL; 841 } 842 843 static void fw_cfg_machine_reset(void *opaque) 844 { 845 void *ptr; 846 size_t len; 847 FWCfgState *s = opaque; 848 char *bootindex = get_boot_devices_list(&len, false); 849 850 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len); 851 g_free(ptr); 852 } 853 854 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 855 { 856 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 857 qemu_register_reset(fw_cfg_machine_reset, s); 858 } 859 860 861 862 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 863 { 864 FWCfgState *s = FW_CFG(dev); 865 MachineState *machine = MACHINE(qdev_get_machine()); 866 uint32_t version = FW_CFG_VERSION; 867 868 if (!fw_cfg_find()) { 869 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 870 return; 871 } 872 873 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 874 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 875 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 876 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu); 877 fw_cfg_bootsplash(s); 878 fw_cfg_reboot(s); 879 880 if (s->dma_enabled) { 881 version |= FW_CFG_VERSION_DMA; 882 } 883 884 fw_cfg_add_i32(s, FW_CFG_ID, version); 885 886 s->machine_ready.notify = fw_cfg_machine_ready; 887 qemu_add_machine_init_done_notifier(&s->machine_ready); 888 } 889 890 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 891 AddressSpace *dma_as) 892 { 893 DeviceState *dev; 894 SysBusDevice *sbd; 895 FWCfgIoState *ios; 896 FWCfgState *s; 897 bool dma_requested = dma_iobase && dma_as; 898 899 dev = qdev_create(NULL, TYPE_FW_CFG_IO); 900 if (!dma_requested) { 901 qdev_prop_set_bit(dev, "dma_enabled", false); 902 } 903 904 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 905 OBJECT(dev), NULL); 906 qdev_init_nofail(dev); 907 908 sbd = SYS_BUS_DEVICE(dev); 909 ios = FW_CFG_IO(dev); 910 sysbus_add_io(sbd, iobase, &ios->comb_iomem); 911 912 s = FW_CFG(dev); 913 914 if (s->dma_enabled) { 915 /* 64 bits for the address field */ 916 s->dma_as = dma_as; 917 s->dma_addr = 0; 918 sysbus_add_io(sbd, dma_iobase, &s->dma_iomem); 919 } 920 921 return s; 922 } 923 924 FWCfgState *fw_cfg_init_io(uint32_t iobase) 925 { 926 return fw_cfg_init_io_dma(iobase, 0, NULL); 927 } 928 929 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 930 hwaddr data_addr, uint32_t data_width, 931 hwaddr dma_addr, AddressSpace *dma_as) 932 { 933 DeviceState *dev; 934 SysBusDevice *sbd; 935 FWCfgState *s; 936 bool dma_requested = dma_addr && dma_as; 937 938 dev = qdev_create(NULL, TYPE_FW_CFG_MEM); 939 qdev_prop_set_uint32(dev, "data_width", data_width); 940 if (!dma_requested) { 941 qdev_prop_set_bit(dev, "dma_enabled", false); 942 } 943 944 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 945 OBJECT(dev), NULL); 946 qdev_init_nofail(dev); 947 948 sbd = SYS_BUS_DEVICE(dev); 949 sysbus_mmio_map(sbd, 0, ctl_addr); 950 sysbus_mmio_map(sbd, 1, data_addr); 951 952 s = FW_CFG(dev); 953 954 if (s->dma_enabled) { 955 s->dma_as = dma_as; 956 s->dma_addr = 0; 957 sysbus_mmio_map(sbd, 2, dma_addr); 958 } 959 960 return s; 961 } 962 963 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 964 { 965 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 966 fw_cfg_data_mem_ops.valid.max_access_size, 967 0, NULL); 968 } 969 970 971 FWCfgState *fw_cfg_find(void) 972 { 973 /* Returns NULL unless there is exactly one fw_cfg device */ 974 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 975 } 976 977 978 static void fw_cfg_class_init(ObjectClass *klass, void *data) 979 { 980 DeviceClass *dc = DEVICE_CLASS(klass); 981 982 dc->reset = fw_cfg_reset; 983 dc->vmsd = &vmstate_fw_cfg; 984 } 985 986 static const TypeInfo fw_cfg_info = { 987 .name = TYPE_FW_CFG, 988 .parent = TYPE_SYS_BUS_DEVICE, 989 .abstract = true, 990 .instance_size = sizeof(FWCfgState), 991 .class_init = fw_cfg_class_init, 992 }; 993 994 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 995 { 996 uint16_t file_slots_max; 997 998 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 999 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1000 FW_CFG_FILE_SLOTS_MIN); 1001 return; 1002 } 1003 1004 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1005 * that we permit. The actual (exclusive) value coming from the 1006 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1007 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1008 if (fw_cfg_file_slots(s) > file_slots_max) { 1009 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1010 file_slots_max); 1011 return; 1012 } 1013 1014 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1015 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1016 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1017 } 1018 1019 static Property fw_cfg_io_properties[] = { 1020 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1021 true), 1022 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1023 FW_CFG_FILE_SLOTS_DFLT), 1024 DEFINE_PROP_END_OF_LIST(), 1025 }; 1026 1027 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1028 { 1029 FWCfgIoState *s = FW_CFG_IO(dev); 1030 Error *local_err = NULL; 1031 1032 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1033 if (local_err) { 1034 error_propagate(errp, local_err); 1035 return; 1036 } 1037 1038 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1039 * with half of the 16-bit control register. Hence, the total size 1040 * of the i/o region used is FW_CFG_CTL_SIZE */ 1041 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1042 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1043 1044 if (FW_CFG(s)->dma_enabled) { 1045 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1046 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1047 sizeof(dma_addr_t)); 1048 } 1049 1050 fw_cfg_common_realize(dev, errp); 1051 } 1052 1053 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1054 { 1055 DeviceClass *dc = DEVICE_CLASS(klass); 1056 1057 dc->realize = fw_cfg_io_realize; 1058 dc->props = fw_cfg_io_properties; 1059 } 1060 1061 static const TypeInfo fw_cfg_io_info = { 1062 .name = TYPE_FW_CFG_IO, 1063 .parent = TYPE_FW_CFG, 1064 .instance_size = sizeof(FWCfgIoState), 1065 .class_init = fw_cfg_io_class_init, 1066 }; 1067 1068 1069 static Property fw_cfg_mem_properties[] = { 1070 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1071 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1072 true), 1073 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1074 FW_CFG_FILE_SLOTS_DFLT), 1075 DEFINE_PROP_END_OF_LIST(), 1076 }; 1077 1078 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1079 { 1080 FWCfgMemState *s = FW_CFG_MEM(dev); 1081 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1082 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1083 Error *local_err = NULL; 1084 1085 fw_cfg_file_slots_allocate(FW_CFG(s), &local_err); 1086 if (local_err) { 1087 error_propagate(errp, local_err); 1088 return; 1089 } 1090 1091 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1092 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1093 sysbus_init_mmio(sbd, &s->ctl_iomem); 1094 1095 if (s->data_width > data_ops->valid.max_access_size) { 1096 /* memberwise copy because the "old_mmio" member is const */ 1097 s->wide_data_ops.read = data_ops->read; 1098 s->wide_data_ops.write = data_ops->write; 1099 s->wide_data_ops.endianness = data_ops->endianness; 1100 s->wide_data_ops.valid = data_ops->valid; 1101 s->wide_data_ops.impl = data_ops->impl; 1102 1103 s->wide_data_ops.valid.max_access_size = s->data_width; 1104 s->wide_data_ops.impl.max_access_size = s->data_width; 1105 data_ops = &s->wide_data_ops; 1106 } 1107 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1108 "fwcfg.data", data_ops->valid.max_access_size); 1109 sysbus_init_mmio(sbd, &s->data_iomem); 1110 1111 if (FW_CFG(s)->dma_enabled) { 1112 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1113 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1114 sizeof(dma_addr_t)); 1115 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1116 } 1117 1118 fw_cfg_common_realize(dev, errp); 1119 } 1120 1121 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1122 { 1123 DeviceClass *dc = DEVICE_CLASS(klass); 1124 1125 dc->realize = fw_cfg_mem_realize; 1126 dc->props = fw_cfg_mem_properties; 1127 } 1128 1129 static const TypeInfo fw_cfg_mem_info = { 1130 .name = TYPE_FW_CFG_MEM, 1131 .parent = TYPE_FW_CFG, 1132 .instance_size = sizeof(FWCfgMemState), 1133 .class_init = fw_cfg_mem_class_init, 1134 }; 1135 1136 1137 static void fw_cfg_register_types(void) 1138 { 1139 type_register_static(&fw_cfg_info); 1140 type_register_static(&fw_cfg_io_info); 1141 type_register_static(&fw_cfg_mem_info); 1142 } 1143 1144 type_init(fw_cfg_register_types) 1145