xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 9543fdaf)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/isa/isa.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/sysbus.h"
33 #include "trace.h"
34 #include "qemu/error-report.h"
35 #include "qemu/option.h"
36 #include "qemu/config-file.h"
37 #include "qemu/cutils.h"
38 #include "qapi/error.h"
39 
40 #define FW_CFG_FILE_SLOTS_DFLT 0x20
41 
42 /* FW_CFG_VERSION bits */
43 #define FW_CFG_VERSION      0x01
44 #define FW_CFG_VERSION_DMA  0x02
45 
46 /* FW_CFG_DMA_CONTROL bits */
47 #define FW_CFG_DMA_CTL_ERROR   0x01
48 #define FW_CFG_DMA_CTL_READ    0x02
49 #define FW_CFG_DMA_CTL_SKIP    0x04
50 #define FW_CFG_DMA_CTL_SELECT  0x08
51 #define FW_CFG_DMA_CTL_WRITE   0x10
52 
53 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
54 
55 struct FWCfgEntry {
56     uint32_t len;
57     bool allow_write;
58     uint8_t *data;
59     void *callback_opaque;
60     FWCfgCallback select_cb;
61     FWCfgWriteCallback write_cb;
62 };
63 
64 #define JPG_FILE 0
65 #define BMP_FILE 1
66 
67 static char *read_splashfile(char *filename, gsize *file_sizep,
68                              int *file_typep)
69 {
70     GError *err = NULL;
71     gboolean res;
72     gchar *content;
73     int file_type;
74     unsigned int filehead;
75     int bmp_bpp;
76 
77     res = g_file_get_contents(filename, &content, file_sizep, &err);
78     if (res == FALSE) {
79         error_report("failed to read splash file '%s'", filename);
80         g_error_free(err);
81         return NULL;
82     }
83 
84     /* check file size */
85     if (*file_sizep < 30) {
86         goto error;
87     }
88 
89     /* check magic ID */
90     filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
91     if (filehead == 0xd8ff) {
92         file_type = JPG_FILE;
93     } else if (filehead == 0x4d42) {
94         file_type = BMP_FILE;
95     } else {
96         goto error;
97     }
98 
99     /* check BMP bpp */
100     if (file_type == BMP_FILE) {
101         bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
102         if (bmp_bpp != 24) {
103             goto error;
104         }
105     }
106 
107     /* return values */
108     *file_typep = file_type;
109 
110     return content;
111 
112 error:
113     error_report("splash file '%s' format not recognized; must be JPEG "
114                  "or 24 bit BMP", filename);
115     g_free(content);
116     return NULL;
117 }
118 
119 static void fw_cfg_bootsplash(FWCfgState *s)
120 {
121     int boot_splash_time = -1;
122     const char *boot_splash_filename = NULL;
123     char *p;
124     char *filename, *file_data;
125     gsize file_size;
126     int file_type;
127     const char *temp;
128 
129     /* get user configuration */
130     QemuOptsList *plist = qemu_find_opts("boot-opts");
131     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
132     if (opts != NULL) {
133         temp = qemu_opt_get(opts, "splash");
134         if (temp != NULL) {
135             boot_splash_filename = temp;
136         }
137         temp = qemu_opt_get(opts, "splash-time");
138         if (temp != NULL) {
139             p = (char *)temp;
140             boot_splash_time = strtol(p, &p, 10);
141         }
142     }
143 
144     /* insert splash time if user configurated */
145     if (boot_splash_time >= 0) {
146         /* validate the input */
147         if (boot_splash_time > 0xffff) {
148             error_report("splash time is big than 65535, force it to 65535.");
149             boot_splash_time = 0xffff;
150         }
151         /* use little endian format */
152         qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
153         qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
154         fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
155     }
156 
157     /* insert splash file if user configurated */
158     if (boot_splash_filename != NULL) {
159         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
160         if (filename == NULL) {
161             error_report("failed to find file '%s'.", boot_splash_filename);
162             return;
163         }
164 
165         /* loading file data */
166         file_data = read_splashfile(filename, &file_size, &file_type);
167         if (file_data == NULL) {
168             g_free(filename);
169             return;
170         }
171         g_free(boot_splash_filedata);
172         boot_splash_filedata = (uint8_t *)file_data;
173         boot_splash_filedata_size = file_size;
174 
175         /* insert data */
176         if (file_type == JPG_FILE) {
177             fw_cfg_add_file(s, "bootsplash.jpg",
178                     boot_splash_filedata, boot_splash_filedata_size);
179         } else {
180             fw_cfg_add_file(s, "bootsplash.bmp",
181                     boot_splash_filedata, boot_splash_filedata_size);
182         }
183         g_free(filename);
184     }
185 }
186 
187 static void fw_cfg_reboot(FWCfgState *s)
188 {
189     int reboot_timeout = -1;
190     char *p;
191     const char *temp;
192 
193     /* get user configuration */
194     QemuOptsList *plist = qemu_find_opts("boot-opts");
195     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
196     if (opts != NULL) {
197         temp = qemu_opt_get(opts, "reboot-timeout");
198         if (temp != NULL) {
199             p = (char *)temp;
200             reboot_timeout = strtol(p, &p, 10);
201         }
202     }
203     /* validate the input */
204     if (reboot_timeout > 0xffff) {
205         error_report("reboot timeout is larger than 65535, force it to 65535.");
206         reboot_timeout = 0xffff;
207     }
208     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
209 }
210 
211 static void fw_cfg_write(FWCfgState *s, uint8_t value)
212 {
213     /* nothing, write support removed in QEMU v2.4+ */
214 }
215 
216 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
217 {
218     return s->file_slots;
219 }
220 
221 /* Note: this function returns an exclusive limit. */
222 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
223 {
224     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
225 }
226 
227 static int fw_cfg_select(FWCfgState *s, uint16_t key)
228 {
229     int arch, ret;
230     FWCfgEntry *e;
231 
232     s->cur_offset = 0;
233     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
234         s->cur_entry = FW_CFG_INVALID;
235         ret = 0;
236     } else {
237         s->cur_entry = key;
238         ret = 1;
239         /* entry successfully selected, now run callback if present */
240         arch = !!(key & FW_CFG_ARCH_LOCAL);
241         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
242         if (e->select_cb) {
243             e->select_cb(e->callback_opaque);
244         }
245     }
246 
247     trace_fw_cfg_select(s, key, ret);
248     return ret;
249 }
250 
251 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
252 {
253     FWCfgState *s = opaque;
254     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
255     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
256                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
257     uint64_t value = 0;
258 
259     assert(size > 0 && size <= sizeof(value));
260     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
261         /* The least significant 'size' bytes of the return value are
262          * expected to contain a string preserving portion of the item
263          * data, padded with zeros on the right in case we run out early.
264          * In technical terms, we're composing the host-endian representation
265          * of the big endian interpretation of the fw_cfg string.
266          */
267         do {
268             value = (value << 8) | e->data[s->cur_offset++];
269         } while (--size && s->cur_offset < e->len);
270         /* If size is still not zero, we *did* run out early, so continue
271          * left-shifting, to add the appropriate number of padding zeros
272          * on the right.
273          */
274         value <<= 8 * size;
275     }
276 
277     trace_fw_cfg_read(s, value);
278     return value;
279 }
280 
281 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
282                                   uint64_t value, unsigned size)
283 {
284     FWCfgState *s = opaque;
285     unsigned i = size;
286 
287     do {
288         fw_cfg_write(s, value >> (8 * --i));
289     } while (i);
290 }
291 
292 static void fw_cfg_dma_transfer(FWCfgState *s)
293 {
294     dma_addr_t len;
295     FWCfgDmaAccess dma;
296     int arch;
297     FWCfgEntry *e;
298     int read = 0, write = 0;
299     dma_addr_t dma_addr;
300 
301     /* Reset the address before the next access */
302     dma_addr = s->dma_addr;
303     s->dma_addr = 0;
304 
305     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
306         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
307                    FW_CFG_DMA_CTL_ERROR);
308         return;
309     }
310 
311     dma.address = be64_to_cpu(dma.address);
312     dma.length = be32_to_cpu(dma.length);
313     dma.control = be32_to_cpu(dma.control);
314 
315     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
316         fw_cfg_select(s, dma.control >> 16);
317     }
318 
319     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
320     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
321         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
322 
323     if (dma.control & FW_CFG_DMA_CTL_READ) {
324         read = 1;
325         write = 0;
326     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
327         read = 0;
328         write = 1;
329     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
330         read = 0;
331         write = 0;
332     } else {
333         dma.length = 0;
334     }
335 
336     dma.control = 0;
337 
338     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
339         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
340                                 s->cur_offset >= e->len) {
341             len = dma.length;
342 
343             /* If the access is not a read access, it will be a skip access,
344              * tested before.
345              */
346             if (read) {
347                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
348                     dma.control |= FW_CFG_DMA_CTL_ERROR;
349                 }
350             }
351             if (write) {
352                 dma.control |= FW_CFG_DMA_CTL_ERROR;
353             }
354         } else {
355             if (dma.length <= (e->len - s->cur_offset)) {
356                 len = dma.length;
357             } else {
358                 len = (e->len - s->cur_offset);
359             }
360 
361             /* If the access is not a read access, it will be a skip access,
362              * tested before.
363              */
364             if (read) {
365                 if (dma_memory_write(s->dma_as, dma.address,
366                                     &e->data[s->cur_offset], len)) {
367                     dma.control |= FW_CFG_DMA_CTL_ERROR;
368                 }
369             }
370             if (write) {
371                 if (!e->allow_write ||
372                     len != dma.length ||
373                     dma_memory_read(s->dma_as, dma.address,
374                                     &e->data[s->cur_offset], len)) {
375                     dma.control |= FW_CFG_DMA_CTL_ERROR;
376                 } else if (e->write_cb) {
377                     e->write_cb(e->callback_opaque, s->cur_offset, len);
378                 }
379             }
380 
381             s->cur_offset += len;
382         }
383 
384         dma.address += len;
385         dma.length  -= len;
386 
387     }
388 
389     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
390                 dma.control);
391 
392     trace_fw_cfg_read(s, 0);
393 }
394 
395 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
396                                     unsigned size)
397 {
398     /* Return a signature value (and handle various read sizes) */
399     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
400 }
401 
402 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
403                                  uint64_t value, unsigned size)
404 {
405     FWCfgState *s = opaque;
406 
407     if (size == 4) {
408         if (addr == 0) {
409             /* FWCfgDmaAccess high address */
410             s->dma_addr = value << 32;
411         } else if (addr == 4) {
412             /* FWCfgDmaAccess low address */
413             s->dma_addr |= value;
414             fw_cfg_dma_transfer(s);
415         }
416     } else if (size == 8 && addr == 0) {
417         s->dma_addr = value;
418         fw_cfg_dma_transfer(s);
419     }
420 }
421 
422 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
423                                  unsigned size, bool is_write,
424                                  MemTxAttrs attrs)
425 {
426     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
427                          (size == 8 && addr == 0));
428 }
429 
430 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
431                                   unsigned size, bool is_write,
432                                   MemTxAttrs attrs)
433 {
434     return addr == 0;
435 }
436 
437 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size)
438 {
439     return 0;
440 }
441 
442 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
443                                  uint64_t value, unsigned size)
444 {
445     fw_cfg_select(opaque, (uint16_t)value);
446 }
447 
448 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
449                                  unsigned size, bool is_write,
450                                  MemTxAttrs attrs)
451 {
452     return is_write && size == 2;
453 }
454 
455 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
456                               uint64_t value, unsigned size)
457 {
458     switch (size) {
459     case 1:
460         fw_cfg_write(opaque, (uint8_t)value);
461         break;
462     case 2:
463         fw_cfg_select(opaque, (uint16_t)value);
464         break;
465     }
466 }
467 
468 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
469                               unsigned size, bool is_write,
470                               MemTxAttrs attrs)
471 {
472     return (size == 1) || (is_write && size == 2);
473 }
474 
475 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
476     .read = fw_cfg_ctl_mem_read,
477     .write = fw_cfg_ctl_mem_write,
478     .endianness = DEVICE_BIG_ENDIAN,
479     .valid.accepts = fw_cfg_ctl_mem_valid,
480 };
481 
482 static const MemoryRegionOps fw_cfg_data_mem_ops = {
483     .read = fw_cfg_data_read,
484     .write = fw_cfg_data_mem_write,
485     .endianness = DEVICE_BIG_ENDIAN,
486     .valid = {
487         .min_access_size = 1,
488         .max_access_size = 1,
489         .accepts = fw_cfg_data_mem_valid,
490     },
491 };
492 
493 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
494     .read = fw_cfg_data_read,
495     .write = fw_cfg_comb_write,
496     .endianness = DEVICE_LITTLE_ENDIAN,
497     .valid.accepts = fw_cfg_comb_valid,
498 };
499 
500 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
501     .read = fw_cfg_dma_mem_read,
502     .write = fw_cfg_dma_mem_write,
503     .endianness = DEVICE_BIG_ENDIAN,
504     .valid.accepts = fw_cfg_dma_mem_valid,
505     .valid.max_access_size = 8,
506     .impl.max_access_size = 8,
507 };
508 
509 static void fw_cfg_reset(DeviceState *d)
510 {
511     FWCfgState *s = FW_CFG(d);
512 
513     /* we never register a read callback for FW_CFG_SIGNATURE */
514     fw_cfg_select(s, FW_CFG_SIGNATURE);
515 }
516 
517 /* Save restore 32 bit int as uint16_t
518    This is a Big hack, but it is how the old state did it.
519    Or we broke compatibility in the state, or we can't use struct tm
520  */
521 
522 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
523                                 const VMStateField *field)
524 {
525     uint32_t *v = pv;
526     *v = qemu_get_be16(f);
527     return 0;
528 }
529 
530 static int put_unused(QEMUFile *f, void *pv, size_t size,
531                       const VMStateField *field, QJSON *vmdesc)
532 {
533     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
534     fprintf(stderr, "This functions shouldn't be called.\n");
535 
536     return 0;
537 }
538 
539 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
540     .name = "int32_as_uint16",
541     .get  = get_uint32_as_uint16,
542     .put  = put_unused,
543 };
544 
545 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
546     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
547 
548 
549 static bool is_version_1(void *opaque, int version_id)
550 {
551     return version_id == 1;
552 }
553 
554 bool fw_cfg_dma_enabled(void *opaque)
555 {
556     FWCfgState *s = opaque;
557 
558     return s->dma_enabled;
559 }
560 
561 static const VMStateDescription vmstate_fw_cfg_dma = {
562     .name = "fw_cfg/dma",
563     .needed = fw_cfg_dma_enabled,
564     .fields = (VMStateField[]) {
565         VMSTATE_UINT64(dma_addr, FWCfgState),
566         VMSTATE_END_OF_LIST()
567     },
568 };
569 
570 static const VMStateDescription vmstate_fw_cfg = {
571     .name = "fw_cfg",
572     .version_id = 2,
573     .minimum_version_id = 1,
574     .fields = (VMStateField[]) {
575         VMSTATE_UINT16(cur_entry, FWCfgState),
576         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
577         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
578         VMSTATE_END_OF_LIST()
579     },
580     .subsections = (const VMStateDescription*[]) {
581         &vmstate_fw_cfg_dma,
582         NULL,
583     }
584 };
585 
586 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
587                                       FWCfgCallback select_cb,
588                                       FWCfgWriteCallback write_cb,
589                                       void *callback_opaque,
590                                       void *data, size_t len,
591                                       bool read_only)
592 {
593     int arch = !!(key & FW_CFG_ARCH_LOCAL);
594 
595     key &= FW_CFG_ENTRY_MASK;
596 
597     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
598     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
599 
600     s->entries[arch][key].data = data;
601     s->entries[arch][key].len = (uint32_t)len;
602     s->entries[arch][key].select_cb = select_cb;
603     s->entries[arch][key].write_cb = write_cb;
604     s->entries[arch][key].callback_opaque = callback_opaque;
605     s->entries[arch][key].allow_write = !read_only;
606 }
607 
608 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
609                                               void *data, size_t len)
610 {
611     void *ptr;
612     int arch = !!(key & FW_CFG_ARCH_LOCAL);
613 
614     key &= FW_CFG_ENTRY_MASK;
615 
616     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
617 
618     /* return the old data to the function caller, avoid memory leak */
619     ptr = s->entries[arch][key].data;
620     s->entries[arch][key].data = data;
621     s->entries[arch][key].len = len;
622     s->entries[arch][key].callback_opaque = NULL;
623     s->entries[arch][key].allow_write = false;
624 
625     return ptr;
626 }
627 
628 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
629 {
630     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
631 }
632 
633 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
634 {
635     size_t sz = strlen(value) + 1;
636 
637     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
638 }
639 
640 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
641 {
642     uint16_t *copy;
643 
644     copy = g_malloc(sizeof(value));
645     *copy = cpu_to_le16(value);
646     fw_cfg_add_bytes(s, key, copy, sizeof(value));
647 }
648 
649 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
650 {
651     uint16_t *copy, *old;
652 
653     copy = g_malloc(sizeof(value));
654     *copy = cpu_to_le16(value);
655     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
656     g_free(old);
657 }
658 
659 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
660 {
661     uint32_t *copy;
662 
663     copy = g_malloc(sizeof(value));
664     *copy = cpu_to_le32(value);
665     fw_cfg_add_bytes(s, key, copy, sizeof(value));
666 }
667 
668 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
669 {
670     uint64_t *copy;
671 
672     copy = g_malloc(sizeof(value));
673     *copy = cpu_to_le64(value);
674     fw_cfg_add_bytes(s, key, copy, sizeof(value));
675 }
676 
677 void fw_cfg_set_order_override(FWCfgState *s, int order)
678 {
679     assert(s->fw_cfg_order_override == 0);
680     s->fw_cfg_order_override = order;
681 }
682 
683 void fw_cfg_reset_order_override(FWCfgState *s)
684 {
685     assert(s->fw_cfg_order_override != 0);
686     s->fw_cfg_order_override = 0;
687 }
688 
689 /*
690  * This is the legacy order list.  For legacy systems, files are in
691  * the fw_cfg in the order defined below, by the "order" value.  Note
692  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
693  * specific area, but there may be more than one and they occur in the
694  * order that the user specifies them on the command line.  Those are
695  * handled in a special manner, using the order override above.
696  *
697  * For non-legacy, the files are sorted by filename to avoid this kind
698  * of complexity in the future.
699  *
700  * This is only for x86, other arches don't implement versioning so
701  * they won't set legacy mode.
702  */
703 static struct {
704     const char *name;
705     int order;
706 } fw_cfg_order[] = {
707     { "etc/boot-menu-wait", 10 },
708     { "bootsplash.jpg", 11 },
709     { "bootsplash.bmp", 12 },
710     { "etc/boot-fail-wait", 15 },
711     { "etc/smbios/smbios-tables", 20 },
712     { "etc/smbios/smbios-anchor", 30 },
713     { "etc/e820", 40 },
714     { "etc/reserved-memory-end", 50 },
715     { "genroms/kvmvapic.bin", 55 },
716     { "genroms/linuxboot.bin", 60 },
717     { }, /* VGA ROMs from pc_vga_init come here, 70. */
718     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
719     { "etc/system-states", 90 },
720     { }, /* User ROMs come here, 100. */
721     { }, /* Device FW comes here, 110. */
722     { "etc/extra-pci-roots", 120 },
723     { "etc/acpi/tables", 130 },
724     { "etc/table-loader", 140 },
725     { "etc/tpm/log", 150 },
726     { "etc/acpi/rsdp", 160 },
727     { "bootorder", 170 },
728 
729 #define FW_CFG_ORDER_OVERRIDE_LAST 200
730 };
731 
732 static int get_fw_cfg_order(FWCfgState *s, const char *name)
733 {
734     int i;
735 
736     if (s->fw_cfg_order_override > 0) {
737         return s->fw_cfg_order_override;
738     }
739 
740     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
741         if (fw_cfg_order[i].name == NULL) {
742             continue;
743         }
744 
745         if (strcmp(name, fw_cfg_order[i].name) == 0) {
746             return fw_cfg_order[i].order;
747         }
748     }
749 
750     /* Stick unknown stuff at the end. */
751     warn_report("Unknown firmware file in legacy mode: %s", name);
752     return FW_CFG_ORDER_OVERRIDE_LAST;
753 }
754 
755 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
756                               FWCfgCallback select_cb,
757                               FWCfgWriteCallback write_cb,
758                               void *callback_opaque,
759                               void *data, size_t len, bool read_only)
760 {
761     int i, index, count;
762     size_t dsize;
763     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
764     int order = 0;
765 
766     if (!s->files) {
767         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
768         s->files = g_malloc0(dsize);
769         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
770     }
771 
772     count = be32_to_cpu(s->files->count);
773     assert(count < fw_cfg_file_slots(s));
774 
775     /* Find the insertion point. */
776     if (mc->legacy_fw_cfg_order) {
777         /*
778          * Sort by order. For files with the same order, we keep them
779          * in the sequence in which they were added.
780          */
781         order = get_fw_cfg_order(s, filename);
782         for (index = count;
783              index > 0 && order < s->entry_order[index - 1];
784              index--);
785     } else {
786         /* Sort by file name. */
787         for (index = count;
788              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
789              index--);
790     }
791 
792     /*
793      * Move all the entries from the index point and after down one
794      * to create a slot for the new entry.  Because calculations are
795      * being done with the index, make it so that "i" is the current
796      * index and "i - 1" is the one being copied from, thus the
797      * unusual start and end in the for statement.
798      */
799     for (i = count; i > index; i--) {
800         s->files->f[i] = s->files->f[i - 1];
801         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
802         s->entries[0][FW_CFG_FILE_FIRST + i] =
803             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
804         s->entry_order[i] = s->entry_order[i - 1];
805     }
806 
807     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
808     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
809 
810     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
811     for (i = 0; i <= count; i++) {
812         if (i != index &&
813             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
814             error_report("duplicate fw_cfg file name: %s",
815                          s->files->f[index].name);
816             exit(1);
817         }
818     }
819 
820     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
821                               select_cb, write_cb,
822                               callback_opaque, data, len,
823                               read_only);
824 
825     s->files->f[index].size   = cpu_to_be32(len);
826     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
827     s->entry_order[index] = order;
828     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
829 
830     s->files->count = cpu_to_be32(count+1);
831 }
832 
833 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
834                      void *data, size_t len)
835 {
836     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
837 }
838 
839 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
840                         void *data, size_t len)
841 {
842     int i, index;
843     void *ptr = NULL;
844 
845     assert(s->files);
846 
847     index = be32_to_cpu(s->files->count);
848 
849     for (i = 0; i < index; i++) {
850         if (strcmp(filename, s->files->f[i].name) == 0) {
851             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
852                                            data, len);
853             s->files->f[i].size   = cpu_to_be32(len);
854             return ptr;
855         }
856     }
857 
858     assert(index < fw_cfg_file_slots(s));
859 
860     /* add new one */
861     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
862     return NULL;
863 }
864 
865 static void fw_cfg_machine_reset(void *opaque)
866 {
867     void *ptr;
868     size_t len;
869     FWCfgState *s = opaque;
870     char *bootindex = get_boot_devices_list(&len);
871 
872     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
873     g_free(ptr);
874 }
875 
876 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
877 {
878     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
879     qemu_register_reset(fw_cfg_machine_reset, s);
880 }
881 
882 
883 
884 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
885 {
886     FWCfgState *s = FW_CFG(dev);
887     MachineState *machine = MACHINE(qdev_get_machine());
888     uint32_t version = FW_CFG_VERSION;
889 
890     if (!fw_cfg_find()) {
891         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
892         return;
893     }
894 
895     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
896     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
897     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
898     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
899     fw_cfg_bootsplash(s);
900     fw_cfg_reboot(s);
901 
902     if (s->dma_enabled) {
903         version |= FW_CFG_VERSION_DMA;
904     }
905 
906     fw_cfg_add_i32(s, FW_CFG_ID, version);
907 
908     s->machine_ready.notify = fw_cfg_machine_ready;
909     qemu_add_machine_init_done_notifier(&s->machine_ready);
910 }
911 
912 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
913                                 AddressSpace *dma_as)
914 {
915     DeviceState *dev;
916     SysBusDevice *sbd;
917     FWCfgIoState *ios;
918     FWCfgState *s;
919     bool dma_requested = dma_iobase && dma_as;
920 
921     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
922     if (!dma_requested) {
923         qdev_prop_set_bit(dev, "dma_enabled", false);
924     }
925 
926     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
927                               OBJECT(dev), NULL);
928     qdev_init_nofail(dev);
929 
930     sbd = SYS_BUS_DEVICE(dev);
931     ios = FW_CFG_IO(dev);
932     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
933 
934     s = FW_CFG(dev);
935 
936     if (s->dma_enabled) {
937         /* 64 bits for the address field */
938         s->dma_as = dma_as;
939         s->dma_addr = 0;
940         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
941     }
942 
943     return s;
944 }
945 
946 FWCfgState *fw_cfg_init_io(uint32_t iobase)
947 {
948     return fw_cfg_init_io_dma(iobase, 0, NULL);
949 }
950 
951 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
952                                  hwaddr data_addr, uint32_t data_width,
953                                  hwaddr dma_addr, AddressSpace *dma_as)
954 {
955     DeviceState *dev;
956     SysBusDevice *sbd;
957     FWCfgState *s;
958     bool dma_requested = dma_addr && dma_as;
959 
960     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
961     qdev_prop_set_uint32(dev, "data_width", data_width);
962     if (!dma_requested) {
963         qdev_prop_set_bit(dev, "dma_enabled", false);
964     }
965 
966     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
967                               OBJECT(dev), NULL);
968     qdev_init_nofail(dev);
969 
970     sbd = SYS_BUS_DEVICE(dev);
971     sysbus_mmio_map(sbd, 0, ctl_addr);
972     sysbus_mmio_map(sbd, 1, data_addr);
973 
974     s = FW_CFG(dev);
975 
976     if (s->dma_enabled) {
977         s->dma_as = dma_as;
978         s->dma_addr = 0;
979         sysbus_mmio_map(sbd, 2, dma_addr);
980     }
981 
982     return s;
983 }
984 
985 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
986 {
987     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
988                                 fw_cfg_data_mem_ops.valid.max_access_size,
989                                 0, NULL);
990 }
991 
992 
993 FWCfgState *fw_cfg_find(void)
994 {
995     /* Returns NULL unless there is exactly one fw_cfg device */
996     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
997 }
998 
999 
1000 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1001 {
1002     DeviceClass *dc = DEVICE_CLASS(klass);
1003 
1004     dc->reset = fw_cfg_reset;
1005     dc->vmsd = &vmstate_fw_cfg;
1006 }
1007 
1008 static const TypeInfo fw_cfg_info = {
1009     .name          = TYPE_FW_CFG,
1010     .parent        = TYPE_SYS_BUS_DEVICE,
1011     .abstract      = true,
1012     .instance_size = sizeof(FWCfgState),
1013     .class_init    = fw_cfg_class_init,
1014 };
1015 
1016 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1017 {
1018     uint16_t file_slots_max;
1019 
1020     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1021         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1022                    FW_CFG_FILE_SLOTS_MIN);
1023         return;
1024     }
1025 
1026     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1027      * that we permit. The actual (exclusive) value coming from the
1028      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1029     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1030     if (fw_cfg_file_slots(s) > file_slots_max) {
1031         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1032                    file_slots_max);
1033         return;
1034     }
1035 
1036     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1037     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1038     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1039 }
1040 
1041 static Property fw_cfg_io_properties[] = {
1042     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1043                      true),
1044     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1045                        FW_CFG_FILE_SLOTS_DFLT),
1046     DEFINE_PROP_END_OF_LIST(),
1047 };
1048 
1049 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1050 {
1051     FWCfgIoState *s = FW_CFG_IO(dev);
1052     Error *local_err = NULL;
1053 
1054     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1055     if (local_err) {
1056         error_propagate(errp, local_err);
1057         return;
1058     }
1059 
1060     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1061      * with half of the 16-bit control register. Hence, the total size
1062      * of the i/o region used is FW_CFG_CTL_SIZE */
1063     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1064                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1065 
1066     if (FW_CFG(s)->dma_enabled) {
1067         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1068                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1069                               sizeof(dma_addr_t));
1070     }
1071 
1072     fw_cfg_common_realize(dev, errp);
1073 }
1074 
1075 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1076 {
1077     DeviceClass *dc = DEVICE_CLASS(klass);
1078 
1079     dc->realize = fw_cfg_io_realize;
1080     dc->props = fw_cfg_io_properties;
1081 }
1082 
1083 static const TypeInfo fw_cfg_io_info = {
1084     .name          = TYPE_FW_CFG_IO,
1085     .parent        = TYPE_FW_CFG,
1086     .instance_size = sizeof(FWCfgIoState),
1087     .class_init    = fw_cfg_io_class_init,
1088 };
1089 
1090 
1091 static Property fw_cfg_mem_properties[] = {
1092     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1093     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1094                      true),
1095     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1096                        FW_CFG_FILE_SLOTS_DFLT),
1097     DEFINE_PROP_END_OF_LIST(),
1098 };
1099 
1100 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1101 {
1102     FWCfgMemState *s = FW_CFG_MEM(dev);
1103     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1104     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1105     Error *local_err = NULL;
1106 
1107     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1108     if (local_err) {
1109         error_propagate(errp, local_err);
1110         return;
1111     }
1112 
1113     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1114                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1115     sysbus_init_mmio(sbd, &s->ctl_iomem);
1116 
1117     if (s->data_width > data_ops->valid.max_access_size) {
1118         s->wide_data_ops = *data_ops;
1119 
1120         s->wide_data_ops.valid.max_access_size = s->data_width;
1121         s->wide_data_ops.impl.max_access_size  = s->data_width;
1122         data_ops = &s->wide_data_ops;
1123     }
1124     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1125                           "fwcfg.data", data_ops->valid.max_access_size);
1126     sysbus_init_mmio(sbd, &s->data_iomem);
1127 
1128     if (FW_CFG(s)->dma_enabled) {
1129         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1130                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1131                               sizeof(dma_addr_t));
1132         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1133     }
1134 
1135     fw_cfg_common_realize(dev, errp);
1136 }
1137 
1138 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1139 {
1140     DeviceClass *dc = DEVICE_CLASS(klass);
1141 
1142     dc->realize = fw_cfg_mem_realize;
1143     dc->props = fw_cfg_mem_properties;
1144 }
1145 
1146 static const TypeInfo fw_cfg_mem_info = {
1147     .name          = TYPE_FW_CFG_MEM,
1148     .parent        = TYPE_FW_CFG,
1149     .instance_size = sizeof(FWCfgMemState),
1150     .class_init    = fw_cfg_mem_class_init,
1151 };
1152 
1153 
1154 static void fw_cfg_register_types(void)
1155 {
1156     type_register_static(&fw_cfg_info);
1157     type_register_static(&fw_cfg_io_info);
1158     type_register_static(&fw_cfg_mem_info);
1159 }
1160 
1161 type_init(fw_cfg_register_types)
1162