xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 80e5db30)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/sysemu.h"
27 #include "sysemu/dma.h"
28 #include "hw/boards.h"
29 #include "hw/isa/isa.h"
30 #include "hw/nvram/fw_cfg.h"
31 #include "hw/sysbus.h"
32 #include "trace.h"
33 #include "qemu/error-report.h"
34 #include "qemu/config-file.h"
35 #include "qemu/cutils.h"
36 #include "qapi/error.h"
37 
38 #define FW_CFG_FILE_SLOTS_DFLT 0x20
39 
40 #define FW_CFG_NAME "fw_cfg"
41 #define FW_CFG_PATH "/machine/" FW_CFG_NAME
42 
43 #define TYPE_FW_CFG     "fw_cfg"
44 #define TYPE_FW_CFG_IO  "fw_cfg_io"
45 #define TYPE_FW_CFG_MEM "fw_cfg_mem"
46 
47 #define FW_CFG(obj)     OBJECT_CHECK(FWCfgState,    (obj), TYPE_FW_CFG)
48 #define FW_CFG_IO(obj)  OBJECT_CHECK(FWCfgIoState,  (obj), TYPE_FW_CFG_IO)
49 #define FW_CFG_MEM(obj) OBJECT_CHECK(FWCfgMemState, (obj), TYPE_FW_CFG_MEM)
50 
51 /* FW_CFG_VERSION bits */
52 #define FW_CFG_VERSION      0x01
53 #define FW_CFG_VERSION_DMA  0x02
54 
55 /* FW_CFG_DMA_CONTROL bits */
56 #define FW_CFG_DMA_CTL_ERROR   0x01
57 #define FW_CFG_DMA_CTL_READ    0x02
58 #define FW_CFG_DMA_CTL_SKIP    0x04
59 #define FW_CFG_DMA_CTL_SELECT  0x08
60 #define FW_CFG_DMA_CTL_WRITE   0x10
61 
62 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
63 
64 typedef struct FWCfgEntry {
65     uint32_t len;
66     bool allow_write;
67     uint8_t *data;
68     void *callback_opaque;
69     FWCfgReadCallback read_callback;
70 } FWCfgEntry;
71 
72 struct FWCfgState {
73     /*< private >*/
74     SysBusDevice parent_obj;
75     /*< public >*/
76 
77     uint16_t file_slots;
78     FWCfgEntry *entries[2];
79     int *entry_order;
80     FWCfgFiles *files;
81     uint16_t cur_entry;
82     uint32_t cur_offset;
83     Notifier machine_ready;
84 
85     int fw_cfg_order_override;
86 
87     bool dma_enabled;
88     dma_addr_t dma_addr;
89     AddressSpace *dma_as;
90     MemoryRegion dma_iomem;
91 };
92 
93 struct FWCfgIoState {
94     /*< private >*/
95     FWCfgState parent_obj;
96     /*< public >*/
97 
98     MemoryRegion comb_iomem;
99     uint32_t iobase, dma_iobase;
100 };
101 
102 struct FWCfgMemState {
103     /*< private >*/
104     FWCfgState parent_obj;
105     /*< public >*/
106 
107     MemoryRegion ctl_iomem, data_iomem;
108     uint32_t data_width;
109     MemoryRegionOps wide_data_ops;
110 };
111 
112 #define JPG_FILE 0
113 #define BMP_FILE 1
114 
115 static char *read_splashfile(char *filename, gsize *file_sizep,
116                              int *file_typep)
117 {
118     GError *err = NULL;
119     gboolean res;
120     gchar *content;
121     int file_type;
122     unsigned int filehead;
123     int bmp_bpp;
124 
125     res = g_file_get_contents(filename, &content, file_sizep, &err);
126     if (res == FALSE) {
127         error_report("failed to read splash file '%s'", filename);
128         g_error_free(err);
129         return NULL;
130     }
131 
132     /* check file size */
133     if (*file_sizep < 30) {
134         goto error;
135     }
136 
137     /* check magic ID */
138     filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
139     if (filehead == 0xd8ff) {
140         file_type = JPG_FILE;
141     } else if (filehead == 0x4d42) {
142         file_type = BMP_FILE;
143     } else {
144         goto error;
145     }
146 
147     /* check BMP bpp */
148     if (file_type == BMP_FILE) {
149         bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
150         if (bmp_bpp != 24) {
151             goto error;
152         }
153     }
154 
155     /* return values */
156     *file_typep = file_type;
157 
158     return content;
159 
160 error:
161     error_report("splash file '%s' format not recognized; must be JPEG "
162                  "or 24 bit BMP", filename);
163     g_free(content);
164     return NULL;
165 }
166 
167 static void fw_cfg_bootsplash(FWCfgState *s)
168 {
169     int boot_splash_time = -1;
170     const char *boot_splash_filename = NULL;
171     char *p;
172     char *filename, *file_data;
173     gsize file_size;
174     int file_type;
175     const char *temp;
176 
177     /* get user configuration */
178     QemuOptsList *plist = qemu_find_opts("boot-opts");
179     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
180     if (opts != NULL) {
181         temp = qemu_opt_get(opts, "splash");
182         if (temp != NULL) {
183             boot_splash_filename = temp;
184         }
185         temp = qemu_opt_get(opts, "splash-time");
186         if (temp != NULL) {
187             p = (char *)temp;
188             boot_splash_time = strtol(p, &p, 10);
189         }
190     }
191 
192     /* insert splash time if user configurated */
193     if (boot_splash_time >= 0) {
194         /* validate the input */
195         if (boot_splash_time > 0xffff) {
196             error_report("splash time is big than 65535, force it to 65535.");
197             boot_splash_time = 0xffff;
198         }
199         /* use little endian format */
200         qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
201         qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
202         fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
203     }
204 
205     /* insert splash file if user configurated */
206     if (boot_splash_filename != NULL) {
207         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
208         if (filename == NULL) {
209             error_report("failed to find file '%s'.", boot_splash_filename);
210             return;
211         }
212 
213         /* loading file data */
214         file_data = read_splashfile(filename, &file_size, &file_type);
215         if (file_data == NULL) {
216             g_free(filename);
217             return;
218         }
219         g_free(boot_splash_filedata);
220         boot_splash_filedata = (uint8_t *)file_data;
221         boot_splash_filedata_size = file_size;
222 
223         /* insert data */
224         if (file_type == JPG_FILE) {
225             fw_cfg_add_file(s, "bootsplash.jpg",
226                     boot_splash_filedata, boot_splash_filedata_size);
227         } else {
228             fw_cfg_add_file(s, "bootsplash.bmp",
229                     boot_splash_filedata, boot_splash_filedata_size);
230         }
231         g_free(filename);
232     }
233 }
234 
235 static void fw_cfg_reboot(FWCfgState *s)
236 {
237     int reboot_timeout = -1;
238     char *p;
239     const char *temp;
240 
241     /* get user configuration */
242     QemuOptsList *plist = qemu_find_opts("boot-opts");
243     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
244     if (opts != NULL) {
245         temp = qemu_opt_get(opts, "reboot-timeout");
246         if (temp != NULL) {
247             p = (char *)temp;
248             reboot_timeout = strtol(p, &p, 10);
249         }
250     }
251     /* validate the input */
252     if (reboot_timeout > 0xffff) {
253         error_report("reboot timeout is larger than 65535, force it to 65535.");
254         reboot_timeout = 0xffff;
255     }
256     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
257 }
258 
259 static void fw_cfg_write(FWCfgState *s, uint8_t value)
260 {
261     /* nothing, write support removed in QEMU v2.4+ */
262 }
263 
264 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
265 {
266     return s->file_slots;
267 }
268 
269 /* Note: this function returns an exclusive limit. */
270 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
271 {
272     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
273 }
274 
275 static int fw_cfg_select(FWCfgState *s, uint16_t key)
276 {
277     int arch, ret;
278     FWCfgEntry *e;
279 
280     s->cur_offset = 0;
281     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
282         s->cur_entry = FW_CFG_INVALID;
283         ret = 0;
284     } else {
285         s->cur_entry = key;
286         ret = 1;
287         /* entry successfully selected, now run callback if present */
288         arch = !!(key & FW_CFG_ARCH_LOCAL);
289         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
290         if (e->read_callback) {
291             e->read_callback(e->callback_opaque);
292         }
293     }
294 
295     trace_fw_cfg_select(s, key, ret);
296     return ret;
297 }
298 
299 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
300 {
301     FWCfgState *s = opaque;
302     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
303     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
304                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
305     uint64_t value = 0;
306 
307     assert(size > 0 && size <= sizeof(value));
308     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
309         /* The least significant 'size' bytes of the return value are
310          * expected to contain a string preserving portion of the item
311          * data, padded with zeros on the right in case we run out early.
312          * In technical terms, we're composing the host-endian representation
313          * of the big endian interpretation of the fw_cfg string.
314          */
315         do {
316             value = (value << 8) | e->data[s->cur_offset++];
317         } while (--size && s->cur_offset < e->len);
318         /* If size is still not zero, we *did* run out early, so continue
319          * left-shifting, to add the appropriate number of padding zeros
320          * on the right.
321          */
322         value <<= 8 * size;
323     }
324 
325     trace_fw_cfg_read(s, value);
326     return value;
327 }
328 
329 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
330                                   uint64_t value, unsigned size)
331 {
332     FWCfgState *s = opaque;
333     unsigned i = size;
334 
335     do {
336         fw_cfg_write(s, value >> (8 * --i));
337     } while (i);
338 }
339 
340 static void fw_cfg_dma_transfer(FWCfgState *s)
341 {
342     dma_addr_t len;
343     FWCfgDmaAccess dma;
344     int arch;
345     FWCfgEntry *e;
346     int read = 0, write = 0;
347     dma_addr_t dma_addr;
348 
349     /* Reset the address before the next access */
350     dma_addr = s->dma_addr;
351     s->dma_addr = 0;
352 
353     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
354         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
355                    FW_CFG_DMA_CTL_ERROR);
356         return;
357     }
358 
359     dma.address = be64_to_cpu(dma.address);
360     dma.length = be32_to_cpu(dma.length);
361     dma.control = be32_to_cpu(dma.control);
362 
363     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
364         fw_cfg_select(s, dma.control >> 16);
365     }
366 
367     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
368     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
369         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
370 
371     if (dma.control & FW_CFG_DMA_CTL_READ) {
372         read = 1;
373         write = 0;
374     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
375         read = 0;
376         write = 1;
377     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
378         read = 0;
379         write = 0;
380     } else {
381         dma.length = 0;
382     }
383 
384     dma.control = 0;
385 
386     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
387         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
388                                 s->cur_offset >= e->len) {
389             len = dma.length;
390 
391             /* If the access is not a read access, it will be a skip access,
392              * tested before.
393              */
394             if (read) {
395                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
396                     dma.control |= FW_CFG_DMA_CTL_ERROR;
397                 }
398             }
399             if (write) {
400                 dma.control |= FW_CFG_DMA_CTL_ERROR;
401             }
402         } else {
403             if (dma.length <= (e->len - s->cur_offset)) {
404                 len = dma.length;
405             } else {
406                 len = (e->len - s->cur_offset);
407             }
408 
409             /* If the access is not a read access, it will be a skip access,
410              * tested before.
411              */
412             if (read) {
413                 if (dma_memory_write(s->dma_as, dma.address,
414                                     &e->data[s->cur_offset], len)) {
415                     dma.control |= FW_CFG_DMA_CTL_ERROR;
416                 }
417             }
418             if (write) {
419                 if (!e->allow_write ||
420                     len != dma.length ||
421                     dma_memory_read(s->dma_as, dma.address,
422                                     &e->data[s->cur_offset], len)) {
423                     dma.control |= FW_CFG_DMA_CTL_ERROR;
424                 }
425             }
426 
427             s->cur_offset += len;
428         }
429 
430         dma.address += len;
431         dma.length  -= len;
432 
433     }
434 
435     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
436                 dma.control);
437 
438     trace_fw_cfg_read(s, 0);
439 }
440 
441 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
442                                     unsigned size)
443 {
444     /* Return a signature value (and handle various read sizes) */
445     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
446 }
447 
448 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
449                                  uint64_t value, unsigned size)
450 {
451     FWCfgState *s = opaque;
452 
453     if (size == 4) {
454         if (addr == 0) {
455             /* FWCfgDmaAccess high address */
456             s->dma_addr = value << 32;
457         } else if (addr == 4) {
458             /* FWCfgDmaAccess low address */
459             s->dma_addr |= value;
460             fw_cfg_dma_transfer(s);
461         }
462     } else if (size == 8 && addr == 0) {
463         s->dma_addr = value;
464         fw_cfg_dma_transfer(s);
465     }
466 }
467 
468 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
469                                   unsigned size, bool is_write)
470 {
471     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
472                          (size == 8 && addr == 0));
473 }
474 
475 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
476                                   unsigned size, bool is_write)
477 {
478     return addr == 0;
479 }
480 
481 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
482                                  uint64_t value, unsigned size)
483 {
484     fw_cfg_select(opaque, (uint16_t)value);
485 }
486 
487 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
488                                  unsigned size, bool is_write)
489 {
490     return is_write && size == 2;
491 }
492 
493 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
494                               uint64_t value, unsigned size)
495 {
496     switch (size) {
497     case 1:
498         fw_cfg_write(opaque, (uint8_t)value);
499         break;
500     case 2:
501         fw_cfg_select(opaque, (uint16_t)value);
502         break;
503     }
504 }
505 
506 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
507                                   unsigned size, bool is_write)
508 {
509     return (size == 1) || (is_write && size == 2);
510 }
511 
512 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
513     .write = fw_cfg_ctl_mem_write,
514     .endianness = DEVICE_BIG_ENDIAN,
515     .valid.accepts = fw_cfg_ctl_mem_valid,
516 };
517 
518 static const MemoryRegionOps fw_cfg_data_mem_ops = {
519     .read = fw_cfg_data_read,
520     .write = fw_cfg_data_mem_write,
521     .endianness = DEVICE_BIG_ENDIAN,
522     .valid = {
523         .min_access_size = 1,
524         .max_access_size = 1,
525         .accepts = fw_cfg_data_mem_valid,
526     },
527 };
528 
529 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
530     .read = fw_cfg_data_read,
531     .write = fw_cfg_comb_write,
532     .endianness = DEVICE_LITTLE_ENDIAN,
533     .valid.accepts = fw_cfg_comb_valid,
534 };
535 
536 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
537     .read = fw_cfg_dma_mem_read,
538     .write = fw_cfg_dma_mem_write,
539     .endianness = DEVICE_BIG_ENDIAN,
540     .valid.accepts = fw_cfg_dma_mem_valid,
541     .valid.max_access_size = 8,
542     .impl.max_access_size = 8,
543 };
544 
545 static void fw_cfg_reset(DeviceState *d)
546 {
547     FWCfgState *s = FW_CFG(d);
548 
549     /* we never register a read callback for FW_CFG_SIGNATURE */
550     fw_cfg_select(s, FW_CFG_SIGNATURE);
551 }
552 
553 /* Save restore 32 bit int as uint16_t
554    This is a Big hack, but it is how the old state did it.
555    Or we broke compatibility in the state, or we can't use struct tm
556  */
557 
558 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size)
559 {
560     uint32_t *v = pv;
561     *v = qemu_get_be16(f);
562     return 0;
563 }
564 
565 static void put_unused(QEMUFile *f, void *pv, size_t size)
566 {
567     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
568     fprintf(stderr, "This functions shouldn't be called.\n");
569 }
570 
571 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
572     .name = "int32_as_uint16",
573     .get  = get_uint32_as_uint16,
574     .put  = put_unused,
575 };
576 
577 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
578     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
579 
580 
581 static bool is_version_1(void *opaque, int version_id)
582 {
583     return version_id == 1;
584 }
585 
586 bool fw_cfg_dma_enabled(void *opaque)
587 {
588     FWCfgState *s = opaque;
589 
590     return s->dma_enabled;
591 }
592 
593 static const VMStateDescription vmstate_fw_cfg_dma = {
594     .name = "fw_cfg/dma",
595     .needed = fw_cfg_dma_enabled,
596     .fields = (VMStateField[]) {
597         VMSTATE_UINT64(dma_addr, FWCfgState),
598         VMSTATE_END_OF_LIST()
599     },
600 };
601 
602 static const VMStateDescription vmstate_fw_cfg = {
603     .name = "fw_cfg",
604     .version_id = 2,
605     .minimum_version_id = 1,
606     .fields = (VMStateField[]) {
607         VMSTATE_UINT16(cur_entry, FWCfgState),
608         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
609         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
610         VMSTATE_END_OF_LIST()
611     },
612     .subsections = (const VMStateDescription*[]) {
613         &vmstate_fw_cfg_dma,
614         NULL,
615     }
616 };
617 
618 static void fw_cfg_add_bytes_read_callback(FWCfgState *s, uint16_t key,
619                                            FWCfgReadCallback callback,
620                                            void *callback_opaque,
621                                            void *data, size_t len,
622                                            bool read_only)
623 {
624     int arch = !!(key & FW_CFG_ARCH_LOCAL);
625 
626     key &= FW_CFG_ENTRY_MASK;
627 
628     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
629     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
630 
631     s->entries[arch][key].data = data;
632     s->entries[arch][key].len = (uint32_t)len;
633     s->entries[arch][key].read_callback = callback;
634     s->entries[arch][key].callback_opaque = callback_opaque;
635     s->entries[arch][key].allow_write = !read_only;
636 }
637 
638 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
639                                               void *data, size_t len)
640 {
641     void *ptr;
642     int arch = !!(key & FW_CFG_ARCH_LOCAL);
643 
644     key &= FW_CFG_ENTRY_MASK;
645 
646     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
647 
648     /* return the old data to the function caller, avoid memory leak */
649     ptr = s->entries[arch][key].data;
650     s->entries[arch][key].data = data;
651     s->entries[arch][key].len = len;
652     s->entries[arch][key].callback_opaque = NULL;
653     s->entries[arch][key].allow_write = false;
654 
655     return ptr;
656 }
657 
658 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
659 {
660     fw_cfg_add_bytes_read_callback(s, key, NULL, NULL, data, len, true);
661 }
662 
663 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
664 {
665     size_t sz = strlen(value) + 1;
666 
667     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
668 }
669 
670 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
671 {
672     uint16_t *copy;
673 
674     copy = g_malloc(sizeof(value));
675     *copy = cpu_to_le16(value);
676     fw_cfg_add_bytes(s, key, copy, sizeof(value));
677 }
678 
679 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
680 {
681     uint16_t *copy, *old;
682 
683     copy = g_malloc(sizeof(value));
684     *copy = cpu_to_le16(value);
685     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
686     g_free(old);
687 }
688 
689 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
690 {
691     uint32_t *copy;
692 
693     copy = g_malloc(sizeof(value));
694     *copy = cpu_to_le32(value);
695     fw_cfg_add_bytes(s, key, copy, sizeof(value));
696 }
697 
698 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
699 {
700     uint64_t *copy;
701 
702     copy = g_malloc(sizeof(value));
703     *copy = cpu_to_le64(value);
704     fw_cfg_add_bytes(s, key, copy, sizeof(value));
705 }
706 
707 void fw_cfg_set_order_override(FWCfgState *s, int order)
708 {
709     assert(s->fw_cfg_order_override == 0);
710     s->fw_cfg_order_override = order;
711 }
712 
713 void fw_cfg_reset_order_override(FWCfgState *s)
714 {
715     assert(s->fw_cfg_order_override != 0);
716     s->fw_cfg_order_override = 0;
717 }
718 
719 /*
720  * This is the legacy order list.  For legacy systems, files are in
721  * the fw_cfg in the order defined below, by the "order" value.  Note
722  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
723  * specific area, but there may be more than one and they occur in the
724  * order that the user specifies them on the command line.  Those are
725  * handled in a special manner, using the order override above.
726  *
727  * For non-legacy, the files are sorted by filename to avoid this kind
728  * of complexity in the future.
729  *
730  * This is only for x86, other arches don't implement versioning so
731  * they won't set legacy mode.
732  */
733 static struct {
734     const char *name;
735     int order;
736 } fw_cfg_order[] = {
737     { "etc/boot-menu-wait", 10 },
738     { "bootsplash.jpg", 11 },
739     { "bootsplash.bmp", 12 },
740     { "etc/boot-fail-wait", 15 },
741     { "etc/smbios/smbios-tables", 20 },
742     { "etc/smbios/smbios-anchor", 30 },
743     { "etc/e820", 40 },
744     { "etc/reserved-memory-end", 50 },
745     { "genroms/kvmvapic.bin", 55 },
746     { "genroms/linuxboot.bin", 60 },
747     { }, /* VGA ROMs from pc_vga_init come here, 70. */
748     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
749     { "etc/system-states", 90 },
750     { }, /* User ROMs come here, 100. */
751     { }, /* Device FW comes here, 110. */
752     { "etc/extra-pci-roots", 120 },
753     { "etc/acpi/tables", 130 },
754     { "etc/table-loader", 140 },
755     { "etc/tpm/log", 150 },
756     { "etc/acpi/rsdp", 160 },
757     { "bootorder", 170 },
758 
759 #define FW_CFG_ORDER_OVERRIDE_LAST 200
760 };
761 
762 static int get_fw_cfg_order(FWCfgState *s, const char *name)
763 {
764     int i;
765 
766     if (s->fw_cfg_order_override > 0) {
767         return s->fw_cfg_order_override;
768     }
769 
770     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
771         if (fw_cfg_order[i].name == NULL) {
772             continue;
773         }
774 
775         if (strcmp(name, fw_cfg_order[i].name) == 0) {
776             return fw_cfg_order[i].order;
777         }
778     }
779 
780     /* Stick unknown stuff at the end. */
781     error_report("warning: Unknown firmware file in legacy mode: %s", name);
782     return FW_CFG_ORDER_OVERRIDE_LAST;
783 }
784 
785 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
786                               FWCfgReadCallback callback, void *callback_opaque,
787                               void *data, size_t len, bool read_only)
788 {
789     int i, index, count;
790     size_t dsize;
791     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
792     int order = 0;
793 
794     if (!s->files) {
795         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
796         s->files = g_malloc0(dsize);
797         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
798     }
799 
800     count = be32_to_cpu(s->files->count);
801     assert(count < fw_cfg_file_slots(s));
802 
803     /* Find the insertion point. */
804     if (mc->legacy_fw_cfg_order) {
805         /*
806          * Sort by order. For files with the same order, we keep them
807          * in the sequence in which they were added.
808          */
809         order = get_fw_cfg_order(s, filename);
810         for (index = count;
811              index > 0 && order < s->entry_order[index - 1];
812              index--);
813     } else {
814         /* Sort by file name. */
815         for (index = count;
816              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
817              index--);
818     }
819 
820     /*
821      * Move all the entries from the index point and after down one
822      * to create a slot for the new entry.  Because calculations are
823      * being done with the index, make it so that "i" is the current
824      * index and "i - 1" is the one being copied from, thus the
825      * unusual start and end in the for statement.
826      */
827     for (i = count + 1; i > index; i--) {
828         s->files->f[i] = s->files->f[i - 1];
829         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
830         s->entries[0][FW_CFG_FILE_FIRST + i] =
831             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
832         s->entry_order[i] = s->entry_order[i - 1];
833     }
834 
835     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
836     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
837 
838     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
839     for (i = 0; i <= count; i++) {
840         if (i != index &&
841             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
842             error_report("duplicate fw_cfg file name: %s",
843                          s->files->f[index].name);
844             exit(1);
845         }
846     }
847 
848     fw_cfg_add_bytes_read_callback(s, FW_CFG_FILE_FIRST + index,
849                                    callback, callback_opaque, data, len,
850                                    read_only);
851 
852     s->files->f[index].size   = cpu_to_be32(len);
853     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
854     s->entry_order[index] = order;
855     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
856 
857     s->files->count = cpu_to_be32(count+1);
858 }
859 
860 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
861                      void *data, size_t len)
862 {
863     fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true);
864 }
865 
866 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
867                         void *data, size_t len)
868 {
869     int i, index;
870     void *ptr = NULL;
871 
872     assert(s->files);
873 
874     index = be32_to_cpu(s->files->count);
875     assert(index < fw_cfg_file_slots(s));
876 
877     for (i = 0; i < index; i++) {
878         if (strcmp(filename, s->files->f[i].name) == 0) {
879             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
880                                            data, len);
881             s->files->f[i].size   = cpu_to_be32(len);
882             return ptr;
883         }
884     }
885     /* add new one */
886     fw_cfg_add_file_callback(s, filename, NULL, NULL, data, len, true);
887     return NULL;
888 }
889 
890 static void fw_cfg_machine_reset(void *opaque)
891 {
892     void *ptr;
893     size_t len;
894     FWCfgState *s = opaque;
895     char *bootindex = get_boot_devices_list(&len, false);
896 
897     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
898     g_free(ptr);
899 }
900 
901 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
902 {
903     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
904     qemu_register_reset(fw_cfg_machine_reset, s);
905 }
906 
907 
908 
909 static void fw_cfg_init1(DeviceState *dev)
910 {
911     FWCfgState *s = FW_CFG(dev);
912     MachineState *machine = MACHINE(qdev_get_machine());
913 
914     assert(!object_resolve_path(FW_CFG_PATH, NULL));
915 
916     object_property_add_child(OBJECT(machine), FW_CFG_NAME, OBJECT(s), NULL);
917 
918     qdev_init_nofail(dev);
919 
920     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
921     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
922     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
923     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
924     fw_cfg_bootsplash(s);
925     fw_cfg_reboot(s);
926 
927     s->machine_ready.notify = fw_cfg_machine_ready;
928     qemu_add_machine_init_done_notifier(&s->machine_ready);
929 }
930 
931 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
932                                 AddressSpace *dma_as)
933 {
934     DeviceState *dev;
935     FWCfgState *s;
936     uint32_t version = FW_CFG_VERSION;
937     bool dma_requested = dma_iobase && dma_as;
938 
939     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
940     qdev_prop_set_uint32(dev, "iobase", iobase);
941     qdev_prop_set_uint32(dev, "dma_iobase", dma_iobase);
942     if (!dma_requested) {
943         qdev_prop_set_bit(dev, "dma_enabled", false);
944     }
945 
946     fw_cfg_init1(dev);
947     s = FW_CFG(dev);
948 
949     if (s->dma_enabled) {
950         /* 64 bits for the address field */
951         s->dma_as = dma_as;
952         s->dma_addr = 0;
953 
954         version |= FW_CFG_VERSION_DMA;
955     }
956 
957     fw_cfg_add_i32(s, FW_CFG_ID, version);
958 
959     return s;
960 }
961 
962 FWCfgState *fw_cfg_init_io(uint32_t iobase)
963 {
964     return fw_cfg_init_io_dma(iobase, 0, NULL);
965 }
966 
967 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
968                                  hwaddr data_addr, uint32_t data_width,
969                                  hwaddr dma_addr, AddressSpace *dma_as)
970 {
971     DeviceState *dev;
972     SysBusDevice *sbd;
973     FWCfgState *s;
974     uint32_t version = FW_CFG_VERSION;
975     bool dma_requested = dma_addr && dma_as;
976 
977     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
978     qdev_prop_set_uint32(dev, "data_width", data_width);
979     if (!dma_requested) {
980         qdev_prop_set_bit(dev, "dma_enabled", false);
981     }
982 
983     fw_cfg_init1(dev);
984 
985     sbd = SYS_BUS_DEVICE(dev);
986     sysbus_mmio_map(sbd, 0, ctl_addr);
987     sysbus_mmio_map(sbd, 1, data_addr);
988 
989     s = FW_CFG(dev);
990 
991     if (s->dma_enabled) {
992         s->dma_as = dma_as;
993         s->dma_addr = 0;
994         sysbus_mmio_map(sbd, 2, dma_addr);
995         version |= FW_CFG_VERSION_DMA;
996     }
997 
998     fw_cfg_add_i32(s, FW_CFG_ID, version);
999 
1000     return s;
1001 }
1002 
1003 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
1004 {
1005     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
1006                                 fw_cfg_data_mem_ops.valid.max_access_size,
1007                                 0, NULL);
1008 }
1009 
1010 
1011 FWCfgState *fw_cfg_find(void)
1012 {
1013     return FW_CFG(object_resolve_path(FW_CFG_PATH, NULL));
1014 }
1015 
1016 static void fw_cfg_class_init(ObjectClass *klass, void *data)
1017 {
1018     DeviceClass *dc = DEVICE_CLASS(klass);
1019 
1020     dc->reset = fw_cfg_reset;
1021     dc->vmsd = &vmstate_fw_cfg;
1022 }
1023 
1024 static const TypeInfo fw_cfg_info = {
1025     .name          = TYPE_FW_CFG,
1026     .parent        = TYPE_SYS_BUS_DEVICE,
1027     .abstract      = true,
1028     .instance_size = sizeof(FWCfgState),
1029     .class_init    = fw_cfg_class_init,
1030 };
1031 
1032 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1033 {
1034     uint16_t file_slots_max;
1035 
1036     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1037         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1038                    FW_CFG_FILE_SLOTS_MIN);
1039         return;
1040     }
1041 
1042     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1043      * that we permit. The actual (exclusive) value coming from the
1044      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1045     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1046     if (fw_cfg_file_slots(s) > file_slots_max) {
1047         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1048                    file_slots_max);
1049         return;
1050     }
1051 
1052     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1053     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1054     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1055 }
1056 
1057 static Property fw_cfg_io_properties[] = {
1058     DEFINE_PROP_UINT32("iobase", FWCfgIoState, iobase, -1),
1059     DEFINE_PROP_UINT32("dma_iobase", FWCfgIoState, dma_iobase, -1),
1060     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1061                      true),
1062     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1063                        FW_CFG_FILE_SLOTS_DFLT),
1064     DEFINE_PROP_END_OF_LIST(),
1065 };
1066 
1067 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1068 {
1069     FWCfgIoState *s = FW_CFG_IO(dev);
1070     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1071     Error *local_err = NULL;
1072 
1073     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1074     if (local_err) {
1075         error_propagate(errp, local_err);
1076         return;
1077     }
1078 
1079     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1080      * with half of the 16-bit control register. Hence, the total size
1081      * of the i/o region used is FW_CFG_CTL_SIZE */
1082     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1083                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1084     sysbus_add_io(sbd, s->iobase, &s->comb_iomem);
1085 
1086     if (FW_CFG(s)->dma_enabled) {
1087         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1088                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1089                               sizeof(dma_addr_t));
1090         sysbus_add_io(sbd, s->dma_iobase, &FW_CFG(s)->dma_iomem);
1091     }
1092 }
1093 
1094 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1095 {
1096     DeviceClass *dc = DEVICE_CLASS(klass);
1097 
1098     dc->realize = fw_cfg_io_realize;
1099     dc->props = fw_cfg_io_properties;
1100 }
1101 
1102 static const TypeInfo fw_cfg_io_info = {
1103     .name          = TYPE_FW_CFG_IO,
1104     .parent        = TYPE_FW_CFG,
1105     .instance_size = sizeof(FWCfgIoState),
1106     .class_init    = fw_cfg_io_class_init,
1107 };
1108 
1109 
1110 static Property fw_cfg_mem_properties[] = {
1111     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1112     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1113                      true),
1114     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1115                        FW_CFG_FILE_SLOTS_DFLT),
1116     DEFINE_PROP_END_OF_LIST(),
1117 };
1118 
1119 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1120 {
1121     FWCfgMemState *s = FW_CFG_MEM(dev);
1122     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1123     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1124     Error *local_err = NULL;
1125 
1126     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1127     if (local_err) {
1128         error_propagate(errp, local_err);
1129         return;
1130     }
1131 
1132     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1133                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1134     sysbus_init_mmio(sbd, &s->ctl_iomem);
1135 
1136     if (s->data_width > data_ops->valid.max_access_size) {
1137         /* memberwise copy because the "old_mmio" member is const */
1138         s->wide_data_ops.read       = data_ops->read;
1139         s->wide_data_ops.write      = data_ops->write;
1140         s->wide_data_ops.endianness = data_ops->endianness;
1141         s->wide_data_ops.valid      = data_ops->valid;
1142         s->wide_data_ops.impl       = data_ops->impl;
1143 
1144         s->wide_data_ops.valid.max_access_size = s->data_width;
1145         s->wide_data_ops.impl.max_access_size  = s->data_width;
1146         data_ops = &s->wide_data_ops;
1147     }
1148     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1149                           "fwcfg.data", data_ops->valid.max_access_size);
1150     sysbus_init_mmio(sbd, &s->data_iomem);
1151 
1152     if (FW_CFG(s)->dma_enabled) {
1153         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1154                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1155                               sizeof(dma_addr_t));
1156         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1157     }
1158 }
1159 
1160 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1161 {
1162     DeviceClass *dc = DEVICE_CLASS(klass);
1163 
1164     dc->realize = fw_cfg_mem_realize;
1165     dc->props = fw_cfg_mem_properties;
1166 }
1167 
1168 static const TypeInfo fw_cfg_mem_info = {
1169     .name          = TYPE_FW_CFG_MEM,
1170     .parent        = TYPE_FW_CFG,
1171     .instance_size = sizeof(FWCfgMemState),
1172     .class_init    = fw_cfg_mem_class_init,
1173 };
1174 
1175 
1176 static void fw_cfg_register_types(void)
1177 {
1178     type_register_static(&fw_cfg_info);
1179     type_register_static(&fw_cfg_io_info);
1180     type_register_static(&fw_cfg_mem_info);
1181 }
1182 
1183 type_init(fw_cfg_register_types)
1184