xref: /openbmc/qemu/hw/nvram/fw_cfg.c (revision 77d361b1)
1 /*
2  * QEMU Firmware configuration device emulation
3  *
4  * Copyright (c) 2008 Gleb Natapov
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/hw.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/dma.h"
29 #include "hw/boards.h"
30 #include "hw/isa/isa.h"
31 #include "hw/nvram/fw_cfg.h"
32 #include "hw/sysbus.h"
33 #include "trace.h"
34 #include "qemu/error-report.h"
35 #include "qemu/option.h"
36 #include "qemu/config-file.h"
37 #include "qemu/cutils.h"
38 #include "qapi/error.h"
39 
40 #define FW_CFG_FILE_SLOTS_DFLT 0x20
41 
42 /* FW_CFG_VERSION bits */
43 #define FW_CFG_VERSION      0x01
44 #define FW_CFG_VERSION_DMA  0x02
45 
46 /* FW_CFG_DMA_CONTROL bits */
47 #define FW_CFG_DMA_CTL_ERROR   0x01
48 #define FW_CFG_DMA_CTL_READ    0x02
49 #define FW_CFG_DMA_CTL_SKIP    0x04
50 #define FW_CFG_DMA_CTL_SELECT  0x08
51 #define FW_CFG_DMA_CTL_WRITE   0x10
52 
53 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */
54 
55 struct FWCfgEntry {
56     uint32_t len;
57     bool allow_write;
58     uint8_t *data;
59     void *callback_opaque;
60     FWCfgCallback select_cb;
61     FWCfgWriteCallback write_cb;
62 };
63 
64 #define JPG_FILE 0
65 #define BMP_FILE 1
66 
67 static char *read_splashfile(char *filename, gsize *file_sizep,
68                              int *file_typep)
69 {
70     GError *err = NULL;
71     gboolean res;
72     gchar *content;
73     int file_type;
74     unsigned int filehead;
75     int bmp_bpp;
76 
77     res = g_file_get_contents(filename, &content, file_sizep, &err);
78     if (res == FALSE) {
79         error_report("failed to read splash file '%s'", filename);
80         g_error_free(err);
81         return NULL;
82     }
83 
84     /* check file size */
85     if (*file_sizep < 30) {
86         goto error;
87     }
88 
89     /* check magic ID */
90     filehead = ((content[0] & 0xff) + (content[1] << 8)) & 0xffff;
91     if (filehead == 0xd8ff) {
92         file_type = JPG_FILE;
93     } else if (filehead == 0x4d42) {
94         file_type = BMP_FILE;
95     } else {
96         goto error;
97     }
98 
99     /* check BMP bpp */
100     if (file_type == BMP_FILE) {
101         bmp_bpp = (content[28] + (content[29] << 8)) & 0xffff;
102         if (bmp_bpp != 24) {
103             goto error;
104         }
105     }
106 
107     /* return values */
108     *file_typep = file_type;
109 
110     return content;
111 
112 error:
113     error_report("splash file '%s' format not recognized; must be JPEG "
114                  "or 24 bit BMP", filename);
115     g_free(content);
116     return NULL;
117 }
118 
119 static void fw_cfg_bootsplash(FWCfgState *s)
120 {
121     int boot_splash_time = -1;
122     const char *boot_splash_filename = NULL;
123     char *p;
124     char *filename, *file_data;
125     gsize file_size;
126     int file_type;
127     const char *temp;
128 
129     /* get user configuration */
130     QemuOptsList *plist = qemu_find_opts("boot-opts");
131     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
132     if (opts != NULL) {
133         temp = qemu_opt_get(opts, "splash");
134         if (temp != NULL) {
135             boot_splash_filename = temp;
136         }
137         temp = qemu_opt_get(opts, "splash-time");
138         if (temp != NULL) {
139             p = (char *)temp;
140             boot_splash_time = strtol(p, &p, 10);
141         }
142     }
143 
144     /* insert splash time if user configurated */
145     if (boot_splash_time >= 0) {
146         /* validate the input */
147         if (boot_splash_time > 0xffff) {
148             error_report("splash time is big than 65535, force it to 65535.");
149             boot_splash_time = 0xffff;
150         }
151         /* use little endian format */
152         qemu_extra_params_fw[0] = (uint8_t)(boot_splash_time & 0xff);
153         qemu_extra_params_fw[1] = (uint8_t)((boot_splash_time >> 8) & 0xff);
154         fw_cfg_add_file(s, "etc/boot-menu-wait", qemu_extra_params_fw, 2);
155     }
156 
157     /* insert splash file if user configurated */
158     if (boot_splash_filename != NULL) {
159         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename);
160         if (filename == NULL) {
161             error_report("failed to find file '%s'.", boot_splash_filename);
162             return;
163         }
164 
165         /* loading file data */
166         file_data = read_splashfile(filename, &file_size, &file_type);
167         if (file_data == NULL) {
168             g_free(filename);
169             return;
170         }
171         g_free(boot_splash_filedata);
172         boot_splash_filedata = (uint8_t *)file_data;
173         boot_splash_filedata_size = file_size;
174 
175         /* insert data */
176         if (file_type == JPG_FILE) {
177             fw_cfg_add_file(s, "bootsplash.jpg",
178                     boot_splash_filedata, boot_splash_filedata_size);
179         } else {
180             fw_cfg_add_file(s, "bootsplash.bmp",
181                     boot_splash_filedata, boot_splash_filedata_size);
182         }
183         g_free(filename);
184     }
185 }
186 
187 static void fw_cfg_reboot(FWCfgState *s)
188 {
189     int reboot_timeout = -1;
190     char *p;
191     const char *temp;
192 
193     /* get user configuration */
194     QemuOptsList *plist = qemu_find_opts("boot-opts");
195     QemuOpts *opts = QTAILQ_FIRST(&plist->head);
196     if (opts != NULL) {
197         temp = qemu_opt_get(opts, "reboot-timeout");
198         if (temp != NULL) {
199             p = (char *)temp;
200             reboot_timeout = strtol(p, &p, 10);
201         }
202     }
203     /* validate the input */
204     if (reboot_timeout > 0xffff) {
205         error_report("reboot timeout is larger than 65535, force it to 65535.");
206         reboot_timeout = 0xffff;
207     }
208     fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&reboot_timeout, 4), 4);
209 }
210 
211 static void fw_cfg_write(FWCfgState *s, uint8_t value)
212 {
213     /* nothing, write support removed in QEMU v2.4+ */
214 }
215 
216 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s)
217 {
218     return s->file_slots;
219 }
220 
221 /* Note: this function returns an exclusive limit. */
222 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s)
223 {
224     return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s);
225 }
226 
227 static int fw_cfg_select(FWCfgState *s, uint16_t key)
228 {
229     int arch, ret;
230     FWCfgEntry *e;
231 
232     s->cur_offset = 0;
233     if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) {
234         s->cur_entry = FW_CFG_INVALID;
235         ret = 0;
236     } else {
237         s->cur_entry = key;
238         ret = 1;
239         /* entry successfully selected, now run callback if present */
240         arch = !!(key & FW_CFG_ARCH_LOCAL);
241         e = &s->entries[arch][key & FW_CFG_ENTRY_MASK];
242         if (e->select_cb) {
243             e->select_cb(e->callback_opaque);
244         }
245     }
246 
247     trace_fw_cfg_select(s, key, ret);
248     return ret;
249 }
250 
251 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size)
252 {
253     FWCfgState *s = opaque;
254     int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
255     FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
256                     &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
257     uint64_t value = 0;
258 
259     assert(size > 0 && size <= sizeof(value));
260     if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) {
261         /* The least significant 'size' bytes of the return value are
262          * expected to contain a string preserving portion of the item
263          * data, padded with zeros on the right in case we run out early.
264          * In technical terms, we're composing the host-endian representation
265          * of the big endian interpretation of the fw_cfg string.
266          */
267         do {
268             value = (value << 8) | e->data[s->cur_offset++];
269         } while (--size && s->cur_offset < e->len);
270         /* If size is still not zero, we *did* run out early, so continue
271          * left-shifting, to add the appropriate number of padding zeros
272          * on the right.
273          */
274         value <<= 8 * size;
275     }
276 
277     trace_fw_cfg_read(s, value);
278     return value;
279 }
280 
281 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr,
282                                   uint64_t value, unsigned size)
283 {
284     FWCfgState *s = opaque;
285     unsigned i = size;
286 
287     do {
288         fw_cfg_write(s, value >> (8 * --i));
289     } while (i);
290 }
291 
292 static void fw_cfg_dma_transfer(FWCfgState *s)
293 {
294     dma_addr_t len;
295     FWCfgDmaAccess dma;
296     int arch;
297     FWCfgEntry *e;
298     int read = 0, write = 0;
299     dma_addr_t dma_addr;
300 
301     /* Reset the address before the next access */
302     dma_addr = s->dma_addr;
303     s->dma_addr = 0;
304 
305     if (dma_memory_read(s->dma_as, dma_addr, &dma, sizeof(dma))) {
306         stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
307                    FW_CFG_DMA_CTL_ERROR);
308         return;
309     }
310 
311     dma.address = be64_to_cpu(dma.address);
312     dma.length = be32_to_cpu(dma.length);
313     dma.control = be32_to_cpu(dma.control);
314 
315     if (dma.control & FW_CFG_DMA_CTL_SELECT) {
316         fw_cfg_select(s, dma.control >> 16);
317     }
318 
319     arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL);
320     e = (s->cur_entry == FW_CFG_INVALID) ? NULL :
321         &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK];
322 
323     if (dma.control & FW_CFG_DMA_CTL_READ) {
324         read = 1;
325         write = 0;
326     } else if (dma.control & FW_CFG_DMA_CTL_WRITE) {
327         read = 0;
328         write = 1;
329     } else if (dma.control & FW_CFG_DMA_CTL_SKIP) {
330         read = 0;
331         write = 0;
332     } else {
333         dma.length = 0;
334     }
335 
336     dma.control = 0;
337 
338     while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) {
339         if (s->cur_entry == FW_CFG_INVALID || !e->data ||
340                                 s->cur_offset >= e->len) {
341             len = dma.length;
342 
343             /* If the access is not a read access, it will be a skip access,
344              * tested before.
345              */
346             if (read) {
347                 if (dma_memory_set(s->dma_as, dma.address, 0, len)) {
348                     dma.control |= FW_CFG_DMA_CTL_ERROR;
349                 }
350             }
351             if (write) {
352                 dma.control |= FW_CFG_DMA_CTL_ERROR;
353             }
354         } else {
355             if (dma.length <= (e->len - s->cur_offset)) {
356                 len = dma.length;
357             } else {
358                 len = (e->len - s->cur_offset);
359             }
360 
361             /* If the access is not a read access, it will be a skip access,
362              * tested before.
363              */
364             if (read) {
365                 if (dma_memory_write(s->dma_as, dma.address,
366                                     &e->data[s->cur_offset], len)) {
367                     dma.control |= FW_CFG_DMA_CTL_ERROR;
368                 }
369             }
370             if (write) {
371                 if (!e->allow_write ||
372                     len != dma.length ||
373                     dma_memory_read(s->dma_as, dma.address,
374                                     &e->data[s->cur_offset], len)) {
375                     dma.control |= FW_CFG_DMA_CTL_ERROR;
376                 } else if (e->write_cb) {
377                     e->write_cb(e->callback_opaque, s->cur_offset, len);
378                 }
379             }
380 
381             s->cur_offset += len;
382         }
383 
384         dma.address += len;
385         dma.length  -= len;
386 
387     }
388 
389     stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control),
390                 dma.control);
391 
392     trace_fw_cfg_read(s, 0);
393 }
394 
395 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr,
396                                     unsigned size)
397 {
398     /* Return a signature value (and handle various read sizes) */
399     return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8);
400 }
401 
402 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr,
403                                  uint64_t value, unsigned size)
404 {
405     FWCfgState *s = opaque;
406 
407     if (size == 4) {
408         if (addr == 0) {
409             /* FWCfgDmaAccess high address */
410             s->dma_addr = value << 32;
411         } else if (addr == 4) {
412             /* FWCfgDmaAccess low address */
413             s->dma_addr |= value;
414             fw_cfg_dma_transfer(s);
415         }
416     } else if (size == 8 && addr == 0) {
417         s->dma_addr = value;
418         fw_cfg_dma_transfer(s);
419     }
420 }
421 
422 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr,
423                                  unsigned size, bool is_write,
424                                  MemTxAttrs attrs)
425 {
426     return !is_write || ((size == 4 && (addr == 0 || addr == 4)) ||
427                          (size == 8 && addr == 0));
428 }
429 
430 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr,
431                                   unsigned size, bool is_write,
432                                   MemTxAttrs attrs)
433 {
434     return addr == 0;
435 }
436 
437 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr,
438                                  uint64_t value, unsigned size)
439 {
440     fw_cfg_select(opaque, (uint16_t)value);
441 }
442 
443 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr,
444                                  unsigned size, bool is_write,
445                                  MemTxAttrs attrs)
446 {
447     return is_write && size == 2;
448 }
449 
450 static void fw_cfg_comb_write(void *opaque, hwaddr addr,
451                               uint64_t value, unsigned size)
452 {
453     switch (size) {
454     case 1:
455         fw_cfg_write(opaque, (uint8_t)value);
456         break;
457     case 2:
458         fw_cfg_select(opaque, (uint16_t)value);
459         break;
460     }
461 }
462 
463 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr,
464                               unsigned size, bool is_write,
465                               MemTxAttrs attrs)
466 {
467     return (size == 1) || (is_write && size == 2);
468 }
469 
470 static const MemoryRegionOps fw_cfg_ctl_mem_ops = {
471     .write = fw_cfg_ctl_mem_write,
472     .endianness = DEVICE_BIG_ENDIAN,
473     .valid.accepts = fw_cfg_ctl_mem_valid,
474 };
475 
476 static const MemoryRegionOps fw_cfg_data_mem_ops = {
477     .read = fw_cfg_data_read,
478     .write = fw_cfg_data_mem_write,
479     .endianness = DEVICE_BIG_ENDIAN,
480     .valid = {
481         .min_access_size = 1,
482         .max_access_size = 1,
483         .accepts = fw_cfg_data_mem_valid,
484     },
485 };
486 
487 static const MemoryRegionOps fw_cfg_comb_mem_ops = {
488     .read = fw_cfg_data_read,
489     .write = fw_cfg_comb_write,
490     .endianness = DEVICE_LITTLE_ENDIAN,
491     .valid.accepts = fw_cfg_comb_valid,
492 };
493 
494 static const MemoryRegionOps fw_cfg_dma_mem_ops = {
495     .read = fw_cfg_dma_mem_read,
496     .write = fw_cfg_dma_mem_write,
497     .endianness = DEVICE_BIG_ENDIAN,
498     .valid.accepts = fw_cfg_dma_mem_valid,
499     .valid.max_access_size = 8,
500     .impl.max_access_size = 8,
501 };
502 
503 static void fw_cfg_reset(DeviceState *d)
504 {
505     FWCfgState *s = FW_CFG(d);
506 
507     /* we never register a read callback for FW_CFG_SIGNATURE */
508     fw_cfg_select(s, FW_CFG_SIGNATURE);
509 }
510 
511 /* Save restore 32 bit int as uint16_t
512    This is a Big hack, but it is how the old state did it.
513    Or we broke compatibility in the state, or we can't use struct tm
514  */
515 
516 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size,
517                                 VMStateField *field)
518 {
519     uint32_t *v = pv;
520     *v = qemu_get_be16(f);
521     return 0;
522 }
523 
524 static int put_unused(QEMUFile *f, void *pv, size_t size, VMStateField *field,
525                       QJSON *vmdesc)
526 {
527     fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n");
528     fprintf(stderr, "This functions shouldn't be called.\n");
529 
530     return 0;
531 }
532 
533 static const VMStateInfo vmstate_hack_uint32_as_uint16 = {
534     .name = "int32_as_uint16",
535     .get  = get_uint32_as_uint16,
536     .put  = put_unused,
537 };
538 
539 #define VMSTATE_UINT16_HACK(_f, _s, _t)                                    \
540     VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t)
541 
542 
543 static bool is_version_1(void *opaque, int version_id)
544 {
545     return version_id == 1;
546 }
547 
548 bool fw_cfg_dma_enabled(void *opaque)
549 {
550     FWCfgState *s = opaque;
551 
552     return s->dma_enabled;
553 }
554 
555 static const VMStateDescription vmstate_fw_cfg_dma = {
556     .name = "fw_cfg/dma",
557     .needed = fw_cfg_dma_enabled,
558     .fields = (VMStateField[]) {
559         VMSTATE_UINT64(dma_addr, FWCfgState),
560         VMSTATE_END_OF_LIST()
561     },
562 };
563 
564 static const VMStateDescription vmstate_fw_cfg = {
565     .name = "fw_cfg",
566     .version_id = 2,
567     .minimum_version_id = 1,
568     .fields = (VMStateField[]) {
569         VMSTATE_UINT16(cur_entry, FWCfgState),
570         VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1),
571         VMSTATE_UINT32_V(cur_offset, FWCfgState, 2),
572         VMSTATE_END_OF_LIST()
573     },
574     .subsections = (const VMStateDescription*[]) {
575         &vmstate_fw_cfg_dma,
576         NULL,
577     }
578 };
579 
580 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key,
581                                       FWCfgCallback select_cb,
582                                       FWCfgWriteCallback write_cb,
583                                       void *callback_opaque,
584                                       void *data, size_t len,
585                                       bool read_only)
586 {
587     int arch = !!(key & FW_CFG_ARCH_LOCAL);
588 
589     key &= FW_CFG_ENTRY_MASK;
590 
591     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
592     assert(s->entries[arch][key].data == NULL); /* avoid key conflict */
593 
594     s->entries[arch][key].data = data;
595     s->entries[arch][key].len = (uint32_t)len;
596     s->entries[arch][key].select_cb = select_cb;
597     s->entries[arch][key].write_cb = write_cb;
598     s->entries[arch][key].callback_opaque = callback_opaque;
599     s->entries[arch][key].allow_write = !read_only;
600 }
601 
602 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key,
603                                               void *data, size_t len)
604 {
605     void *ptr;
606     int arch = !!(key & FW_CFG_ARCH_LOCAL);
607 
608     key &= FW_CFG_ENTRY_MASK;
609 
610     assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX);
611 
612     /* return the old data to the function caller, avoid memory leak */
613     ptr = s->entries[arch][key].data;
614     s->entries[arch][key].data = data;
615     s->entries[arch][key].len = len;
616     s->entries[arch][key].callback_opaque = NULL;
617     s->entries[arch][key].allow_write = false;
618 
619     return ptr;
620 }
621 
622 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len)
623 {
624     fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true);
625 }
626 
627 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value)
628 {
629     size_t sz = strlen(value) + 1;
630 
631     fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz);
632 }
633 
634 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value)
635 {
636     uint16_t *copy;
637 
638     copy = g_malloc(sizeof(value));
639     *copy = cpu_to_le16(value);
640     fw_cfg_add_bytes(s, key, copy, sizeof(value));
641 }
642 
643 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value)
644 {
645     uint16_t *copy, *old;
646 
647     copy = g_malloc(sizeof(value));
648     *copy = cpu_to_le16(value);
649     old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value));
650     g_free(old);
651 }
652 
653 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value)
654 {
655     uint32_t *copy;
656 
657     copy = g_malloc(sizeof(value));
658     *copy = cpu_to_le32(value);
659     fw_cfg_add_bytes(s, key, copy, sizeof(value));
660 }
661 
662 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value)
663 {
664     uint64_t *copy;
665 
666     copy = g_malloc(sizeof(value));
667     *copy = cpu_to_le64(value);
668     fw_cfg_add_bytes(s, key, copy, sizeof(value));
669 }
670 
671 void fw_cfg_set_order_override(FWCfgState *s, int order)
672 {
673     assert(s->fw_cfg_order_override == 0);
674     s->fw_cfg_order_override = order;
675 }
676 
677 void fw_cfg_reset_order_override(FWCfgState *s)
678 {
679     assert(s->fw_cfg_order_override != 0);
680     s->fw_cfg_order_override = 0;
681 }
682 
683 /*
684  * This is the legacy order list.  For legacy systems, files are in
685  * the fw_cfg in the order defined below, by the "order" value.  Note
686  * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a
687  * specific area, but there may be more than one and they occur in the
688  * order that the user specifies them on the command line.  Those are
689  * handled in a special manner, using the order override above.
690  *
691  * For non-legacy, the files are sorted by filename to avoid this kind
692  * of complexity in the future.
693  *
694  * This is only for x86, other arches don't implement versioning so
695  * they won't set legacy mode.
696  */
697 static struct {
698     const char *name;
699     int order;
700 } fw_cfg_order[] = {
701     { "etc/boot-menu-wait", 10 },
702     { "bootsplash.jpg", 11 },
703     { "bootsplash.bmp", 12 },
704     { "etc/boot-fail-wait", 15 },
705     { "etc/smbios/smbios-tables", 20 },
706     { "etc/smbios/smbios-anchor", 30 },
707     { "etc/e820", 40 },
708     { "etc/reserved-memory-end", 50 },
709     { "genroms/kvmvapic.bin", 55 },
710     { "genroms/linuxboot.bin", 60 },
711     { }, /* VGA ROMs from pc_vga_init come here, 70. */
712     { }, /* NIC option ROMs from pc_nic_init come here, 80. */
713     { "etc/system-states", 90 },
714     { }, /* User ROMs come here, 100. */
715     { }, /* Device FW comes here, 110. */
716     { "etc/extra-pci-roots", 120 },
717     { "etc/acpi/tables", 130 },
718     { "etc/table-loader", 140 },
719     { "etc/tpm/log", 150 },
720     { "etc/acpi/rsdp", 160 },
721     { "bootorder", 170 },
722 
723 #define FW_CFG_ORDER_OVERRIDE_LAST 200
724 };
725 
726 static int get_fw_cfg_order(FWCfgState *s, const char *name)
727 {
728     int i;
729 
730     if (s->fw_cfg_order_override > 0) {
731         return s->fw_cfg_order_override;
732     }
733 
734     for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) {
735         if (fw_cfg_order[i].name == NULL) {
736             continue;
737         }
738 
739         if (strcmp(name, fw_cfg_order[i].name) == 0) {
740             return fw_cfg_order[i].order;
741         }
742     }
743 
744     /* Stick unknown stuff at the end. */
745     warn_report("Unknown firmware file in legacy mode: %s", name);
746     return FW_CFG_ORDER_OVERRIDE_LAST;
747 }
748 
749 void fw_cfg_add_file_callback(FWCfgState *s,  const char *filename,
750                               FWCfgCallback select_cb,
751                               FWCfgWriteCallback write_cb,
752                               void *callback_opaque,
753                               void *data, size_t len, bool read_only)
754 {
755     int i, index, count;
756     size_t dsize;
757     MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
758     int order = 0;
759 
760     if (!s->files) {
761         dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s);
762         s->files = g_malloc0(dsize);
763         fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize);
764     }
765 
766     count = be32_to_cpu(s->files->count);
767     assert(count < fw_cfg_file_slots(s));
768 
769     /* Find the insertion point. */
770     if (mc->legacy_fw_cfg_order) {
771         /*
772          * Sort by order. For files with the same order, we keep them
773          * in the sequence in which they were added.
774          */
775         order = get_fw_cfg_order(s, filename);
776         for (index = count;
777              index > 0 && order < s->entry_order[index - 1];
778              index--);
779     } else {
780         /* Sort by file name. */
781         for (index = count;
782              index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0;
783              index--);
784     }
785 
786     /*
787      * Move all the entries from the index point and after down one
788      * to create a slot for the new entry.  Because calculations are
789      * being done with the index, make it so that "i" is the current
790      * index and "i - 1" is the one being copied from, thus the
791      * unusual start and end in the for statement.
792      */
793     for (i = count; i > index; i--) {
794         s->files->f[i] = s->files->f[i - 1];
795         s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i);
796         s->entries[0][FW_CFG_FILE_FIRST + i] =
797             s->entries[0][FW_CFG_FILE_FIRST + i - 1];
798         s->entry_order[i] = s->entry_order[i - 1];
799     }
800 
801     memset(&s->files->f[index], 0, sizeof(FWCfgFile));
802     memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry));
803 
804     pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename);
805     for (i = 0; i <= count; i++) {
806         if (i != index &&
807             strcmp(s->files->f[index].name, s->files->f[i].name) == 0) {
808             error_report("duplicate fw_cfg file name: %s",
809                          s->files->f[index].name);
810             exit(1);
811         }
812     }
813 
814     fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index,
815                               select_cb, write_cb,
816                               callback_opaque, data, len,
817                               read_only);
818 
819     s->files->f[index].size   = cpu_to_be32(len);
820     s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index);
821     s->entry_order[index] = order;
822     trace_fw_cfg_add_file(s, index, s->files->f[index].name, len);
823 
824     s->files->count = cpu_to_be32(count+1);
825 }
826 
827 void fw_cfg_add_file(FWCfgState *s,  const char *filename,
828                      void *data, size_t len)
829 {
830     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
831 }
832 
833 void *fw_cfg_modify_file(FWCfgState *s, const char *filename,
834                         void *data, size_t len)
835 {
836     int i, index;
837     void *ptr = NULL;
838 
839     assert(s->files);
840 
841     index = be32_to_cpu(s->files->count);
842 
843     for (i = 0; i < index; i++) {
844         if (strcmp(filename, s->files->f[i].name) == 0) {
845             ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i,
846                                            data, len);
847             s->files->f[i].size   = cpu_to_be32(len);
848             return ptr;
849         }
850     }
851 
852     assert(index < fw_cfg_file_slots(s));
853 
854     /* add new one */
855     fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true);
856     return NULL;
857 }
858 
859 static void fw_cfg_machine_reset(void *opaque)
860 {
861     void *ptr;
862     size_t len;
863     FWCfgState *s = opaque;
864     char *bootindex = get_boot_devices_list(&len, false);
865 
866     ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)bootindex, len);
867     g_free(ptr);
868 }
869 
870 static void fw_cfg_machine_ready(struct Notifier *n, void *data)
871 {
872     FWCfgState *s = container_of(n, FWCfgState, machine_ready);
873     qemu_register_reset(fw_cfg_machine_reset, s);
874 }
875 
876 
877 
878 static void fw_cfg_common_realize(DeviceState *dev, Error **errp)
879 {
880     FWCfgState *s = FW_CFG(dev);
881     MachineState *machine = MACHINE(qdev_get_machine());
882     uint32_t version = FW_CFG_VERSION;
883 
884     if (!fw_cfg_find()) {
885         error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG);
886         return;
887     }
888 
889     fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4);
890     fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16);
891     fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics);
892     fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)boot_menu);
893     fw_cfg_bootsplash(s);
894     fw_cfg_reboot(s);
895 
896     if (s->dma_enabled) {
897         version |= FW_CFG_VERSION_DMA;
898     }
899 
900     fw_cfg_add_i32(s, FW_CFG_ID, version);
901 
902     s->machine_ready.notify = fw_cfg_machine_ready;
903     qemu_add_machine_init_done_notifier(&s->machine_ready);
904 }
905 
906 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase,
907                                 AddressSpace *dma_as)
908 {
909     DeviceState *dev;
910     SysBusDevice *sbd;
911     FWCfgIoState *ios;
912     FWCfgState *s;
913     bool dma_requested = dma_iobase && dma_as;
914 
915     dev = qdev_create(NULL, TYPE_FW_CFG_IO);
916     if (!dma_requested) {
917         qdev_prop_set_bit(dev, "dma_enabled", false);
918     }
919 
920     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
921                               OBJECT(dev), NULL);
922     qdev_init_nofail(dev);
923 
924     sbd = SYS_BUS_DEVICE(dev);
925     ios = FW_CFG_IO(dev);
926     sysbus_add_io(sbd, iobase, &ios->comb_iomem);
927 
928     s = FW_CFG(dev);
929 
930     if (s->dma_enabled) {
931         /* 64 bits for the address field */
932         s->dma_as = dma_as;
933         s->dma_addr = 0;
934         sysbus_add_io(sbd, dma_iobase, &s->dma_iomem);
935     }
936 
937     return s;
938 }
939 
940 FWCfgState *fw_cfg_init_io(uint32_t iobase)
941 {
942     return fw_cfg_init_io_dma(iobase, 0, NULL);
943 }
944 
945 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr,
946                                  hwaddr data_addr, uint32_t data_width,
947                                  hwaddr dma_addr, AddressSpace *dma_as)
948 {
949     DeviceState *dev;
950     SysBusDevice *sbd;
951     FWCfgState *s;
952     bool dma_requested = dma_addr && dma_as;
953 
954     dev = qdev_create(NULL, TYPE_FW_CFG_MEM);
955     qdev_prop_set_uint32(dev, "data_width", data_width);
956     if (!dma_requested) {
957         qdev_prop_set_bit(dev, "dma_enabled", false);
958     }
959 
960     object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG,
961                               OBJECT(dev), NULL);
962     qdev_init_nofail(dev);
963 
964     sbd = SYS_BUS_DEVICE(dev);
965     sysbus_mmio_map(sbd, 0, ctl_addr);
966     sysbus_mmio_map(sbd, 1, data_addr);
967 
968     s = FW_CFG(dev);
969 
970     if (s->dma_enabled) {
971         s->dma_as = dma_as;
972         s->dma_addr = 0;
973         sysbus_mmio_map(sbd, 2, dma_addr);
974     }
975 
976     return s;
977 }
978 
979 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr)
980 {
981     return fw_cfg_init_mem_wide(ctl_addr, data_addr,
982                                 fw_cfg_data_mem_ops.valid.max_access_size,
983                                 0, NULL);
984 }
985 
986 
987 FWCfgState *fw_cfg_find(void)
988 {
989     /* Returns NULL unless there is exactly one fw_cfg device */
990     return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL));
991 }
992 
993 
994 static void fw_cfg_class_init(ObjectClass *klass, void *data)
995 {
996     DeviceClass *dc = DEVICE_CLASS(klass);
997 
998     dc->reset = fw_cfg_reset;
999     dc->vmsd = &vmstate_fw_cfg;
1000 }
1001 
1002 static const TypeInfo fw_cfg_info = {
1003     .name          = TYPE_FW_CFG,
1004     .parent        = TYPE_SYS_BUS_DEVICE,
1005     .abstract      = true,
1006     .instance_size = sizeof(FWCfgState),
1007     .class_init    = fw_cfg_class_init,
1008 };
1009 
1010 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp)
1011 {
1012     uint16_t file_slots_max;
1013 
1014     if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) {
1015         error_setg(errp, "\"file_slots\" must be at least 0x%x",
1016                    FW_CFG_FILE_SLOTS_MIN);
1017         return;
1018     }
1019 
1020     /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value
1021      * that we permit. The actual (exclusive) value coming from the
1022      * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */
1023     file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1;
1024     if (fw_cfg_file_slots(s) > file_slots_max) {
1025         error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16,
1026                    file_slots_max);
1027         return;
1028     }
1029 
1030     s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1031     s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s));
1032     s->entry_order = g_new0(int, fw_cfg_max_entry(s));
1033 }
1034 
1035 static Property fw_cfg_io_properties[] = {
1036     DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled,
1037                      true),
1038     DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots,
1039                        FW_CFG_FILE_SLOTS_DFLT),
1040     DEFINE_PROP_END_OF_LIST(),
1041 };
1042 
1043 static void fw_cfg_io_realize(DeviceState *dev, Error **errp)
1044 {
1045     FWCfgIoState *s = FW_CFG_IO(dev);
1046     Error *local_err = NULL;
1047 
1048     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1049     if (local_err) {
1050         error_propagate(errp, local_err);
1051         return;
1052     }
1053 
1054     /* when using port i/o, the 8-bit data register ALWAYS overlaps
1055      * with half of the 16-bit control register. Hence, the total size
1056      * of the i/o region used is FW_CFG_CTL_SIZE */
1057     memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops,
1058                           FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE);
1059 
1060     if (FW_CFG(s)->dma_enabled) {
1061         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1062                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1063                               sizeof(dma_addr_t));
1064     }
1065 
1066     fw_cfg_common_realize(dev, errp);
1067 }
1068 
1069 static void fw_cfg_io_class_init(ObjectClass *klass, void *data)
1070 {
1071     DeviceClass *dc = DEVICE_CLASS(klass);
1072 
1073     dc->realize = fw_cfg_io_realize;
1074     dc->props = fw_cfg_io_properties;
1075 }
1076 
1077 static const TypeInfo fw_cfg_io_info = {
1078     .name          = TYPE_FW_CFG_IO,
1079     .parent        = TYPE_FW_CFG,
1080     .instance_size = sizeof(FWCfgIoState),
1081     .class_init    = fw_cfg_io_class_init,
1082 };
1083 
1084 
1085 static Property fw_cfg_mem_properties[] = {
1086     DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1),
1087     DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled,
1088                      true),
1089     DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots,
1090                        FW_CFG_FILE_SLOTS_DFLT),
1091     DEFINE_PROP_END_OF_LIST(),
1092 };
1093 
1094 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp)
1095 {
1096     FWCfgMemState *s = FW_CFG_MEM(dev);
1097     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1098     const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops;
1099     Error *local_err = NULL;
1100 
1101     fw_cfg_file_slots_allocate(FW_CFG(s), &local_err);
1102     if (local_err) {
1103         error_propagate(errp, local_err);
1104         return;
1105     }
1106 
1107     memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops,
1108                           FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE);
1109     sysbus_init_mmio(sbd, &s->ctl_iomem);
1110 
1111     if (s->data_width > data_ops->valid.max_access_size) {
1112         /* memberwise copy because the "old_mmio" member is const */
1113         s->wide_data_ops.read       = data_ops->read;
1114         s->wide_data_ops.write      = data_ops->write;
1115         s->wide_data_ops.endianness = data_ops->endianness;
1116         s->wide_data_ops.valid      = data_ops->valid;
1117         s->wide_data_ops.impl       = data_ops->impl;
1118 
1119         s->wide_data_ops.valid.max_access_size = s->data_width;
1120         s->wide_data_ops.impl.max_access_size  = s->data_width;
1121         data_ops = &s->wide_data_ops;
1122     }
1123     memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s),
1124                           "fwcfg.data", data_ops->valid.max_access_size);
1125     sysbus_init_mmio(sbd, &s->data_iomem);
1126 
1127     if (FW_CFG(s)->dma_enabled) {
1128         memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s),
1129                               &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma",
1130                               sizeof(dma_addr_t));
1131         sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem);
1132     }
1133 
1134     fw_cfg_common_realize(dev, errp);
1135 }
1136 
1137 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data)
1138 {
1139     DeviceClass *dc = DEVICE_CLASS(klass);
1140 
1141     dc->realize = fw_cfg_mem_realize;
1142     dc->props = fw_cfg_mem_properties;
1143 }
1144 
1145 static const TypeInfo fw_cfg_mem_info = {
1146     .name          = TYPE_FW_CFG_MEM,
1147     .parent        = TYPE_FW_CFG,
1148     .instance_size = sizeof(FWCfgMemState),
1149     .class_init    = fw_cfg_mem_class_init,
1150 };
1151 
1152 
1153 static void fw_cfg_register_types(void)
1154 {
1155     type_register_static(&fw_cfg_info);
1156     type_register_static(&fw_cfg_io_info);
1157     type_register_static(&fw_cfg_mem_info);
1158 }
1159 
1160 type_init(fw_cfg_register_types)
1161